

DPDK documentation

	Getting Started Guide for Linux

	Getting Started Guide for FreeBSD

	Getting Started Guide for Windows

	Sample Applications User Guides

	Programmer’s Guide

	HowTo Guides

	DPDK Tools User Guides

	Testpmd Application User Guide

	Network Interface Controller Drivers

	Baseband Device Drivers

	Crypto Device Drivers

	Compression Device Drivers

	vDPA Device Drivers

	Event Device Drivers

	Rawdev Drivers

	Mempool Device Driver

	Platform Specific Guides

	Contributor’s Guidelines

	Release Notes

	FAQ

Getting Started Guide for Linux

	1. Introduction
	1.1. Documentation Roadmap

	2. System Requirements
	2.1. BIOS Setting Prerequisite on x86

	2.2. Compilation of the DPDK

	2.3. Running DPDK Applications

	3. Compiling the DPDK Target from Source
	3.1. Uncompress DPDK and Browse Sources

	3.2. Compiling and Installing DPDK System-wide

	3.3. Installation of DPDK Target Environment using Make

	3.4. Browsing the Installed DPDK Environment Target

	4. Cross compile DPDK for ARM64
	4.1. Obtain the cross tool chain

	4.2. Unzip and add into the PATH

	4.3. Getting the prerequisite library

	4.4. Augment the cross toolchain with NUMA support

	4.5. Cross Compiling DPDK using Meson

	4.6. Configure and Cross Compile DPDK using Make

	5. Linux Drivers
	5.1. UIO

	5.2. VFIO

	5.3. Bifurcated Driver

	5.4. Binding and Unbinding Network Ports to/from the Kernel Modules

	6. Compiling and Running Sample Applications
	6.1. Compiling a Sample Application

	6.2. Running a Sample Application

	6.3. Additional Sample Applications

	6.4. Additional Test Applications

	7. EAL parameters
	7.1. Common EAL parameters

	7.2. Linux-specific EAL parameters

	8. Enabling Additional Functionality
	8.1. High Precision Event Timer (HPET) Functionality

	8.2. Running DPDK Applications Without Root Privileges

	8.3. Power Management and Power Saving Functionality

	8.4. Using Linux Core Isolation to Reduce Context Switches

	8.5. Loading the DPDK KNI Kernel Module

	8.6. Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

	9. Quick Start Setup Script
	9.1. Script Organization

	9.2. Use Cases

	9.3. Applications

	10. How to get best performance with NICs on Intel platforms
	10.1. Hardware and Memory Requirements

	10.2. Configurations before running DPDK

1. Introduction

This document contains instructions for installing and configuring the Data Plane Development Kit (DPDK) software.
It is designed to get customers up and running quickly.
The document describes how to compile and run a DPDK application in a Linux application (linux) environment,
without going deeply into detail.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes: Provides release-specific information, including supported features, limitations, fixed issues, known issues and so on.
Also, provides the answers to frequently asked questions in FAQ format.

	Getting Started Guide (this document): Describes how to install and configure the DPDK; designed to get users up and running quickly with the software.

	Programmer’s Guide: Describes:

	The software architecture and how to use it (through examples), specifically in a Linux application (linux) environment

	The content of the DPDK, the build system (including the commands that can be used in the root DPDK Makefile to build the development kit and
an application) and guidelines for porting an application

	Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

	API Reference: Provides detailed information about DPDK functions, data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality and provides instructions on how to compile, run and use the sample application.

2. System Requirements

This chapter describes the packages required to compile the DPDK.

Note

If the DPDK is being used on an Intel® Communications Chipset 89xx Series platform,
please consult the Intel® Communications Chipset 89xx Series Software for Linux Getting Started Guide.

2.1. BIOS Setting Prerequisite on x86

For the majority of platforms, no special BIOS settings are needed to use basic DPDK functionality.
However, for additional HPET timer and power management functionality,
and high performance of small packets, BIOS setting changes may be needed.
Consult the section on Enabling Additional Functionality
for more information on the required changes.

Note

If UEFI secure boot is enabled, the Linux kernel may disallow the use of
UIO on the system. Therefore, devices for use by DPDK should be bound to the
vfio-pci kernel module rather than igb_uio or uio_pci_generic.
For more details see Binding and Unbinding Network Ports to/from the Kernel Modules.

2.2. Compilation of the DPDK

Required Tools and Libraries:

Note

The setup commands and installed packages needed on various systems may be different.
For details on Linux distributions and the versions tested, please consult the DPDK Release Notes.

	General development tools including make, and a supported C compiler such as gcc (version 4.9+) or clang (version 3.4+).

	For RHEL/Fedora systems these can be installed using dnf groupinstall "Development Tools"

	For Ubuntu/Debian systems these can be installed using apt install build-essential

	Python, recommended version 3.5+.

	Python v3.5+ is needed to build DPDK using meson and ninja

	Python 2.7+ or 3.2+, to use various helper scripts included in the DPDK package.

	Meson (version 0.47.1+) and ninja

	meson & ninja-build packages in most Linux distributions

	If the packaged version is below the minimum version, the latest versions
can be installed from Python’s “pip” repository: pip3 install meson ninja

	Library for handling NUMA (Non Uniform Memory Access).

	numactl-devel in RHEL/Fedora;

	libnuma-dev in Debian/Ubuntu;

	Linux kernel headers or sources required to build kernel modules.

Note

Please ensure that the latest patches are applied to third party libraries
and software to avoid any known vulnerabilities.

Optional Tools:

	Intel® C++ Compiler (icc). For installation, additional libraries may be required.
See the icc Installation Guide found in the Documentation directory under the compiler installation.

	IBM® Advance ToolChain for Powerlinux. This is a set of open source development tools and runtime libraries
which allows users to take leading edge advantage of IBM’s latest POWER hardware features on Linux. To install
it, see the IBM official installation document.

Additional Libraries

A number of DPDK components, such as libraries and poll-mode drivers (PMDs) have additional dependencies.
For DPDK builds using meson, the presence or absence of these dependencies will be
automatically detected enabling or disabling the relevant components appropriately.

For builds using make, these components are disabled in the default configuration and
need to be enabled manually by changing the relevant setting to “y” in the build configuration file
i.e. the .config file in the build folder.

In each case, the relevant library development package (-devel or -dev) is needed to build the DPDK components.

For libraries the additional dependencies include:

	libarchive: for some unit tests using tar to get their resources.

	libelf: to compile and use the bpf library.

For poll-mode drivers, the additional dependencies for each driver can be
found in that driver’s documentation in the relevant DPDK guide document,
e.g. Network Interface Controller Drivers

2.3. Running DPDK Applications

To run an DPDK application, some customization may be required on the target machine.

2.3.1. System Software

Required:

	Kernel version >= 3.16

The kernel version required is based on the oldest long term stable kernel available
at kernel.org when the DPDK version is in development.
Compatibility for recent distribution kernels will be kept, notably RHEL/CentOS 7.

The kernel version in use can be checked using the command:

uname -r

	glibc >= 2.7 (for features related to cpuset)

The version can be checked using the ldd --version command.

	Kernel configuration

In the Fedora OS and other common distributions, such as Ubuntu, or Red Hat Enterprise Linux,
the vendor supplied kernel configurations can be used to run most DPDK applications.

For other kernel builds, options which should be enabled for DPDK include:

	HUGETLBFS

	PROC_PAGE_MONITOR support

	HPET and HPET_MMAP configuration options should also be enabled if HPET support is required.
See the section on High Precision Event Timer (HPET) Functionality for more details.

2.3.2. Use of Hugepages in the Linux Environment

Hugepage support is required for the large memory pool allocation used for packet buffers
(the HUGETLBFS option must be enabled in the running kernel as indicated the previous section).
By using hugepage allocations, performance is increased since fewer pages are needed,
and therefore less Translation Lookaside Buffers (TLBs, high speed translation caches),
which reduce the time it takes to translate a virtual page address to a physical page address.
Without hugepages, high TLB miss rates would occur with the standard 4k page size, slowing performance.

2.3.2.1. Reserving Hugepages for DPDK Use

The allocation of hugepages should be done at boot time or as soon as possible after system boot
to prevent memory from being fragmented in physical memory.
To reserve hugepages at boot time, a parameter is passed to the Linux kernel on the kernel command line.

For 2 MB pages, just pass the hugepages option to the kernel. For example, to reserve 1024 pages of 2 MB, use:

hugepages=1024

For other hugepage sizes, for example 1G pages, the size must be specified explicitly and
can also be optionally set as the default hugepage size for the system.
For example, to reserve 4G of hugepage memory in the form of four 1G pages, the following options should be passed to the kernel:

default_hugepagesz=1G hugepagesz=1G hugepages=4

Note

The hugepage sizes that a CPU supports can be determined from the CPU flags on Intel architecture.
If pse exists, 2M hugepages are supported; if pdpe1gb exists, 1G hugepages are supported.
On IBM Power architecture, the supported hugepage sizes are 16MB and 16GB.

Note

For 64-bit applications, it is recommended to use 1 GB hugepages if the platform supports them.

In the case of a dual-socket NUMA system,
the number of hugepages reserved at boot time is generally divided equally between the two sockets
(on the assumption that sufficient memory is present on both sockets).

See the Documentation/admin-guide/kernel-parameters.txt file in your Linux source tree for further details of these and other kernel options.

Alternative:

For 2 MB pages, there is also the option of allocating hugepages after the system has booted.
This is done by echoing the number of hugepages required to a nr_hugepages file in the /sys/devices/ directory.
For a single-node system, the command to use is as follows (assuming that 1024 pages are required):

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

On a NUMA machine, pages should be allocated explicitly on separate nodes:

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages

Note

For 1G pages, it is not possible to reserve the hugepage memory after the system has booted.

2.3.2.2. Using Hugepages with the DPDK

Once the hugepage memory is reserved, to make the memory available for DPDK use, perform the following steps:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

The mount point can be made permanent across reboots, by adding the following line to the /etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

For 1GB pages, the page size must be specified as a mount option:

nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

3. Compiling the DPDK Target from Source

Note

Parts of this process can also be done using the setup script described in
the Quick Start Setup Script section of this document.

3.1. Uncompress DPDK and Browse Sources

First, uncompress the archive and move to the uncompressed DPDK source directory:

tar xJf dpdk-<version>.tar.xz
cd dpdk-<version>

The DPDK is composed of several directories:

	lib: Source code of DPDK libraries

	drivers: Source code of DPDK poll-mode drivers

	app: Source code of DPDK applications (automatic tests)

	examples: Source code of DPDK application examples

	config, buildtools, mk: Framework-related makefiles, scripts and configuration

3.2. Compiling and Installing DPDK System-wide

DPDK can be configured, built and installed on your system using the tools
meson and ninja.

Note

The older makefile-based build system used in older DPDK releases is
still present and its use is described in section
Installation of DPDK Target Environment using Make.

3.2.1. DPDK Configuration

To configure a DPDK build use:

meson <options> build

where “build” is the desired output build directory, and “<options>” can be
empty or one of a number of meson or DPDK-specific build options, described
later in this section. The configuration process will finish with a summary
of what DPDK libraries and drivers are to be built and installed, and for
each item disabled, a reason why that is the case. This information can be
used, for example, to identify any missing required packages for a driver.

Once configured, to build and then install DPDK system-wide use:

cd build
ninja
ninja install
ldconfig

The last two commands above generally need to be run as root,
with the ninja install step copying the built objects to their final system-wide locations,
and the last step causing the dynamic loader ld.so to update its cache to take account of the new objects.

Note

On some linux distributions, such as Fedora or Redhat, paths in /usr/local are
not in the default paths for the loader. Therefore, on these
distributions, /usr/local/lib and /usr/local/lib64 should be added
to a file in /etc/ld.so.conf.d/ before running ldconfig.

3.2.2. Adjusting Build Options

DPDK has a number of options that can be adjusted as part of the build configuration process.
These options can be listed by running meson configure inside a configured build folder.
Many of these options come from the “meson” tool itself and can be seen documented on the
Meson Website [https://mesonbuild.com/Builtin-options.html].

For example, to change the build-type from the default, “debugoptimized”,
to a regular “debug” build, you can either:

	pass -Dbuildtype=debug or --buildtype=debug to meson when configuring the build folder initially

	run meson configure -Dbuildtype=debug inside the build folder after the initial meson run.

Other options are specific to the DPDK project but can be adjusted similarly.
To set the “max_lcores” value to 256, for example, you can either:

	pass -Dmax_lcores=256 to meson when configuring the build folder initially

	run meson configure -Dmax_lcores=256 inside the build folder after the initial meson run.

Some of the DPDK sample applications in the examples directory can be
automatically built as part of a meson build too.
To do so, pass a comma-separated list of the examples to build to the
-Dexamples meson option as below:

meson -Dexamples=l2fwd,l3fwd build

As with other meson options, this can also be set post-initial-config using meson configure in the build directory.
There is also a special value “all” to request that all example applications whose
dependencies are met on the current system are built.
When -Dexamples=all is set as a meson option, meson will check each example application to see if it can be built,
and add all which can be built to the list of tasks in the ninja build configuration file.

3.2.3. Building Applications Using Installed DPDK

When installed system-wide, DPDK provides a pkg-config file libdpdk.pc for applications to query as part of their build.
It’s recommended that the pkg-config file be used, rather than hard-coding the parameters (cflags/ldflags)
for DPDK into the application build process.

An example of how to query and use the pkg-config file can be found in the Makefile of each of the example applications included with DPDK.
A simplified example snippet is shown below, where the target binary name has been stored in the variable $(APP)
and the sources for that build are stored in $(SRCS-y).

PKGCONF = pkg-config

CFLAGS += -O3 $(shell $(PKGCONF) --cflags libdpdk)
LDFLAGS += $(shell $(PKGCONF) --libs libdpdk)

$(APP): $(SRCS-y) Makefile
 $(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS)

Note

Unlike with the older make build system, the meson system is not
designed to be used directly from a build directory. Instead it is
recommended that it be installed either system-wide or to a known
location in the user’s home directory. The install location can be set
using the –prefix meson option (default: /usr/local).

an equivalent build recipe for a simple DPDK application using meson as a
build system is shown below:

project('dpdk-app', 'c')

dpdk = dependency('libdpdk')
sources = files('main.c')
executable('dpdk-app', sources, dependencies: dpdk)

3.3. Installation of DPDK Target Environment using Make

Note

The building of DPDK using make will be deprecated in a future release. It
is therefore recommended that DPDK installation is done using meson and
ninja as described above.

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

where:

	ARCH can be: i686, x86_64, ppc_64, arm64

	MACHINE can be: native, power8, armv8a

	EXECENV can be: linux, freebsd

	TOOLCHAIN can be: gcc, icc

The targets to be installed depend on the 32-bit and/or 64-bit packages and compilers installed on the host.
Available targets can be found in the DPDK/config directory.
The defconfig_ prefix should not be used.

Note

Configuration files are provided with the RTE_MACHINE optimization level set.
Within the configuration files, the RTE_MACHINE configuration value is set to native,
which means that the compiled software is tuned for the platform on which it is built.
For more information on this setting, and its possible values, see the DPDK Programmers Guide.

When using the Intel® C++ Compiler (icc), one of the following commands should be invoked for 64-bit or 32-bit use respectively.
Notice that the shell scripts update the $PATH variable and therefore should not be performed in the same session.
Also, verify the compiler’s installation directory since the path may be different:

source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh ia32

To install and make targets, use the make install T=<target> command in the top-level DPDK directory.

For example, to compile a 64-bit target using icc, run:

make install T=x86_64-native-linux-icc

To compile a 32-bit build using gcc, the make command should be:

make install T=i686-native-linux-gcc

To prepare a target without building it, for example, if the configuration changes need to be made before compilation,
use the make config T=<target> command:

make config T=x86_64-native-linux-gcc

Warning

Any kernel modules to be used, e.g. igb_uio, kni, must be compiled with the
same kernel as the one running on the target.
If the DPDK is not being built on the target machine,
the RTE_KERNELDIR environment variable should be used to point the compilation at a copy of the kernel version to be used on the target machine.

Once the target environment is created, the user may move to the target environment directory and continue to make code changes and re-compile.
The user may also make modifications to the compile-time DPDK configuration by editing the .config file in the build directory.
(This is a build-local copy of the defconfig file from the top- level config directory).

cd x86_64-native-linux-gcc
vi .config
make

In addition, the make clean command can be used to remove any existing compiled files for a subsequent full, clean rebuild of the code.

3.4. Browsing the Installed DPDK Environment Target

Once a target is created it contains all libraries, including poll-mode drivers, and header files for the DPDK environment that are required to build customer applications.
In addition, the test and testpmd applications are built under the build/app directory, which may be used for testing.
A kmod directory is also present that contains kernel modules which may be loaded if needed.

4. Cross compile DPDK for ARM64

This chapter describes how to cross compile DPDK for ARM64 from x86 build hosts.

Note

Whilst it is recommended to natively build DPDK on ARM64 (just
like with x86), it is also possible to cross-build DPDK for ARM64. An
ARM64 cross compile GNU toolchain is used for this.

4.1. Obtain the cross tool chain

The latest cross compile tool chain can be downloaded from:
https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads.

It is always recommended to check and get the latest compiler tool from the page and use
it to generate better code. As of this writing 8.3-2019.03 is the newest, the following
description is an example of this version.

wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.3-2019.03/binrel/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz

4.2. Unzip and add into the PATH

tar -xvf gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz
export PATH=$PATH:<cross_install_dir>/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin

Note

For the host requirements and other info, refer to the release note section: https://releases.linaro.org/components/toolchain/binaries/

4.3. Getting the prerequisite library

NUMA is required by most modern machines, not needed for non-NUMA architectures.

Note

For compiling the NUMA lib, run libtool –version to ensure the libtool version >= 2.2,
otherwise the compilation will fail with errors.

git clone https://github.com/numactl/numactl.git
cd numactl
git checkout v2.0.13 -b v2.0.13
./autogen.sh
autoconf -i
./configure --host=aarch64-linux-gnu CC=aarch64-linux-gnu-gcc --prefix=<numa install dir>
make install

The numa header files and lib file is generated in the include and lib folder respectively under <numa install dir>.

4.4. Augment the cross toolchain with NUMA support

Note

This way is optional, an alternative is to use extra CFLAGS and LDFLAGS, depicted in Cross Compiling DPDK using Meson below.

Copy the NUMA header files and lib to the cross compiler’s directories:

cp <numa_install_dir>/include/numa*.h <cross_install_dir>/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/aarch64-linux-gnu/libc/usr/include/
cp <numa_install_dir>/lib/libnuma.a <cross_install_dir>/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/lib/gcc/aarch64-linux-gnu/8.3.0/
cp <numa_install_dir>/lib/libnuma.so <cross_install_dir>/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/lib/gcc/aarch64-linux-gnu/8.3.0/

4.5. Cross Compiling DPDK using Meson

Meson depends on pkgconfig to find the dependencies.
The package pkg-config-aarch64-linux-gnu is required for aarch64.
To install it in Ubuntu:

sudo apt-get install pkg-config-aarch64-linux-gnu

To cross-compile DPDK on a desired target machine we can use the following
command:

meson cross-build --cross-file <target_machine_configuration>
ninja -C cross-build

For example if the target machine is arm64 we can use the following
command:

meson arm64-build --cross-file config/arm/arm64_armv8_linux_gcc
ninja -C arm64-build

4.6. Configure and Cross Compile DPDK using Make

To configure a build, choose one of the target configurations, like arm64-dpaa-linux-gcc and arm64-thunderx-linux-gcc.

make config T=arm64-armv8a-linux-gcc

To cross-compile, without compiling the kernel modules, use the following command:

make -j CROSS=aarch64-linux-gnu- CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n

To cross-compile, including the kernel modules, the kernel source tree needs to be specified by setting
RTE_KERNELDIR:

make -j CROSS=aarch64-linux-gnu- RTE_KERNELDIR=<kernel_src_rootdir> CROSS_COMPILE=aarch64-linux-gnu-

To compile for non-NUMA targets, without compiling the kernel modules, use the following command:

make -j CROSS=aarch64-linux-gnu- CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n CONFIG_RTE_LIBRTE_VHOST_NUMA=n CONFIG_RTE_EAL_NUMA_AWARE_HUGEPAGES=n

Note

1. EXTRA_CFLAGS and EXTRA_LDFLAGS should be added to include the NUMA headers and link the library respectively,
if the above step Augment the cross toolchain with NUMA support was skipped therefore the toolchain was not
augmented with NUMA support.

2. “-isystem <numa_install_dir>/include” should be add to EXTRA_CFLAGS, otherwise the numa.h file will get a lot of compiling
errors of Werror=cast-qual, Werror=strict-prototypes and Werror=old-style-definition.

An example is given below:

make -j CROSS=aarch64-linux-gnu- CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n EXTRA_CFLAGS="-isystem <numa_install_dir>/include" EXTRA_LDFLAGS="-L<numa_install_dir>/lib -lnuma"

5. Linux Drivers

Different PMDs may require different kernel drivers in order to work properly.
Depends on the PMD being used, a corresponding kernel driver should be load
and bind to the network ports.

5.1. UIO

A small kernel module to set up the device, map device memory to user-space and register interrupts.
In many cases, the standard uio_pci_generic module included in the Linux kernel
can provide the uio capability. This module can be loaded using the command:

sudo modprobe uio_pci_generic

Note

uio_pci_generic module doesn’t support the creation of virtual functions.

As an alternative to the uio_pci_generic, the DPDK also includes the igb_uio
module which can be found in the kmod subdirectory referred to above. It can
be loaded as shown below:

sudo modprobe uio
sudo insmod kmod/igb_uio.ko

Note

igb_uio module is disabled by default starting from DPDK v20.02.
To build it, the config option CONFIG_RTE_EAL_IGB_UIO should be enabled.
It is planned to move igb_uio module to a different git repository.

Note

For some devices which lack support for legacy interrupts, e.g. virtual function
(VF) devices, the igb_uio module may be needed in place of uio_pci_generic.

Note

If UEFI secure boot is enabled, the Linux kernel may disallow the use of
UIO on the system. Therefore, devices for use by DPDK should be bound to the
vfio-pci kernel module rather than igb_uio or uio_pci_generic.
For more details see Binding and Unbinding Network Ports to/from the Kernel Modules below.

Note

If the devices used for DPDK are bound to the uio_pci_generic kernel module,
please make sure that the IOMMU is disabled or passthrough. One can add
intel_iommu=off or amd_iommu=off or intel_iommu=on iommu=pt``in GRUB
command line on x86_64 systems, or add ``iommu.passthrough=1 on arm64 system.

Since DPDK release 1.7 onward provides VFIO support, use of UIO is optional
for platforms that support using VFIO.

5.2. VFIO

A more robust and secure driver in compare to the UIO, relying on IOMMU protection.
To make use of VFIO, the vfio-pci module must be loaded:

sudo modprobe vfio-pci

Note that in order to use VFIO, your kernel must support it.
VFIO kernel modules have been included in the Linux kernel since version 3.6.0 and are usually present by default,
however please consult your distributions documentation to make sure that is the case.

Also, to use VFIO, both kernel and BIOS must support and be configured to use IO virtualization (such as Intel® VT-d).

Note

vfio-pci module doesn’t support the creation of virtual functions.

For proper operation of VFIO when running DPDK applications as a non-privileged user, correct permissions should also be set up.
This can be done by using the DPDK setup script (called dpdk-setup.sh and located in the usertools directory).

Note

VFIO can be used without IOMMU. While this is just as unsafe as using UIO, it does make it possible for the user to keep the degree of device access and programming that VFIO has, in situations where IOMMU is not available.

5.3. Bifurcated Driver

PMDs which use the bifurcated driver co-exists with the device kernel driver.
On such model the NIC is controlled by the kernel, while the data
path is performed by the PMD directly on top of the device.

Such model has the following benefits:

	It is secure and robust, as the memory management and isolation
is done by the kernel.

	It enables the user to use legacy linux tools such as ethtool or
ifconfig while running DPDK application on the same network ports.

	It enables the DPDK application to filter only part of the traffic,
while the rest will be directed and handled by the kernel driver.
The flow bifurcation is performed by the NIC hardware.
As an example, using Flow isolated mode allows to choose
strictly what is received in DPDK.

More about the bifurcated driver can be found in
Mellanox Bifurcated DPDK PMD [https://www.dpdk.org/wp-content/uploads/sites/35/2016/10/Day02-Session04-RonyEfraim-Userspace2016.pdf].

5.4. Binding and Unbinding Network Ports to/from the Kernel Modules

Note

PMDs Which use the bifurcated driver should not be unbind from their kernel drivers. this section is for PMDs which use the UIO or VFIO drivers.

As of release 1.4, DPDK applications no longer automatically unbind all supported network ports from the kernel driver in use.
Instead, in case the PMD being used use the UIO or VFIO drivers, all ports that are to be used by an DPDK application must be bound to the
uio_pci_generic, igb_uio or vfio-pci module before the application is run.
For such PMDs, any network ports under Linux* control will be ignored and cannot be used by the application.

To bind ports to the uio_pci_generic, igb_uio or vfio-pci module for DPDK use,
and then subsequently return ports to Linux* control,
a utility script called dpdk-devbind.py is provided in the usertools subdirectory.
This utility can be used to provide a view of the current state of the network ports on the system,
and to bind and unbind those ports from the different kernel modules, including the uio and vfio modules.
The following are some examples of how the script can be used.
A full description of the script and its parameters can be obtained by calling the script with the --help or --usage options.
Note that the uio or vfio kernel modules to be used, should be loaded into the kernel before
running the dpdk-devbind.py script.

Warning

Due to the way VFIO works, there are certain limitations to which devices can be used with VFIO.
Mainly it comes down to how IOMMU groups work.
Any Virtual Function device can be used with VFIO on its own, but physical devices will require either all ports bound to VFIO,
or some of them bound to VFIO while others not being bound to anything at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU group in which your device is in.
Therefore, the bridge driver should also be unbound from the bridge PCI device for VFIO to work with devices behind the bridge.

Warning

While any user can run the dpdk-devbind.py script to view the status of the network ports,
binding or unbinding network ports requires root privileges.

To see the status of all network ports on the system:

./usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
0000:82:00.0 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe
0000:82:00.1 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe

Network devices using kernel driver
===================================
0000:04:00.0 'I350 1-GbE NIC' if=em0 drv=igb unused=uio_pci_generic *Active*
0000:04:00.1 'I350 1-GbE NIC' if=eth1 drv=igb unused=uio_pci_generic
0000:04:00.2 'I350 1-GbE NIC' if=eth2 drv=igb unused=uio_pci_generic
0000:04:00.3 'I350 1-GbE NIC' if=eth3 drv=igb unused=uio_pci_generic

Other network devices
=====================
<none>

To bind device eth1,``04:00.1``, to the uio_pci_generic driver:

./usertools/dpdk-devbind.py --bind=uio_pci_generic 04:00.1

or, alternatively,

./usertools/dpdk-devbind.py --bind=uio_pci_generic eth1

To restore device 82:00.0 to its original kernel binding:

./usertools/dpdk-devbind.py --bind=ixgbe 82:00.0

6. Compiling and Running Sample Applications

The chapter describes how to compile and run applications in an DPDK environment.
It also provides a pointer to where sample applications are stored.

Note

Parts of this process can also be done using the setup script described the
Quick Start Setup Script section of this document.

6.1. Compiling a Sample Application

Once an DPDK target environment directory has been created (such as x86_64-native-linux-gcc),
it contains all libraries and header files required to build an application.

When compiling an application in the Linux* environment on the DPDK, the following variables must be exported:

	RTE_SDK - Points to the DPDK installation directory.

	RTE_TARGET - Points to the DPDK target environment directory.

The following is an example of creating the helloworld application, which runs in the DPDK Linux environment.
This example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the DPDK target environment,
calls the various functions to initialize the DPDK environment,
then launches an entry point (dispatch application) for each core to be utilized.
By default, the binary is generated in the build directory.

cd examples/helloworld/
export RTE_SDK=$HOME/DPDK
export RTE_TARGET=x86_64-native-linux-gcc

make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

ls build/app
 helloworld helloworld.map

Note

In the above example, helloworld was in the directory structure of the DPDK.
However, it could have been located outside the directory structure to keep the DPDK structure intact.
In the following case, the helloworld application is copied to a new directory as a new starting point.

export RTE_SDK=/home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
export RTE_TARGET=x86_64-native-linux-gcc

make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

6.2. Running a Sample Application

Warning

Before running the application make sure:

	Hugepages setup is done.

	Any kernel driver being used is loaded.

	In case needed, ports being used by the application should be
bound to the corresponding kernel driver.

refer to Linux Drivers for more details.

The application is linked with the DPDK target environment’s Environmental Abstraction Layer (EAL) library,
which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app [-c COREMASK | -l CORELIST] [-n NUM] [-b <domain:bus:devid.func>] \
 [--socket-mem=MB,...] [-d LIB.so|DIR] [-m MB] [-r NUM] [-v] [--file-prefix] \
 [--proc-type <primary|secondary|auto>]

The EAL options are as follows:

	-c COREMASK or -l CORELIST:
An hexadecimal bit mask of the cores to run on. Note that core numbering can
change between platforms and should be determined beforehand. The corelist is
a set of core numbers instead of a bitmap core mask.

	-n NUM:
Number of memory channels per processor socket.

	-b <domain:bus:devid.func>:
Blacklisting of ports; prevent EAL from using specified PCI device
(multiple -b options are allowed).

	--use-device:
use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

	--socket-mem:
Memory to allocate from hugepages on specific sockets. In dynamic memory mode,
this memory will also be pinned (i.e. not released back to the system until
application closes).

	--socket-limit:
Limit maximum memory available for allocation on each socket. Does not support
legacy memory mode.

	-d:
Add a driver or driver directory to be loaded.
The application should use this option to load the pmd drivers
that are built as shared libraries.

	-m MB:
Memory to allocate from hugepages, regardless of processor socket. It is
recommended that --socket-mem be used instead of this option.

	-r NUM:
Number of memory ranks.

	-v:
Display version information on startup.

	--huge-dir:
The directory where hugetlbfs is mounted.

	mbuf-pool-ops-name:
Pool ops name for mbuf to use.

	--file-prefix:
The prefix text used for hugepage filenames.

	--proc-type:
The type of process instance.

	--vmware-tsc-map:
Use VMware TSC map instead of native RDTSC.

	--base-virtaddr:
Specify base virtual address.

	--vfio-intr:
Specify interrupt type to be used by VFIO (has no effect if VFIO is not used).

	--legacy-mem:
Run DPDK in legacy memory mode (disable memory reserve/unreserve at runtime,
but provide more IOVA-contiguous memory).

	--single-file-segments:
Store memory segments in fewer files (dynamic memory mode only - does not
affect legacy memory mode).

The -c or -l and option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows
(assuming the platform has four memory channels per processor socket,
and that cores 0-3 are present and are to be used for running the application):

./helloworld -l 0-3 -n 4

Note

The --proc-type and --file-prefix EAL options are used for running
multiple DPDK processes. See the “Multi-process Sample Application”
chapter in the DPDK Sample Applications User Guide and the DPDK
Programmers Guide for more details.

6.2.1. Logical Core Use by Applications

The coremask (-c 0x0f) or corelist (-l 0-3) parameter is always mandatory for DPDK applications.
Each bit of the mask corresponds to the equivalent logical core number as reported by Linux. The preferred corelist option is a cleaner method to define cores to be used.
Since these logical core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from platform to platform,
it is recommended that the core layout for each platform be considered when choosing the coremask/corelist to use in each case.

On initialization of the EAL layer by an DPDK application, the logical cores to be used and their socket location are displayed.
This information can also be determined for all cores on the system by examining the /proc/cpuinfo file, for example, by running cat /proc/cpuinfo.
The physical id attribute listed for each processor indicates the CPU socket to which it belongs.
This can be useful when using other processors to understand the mapping of the logical cores to the sockets.

Note

A more graphical view of the logical core layout may be obtained using the lstopo Linux utility.
On Fedora Linux, this may be installed and run using the following command:

sudo yum install hwloc
./lstopo

Warning

The logical core layout can change between different board layouts and should be checked before selecting an application coremask/corelist.

6.2.2. Hugepage Memory Use by Applications

When running an application, it is recommended to use the same amount of memory as that allocated for hugepages.
This is done automatically by the DPDK application at startup,
if no -m or --socket-mem parameter is passed to it when run.

If more memory is requested by explicitly passing a -m or --socket-mem value, the application fails.
However, the application itself can also fail if the user requests less memory than the reserved amount of hugepage-memory, particularly if using the -m option.
The reason is as follows.
Suppose the system has 1024 reserved 2 MB pages in socket 0 and 1024 in socket 1.
If the user requests 128 MB of memory, the 64 pages may not match the constraints:

	The hugepage memory by be given to the application by the kernel in socket 1 only.
In this case, if the application attempts to create an object, such as a ring or memory pool in socket 0, it fails.
To avoid this issue, it is recommended that the --socket-mem option be used instead of the -m option.

	These pages can be located anywhere in physical memory, and, although the DPDK EAL will attempt to allocate memory in contiguous blocks,
it is possible that the pages will not be contiguous. In this case, the application is not able to allocate big memory pools.

The socket-mem option can be used to request specific amounts of memory for specific sockets.
This is accomplished by supplying the --socket-mem flag followed by amounts of memory requested on each socket,
for example, supply --socket-mem=0,512 to try and reserve 512 MB for socket 1 only.
Similarly, on a four socket system, to allocate 1 GB memory on each of sockets 0 and 2 only, the parameter --socket-mem=1024,0,1024 can be used.
No memory will be reserved on any CPU socket that is not explicitly referenced, for example, socket 3 in this case.
If the DPDK cannot allocate enough memory on each socket, the EAL initialization fails.

6.3. Additional Sample Applications

Additional sample applications are included in the ${RTE_SDK}/examples directory.
These sample applications may be built and run in a manner similar to that described in earlier sections in this manual.
In addition, see the DPDK Sample Applications User Guide for a description of the application,
specific instructions on compilation and execution and some explanation of the code.

6.4. Additional Test Applications

In addition, there are two other applications that are built when the libraries are created.
The source files for these are in the DPDK/app directory and are called test and testpmd.
Once the libraries are created, they can be found in the build/app directory.

	The test application provides a variety of specific tests for the various functions in the DPDK.

	The testpmd application provides a number of different packet throughput tests and
examples of features such as how to use the Flow Director found in the Intel® 82599 10 Gigabit Ethernet Controller.

7. EAL parameters

This document contains a list of all EAL parameters. These parameters can be
used by any DPDK application running on Linux.

7.1. Common EAL parameters

The following EAL parameters are common to all platforms supported by DPDK.

7.1.1. Lcore-related options

	-c <core mask>

Set the hexadecimal bitmask of the cores to run on.

	-l <core list>

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...]
where c1, c2, etc are core indexes between 0 and 128.

	--lcores <core map>

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group.
The - character is used as a range separator and , is used as a
single number separator.
The grouping () can be omitted for single element group.
The @ can be omitted if cpus and lcores have the same value.

Note

At a given instance only one core option --lcores, -l or -c can
be used.

	--master-lcore <core ID>

Core ID that is used as master.

	-s <service core mask>

Hexadecimal bitmask of cores to be used as service cores.

7.1.2. Device-related options

	-b, --pci-blacklist <[domain:]bus:devid.func>

Blacklist a PCI device to prevent EAL from using it. Multiple -b options are
allowed.

Note

PCI blacklist cannot be used with -w option.

	-w, --pci-whitelist <[domain:]bus:devid.func>

Add a PCI device in white list.

Note

PCI whitelist cannot be used with -b option.

	--vdev <device arguments>

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'net_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

	-d <path to shared object or directory>

Load external drivers. An argument can be a single shared object file, or a
directory containing multiple driver shared objects. Multiple -d options are
allowed.

	--no-pci

Disable PCI bus.

7.1.3. Multiprocessing-related options

	--proc-type <primary|secondary|auto>

Set the type of the current process.

	--base-virtaddr <address>

Attempt to use a different starting address for all memory maps of the
primary DPDK process. This can be helpful if secondary processes cannot
start due to conflicts in address map.

7.1.4. Memory-related options

	-n <number of channels>

Set the number of memory channels to use.

	-r <number of ranks>

Set the number of memory ranks (auto-detected by default).

	-m <megabytes>

Amount of memory to preallocate at startup.

	--in-memory

Do not create any shared data structures and run entirely in memory. Implies
--no-shconf and (if applicable) --huge-unlink.

	--iova-mode <pa|va>

Force IOVA mode to a specific value.

7.1.5. Debugging options

	--no-shconf

No shared files created (implies no secondary process support).

	--no-huge

Use anonymous memory instead of hugepages (implies no secondary process
support).

	--log-level <type:val>

Specify log level for a specific component. For example:

--log-level lib.eal:debug

Can be specified multiple times.

	--trace=<regex-match>

Enable trace based on regular expression trace name. By default, the trace is
disabled. User must specify this option to enable trace.
For example:

Global trace configuration for EAL only:

--trace=eal

Global trace configuration for ALL the components:

--trace=.*

Can be specified multiple times up to 32 times.

	--trace-dir=<directory path>

Specify trace directory for trace output. For example:

Configuring /tmp/ as a trace output directory:

--trace-dir=/tmp

By default, trace output will created at home directory and parameter
must be specified once only.

	--trace-bufsz=<val>

Specify maximum size of allocated memory for trace output for each thread.
Valid unit can be either B or K or M for Bytes, KBytes
and MBytes respectively. For example:

Configuring 2MB as a maximum size for trace output file:

--trace-bufsz=2M

By default, size of trace output file is 1MB and parameter
must be specified once only.

	--trace-mode=<o[verwrite] | d[iscard] >

Specify the mode of update of trace output file. Either update on a file
can be wrapped or discarded when file size reaches its maximum limit.
For example:

To discard update on trace output file:

--trace-mode=d or --trace-mode=discard

Default mode is overwrite and parameter must be specified once only.

7.1.6. Other options

	-h, --help

Display help message listing all EAL parameters.

	-v

Display the version information on startup.

	mbuf-pool-ops-name:

Pool ops name for mbuf to use.

	--telemetry:

Enable telemetry (enabled by default).

	--no-telemetry:

Disable telemetry.

7.2. Linux-specific EAL parameters

In addition to common EAL parameters, there are also Linux-specific EAL
parameters.

7.2.1. Device-related options

	--create-uio-dev

Create /dev/uioX files for devices bound to igb_uio kernel driver
(usually done by the igb_uio driver itself).

	--vmware-tsc-map

Use VMware TSC map instead of native RDTSC.

	--no-hpet

Do not use the HPET timer.

	--vfio-intr <legacy|msi|msix>

Use specified interrupt mode for devices bound to VFIO kernel driver.

7.2.2. Multiprocessing-related options

	--file-prefix <prefix name>

Use a different shared data file prefix for a DPDK process. This option
allows running multiple independent DPDK primary/secondary processes under
different prefixes.

7.2.3. Memory-related options

	--legacy-mem

Use legacy DPDK memory allocation mode.

	--socket-mem <amounts of memory per socket>

Preallocate specified amounts of memory per socket. The parameter is a
comma-separated list of values. For example:

--socket-mem 1024,2048

This will allocate 1 gigabyte of memory on socket 0, and 2048 megabytes of
memory on socket 1.

	--socket-limit <amounts of memory per socket>

Place a per-socket upper limit on memory use (non-legacy memory mode only).
0 will disable the limit for a particular socket.

	--single-file-segments

Create fewer files in hugetlbfs (non-legacy mode only).

	--huge-dir <path to hugetlbfs directory>

Use specified hugetlbfs directory instead of autodetected ones.

	--huge-unlink

Unlink hugepage files after creating them (implies no secondary process
support).

	--match-allocations

Free hugepages back to system exactly as they were originally allocated.

7.2.4. Other options

	--syslog <syslog facility>

Set syslog facility. Valid syslog facilities are:

auth
cron
daemon
ftp
kern
lpr
mail
news
syslog
user
uucp
local0
local1
local2
local3
local4
local5
local6
local7

8. Enabling Additional Functionality

8.1. High Precision Event Timer (HPET) Functionality

8.1.1. BIOS Support

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used.
Otherwise, the Time Stamp Counter (TSC) is used by default.
The BIOS is typically accessed by pressing F2 while the platform is starting up.
The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:
Advanced -> PCH-IO Configuration -> High Precision Timer -> (Change from Disabled to Enabled if necessary).

On a system that has already booted, the following command can be issued to check if HPET is enabled:

grep hpet /proc/timer_list

If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above) and the system rebooted.

8.1.2. Linux Kernel Support

The DPDK makes use of the platform HPET timer by mapping the timer counter into the process address space, and as such,
requires that the HPET_MMAP kernel configuration option be enabled.

Warning

On Fedora, and other common distributions such as Ubuntu, the HPET_MMAP kernel option is not enabled by default.
To recompile the Linux kernel with this option enabled, please consult the distributions documentation for the relevant instructions.

8.1.3. Enabling HPET in the DPDK

By default, HPET support is disabled in the DPDK build configuration files.
To use HPET, the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to y, which will enable the HPET settings at compile time.

For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API calls,
and optionally to make the HPET the default time source for the rte_timer library,
the new rte_eal_hpet_init() API call should be called at application initialization.
This API call will ensure that the HPET is accessible, returning an error to the application if it is not,
for example, if HPET_MMAP is not enabled in the kernel.
The application can then determine what action to take, if any, if the HPET is not available at run-time.

Note

For applications that require timing APIs, but not the HPET timer specifically,
it is recommended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used instead of the HPET-specific APIs.
These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application call to rte_eal_hpet_init(),
if any, and on what is available on the system at runtime.

8.2. Running DPDK Applications Without Root Privileges

Note

The instructions below will allow running DPDK as non-root with older
Linux kernel versions. However, since version 4.0, the kernel does not allow
unprivileged processes to read the physical address information from
the pagemaps file, making it impossible for those processes to use HW
devices which require physical addresses

Although applications using the DPDK use network ports and other hardware resources directly,
with a number of small permission adjustments it is possible to run these applications as a user other than “root”.
To do so, the ownership, or permissions, on the following Linux file system objects should be adjusted to ensure that
the Linux user account being used to run the DPDK application has access to them:

	All directories which serve as hugepage mount points, for example, /mnt/huge

	The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

	The userspace-io sysfs config and resource files, for example for uio0:

/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resource*

	If the HPET is to be used, /dev/hpet

Note

On some Linux installations, /dev/hugepages is also a hugepage mount point created by default.

8.3. Power Management and Power Saving Functionality

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used.
Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based power management cannot be used.
Consult the relevant BIOS documentation to determine how these settings can be accessed.

For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel SpeedStep® Technology is:

Advanced
 -> Processor Configuration
 -> Enhanced Intel SpeedStep® Tech

In addition, C3 and C6 should be enabled as well for power management. The path of C3 and C6 on the same platform BIOS is:

Advanced
 -> Processor Configuration
 -> Processor C3 Advanced
 -> Processor Configuration
 -> Processor C6

8.4. Using Linux Core Isolation to Reduce Context Switches

While the threads used by an DPDK application are pinned to logical cores on the system,
it is possible for the Linux scheduler to run other tasks on those cores also.
To help prevent additional workloads from running on those cores,
it is possible to use the isolcpus Linux kernel parameter to isolate them from the general Linux scheduler.

For example, if DPDK applications are to run on logical cores 2, 4 and 6,
the following should be added to the kernel parameter list:

isolcpus=2,4,6

8.5. Loading the DPDK KNI Kernel Module

To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the kni module) must be loaded into the running kernel.
The module is found in the kmod sub-directory of the DPDK target directory.
Similar to the loading of the igb_uio module, this module should be loaded using the insmod command as shown below
(assuming that the current directory is the DPDK target directory):

insmod kmod/rte_kni.ko

Note

See the “Kernel NIC Interface Sample Application” chapter in the DPDK Sample Applications User Guide for more details.

8.6. Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set. These include:

	IOMMU_SUPPORT

	IOMMU_API

	INTEL_IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be used when using igb_uio driver.
This results in pass-through of the DMAR (DMA Remapping) lookup in the host.
Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the intel_iommu=on kernel parameter must be used too.
This ensures that the Intel IOMMU is being initialized as expected.

Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci driver can actually work with both iommu=pt and iommu=on.

9. Quick Start Setup Script

The dpdk-setup.sh script, found in the usertools subdirectory, allows the user to perform the following tasks:

	Build the DPDK libraries

	Insert and remove the DPDK IGB_UIO kernel module

	Insert and remove VFIO kernel modules

	Insert and remove the DPDK KNI kernel module

	Create and delete hugepages for NUMA and non-NUMA cases

	View network port status and reserve ports for DPDK application use

	Set up permissions for using VFIO as a non-privileged user

	Run the test and testpmd applications

	Look at hugepages in the meminfo

	List hugepages in /mnt/huge

	Remove built DPDK libraries

Once these steps have been completed for one of the EAL targets,
the user may compile their own application that links in the EAL libraries to create the DPDK image.

9.1. Script Organization

The dpdk-setup.sh script is logically organized into a series of steps that a user performs in sequence.
Each step provides a number of options that guide the user to completing the desired task.
The following is a brief synopsis of each step.

Step 1: Build DPDK Libraries

Initially, the user must select a DPDK target to choose the correct target type and compiler options to use when building the libraries.

The user must have all libraries, modules, updates and compilers installed in the system prior to this,
as described in the earlier chapters in this Getting Started Guide.

Step 2: Setup Environment

The user configures the Linux* environment to support the running of DPDK applications.
Hugepages can be set up for NUMA or non-NUMA systems. Any existing hugepages will be removed.
The DPDK kernel module that is needed can also be inserted in this step,
and network ports may be bound to this module for DPDK application use.

Step 3: Run an Application

The user may run the test application once the other steps have been performed.
The test application allows the user to run a series of functional tests for the DPDK.
The testpmd application, which supports the receiving and sending of packets, can also be run.

Step 4: Examining the System

This step provides some tools for examining the status of hugepage mappings.

Step 5: System Cleanup

The final step has options for restoring the system to its original state.

9.2. Use Cases

The following are some example of how to use the dpdk-setup.sh script.
The script should be run using the source command.
Some options in the script prompt the user for further data before proceeding.

Warning

The dpdk-setup.sh script should be run with root privileges.

source usertools/dpdk-setup.sh

--

RTE_SDK exported as /home/user/rte

--

Step 1: Select the DPDK environment to build

--

[1] i686-native-linux-gcc

[2] i686-native-linux-icc

[3] ppc_64-power8-linux-gcc

[4] x86_64-native-freebsd-clang

[5] x86_64-native-freebsd-gcc

[6] x86_64-native-linux-clang

[7] x86_64-native-linux-gcc

[8] x86_64-native-linux-icc

--

Step 2: Setup linux environment

--

[11] Insert IGB UIO module

[12] Insert VFIO module

[13] Insert KNI module

[14] Setup hugepage mappings for non-NUMA systems

[15] Setup hugepage mappings for NUMA systems

[16] Display current Ethernet device settings

[17] Bind Ethernet device to IGB UIO module

[18] Bind Ethernet device to VFIO module

[19] Setup VFIO permissions

--

Step 3: Run test application for linux environment

--

[20] Run test application ($RTE_TARGET/app/test)

[21] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)

--

Step 4: Other tools

--

[22] List hugepage info from /proc/meminfo

--

Step 5: Uninstall and system cleanup

--

[23] Uninstall all targets

[24] Unbind NICs from IGB UIO driver

[25] Remove IGB UIO module

[26] Remove VFIO module

[27] Remove KNI module

[28] Remove hugepage mappings

[29] Exit Script

Option:

The following selection demonstrates the creation of the x86_64-native-linux-gcc DPDK library.

Option: 9

================== Installing x86_64-native-linux-gcc

Configuration done
== Build lib
...
Build complete
RTE_TARGET exported as x86_64-native-linux-gcc

The following selection demonstrates the starting of the DPDK UIO driver.

Option: 25

Unloading any existing DPDK UIO module
Loading DPDK UIO module

The following selection demonstrates the creation of hugepages in a NUMA system.
1024 2 MByte pages are assigned to each node.
The result is that the application should use -m 4096 for starting the application to access both memory areas
(this is done automatically if the -m option is not provided).

Note

If prompts are displayed to remove temporary files, type ‘y’.

Option: 15

Removing currently reserved hugepages
mounting /mnt/huge and removing directory
Input the number of 2MB pages for each node
Example: to have 128MB of hugepages available per node,
enter '64' to reserve 64 * 2MB pages on each node
Number of pages for node0: 1024
Number of pages for node1: 1024
Reserving hugepages
Creating /mnt/huge and mounting as hugetlbfs

The following selection demonstrates the launch of the test application to run on a single core.

Option: 20

Enter hex bitmask of cores to execute test app on
Example: to execute app on cores 0 to 7, enter 0xff
bitmask: 0x01
Launching app
EAL: coremask set to 1
EAL: Detected lcore 0 on socket 0
...
EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>

9.3. Applications

Once the user has run the dpdk-setup.sh script, built one of the EAL targets and set up hugepages (if using one of the Linux EAL targets),
the user can then move on to building and running their application or one of the examples provided.

The examples in the /examples directory provide a good starting point to gain an understanding of the operation of the DPDK.
The following command sequence shows how the helloworld sample application is built and run.
As recommended in Section 4.2.1 , “Logical Core Use by Applications”,
the logical core layout of the platform should be determined when selecting a core mask to use for an application.

cd helloworld/
make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

sudo ./build/app/helloworld -l 0-3 -n 3
[sudo] password for rte:

EAL: coremask set to f
EAL: Detected lcore 0 as core 0 on socket 0
EAL: Detected lcore 1 as core 0 on socket 1
EAL: Detected lcore 2 as core 1 on socket 0
EAL: Detected lcore 3 as core 1 on socket 1
EAL: Setting up hugepage memory...
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0add800000 (size = 0x200000)
EAL: Ask a virtual area of 0x3d400000 bytes
EAL: Virtual area found at 0x7f0aa0200000 (size = 0x3d400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9fc00000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f000000 (size = 0x400000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9e600000 (size = 0x800000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9dc00000 (size = 0x800000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d000000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9ca00000 (size = 0x400000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c600000 (size = 0x200000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c200000 (size = 0x200000)
EAL: Ask a virtual area of 0x3fc00000 bytes
EAL: Virtual area found at 0x7f0a5c400000 (size = 0x3fc00000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a5c000000 (size = 0x200000)
EAL: Requesting 1024 pages of size 2MB from socket 0
EAL: Requesting 1024 pages of size 2MB from socket 1
EAL: Master core 0 is ready (tid=de25b700)
EAL: Core 1 is ready (tid=5b7fe700)
EAL: Core 3 is ready (tid=5a7fc700)
EAL: Core 2 is ready (tid=5affd700)
hello from core 1
hello from core 2
hello from core 3
hello from core 0

10. How to get best performance with NICs on Intel platforms

This document is a step-by-step guide for getting high performance from DPDK applications on Intel platforms.

10.1. Hardware and Memory Requirements

For best performance use an Intel Xeon class server system such as Ivy Bridge, Haswell or newer.

Ensure that each memory channel has at least one memory DIMM inserted, and that the memory size for each is at least 4GB.
Note: this has one of the most direct effects on performance.

You can check the memory configuration using dmidecode as follows:

dmidecode -t memory | grep Locator

Locator: DIMM_A1
Bank Locator: NODE 1
Locator: DIMM_A2
Bank Locator: NODE 1
Locator: DIMM_B1
Bank Locator: NODE 1
Locator: DIMM_B2
Bank Locator: NODE 1
...
Locator: DIMM_G1
Bank Locator: NODE 2
Locator: DIMM_G2
Bank Locator: NODE 2
Locator: DIMM_H1
Bank Locator: NODE 2
Locator: DIMM_H2
Bank Locator: NODE 2

The sample output above shows a total of 8 channels, from A to H, where each channel has 2 DIMMs.

You can also use dmidecode to determine the memory frequency:

dmidecode -t memory | grep Speed

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
...
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown

The output shows a speed of 2133 MHz (DDR4) and Unknown (not existing).
This aligns with the previous output which showed that each channel has one memory bar.

10.1.1. Network Interface Card Requirements

Use a DPDK supported [https://core.dpdk.org/supported/] high end NIC such as the Intel XL710 40GbE.

Make sure each NIC has been flashed the latest version of NVM/firmware.

Use PCIe Gen3 slots, such as Gen3 x8 or Gen3 x16 because PCIe Gen2 slots don’t provide enough bandwidth
for 2 x 10GbE and above.
You can use lspci to check the speed of a PCI slot using something like the following:

lspci -s 03:00.1 -vv | grep LnkSta

LnkSta: Speed 8GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- ...
LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ ...

When inserting NICs into PCI slots always check the caption, such as CPU0 or CPU1 to indicate which socket it is connected to.

Care should be take with NUMA.
If you are using 2 or more ports from different NICs, it is best to ensure that these NICs are on the same CPU socket.
An example of how to determine this is shown further below.

10.1.2. BIOS Settings

The following are some recommendations on BIOS settings. Different platforms will have different BIOS naming
so the following is mainly for reference:

	Establish the steady state for the system, consider reviewing BIOS settings desired for best performance characteristic e.g. optimize for performance or energy efficiency.

	Match the BIOS settings to the needs of the application you are testing.

	Typically, Performance as the CPU Power and Performance policy is a reasonable starting point.

	Consider using Turbo Boost to increase the frequency on cores.

	Disable all virtualization options when you test the physical function of the NIC, and turn on VT-d if you wants to use VFIO.

10.1.3. Linux boot command line

The following are some recommendations on GRUB boot settings:

	Use the default grub file as a starting point.

	Reserve 1G huge pages via grub configurations. For example to reserve 8 huge pages of 1G size:

default_hugepagesz=1G hugepagesz=1G hugepages=8

	Isolate CPU cores which will be used for DPDK. For example:

isolcpus=2,3,4,5,6,7,8

	If it wants to use VFIO, use the following additional grub parameters:

iommu=pt intel_iommu=on

10.2. Configurations before running DPDK

	Build the DPDK target and reserve huge pages.
See the earlier section on Use of Hugepages in the Linux Environment for more details.

The following shell commands may help with building and configuration:

Build DPDK target.
cd dpdk_folder
make install T=x86_64-native-linux-gcc -j

Get the hugepage size.
awk '/Hugepagesize/ {print $2}' /proc/meminfo

Get the total huge page numbers.
awk '/HugePages_Total/ {print $2} ' /proc/meminfo

Unmount the hugepages.
umount `awk '/hugetlbfs/ {print $2}' /proc/mounts`

Create the hugepage mount folder.
mkdir -p /mnt/huge

Mount to the specific folder.
mount -t hugetlbfs nodev /mnt/huge

	Check the CPU layout using the DPDK cpu_layout utility:

cd dpdk_folder

usertools/cpu_layout.py

Or run lscpu to check the cores on each socket.

	Check your NIC id and related socket id:

List all the NICs with PCI address and device IDs.
lspci -nn | grep Eth

For example suppose your output was as follows:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
82:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

Check the PCI device related numa node id:

cat /sys/bus/pci/devices/0000\:xx\:00.x/numa_node

Usually 0x:00.x is on socket 0 and 8x:00.x is on socket 1.
Note: To get the best performance, ensure that the core and NICs are in the same socket.
In the example above 85:00.0 is on socket 1 and should be used by cores on socket 1 for the best performance.

4. Check which kernel drivers needs to be loaded and whether there is a need to unbind the network ports from their kernel drivers.
More details about DPDK setup and Linux kernel requirements see Compiling the DPDK Target from Source and Linux Drivers.

Getting Started Guide for FreeBSD

	1. Introduction
	1.1. Documentation Roadmap

	2. Installing DPDK from the Ports Collection
	2.1. Installing the DPDK Package for FreeBSD

	2.2. Installing the DPDK FreeBSD Port

	2.3. Compiling and Running the Example Applications

	3. Compiling the DPDK Target from Source
	3.1. Prerequisites

	3.2. Building DPDK

	3.3. Loading the DPDK contigmem Module

	3.4. Loading the DPDK nic_uio Module

	4. Compiling and Running Sample Applications
	4.1. Compiling a Sample Application

	4.2. Running a Sample Application

	4.3. Running DPDK Applications Without Root Privileges

	5. EAL parameters
	5.1. Common EAL parameters

	5.2. FreeBSD-specific EAL parameters

1. Introduction

This document contains instructions for installing and configuring the
Data Plane Development Kit (DPDK) software. It is designed to get customers
up and running quickly and describes how to compile and run a
DPDK application in a FreeBSD application (freebsd) environment, without going
deeply into detail.

For a comprehensive guide to installing and using FreeBSD, the following
handbook is available from the FreeBSD Documentation Project:
FreeBSD Handbook [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html].

Note

DPDK is now available as part of the FreeBSD ports collection and as a pre-built package.
Installing via the ports collection or FreeBSD pkg infrastructure is now the recommended
way to install DPDK on FreeBSD, and is documented in the next chapter, Installing DPDK from the Ports Collection.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes : Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

	Getting Started Guide (this document): Describes how to install and
configure the DPDK; designed to get users up and running quickly with the
software.

	Programmer’s Guide: Describes:

	The software architecture and how to use it (through examples),
specifically in a Linux* application (linux) environment

	The content of the DPDK, the build system (including the commands
that can be used in the root DPDK Makefile to build the development
kit and an application) and guidelines for porting an application

	Optimizations used in the software and those that should be considered
for new development

A glossary of terms is also provided.

	API Reference: Provides detailed information about DPDK functions,
data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality
and provides instructions on how to compile, run and use the sample application.

2. Installing DPDK from the Ports Collection

The easiest way to get up and running with the DPDK on FreeBSD is to
install it using the FreeBSD pkg utility or from the ports collection.
Details of installing applications from packages or the ports collection are documented in the
FreeBSD Handbook [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html],
chapter Installing Applications: Packages and Ports [https://www.freebsd.org/doc/handbook/ports.html].

Note

Please ensure that the latest patches are applied to third party libraries
and software to avoid any known vulnerabilities.

2.1. Installing the DPDK Package for FreeBSD

DPDK can be installed on FreeBSD using the command:

pkg install dpdk

After the installation of the DPDK package, instructions will be printed on
how to install the kernel modules required to use the DPDK. A more
complete version of these instructions can be found in the sections
Loading the DPDK contigmem Module and Loading the DPDK nic_uio Module. Normally, lines like
those below would be added to the file /boot/loader.conf.

Reserve 2 x 1G blocks of contiguous memory using contigmem driver:
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"

Identify NIC devices for DPDK apps to use and load nic_uio driver:
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

2.2. Installing the DPDK FreeBSD Port

If so desired, the user can install DPDK using the ports collection rather than from
a pre-compiled binary package.
On a system with the ports collection installed in /usr/ports, the DPDK
can be installed using the commands:

cd /usr/ports/net/dpdk

make install

2.3. Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs
its example applications in /usr/local/share/dpdk/examples.
These examples can be compiled and run as described in Compiling and Running Sample Applications.

Note

DPDK example applications must be complied using gmake rather than
BSD make. To detect the installed DPDK libraries, pkg-config should
also be installed on the system.

Note

To install a copy of the DPDK compiled using gcc, please download the
official DPDK package from https://core.dpdk.org/download/ and install manually using
the instructions given in the next chapter, Compiling the DPDK Target from Source

An example application can therefore be copied to a user’s home directory and
compiled and run as below, where we have 2 memory blocks of size 1G reserved
via the contigmem module, and 4 NIC ports bound to the nic_uio module:

cp -r /usr/local/share/dpdk/examples/helloworld .

cd helloworld/

gmake
cc -O3 -I/usr/local/include -include rte_config.h -march=corei7 -D__BSD_VISIBLE main.c -o build/helloworld-shared -L/usr/local/lib -lrte_bpf -lrte_flow_classify -lrte_pipeline -lrte_table -lrte_port -lrte_fib -lrte_ipsec -lrte_stack -lrte_security -lrte_sched -lrte_reorder -lrte_rib -lrte_rcu -lrte_rawdev -lrte_pdump -lrte_member -lrte_lpm -lrte_latencystats -lrte_jobstats -lrte_ip_frag -lrte_gso -lrte_gro -lrte_eventdev -lrte_efd -lrte_distributor -lrte_cryptodev -lrte_compressdev -lrte_cfgfile -lrte_bitratestats -lrte_bbdev -lrte_acl -lrte_timer -lrte_hash -lrte_metrics -lrte_cmdline -lrte_pci -lrte_ethdev -lrte_meter -lrte_net -lrte_mbuf -lrte_mempool -lrte_ring -lrte_eal -lrte_kvargs
ln -sf helloworld-shared build/helloworld

sudo ./build/helloworld -l 0-3
EAL: Sysctl reports 8 cpus
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Mapped memory segment 0 @ 0x1040000000: physaddr:0x180000000, len 1073741824
EAL: Mapped memory segment 1 @ 0x1080000000: physaddr:0x1c0000000, len 1073741824
EAL: PCI device 0000:00:19.0 on NUMA socket 0
EAL: probe driver: 8086:153b net_e1000_em
EAL: 0000:00:19.0 not managed by UIO driver, skipping
EAL: PCI device 0000:01:00.0 on NUMA socket 0
EAL: probe driver: 8086:1572 net_i40e
EAL: PCI device 0000:01:00.1 on NUMA socket 0
EAL: probe driver: 8086:1572 net_i40e
EAL: PCI device 0000:01:00.2 on NUMA socket 0
EAL: probe driver: 8086:1572 net_i40e
EAL: PCI device 0000:01:00.3 on NUMA socket 0
EAL: probe driver: 8086:1572 net_i40e
hello from core 1
hello from core 2
hello from core 3
hello from core 0

Note

To run a DPDK process as a non-root user, adjust the permissions on
the /dev/contigmem and /dev/uio device nodes as described in section
Running DPDK Applications Without Root Privileges

Note

For an explanation of the command-line parameters that can be passed to an
DPDK application, see section Running a Sample Application.

3. Compiling the DPDK Target from Source

3.1. Prerequisites

The following FreeBSD packages are required to build DPDK:

	meson

	ninja

	pkgconf

These can be installed using (as root):

pkg install meson pkgconf

To compile the required kernel modules for memory management and working
with physical NIC devices, the kernel sources for FreeBSD also
need to be installed. If not already present on the system, these can be
installed via commands like the following, for FreeBSD 12.1 on x86_64:

fetch http://ftp.freebsd.org/pub/FreeBSD/releases/amd64/12.1-RELEASE/src.txz
tar -C / -xJvf src.txz

To enable the telemetry library in DPDK, the jansson library also needs to
be installed, and can be installed via:

pkg install jansson

Individual drivers may have additional requirements. Consult the relevant
driver guide for any driver-specific requirements of interest.

3.2. Building DPDK

The following commands can be used to build and install DPDK on a system.
The final, install, step generally needs to be run as root:

meson build
cd build
ninja
ninja install

This will install the DPDK libraries and drivers to /usr/local/lib with a
pkg-config file libdpdk.pc installed to /usr/local/lib/pkgconfig. The
DPDK test applications, such as dpdk-testpmd are installed to
/usr/local/bin. To use these applications, it is recommended that the
contigmem and nic_uio kernel modules be loaded first, as described in
the next section.

Note

It is recommended that pkg-config be used to query information
about the compiler and linker flags needed to build applications
against DPDK. In some cases, the path /usr/local/lib/pkgconfig
may not be in the default search paths for .pc files, which means
that queries for DPDK information may fail. This can be fixed by
setting the appropriate path in PKG_CONFIG_PATH environment
variable.

3.3. Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required.
In the absence of non-transparent superpages, the included sources for the
contigmem kernel module provides the ability to present contiguous blocks of
memory for the DPDK to use. The contigmem module must be loaded into the
running kernel before any DPDK is run. Once DPDK is installed on the
system, the module can be found in the /boot/modules directory.

The amount of physically contiguous memory along with the number of physically
contiguous blocks to be reserved by the module can be set at runtime prior to
module loading using:

kenv hw.contigmem.num_buffers=n
kenv hw.contigmem.buffer_size=m

The kernel environment variables can also be specified during boot by placing the
following in /boot/loader.conf:

hw.contigmem.num_buffers=n
hw.contigmem.buffer_size=m

The variables can be inspected using the following command:

sysctl -a hw.contigmem

Where n is the number of blocks and m is the size in bytes of each area of
contiguous memory. A default of two buffers of size 1073741824 bytes (1 Gigabyte)
each is set during module load if they are not specified in the environment.

The module can then be loaded using kldload:

kldload contigmem

It is advisable to include the loading of the contigmem module during the boot
process to avoid issues with potential memory fragmentation during later system
up time. This can be achieved by placing lines similar to the following into
/boot/loader.conf:

hw.contigmem.num_buffers=1
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"

Note

The contigmem_load directive should be placed after any definitions of
hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values
are not to be used.

An error such as:

kldload: can't load ./x86_64-native-freebsd-gcc/kmod/contigmem.ko:
 Exec format error

is generally attributed to not having enough contiguous memory
available and can be verified via dmesg or /var/log/messages:

kernel: contigmalloc failed for buffer <n>

To avoid this error, reduce the number of buffers or the buffer size.

3.4. Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio module must also be loaded into the
running kernel prior to running any DPDK application, e.g. using:

kldload nic_uio

Note

If the ports to be used are currently bound to a existing kernel driver
then the hw.nic_uio.bdfs sysctl value will need to be set before loading the
module. Setting this value is described in the next section below.

Currently loaded modules can be seen by using the kldstat command and a module
can be removed from the running kernel by using kldunload <module_name>.

To load the module during boot place the following into /boot/loader.conf:

nic_uio_load="YES"

Note

nic_uio_load="YES" must appear after the contigmem_load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are
recognized DPDK devices and are not owned by another module. However, since
the FreeBSD kernel includes support, either built-in, or via a separate driver
module, for most network card devices, it is likely that the ports to be used are
already bound to a driver other than nic_uio. The following sub-section describe
how to query and modify the device ownership of the ports to be used by
DPDK applications.

3.4.1. Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -l command. The example below shows
four Intel® 82599 network ports under if_ixgbe module ownership.

pciconf -l
ix0@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pci0:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00

The first column constitutes three components:

	Device name: ixN

	Unit name: pci0

	Selector (Bus:Device:Function): 1:0:0

Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD kernel will include built-in drivers for the most common
devices; a kernel rebuild would normally be required to either remove the drivers
or configure them as loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port
from its current device driver. This is achieved by setting the hw.nic_uio.bdfs
kernel environment variable prior to loading nic_uio, as follows:

kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

Where a comma separated list of selectors is set, the list must not contain any
whitespace.

For example to re-bind ix2@pci0:2:0:0 and ix3@pci0:2:0:1 to the nic_uio module
upon loading, use the following command:

kenv hw.nic_uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into
/boot/loader.conf, before the previously-described nic_uio_load line - as
shown:

hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

3.4.2. Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel,
it is necessary to reboot FreeBSD to restore the original device binding. Before
doing so, update or remove the hw.nic_uio.bdfs in /boot/loader.conf.

If rebinding to a driver that is a loadable module, the network port binding can
be reset without rebooting. To do so, unload both the target kernel module and the
nic_uio module, modify or clear the hw.nic_uio.bdfs kernel environment (kenv)
value, and reload the two drivers - first the original kernel driver, and then
the nic_uio driver. Note: the latter does not need to be reloaded unless there are
ports that are still to be bound to it.

Example commands to perform these steps are shown below:

kldunload nic_uio
kldunload <original_driver>

To clear the value completely:
kenv -u hw.nic_uio.bdfs

To update the list of ports to bind:
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

kldload <original_driver>

kldload nic_uio # optional

4. Compiling and Running Sample Applications

The chapter describes how to compile and run applications in a DPDK
environment. It also provides a pointer to where sample applications are stored.

4.1. Compiling a Sample Application

The DPDK example applications make use of the pkg-config file installed on
the system when DPDK is installed, and so can be built using GNU make.

Note

BSD make cannot be used to compile the DPDK example applications. GNU
make can be installed using pkg install gmake if not already installed
on the FreeBSD system.

The following shows how to compile the helloworld example app, following
the installation of DPDK using ninja install as described previously:

$ export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

$ cd examples/helloworld/

$ gmake
cc -O3 -I/usr/local/include -include rte_config.h -march=native
-D__BSD_VISIBLE main.c -o build/helloworld-shared
-L/usr/local/lib -lrte_telemetry -lrte_bpf -lrte_flow_classify
-lrte_pipeline -lrte_table -lrte_port -lrte_fib -lrte_ipsec
-lrte_stack -lrte_security -lrte_sched -lrte_reorder -lrte_rib
-lrte_rcu -lrte_rawdev -lrte_pdump -lrte_member -lrte_lpm
-lrte_latencystats -lrte_jobstats -lrte_ip_frag -lrte_gso -lrte_gro
-lrte_eventdev -lrte_efd -lrte_distributor -lrte_cryptodev
-lrte_compressdev -lrte_cfgfile -lrte_bitratestats -lrte_bbdev
-lrte_acl -lrte_timer -lrte_hash -lrte_metrics -lrte_cmdline
-lrte_pci -lrte_ethdev -lrte_meter -lrte_net -lrte_mbuf
-lrte_mempool -lrte_ring -lrte_eal -lrte_kvargs
ln -sf helloworld-shared build/helloworld

4.2. Running a Sample Application

	The contigmem and nic_uio modules must be set up prior to running an application.

	Any ports to be used by the application must be already bound to the nic_uio module,
as described in section Binding Network Ports to the nic_uio Module, prior to running the application.
The application is linked with the DPDK target environment’s Environment
Abstraction Layer (EAL) library, which provides some options that are generic
to every DPDK application.

A large number of options can be given to the EAL when running an
application. A full list of options can be got by passing –help to a
DPDK application. Some of the EAL options for FreeBSD are as follows:

	-c COREMASK or -l CORELIST:
A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand. The corelist
is a list of cores to use instead of a core mask.

	-b <domain:bus:devid.func>:
Blacklisting of ports; prevent EAL from using specified PCI device
(multiple -b options are allowed).

	--use-device:
Use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

	-v:
Display version information on startup.

	-m MB:
Memory to allocate from hugepages, regardless of processor socket.

Other options, specific to Linux and are not supported under FreeBSD are as follows:

	socket-mem:
Memory to allocate from hugepages on specific sockets.

	--huge-dir:
The directory where hugetlbfs is mounted.

	mbuf-pool-ops-name:
Pool ops name for mbuf to use.

	--file-prefix:
The prefix text used for hugepage filenames.

The -c or -l option is mandatory; the others are optional.

4.3. Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware
resources directly, with a number of small permission adjustments, it is possible
to run these applications as a user other than “root”. To do so, the ownership,
or permissions, on the following file system objects should be adjusted to ensure
that the user account being used to run the DPDK application has access
to them:

	The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

	The userspace contiguous memory device: /dev/contigmem

Note

Please refer to the DPDK Release Notes for supported applications.

5. EAL parameters

This document contains a list of all EAL parameters. These parameters can be
used by any DPDK application running on FreeBSD.

5.1. Common EAL parameters

The following EAL parameters are common to all platforms supported by DPDK.

5.1.1. Lcore-related options

	-c <core mask>

Set the hexadecimal bitmask of the cores to run on.

	-l <core list>

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...]
where c1, c2, etc are core indexes between 0 and 128.

	--lcores <core map>

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group.
The - character is used as a range separator and , is used as a
single number separator.
The grouping () can be omitted for single element group.
The @ can be omitted if cpus and lcores have the same value.

Note

At a given instance only one core option --lcores, -l or -c can
be used.

	--master-lcore <core ID>

Core ID that is used as master.

	-s <service core mask>

Hexadecimal bitmask of cores to be used as service cores.

5.1.2. Device-related options

	-b, --pci-blacklist <[domain:]bus:devid.func>

Blacklist a PCI device to prevent EAL from using it. Multiple -b options are
allowed.

Note

PCI blacklist cannot be used with -w option.

	-w, --pci-whitelist <[domain:]bus:devid.func>

Add a PCI device in white list.

Note

PCI whitelist cannot be used with -b option.

	--vdev <device arguments>

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'net_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

	-d <path to shared object or directory>

Load external drivers. An argument can be a single shared object file, or a
directory containing multiple driver shared objects. Multiple -d options are
allowed.

	--no-pci

Disable PCI bus.

5.1.3. Multiprocessing-related options

	--proc-type <primary|secondary|auto>

Set the type of the current process.

	--base-virtaddr <address>

Attempt to use a different starting address for all memory maps of the
primary DPDK process. This can be helpful if secondary processes cannot
start due to conflicts in address map.

5.1.4. Memory-related options

	-n <number of channels>

Set the number of memory channels to use.

	-r <number of ranks>

Set the number of memory ranks (auto-detected by default).

	-m <megabytes>

Amount of memory to preallocate at startup.

	--in-memory

Do not create any shared data structures and run entirely in memory. Implies
--no-shconf and (if applicable) --huge-unlink.

	--iova-mode <pa|va>

Force IOVA mode to a specific value.

5.1.5. Debugging options

	--no-shconf

No shared files created (implies no secondary process support).

	--no-huge

Use anonymous memory instead of hugepages (implies no secondary process
support).

	--log-level <type:val>

Specify log level for a specific component. For example:

--log-level lib.eal:debug

Can be specified multiple times.

	--trace=<regex-match>

Enable trace based on regular expression trace name. By default, the trace is
disabled. User must specify this option to enable trace.
For example:

Global trace configuration for EAL only:

--trace=eal

Global trace configuration for ALL the components:

--trace=.*

Can be specified multiple times up to 32 times.

	--trace-dir=<directory path>

Specify trace directory for trace output. For example:

Configuring /tmp/ as a trace output directory:

--trace-dir=/tmp

By default, trace output will created at home directory and parameter
must be specified once only.

	--trace-bufsz=<val>

Specify maximum size of allocated memory for trace output for each thread.
Valid unit can be either B or K or M for Bytes, KBytes
and MBytes respectively. For example:

Configuring 2MB as a maximum size for trace output file:

--trace-bufsz=2M

By default, size of trace output file is 1MB and parameter
must be specified once only.

	--trace-mode=<o[verwrite] | d[iscard] >

Specify the mode of update of trace output file. Either update on a file
can be wrapped or discarded when file size reaches its maximum limit.
For example:

To discard update on trace output file:

--trace-mode=d or --trace-mode=discard

Default mode is overwrite and parameter must be specified once only.

5.1.6. Other options

	-h, --help

Display help message listing all EAL parameters.

	-v

Display the version information on startup.

	mbuf-pool-ops-name:

Pool ops name for mbuf to use.

	--telemetry:

Enable telemetry (enabled by default).

	--no-telemetry:

Disable telemetry.

5.2. FreeBSD-specific EAL parameters

There are currently no FreeBSD-specific EAL command-line parameters available.

Getting Started Guide for Windows

	1. Introduction

	2. Limitations

	3. Compiling the DPDK Target from Source
	3.1. System Requirements

	3.2. Option 1. Clang-LLVM C Compiler and Microsoft MSVC Linker

	3.3. Option 2. MinGW-w64 Toolchain

	3.4. Install the Build System

	3.5. Install the Backend

	3.6. Build the code

	4. Run the helloworld example

1. Introduction

This document contains instructions for installing and configuring the Data
Plane Development Kit (DPDK) software. The document describes how to compile
and run a DPDK application in a Windows* OS application environment, without
going deeply into detail.

*Other names and brands may be claimed as the property of others.

2. Limitations

DPDK for Windows is currently a work in progress. Not all DPDK source files
compile. Support is being added in pieces so as to limit the overall scope
of any individual patch series. The goal is to be able to run any DPDK
application natively on Windows.

3. Compiling the DPDK Target from Source

3.1. System Requirements

Building the DPDK and its applications requires one of the following
environments:

	The Clang-LLVM C compiler and Microsoft MSVC linker.

	The MinGW-w64 toolchain (either native or cross).

The Meson Build system is used to prepare the sources for compilation
with the Ninja backend.
The installation of these tools is covered in this section.

3.2. Option 1. Clang-LLVM C Compiler and Microsoft MSVC Linker

3.2.1. Install the Compiler

Download and install the clang compiler from
LLVM website [http://releases.llvm.org/download.html].
For example, Clang-LLVM direct download link:

http://releases.llvm.org/7.0.1/LLVM-7.0.1-win64.exe

3.2.2. Install the Linker

Download and install the Build Tools for Visual Studio to link and build the
files on windows,
from Microsoft website [https://visualstudio.microsoft.com/downloads].
When installing build tools, select the “Visual C++ build tools” option
and ensure the Windows SDK is selected.

3.3. Option 2. MinGW-w64 Toolchain

Obtain the latest version from
MinGW-w64 website [http://mingw-w64.org/doku.php/download].
On Windows, install to a folder without spaces in its name, like C:\MinGW.
This path is assumed for the rest of this guide.

Version 4.0.4 for Ubuntu 16.04 cannot be used due to a
MinGW-w64 bug [https://sourceforge.net/p/mingw-w64/bugs/562/].

3.4. Install the Build System

Download and install the build system from
Meson website [http://mesonbuild.com/Getting-meson.html].
A good option to choose is the MSI installer for both meson and ninja together:

http://mesonbuild.com/Getting-meson.html#installing-meson-and-ninja-with-the-msi-installer%22

Recommended version is either Meson 0.47.1 (baseline) or the latest release.

3.5. Install the Backend

If using Ninja, download and install the backend from
Ninja website [https://ninja-build.org/] or
install along with the meson build system.

3.6. Build the code

The build environment is setup to build the EAL and the helloworld example by
default.

3.6.1. Option 1. Native Build on Windows

When using Clang-LLVM, specifying the compiler might be required to complete
the meson command:

set CC=clang

When using MinGW-w64, it is sufficient to have toolchain executables in PATH:

set PATH=C:\MinGW\mingw64\bin;%PATH%

To compile the examples, the flag -Dexamples is required.

cd C:\Users\me\dpdk
meson -Dexamples=helloworld build
ninja -C build

3.6.2. Option 2. Cross-Compile with MinGW-w64

The cross-file option must be specified for Meson.
Depending on the distribution, paths in this file may need adjustments.

meson --cross-file config/x86/meson_mingw.txt -Dexamples=helloworld build
ninja -C build

4. Run the helloworld example

Navigate to the examples in the build directory and run dpdk-helloworld.exe.

cd C:\Users\me\dpdk\build\examples
dpdk-helloworld.exe
hello from core 1
hello from core 3
hello from core 0
hello from core 2

Note for MinGW-w64: applications are linked to libwinpthread-1.dll
by default. To run the example, either add toolchain executables directory
to the PATH or copy the library to the working directory.
Alternatively, static linking may be used (mind the LGPLv2.1 license).

Sample Applications User Guides

	1. Introduction to the DPDK Sample Applications
	1.1. Running Sample Applications

	1.2. The DPDK Sample Applications

	2. Compiling the Sample Applications
	2.1. To compile all the sample applications

	2.2. To compile a single application

	2.3. To cross compile the sample application(s)

	3. Command Line Sample Application
	3.1. Overview

	3.2. Compiling the Application

	3.3. Running the Application

	3.4. Explanation

	4. Ethtool Sample Application
	4.1. Compiling the Application

	4.2. Running the Application

	4.3. Using the application

	4.4. Explanation

	4.5. Ethtool interface

	5. Hello World Sample Application
	5.1. Compiling the Application

	5.2. Running the Application

	5.3. Explanation

	6. Basic Forwarding Sample Application
	6.1. Compiling the Application

	6.2. Running the Application

	6.3. Explanation

	7. RX/TX Callbacks Sample Application
	7.1. Compiling the Application

	7.2. Running the Application

	7.3. Explanation

	8. Flow Classify Sample Application
	8.1. Compiling the Application

	8.2. Running the Application

	8.3. Sample ipv4_rules_file.txt

	8.4. Explanation

	9. Basic RTE Flow Filtering Sample Application
	9.1. Compiling the Application

	9.2. Running the Application

	9.3. Explanation

	10. IP Fragmentation Sample Application
	10.1. Overview

	10.2. Compiling the Application

	10.3. Running the Application

	11. IPv4 Multicast Sample Application
	11.1. Overview

	11.2. Compiling the Application

	11.3. Running the Application

	11.4. Explanation

	12. IP Reassembly Sample Application
	12.1. Overview

	12.2. Compiling the Application

	12.3. Running the Application

	12.4. Explanation

	13. Kernel NIC Interface Sample Application
	13.1. Overview

	13.2. Compiling the Application

	13.3. Running the kni Example Application

	13.4. KNI Operations

	13.5. Explanation

	14. Keep Alive Sample Application
	14.1. Overview

	14.2. Compiling the Application

	14.3. Running the Application

	14.4. Explanation

	15. Packet copying using Intel® QuickData Technology
	15.1. Overview

	15.2. Compiling the Application

	15.3. Running the Application

	15.4. Explanation

	16. L2 Forwarding with Crypto Sample Application
	16.1. Overview

	16.2. Compiling the Application

	16.3. Running the Application

	16.4. Explanation

	17. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.
	17.1. Overview

	17.2. Compiling the Application

	17.3. Running the Application

	17.4. Explanation

	18. L2 Forwarding Sample Application (in Real and Virtualized Environments)
	18.1. Overview

	18.2. Compiling the Application

	18.3. Running the Application

	18.4. Explanation

	19. L2 Forwarding Eventdev Sample Application
	19.1. Overview

	19.2. Compiling the Application

	19.3. Running the Application

	19.4. Explanation

	20. L2 Forwarding Sample Application with Cache Allocation Technology (CAT)
	20.1. Compiling the Application

	20.2. Running the Application

	20.3. Explanation

	21. L3 Forwarding Sample Application
	21.1. Overview

	21.2. Compiling the Application

	21.3. Running the Application

	21.4. Explanation

	22. L3 Forwarding Graph Sample Application
	22.1. Overview

	22.2. Compiling the Application

	22.3. Running the Application

	22.4. Explanation

	23. L3 Forwarding with Power Management Sample Application
	23.1. Introduction

	23.2. Overview

	23.3. Compiling the Application

	23.4. Running the Application

	23.5. Explanation

	23.6. Empty Poll Mode

	23.7. Telemetry Mode

	24. L3 Forwarding with Access Control Sample Application
	24.1. Overview

	24.2. Compiling the Application

	24.3. Running the Application

	24.4. Explanation

	25. Link Status Interrupt Sample Application
	25.1. Overview

	25.2. Compiling the Application

	25.3. Running the Application

	25.4. Explanation

	26. Server-Node EFD Sample Application
	26.1. Overview

	26.2. Compiling the Application

	26.3. Running the Application

	26.4. Explanation

	27. Service Cores Sample Application
	27.1. Compiling the Application

	27.2. Running the Application

	27.3. Explanation

	28. Multi-process Sample Application
	28.1. Example Applications

	29. QoS Metering Sample Application
	29.1. Overview

	29.2. Compiling the Application

	29.3. Running the Application

	29.4. Explanation

	30. QoS Scheduler Sample Application
	30.1. Overview

	30.2. Compiling the Application

	30.3. Running the Application

	30.4. Explanation

	31. Timer Sample Application
	31.1. Compiling the Application

	31.2. Running the Application

	31.3. Explanation

	32. Packet Ordering Application
	32.1. Overview

	32.2. Compiling the Application

	32.3. Running the Application

	33. VMDQ and DCB Forwarding Sample Application
	33.1. Overview

	33.2. Compiling the Application

	33.3. Running the Application

	33.4. Explanation

	34. VMDq Forwarding Sample Application
	34.1. Overview

	34.2. Compiling the Application

	34.3. Running the Application

	34.4. Explanation

	35. Vhost Sample Application
	35.1. Testing steps

	35.2. Inject packets

	35.3. Parameters

	35.4. Common Issues

	36. Vhost_blk Sample Application
	36.1. Testing steps

	36.2. Compiling the Application

	37. Vhost_Crypto Sample Application
	37.1. Testing steps

	37.2. Compiling the Application

	38. Vdpa Sample Application
	38.1. Testing steps

	39. Internet Protocol (IP) Pipeline Application
	39.1. Application overview

	39.2. Running the application

	39.3. Application stages

	39.4. Examples

	39.5. Command Line Interface (CLI)

	40. Test Pipeline Application
	40.1. Overview

	40.2. Compiling the Application

	40.3. Running the Application

	41. Eventdev Pipeline Sample Application
	41.1. Compiling the Application

	41.2. Running the Application

	41.3. Observing the Application

	42. Distributor Sample Application
	42.1. Overview

	42.2. Compiling the Application

	42.3. Running the Application

	42.4. Explanation

	42.5. Intel SST-BF Support

	42.6. Debug Logging Support

	42.7. Statistics

	42.8. Application Initialization

	43. Virtual Machine Power Management Application
	43.1. Sample Application Architecture Overview

	43.2. Configuration

	43.3. Compiling and Running the Host Application

	43.4. Compiling and Running the Guest Applications

	43.5. JSON Interface for Power Management Requests and Policies

	44. TEP termination Sample Application
	44.1. Background

	44.2. Sample Code Overview

	44.3. Supported Distributions

	44.4. Compiling the Sample Code

	44.5. Running the Sample Code

	44.6. Running the Virtual Machine (QEMU)

	44.7. Running DPDK in the Virtual Machine

	44.8. Passing Traffic to the Virtual Machine Device

	45. PTP Client Sample Application
	45.1. Limitations

	45.2. How the Application Works

	45.3. Compiling the Application

	45.4. Running the Application

	45.5. Code Explanation

	46. Performance Thread Sample Application
	46.1. Overview

	46.2. Compiling the Application

	46.3. Running the Application

	46.4. Explanation

	46.5. The L-thread subsystem

	47. Federal Information Processing Standards (FIPS) CryptoDev Validation
	47.1. Overview

	47.2. Limitations

	47.3. Application Information

	47.4. Compiling the Application

	47.5. Running the Application

	48. IPsec Security Gateway Sample Application
	48.1. Overview

	48.2. Constraints

	48.3. Compiling the Application

	48.4. Running the Application

	48.5. Configurations

	48.6. Test directory

	49. Loop-back Sample Application using Baseband Device (bbdev)
	49.1. Overview

	49.2. Limitations

	49.3. Compiling the Application

	49.4. Running the Application

	49.5. Using Packet Generator with baseband device sample application

	50. NTB Sample Application
	50.1. Compiling the Application

	50.2. Running the Application

	50.3. Command-line Options

	50.4. Using the application

1. Introduction to the DPDK Sample Applications

The DPDK Sample Applications are small standalone applications which
demonstrate various features of DPDK. They can be considered as a cookbook of
DPDK features. Users interested in getting started with DPDK can take the
applications, try out the features, and then extend them to fit their needs.

1.1. Running Sample Applications

Some sample applications may have their own command-line parameters described in
their respective guides, however all of them also share the same EAL parameters.
Please refer to EAL parameters (Linux)
or EAL parameters (FreeBSD) for
a list of available EAL command-line options.

1.2. The DPDK Sample Applications

There are many sample applications available in the examples directory of DPDK.
These examples range from simple to reasonably complex but most are designed
to demonstrate one particular feature of DPDK. Some of the more interesting
examples are highlighted below.

	Hello World: As with most introductions to a
programming framework a good place to start is with the Hello World
application. The Hello World example sets up the DPDK Environment Abstraction
Layer (EAL), and prints a simple “Hello World” message to each of the DPDK
enabled cores. This application doesn’t do any packet forwarding but it is a
good way to test if the DPDK environment is compiled and set up properly.

	Basic Forwarding/Skeleton Application: The Basic
Forwarding/Skeleton contains the minimum amount of code required to enable
basic packet forwarding with DPDK. This allows you to test if your network
interfaces are working with DPDK.

	Network Layer 2 forwarding: The Network Layer 2
forwarding, or l2fwd application does forwarding based on Ethernet MAC
addresses like a simple switch.

	Network Layer 2 forwarding: The Network Layer 2
forwarding, or l2fwd-event application does forwarding based on Ethernet MAC
addresses like a simple switch. It demonstrates usage of poll and event mode
IO mechanism under a single application.

	Network Layer 3 forwarding: The Network Layer3
forwarding, or l3fwd application does forwarding based on Internet
Protocol, IPv4 or IPv6 like a simple router.

	Network Layer 3 forwarding Graph: The Network Layer3
forwarding Graph, or l3fwd_graph application does forwarding based on IPv4
like a simple router with DPDK Graph framework.

	Hardware packet copying: The Hardware packet copying,
or ioatfwd application demonstrates how to use IOAT rawdev driver for
copying packets between two threads.

	Packet Distributor: The Packet Distributor
demonstrates how to distribute packets arriving on an Rx port to different
cores for processing and transmission.

	Multi-Process Application: The
multi-process application shows how two DPDK processes can work together using
queues and memory pools to share information.

	RX/TX callbacks Application: The RX/TX
callbacks sample application is a packet forwarding application that
demonstrates the use of user defined callbacks on received and transmitted
packets. The application calculates the latency of a packet between RX
(packet arrival) and TX (packet transmission) by adding callbacks to the RX
and TX packet processing functions.

	IPsec Security Gateway: The IPsec Security
Gateway application is minimal example of something closer to a real world
example. This is also a good example of an application using the DPDK
Cryptodev framework.

	Precision Time Protocol (PTP) client: The PTP
client is another minimal implementation of a real world application.
In this case the application is a PTP client that communicates with a PTP
master clock to synchronize time on a Network Interface Card (NIC) using the
IEEE1588 protocol.

	Quality of Service (QoS) Scheduler: The QoS
Scheduler application demonstrates the use of DPDK to provide QoS scheduling.

There are many more examples shown in the following chapters. Each of the
documented sample applications show how to compile, configure and run the
application as well as explaining the main functionality of the code.

2. Compiling the Sample Applications

This section explains how to compile the DPDK sample applications.

2.1. To compile all the sample applications

Set the path to DPDK source code if its not set:

export RTE_SDK=/path/to/rte_sdk

Go to DPDK source:

cd $RTE_SDK

Build DPDK:

make defconfig
make

Build the sample applications:

export RTE_TARGET=build
make -C examples

For other possible RTE_TARGET values and additional information on
compiling see
Compiling DPDK on Linux or
Compiling DPDK on FreeBSD.
Applications are output to: $RTE_SDK/examples/app-dir/build or
$RTE_SDK/examples/app-dir/$RTE_TARGET.

In the example above the compiled application is written to the build subdirectory.
To have the applications written to a different location,
the O=/path/to/build/directory option may be specified in the make command.

make O=/tmp

To build the applications for debugging use the DEBUG option.
This option adds some extra flags, disables compiler optimizations and
sets verbose output.

make DEBUG=1

2.2. To compile a single application

Set the path to DPDK source code:

export RTE_SDK=/path/to/rte_sdk

Go to DPDK source:

cd $RTE_SDK

Build DPDK:

make defconfig
make

Go to the sample application directory. Unless otherwise specified the sample
applications are located in $RTE_SDK/examples/.

Build the application:

export RTE_TARGET=build
make

2.3. To cross compile the sample application(s)

For cross compiling the sample application(s), please append ‘CROSS=$(CROSS_COMPILER_PREFIX)’ to the ‘make’ command.
In example of AARCH64 cross compiling:

export RTE_TARGET=build
export RTE_SDK=/path/to/rte_sdk
make -C examples CROSS=aarch64-linux-gnu-
 or
make CROSS=aarch64-linux-gnu-

3. Command Line Sample Application

This chapter describes the Command Line sample application that
is part of the Data Plane Development Kit (DPDK).

3.1. Overview

The Command Line sample application is a simple application that
demonstrates the use of the command line interface in the DPDK.
This application is a readline-like interface that can be used
to debug a DPDK application, in a Linux* application environment.

Note

The rte_cmdline library should not be used in production code since
it is not validated to the same standard as other DPDK libraries.
See also the “rte_cmdline library should not be used in production code due to limited testing” item
in the “Known Issues” section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such as, completion,
cut/paste and some other special bindings that make configuration and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects.
There are three simple commands:

	add obj_name IP: Add a new object with an IP/IPv6 address associated to it.

	del obj_name: Delete the specified object.

	show obj_name: Show the IP associated with the specified object.

Note

To terminate the application, use Ctrl-d.

3.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications

The application is located in the cmd_line sub-directory.

3.3. Running the Application

To run the application in linux environment, issue the following command:

$./build/cmdline -l 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

3.4. Explanation

The following sections provide some explanation of the code.

3.4.1. EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL).
This is achieved as follows:

int main(int argc, char **argv)
{
 ret = rte_eal_init(argc, argv);
 if (ret < 0)
 rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the console:

cl = cmdline_stdin_new(main_ctx, "example> ");
cmdline_interact(cl);
cmdline_stdin_exit(cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case,
the application exits.

3.4.2. Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
 (cmdline_parse_inst_t *) &cmd_obj_del_show,
 (cmdline_parse_inst_t *) &cmd_obj_add,
 (cmdline_parse_inst_t *) &cmd_help,
 NULL,
};

Each command (of type cmdline_parse_inst_t) is defined statically.
It contains a pointer to a callback function that is executed when the command is parsed,
an opaque pointer, a help string and a list of tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

	String Token: Match a static string, a list of static strings or any string.

	Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.

	IP Address Token: Match an IPv4 or IPv6 address or network.

	Ethernet* Address Token: Match a MAC address.

In this example, a new token type obj_list is defined and implemented
in the parse_obj_list.c and parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
 cmdline_fixed_string_t action;
 cmdline_fixed_string_t name;
 struct object *obj;
};

static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, __rte_unused void *data)
{
 /* ... */
}

cmdline_parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show_result, action, "show#del");

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_show_result, obj, &global_obj_list);

cmdline_parse_inst_t cmd_obj_del_show = {
 .f = cmd_obj_del_show_parsed, /* function to call */
 .data = NULL, /* 2nd arg of func */
 .help_str = "Show/del an object",
 .tokens = { /* token list, NULL terminated */
 (void *)&cmd_obj_action,
 (void *)&cmd_obj_obj,
 NULL,
 },
};

This command is composed of two tokens:

	The first token is a string token that can be show or del.

	The second token is an object that was previously added using the add command in the global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure.
A pointer to this structure is given as an argument to the callback function and can be used in the body of this function.

4. Ethtool Sample Application

The Ethtool sample application shows an implementation of an
ethtool-like API and provides a console environment that allows
its use to query and change Ethernet card parameters. The sample
is based upon a simple L2 frame reflector.

4.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ethtool sub-directory.

4.2. Running the Application

The application requires an available core for each port, plus one.
The only available options are the standard ones for the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL)
options.

4.3. Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>

From this interface the available commands and descriptions of what
they do as follows:

	drvinfo: Print driver info

	eeprom: Dump EEPROM to file

	module-eeprom: Dump plugin module EEPROM to file

	link: Print port link states

	macaddr: Gets/sets MAC address

	mtu: Set NIC MTU

	open: Open port

	pause: Get/set port pause state

	portstats: Print port statistics

	regs: Dump port register(s) to file

	ringparam: Get/set ring parameters

	rxmode: Toggle port Rx mode

	stop: Stop port

	validate: Check that given MAC address is valid unicast address

	vlan: Add/remove VLAN id

	quit: Exit program

4.4. Explanation

The sample program has two parts: A background packet reflector
that runs on a slave core, and a foreground Ethtool Shell that
runs on the master core. These are described below.

4.4.1. Packet Reflector

The background packet reflector is intended to demonstrate basic
packet processing on NIC ports controlled by the Ethtool shim.
Each incoming MAC frame is rewritten so that it is returned to
the sender, using the port in question’s own MAC address as the
source address, and is then sent out on the same port.

4.4.2. Ethtool Shell

The foreground part of the Ethtool sample is a console-based
interface that accepts commands as described in using the
application. Individual call-back functions handle the detail
associated with each command, which make use of the functions
defined in the Ethtool interface to the DPDK functions.

4.5. Ethtool interface

The Ethtool interface is built as a separate library, and implements
the following functions:

	rte_ethtool_get_drvinfo()

	rte_ethtool_get_regs_len()

	rte_ethtool_get_regs()

	rte_ethtool_get_link()

	rte_ethtool_get_eeprom_len()

	rte_ethtool_get_eeprom()

	rte_ethtool_set_eeprom()

	rte_ethtool_get_module_info()

	rte_ethtool_get_module_eeprom()

	rte_ethtool_get_pauseparam()

	rte_ethtool_set_pauseparam()

	rte_ethtool_net_open()

	rte_ethtool_net_stop()

	rte_ethtool_net_get_mac_addr()

	rte_ethtool_net_set_mac_addr()

	rte_ethtool_net_validate_addr()

	rte_ethtool_net_change_mtu()

	rte_ethtool_net_get_stats64()

	rte_ethtool_net_vlan_rx_add_vid()

	rte_ethtool_net_vlan_rx_kill_vid()

	rte_ethtool_net_set_rx_mode()

	rte_ethtool_get_ringparam()

	rte_ethtool_set_ringparam()

5. Hello World Sample Application

The Hello World sample application is an example of the simplest DPDK application that can be written.
The application simply prints an “helloworld” message on every enabled lcore.

5.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the helloworld sub-directory.

5.2. Running the Application

To run the example in a linux environment:

$./build/helloworld -l 0-3 -n 4

Refer to DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

5.3. Explanation

The following sections provide some explanation of code.

5.3.1. EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL).
This is done in the main() function using the following code:

int

main(int argc, char **argv)

{
 ret = rte_eal_init(argc, argv);
 if (ret < 0)
 rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case of a Linux environment).
The argc and argv arguments are provided to the rte_eal_init() function.
The value returned is the number of parsed arguments.

5.3.2. Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore.
In this example, lcore_hello() is called on every available lcore.
The following is the definition of the function:

static int
lcore_hello(__rte_unused void *arg)
{
 unsigned lcore_id;

 lcore_id = rte_lcore_id();
 printf("hello from core %u\n", lcore_id);
 return 0;
}

The code that launches the function on each lcore is as follows:

/* call lcore_hello() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
 rte_eal_remote_launch(lcore_hello, NULL, lcore_id);
}

/* call it on master lcore too */

lcore_hello(NULL);

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch() function.

6. Basic Forwarding Sample Application

The Basic Forwarding sample application is a simple skeleton example of a
forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding
application. For more detailed implementations see the L2 and L3 forwarding
sample applications.

6.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the skeleton sub-directory.

6.2. Running the Application

To run the example in a linux environment:

./build/basicfwd -l 1 -n 4

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

6.3. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

6.3.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

mbuf_pool = rte_mempool_create("MBUF_POOL",
 NUM_MBUFS * nb_ports,
 MBUF_SIZE,
 MBUF_CACHE_SIZE,
 sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL,
 rte_socket_id(),
 0);

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
port_init() function which is explained in the next section:

RTE_ETH_FOREACH_DEV(portid) {
 if (port_init(portid, mbuf_pool) != 0) {
 rte_exit(EXIT_FAILURE,
 "Cannot init port %" PRIu8 "\n", portid);
 }
}

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example lcore_main() is called on a single
lcore.

lcore_main();

The lcore_main() function is explained below.

6.3.2. The Port Initialization Function

The main functional part of the port initialization used in the Basic
Forwarding application is shown below:

static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{
 struct rte_eth_conf port_conf = port_conf_default;
 const uint16_t rx_rings = 1, tx_rings = 1;
 struct rte_ether_addr addr;
 int retval;
 uint16_t q;

 if (!rte_eth_dev_is_valid_port(port))
 return -1;

 /* Configure the Ethernet device. */
 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
 if (retval != 0)
 return retval;

 /* Allocate and set up 1 RX queue per Ethernet port. */
 for (q = 0; q < rx_rings; q++) {
 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
 if (retval < 0)
 return retval;
 }

 /* Allocate and set up 1 TX queue per Ethernet port. */
 for (q = 0; q < tx_rings; q++) {
 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL);
 if (retval < 0)
 return retval;
 }

 /* Start the Ethernet port. */
 retval = rte_eth_dev_start(port);
 if (retval < 0)
 return retval;

 /* Enable RX in promiscuous mode for the Ethernet device. */
 retval = rte_eth_promiscuous_enable(port);
 if (retval != 0)
 return retval;

 return 0;
}

The Ethernet ports are configured with default settings using the
rte_eth_dev_configure() function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
 .rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

retval = rte_eth_promiscuous_enable(port);

6.3.3. The Lcores Main

As we saw above the main() function calls an application function on the
available lcores. For the Basic Forwarding application the lcore function
looks like the following:

static __rte_noreturn void
lcore_main(void)
{
 uint16_t port;

 /*
 * Check that the port is on the same NUMA node as the polling thread
 * for best performance.
 */
 RTE_ETH_FOREACH_DEV(port)
 if (rte_eth_dev_socket_id(port) > 0 &&
 rte_eth_dev_socket_id(port) !=
 (int)rte_socket_id())
 printf("WARNING, port %u is on remote NUMA node to "
 "polling thread.\n\tPerformance will "
 "not be optimal.\n", port);

 printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
 rte_lcore_id());

 /* Run until the application is quit or killed. */
 for (;;) {
 /*
 * Receive packets on a port and forward them on the paired
 * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
 */
 RTE_ETH_FOREACH_DEV(port) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
 }
}

The main work of the application is done within the loop:

for (;;) {
 RTE_ETH_FOREACH_DEV(port) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
}

Packets are received in bursts on the RX ports and transmitted in bursts on
the TX ports. The ports are grouped in pairs with a simple mapping scheme
using the an XOR on the port number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that
are transmitted. If packets fail to transmit, (nb_tx < nb_rx), then they
must be freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using
Ctrl-C.

7. RX/TX Callbacks Sample Application

The RX/TX Callbacks sample application is a packet forwarding application that
demonstrates the use of user defined callbacks on received and transmitted
packets. The application performs a simple latency check, using callbacks, to
determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received
packets to add a timestamp. A separate callback is applied to all packets
prior to transmission to calculate the elapsed time, in CPU cycles.

If hardware timestamping is supported by the NIC, the sample application will
also display the average latency since the packet was timestamped in hardware,
on top of the latency since the packet was received and processed by the RX
callback.

7.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the rxtx_callbacks sub-directory.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS
setting is on in the config/common_ config file that applies to the
target. This is generally on by default:

CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y

7.2. Running the Application

To run the example in a linux environment:

./build/rxtx_callbacks -l 1 -n 4 -- [-t]

Use -t to enable hardware timestamping. If not supported by the NIC, an error
will be displayed.

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

7.3. Explanation

The rxtx_callbacks application is mainly a simple forwarding application
based on the Basic Forwarding Sample Application. See that section of the documentation for more
details of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

7.3.1. The Main Function

The main() function performs the application initialization and calls the
execution threads for each lcore. This function is effectively identical to
the main() function explained in Basic Forwarding Sample Application.

The lcore_main() function is also identical.

The main difference is in the user defined port_init() function where the
callbacks are added. This is explained in the next section:

7.3.2. The Port Initialization Function

The main functional part of the port initialization is shown below with
comments:

static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{
 struct rte_eth_conf port_conf = port_conf_default;
 const uint16_t rx_rings = 1, tx_rings = 1;
 struct rte_ether_addr addr;
 int retval;
 uint16_t q;

 /* Configure the Ethernet device. */
 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
 if (retval != 0)
 return retval;

 /* Allocate and set up 1 RX queue per Ethernet port. */
 for (q = 0; q < rx_rings; q++) {
 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
 if (retval < 0)
 return retval;
 }

 /* Allocate and set up 1 TX queue per Ethernet port. */
 for (q = 0; q < tx_rings; q++) {
 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL);
 if (retval < 0)
 return retval;
 }

 /* Start the Ethernet port. */
 retval = rte_eth_dev_start(port);
 if (retval < 0)
 return retval;

 /* Enable RX in promiscuous mode for the Ethernet device. */
 retval = rte_eth_promiscuous_enable(port);
 if (retval != 0)
 return retval;

 /* Add the callbacks for RX and TX.*/
 rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
 rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

 return 0;
}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

More than one callback can be added and additional information can be passed
to callback function pointers as a void*. In the examples above NULL
is used.

The add_timestamps() and calc_latency() functions are explained below.

7.3.3. The add_timestamps() Callback

The add_timestamps() callback is added to the RX port and is applied to
all packets received:

static uint16_t
add_timestamps(uint16_t port __rte_unused, uint16_t qidx __rte_unused,
 struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{
 unsigned i;
 uint64_t now = rte_rdtsc();

 for (i = 0; i < nb_pkts; i++)
 pkts[i]->udata64 = now;

 return nb_pkts;
}

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to
each packet (see the cycles section of the DPDK API Documentation for
details).

7.3.4. The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all
packets prior to transmission:

static uint16_t
calc_latency(uint16_t port __rte_unused, uint16_t qidx __rte_unused,
 struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{
 uint64_t cycles = 0;
 uint64_t now = rte_rdtsc();
 unsigned i;

 for (i = 0; i < nb_pkts; i++)
 cycles += now - pkts[i]->udata64;

 latency_numbers.total_cycles += cycles;
 latency_numbers.total_pkts += nb_pkts;

 if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {
 printf("Latency = %"PRIu64" cycles\n",
 latency_numbers.total_cycles / latency_numbers.total_pkts);

 latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
 }

 return nb_pkts;
}

The calc_latency() function accumulates the total number of packets and
the total number of cycles used. Once more than 100 million packets have been
transmitted the average cycle count per packet is printed out and the counters
are reset.

8. Flow Classify Sample Application

The Flow Classify sample application is based on the simple skeleton example
of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding
application which uses the Flow Classify library API’s.

Please refer to the
Flow Classification Library
for more information.

8.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the flow_classify sub-directory.

8.2. Running the Application

To run the example in a linux environment:

cd ~/dpdk/examples/flow_classify
./build/flow_classify -c 4 -n 4 -- --rule_ipv4="../ipv4_rules_file.txt"

Please refer to the DPDK Getting Started Guide, section
Compiling and Running Sample Applications
for general information on running applications and the Environment Abstraction
Layer (EAL) options.

8.3. Sample ipv4_rules_file.txt

#file format:
#src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority
#
2.2.2.3/24 2.2.2.7/24 32 : 0xffff 33 : 0xffff 17/0xff 0
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 17/0xff 1
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 6/0xff 2
9.9.8.3/24 9.9.8.7/24 32 : 0xffff 33 : 0xffff 6/0xff 3
6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4

8.4. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

8.4.1. ACL field definitions for the IPv4 5 tuple rule

The following field definitions are used when creating the ACL table during
initialisation of the Flow Classify application..

 enum {
 PROTO_FIELD_IPV4,
 SRC_FIELD_IPV4,
 DST_FIELD_IPV4,
 SRCP_FIELD_IPV4,
 DSTP_FIELD_IPV4,
 NUM_FIELDS_IPV4
};

enum {
 PROTO_INPUT_IPV4,
 SRC_INPUT_IPV4,
 DST_INPUT_IPV4,
 SRCP_DESTP_INPUT_IPV4
};

static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
 /* first input field - always one byte long. */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof(uint8_t),
 .field_index = PROTO_FIELD_IPV4,
 .input_index = PROTO_INPUT_IPV4,
 .offset = sizeof(struct rte_ether_hdr) +
 offsetof(struct rte_ipv4_hdr, next_proto_id),
 },
 /* next input field (IPv4 source address) - 4 consecutive bytes. */
 {
 /* rte_flow uses a bit mask for IPv4 addresses */
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof(uint32_t),
 .field_index = SRC_FIELD_IPV4,
 .input_index = SRC_INPUT_IPV4,
 .offset = sizeof(struct rte_ether_hdr) +
 offsetof(struct rte_ipv4_hdr, src_addr),
 },
 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
 {
 /* rte_flow uses a bit mask for IPv4 addresses */
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof(uint32_t),
 .field_index = DST_FIELD_IPV4,
 .input_index = DST_INPUT_IPV4,
 .offset = sizeof(struct rte_ether_hdr) +
 offsetof(struct rte_ipv4_hdr, dst_addr),
 },
 /*
 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
 * They share the same input index.
 */
 {
 /* rte_flow uses a bit mask for protocol ports */
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof(uint16_t),
 .field_index = SRCP_FIELD_IPV4,
 .input_index = SRCP_DESTP_INPUT_IPV4,
 .offset = sizeof(struct rte_ether_hdr) +
 sizeof(struct rte_ipv4_hdr) +
 offsetof(struct rte_tcp_hdr, src_port),
 },
 {
 /* rte_flow uses a bit mask for protocol ports */
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof(uint16_t),
 .field_index = DSTP_FIELD_IPV4,
 .input_index = SRCP_DESTP_INPUT_IPV4,
 .offset = sizeof(struct rte_ether_hdr) +
 sizeof(struct rte_ipv4_hdr) +
 offsetof(struct rte_tcp_hdr, dst_port),
 },
};

8.4.2. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL).
The argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

It then parses the flow_classify application arguments

ret = parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");

The main() function also allocates a mempool to hold the mbufs
(Message Buffers) used by the application:

mbuf_pool = rte_mempool_create("MBUF_POOL",
 NUM_MBUFS * nb_ports,
 MBUF_SIZE,
 MBUF_CACHE_SIZE,
 sizeof(struct rte_pktmbuf_pool_private),
 rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL,
 rte_socket_id(),
 0);

mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
port_init() function which is explained in the next section:

RTE_ETH_FOREACH_DEV(portid) {
 if (port_init(portid, mbuf_pool) != 0) {
 rte_exit(EXIT_FAILURE,
 "Cannot init port %" PRIu8 "\n", portid);
 }
}

The main() function creates the flow classifier object and adds an ACL
table to the flow classifier.

struct flow_classifier {
 struct rte_flow_classifier *cls;
};

struct flow_classifier_acl {
 struct flow_classifier cls;
} __rte_cache_aligned;

/* Memory allocation */
size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (cls_app == NULL)
 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");

cls_params.name = "flow_classifier";
cls_params.socket_id = socket_id;

cls_app->cls = rte_flow_classifier_create(&cls_params);
if (cls_app->cls == NULL) {
 rte_free(cls_app);
 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
}

/* initialise ACL table params */
table_acl_params.name = "table_acl_ipv4_5tuple";
table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));

/* initialise table create params */
cls_table_params.ops = &rte_table_acl_ops,
cls_table_params.arg_create = &table_acl_params,
cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;

ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
if (ret) {
 rte_flow_classifier_free(cls_app->cls);
 rte_free(cls);
 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
}

It then reads the ipv4_rules_file.txt file and initialises the parameters for
the rte_flow_classify_table_entry_add API.
This API adds a rule to the ACL table.

if (add_rules(parm_config.rule_ipv4_name)) {
 rte_flow_classifier_free(cls_app->cls);
 rte_free(cls_app);
 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
}

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example lcore_main() is called on a single
lcore.

lcore_main(cls_app);

The lcore_main() function is explained below.

8.4.3. The Port Initialization Function

The main functional part of the port initialization used in the Basic
Forwarding application is shown below:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
 struct rte_eth_conf port_conf = port_conf_default;
 const uint16_t rx_rings = 1, tx_rings = 1;
 struct rte_ether_addr addr;
 int retval;
 uint16_t q;

 /* Configure the Ethernet device. */
 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
 if (retval != 0)
 return retval;

 /* Allocate and set up 1 RX queue per Ethernet port. */
 for (q = 0; q < rx_rings; q++) {
 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
 if (retval < 0)
 return retval;
 }

 /* Allocate and set up 1 TX queue per Ethernet port. */
 for (q = 0; q < tx_rings; q++) {
 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
 rte_eth_dev_socket_id(port), NULL);
 if (retval < 0)
 return retval;
 }

 /* Start the Ethernet port. */
 retval = rte_eth_dev_start(port);
 if (retval < 0)
 return retval;

 /* Display the port MAC address. */
 retval = rte_eth_macaddr_get(port, &addr);
 if (retval < 0)
 return retval;
 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
 port,
 addr.addr_bytes[0], addr.addr_bytes[1],
 addr.addr_bytes[2], addr.addr_bytes[3],
 addr.addr_bytes[4], addr.addr_bytes[5]);

 /* Enable RX in promiscuous mode for the Ethernet device. */
 retval = rte_eth_promiscuous_enable(port);
 if (retval != 0)
 return retval;

 return 0;
}

The Ethernet ports are configured with default settings using the
rte_eth_dev_configure() function and the port_conf_default struct.

static const struct rte_eth_conf port_conf_default = {
 .rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

retval = rte_eth_promiscuous_enable(port);

8.4.4. The Add Rules function

The add_rules function reads the ipv4_rules_file.txt file and calls the
add_classify_rule function which calls the
rte_flow_classify_table_entry_add API.

static int
add_rules(const char *rule_path)
{
 FILE *fh;
 char buff[LINE_MAX];
 unsigned int i = 0;
 unsigned int total_num = 0;
 struct rte_eth_ntuple_filter ntuple_filter;

 fh = fopen(rule_path, "rb");
 if (fh == NULL)
 rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
 rule_path);

 fseek(fh, 0, SEEK_SET);

 i = 0;
 while (fgets(buff, LINE_MAX, fh) != NULL) {
 i++;

 if (is_bypass_line(buff))
 continue;

 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
 printf("\nINFO: classify rule capacity %d reached\n",
 total_num);
 break;
 }

 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
 rte_exit(EXIT_FAILURE,
 "%s Line %u: parse rules error\n",
 rule_path, i);

 if (add_classify_rule(&ntuple_filter) != 0)
 rte_exit(EXIT_FAILURE, "add rule error\n");

 total_num++;
 }

 fclose(fh);
 return 0;
}

8.4.5. The Lcore Main function

As we saw above the main() function calls an application function on the
available lcores.
The lcore_main function calls the rte_flow_classifier_query API.
For the Basic Forwarding application the lcore_main function looks like the
following:

/* flow classify data */
static int num_classify_rules;
static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
static struct rte_flow_classify_stats classify_stats = {
 .stats = (void *)&ntuple_stats
};

static __rte_noreturn void
lcore_main(cls_app)
{
 uint16_t port;

 /*
 * Check that the port is on the same NUMA node as the polling thread
 * for best performance.
 */
 RTE_ETH_FOREACH_DEV(port)
 if (rte_eth_dev_socket_id(port) > 0 &&
 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
 printf("\n\n");
 printf("WARNING: port %u is on remote NUMA node\n",
 port);
 printf("to polling thread.\n");
 printf("Performance will not be optimal.\n");

 printf("\nCore %u forwarding packets. \n",
 rte_lcore_id());
 printf("[Ctrl+C to quit]\n
 }

 /* Run until the application is quit or killed. */
 for (;;) {
 /*
 * Receive packets on a port and forward them on the paired
 * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
 */
 RTE_ETH_FOREACH_DEV(port) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
 if (rules[i]) {
 ret = rte_flow_classifier_query(
 cls_app->cls,
 bufs, nb_rx, rules[i],
 &classify_stats);
 if (ret)
 printf(
 "rule [%d] query failed ret [%d]\n\n",
 i, ret);
 else {
 printf(
 "rule[%d] count=%"PRIu64"\n",
 i, ntuple_stats.counter1);

 printf("proto = %d\n",
 ntuple_stats.ipv4_5tuple.proto);
 }
 }
 }

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
 }
}

The main work of the application is done within the loop:

for (;;) {
 RTE_ETH_FOREACH_DEV(port) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
 bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
 bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
}

Packets are received in bursts on the RX ports and transmitted in bursts on
the TX ports. The ports are grouped in pairs with a simple mapping scheme
using the an XOR on the port number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that
are transmitted. If packets fail to transmit, (nb_tx < nb_rx), then they
must be freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using
Ctrl-C.

9. Basic RTE Flow Filtering Sample Application

The Basic RTE flow filtering sample application is a simple example of a
creating a RTE flow rule.

It is intended as a demonstration of the basic components RTE flow rules.

9.1. Compiling the Application

To compile the application export the path to the DPDK source tree and go to
the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/flow_filtering

Set the target, for example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

9.2. Running the Application

To run the example in a linux environment:

./build/flow -l 1 -n 1

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

9.3. Explanation

The example is built from 2 files,
main.c which holds the example logic and flow_blocks.c that holds the
implementation for building the flow rule.

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

9.3.1. The Main Function

The main() function located in main.c file performs the initialization
and runs the main loop function.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", 4096, 128, 0,
 RTE_MBUF_DEFAULT_BUF_SIZE,
 rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
init_port() function which is explained in the next section:

init_port();

Once the initialization is complete, we set the flow rule using the
following code:

/* create flow for send packet with */
flow = generate_ipv4_flow(port_id, selected_queue,
 SRC_IP, EMPTY_MASK,
 DEST_IP, FULL_MASK, &error);
if (!flow) {
 printf("Flow can't be created %d message: %s\n",
 error.type,
 error.message ? error.message : "(no stated reason)");
 rte_exit(EXIT_FAILURE, "error in creating flow");
}

In the last part the application is ready to launch the
main_loop() function. Which is explained below.

main_loop();

9.3.2. The Port Initialization Function

The main functional part of the port initialization used in the flow filtering
application is shown below:

init_port(void)
{
 int ret;
 uint16_t i;
 struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 },
 .txmode = {
 .offloads =
 DEV_TX_OFFLOAD_VLAN_INSERT |
 DEV_TX_OFFLOAD_IPV4_CKSUM |
 DEV_TX_OFFLOAD_UDP_CKSUM |
 DEV_TX_OFFLOAD_TCP_CKSUM |
 DEV_TX_OFFLOAD_SCTP_CKSUM |
 DEV_TX_OFFLOAD_TCP_TSO,
 },
 };
 struct rte_eth_txconf txq_conf;
 struct rte_eth_rxconf rxq_conf;
 struct rte_eth_dev_info dev_info;

 printf(":: initializing port: %d\n", port_id);
 ret = rte_eth_dev_configure(port_id,
 nr_queues, nr_queues, &port_conf);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: cannot configure device: err=%d, port=%u\n",
 ret, port_id);
 }

 rte_eth_dev_info_get(port_id, &dev_info);
 rxq_conf = dev_info.default_rxconf;
 rxq_conf.offloads = port_conf.rxmode.offloads;
 /* only set Rx queues: something we care only so far */
 for (i = 0; i < nr_queues; i++) {
 ret = rte_eth_rx_queue_setup(port_id, i, 512,
 rte_eth_dev_socket_id(port_id),
 &rxq_conf,
 mbuf_pool);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: Rx queue setup failed: err=%d, port=%u\n",
 ret, port_id);
 }
 }

 txq_conf = dev_info.default_txconf;
 txq_conf.offloads = port_conf.txmode.offloads;

 for (i = 0; i < nr_queues; i++) {
 ret = rte_eth_tx_queue_setup(port_id, i, 512,
 rte_eth_dev_socket_id(port_id),
 &txq_conf);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: Tx queue setup failed: err=%d, port=%u\n",
 ret, port_id);
 }
 }

 ret = rte_eth_promiscuous_enable(port_id);
 if (ret != 0) {
 rte_exit(EXIT_FAILURE,
 ":: cannot enable promiscuous mode: err=%d, port=%u\n",
 ret, port_id);
 }

 ret = rte_eth_dev_start(port_id);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 "rte_eth_dev_start:err=%d, port=%u\n",
 ret, port_id);
 }

 assert_link_status();

 printf(":: initializing port: %d done\n", port_id);
}

The Ethernet port is configured with default settings using the
rte_eth_dev_configure() function and the port_conf_default struct:

struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 },
 .txmode = {
 .offloads =
 DEV_TX_OFFLOAD_VLAN_INSERT |
 DEV_TX_OFFLOAD_IPV4_CKSUM |
 DEV_TX_OFFLOAD_UDP_CKSUM |
 DEV_TX_OFFLOAD_TCP_CKSUM |
 DEV_TX_OFFLOAD_SCTP_CKSUM |
 DEV_TX_OFFLOAD_TCP_TSO,
 },
 };

ret = rte_eth_dev_configure(port_id, nr_queues, nr_queues, &port_conf);
if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: cannot configure device: err=%d, port=%u\n",
 ret, port_id);
}
rte_eth_dev_info_get(port_id, &dev_info);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;

For this example we are configuring number of rx and tx queues that are connected
to a single port.

for (i = 0; i < nr_queues; i++) {
 ret = rte_eth_rx_queue_setup(port_id, i, 512,
 rte_eth_dev_socket_id(port_id),
 &rxq_conf,
 mbuf_pool);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: Rx queue setup failed: err=%d, port=%u\n",
 ret, port_id);
 }
}

for (i = 0; i < nr_queues; i++) {
 ret = rte_eth_tx_queue_setup(port_id, i, 512,
 rte_eth_dev_socket_id(port_id),
 &txq_conf);
 if (ret < 0) {
 rte_exit(EXIT_FAILURE,
 ":: Tx queue setup failed: err=%d, port=%u\n",
 ret, port_id);
 }
}

In the next step we create and apply the flow rule. which is to send packets
with destination ip equals to 192.168.1.1 to queue number 1. The detail
explanation of the generate_ipv4_flow() appears later in this document:

flow = generate_ipv4_flow(port_id, selected_queue,
 SRC_IP, EMPTY_MASK,
 DEST_IP, FULL_MASK, &error);

We are setting the RX port to promiscuous mode:

ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0) {
 rte_exit(EXIT_FAILURE,
 ":: cannot enable promiscuous mode: err=%d, port=%u\n",
 ret, port_id);
}

The last step is to start the port.

ret = rte_eth_dev_start(port_id);
if (ret < 0) {
 rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err%d, port=%u\n",
 ret, port_id);
}

9.3.3. The main_loop function

As we saw above the main() function calls an application function to handle
the main loop. For the flow filtering application the main_loop function
looks like the following:

static void
main_loop(void)
{
 struct rte_mbuf *mbufs[32];
 struct rte_ether_hdr *eth_hdr;
 uint16_t nb_rx;
 uint16_t i;
 uint16_t j;

 while (!force_quit) {
 for (i = 0; i < nr_queues; i++) {
 nb_rx = rte_eth_rx_burst(port_id,
 i, mbufs, 32);
 if (nb_rx) {
 for (j = 0; j < nb_rx; j++) {
 struct rte_mbuf *m = mbufs[j];

 eth_hdr = rte_pktmbuf_mtod(m,
 struct rte_ether_hdr *);
 print_ether_addr("src=",
 ð_hdr->s_addr);
 print_ether_addr(" - dst=",
 ð_hdr->d_addr);
 printf(" - queue=0x%x",
 (unsigned int)i);
 printf("\n");
 rte_pktmbuf_free(m);
 }
 }
 }
 }
 /* closing and releasing resources */
 rte_flow_flush(port_id, &error);
 rte_eth_dev_stop(port_id);
 rte_eth_dev_close(port_id);
}

The main work of the application is reading the packets from all
queues and printing for each packet the destination queue:

while (!force_quit) {
 for (i = 0; i < nr_queues; i++) {
 nb_rx = rte_eth_rx_burst(port_id, i, mbufs, 32);
 if (nb_rx) {
 for (j = 0; j < nb_rx; j++) {
 struct rte_mbuf *m = mbufs[j];
 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
 print_ether_addr("src=", ð_hdr->s_addr);
 print_ether_addr(" - dst=", ð_hdr->d_addr);
 printf(" - queue=0x%x", (unsigned int)i);
 printf("\n");
 rte_pktmbuf_free(m);
 }
 }
 }
}

The forwarding loop can be interrupted and the application closed using
Ctrl-C. Which results in closing the port and the device using
rte_eth_dev_stop and rte_eth_dev_close

9.3.4. The generate_ipv4_flow function

The generate_ipv4_flow function is responsible for creating the flow rule.
This function is located in the flow_blocks.c file.

static struct rte_flow *
generate_ipv4_flow(uint8_t port_id, uint16_t rx_q,
 uint32_t src_ip, uint32_t src_mask,
 uint32_t dest_ip, uint32_t dest_mask,
 struct rte_flow_error *error)
{
 struct rte_flow_attr attr;
 struct rte_flow_item pattern[MAX_PATTERN_NUM];
 struct rte_flow_action action[MAX_ACTION_NUM];
 struct rte_flow *flow = NULL;
 struct rte_flow_action_queue queue = { .index = rx_q };
 struct rte_flow_item_ipv4 ip_spec;
 struct rte_flow_item_ipv4 ip_mask;

 memset(pattern, 0, sizeof(pattern));
 memset(action, 0, sizeof(action));

 /*
 * set the rule attribute.
 * in this case only ingress packets will be checked.
 */
 memset(&attr, 0, sizeof(struct rte_flow_attr));
 attr.ingress = 1;

 /*
 * create the action sequence.
 * one action only, move packet to queue
 */
 action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
 action[0].conf = &queue;
 action[1].type = RTE_FLOW_ACTION_TYPE_END;

 /*
 * set the first level of the pattern (ETH).
 * since in this example we just want to get the
 * ipv4 we set this level to allow all.
 */
 pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;

 /*
 * setting the second level of the pattern (IP).
 * in this example this is the level we care about
 * so we set it according to the parameters.
 */
 memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
 memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
 ip_spec.hdr.dst_addr = htonl(dest_ip);
 ip_mask.hdr.dst_addr = dest_mask;
 ip_spec.hdr.src_addr = htonl(src_ip);
 ip_mask.hdr.src_addr = src_mask;
 pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
 pattern[1].spec = &ip_spec;
 pattern[1].mask = &ip_mask;

 /* the final level must be always type end */
 pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

 int res = rte_flow_validate(port_id, &attr, pattern, action, error);
 if(!res)
 flow = rte_flow_create(port_id, &attr, pattern, action, error);

 return flow;
}

The first part of the function is declaring the structures that will be used.

struct rte_flow_attr attr;
struct rte_flow_item pattern[MAX_PATTERN_NUM];
struct rte_flow_action action[MAX_ACTION_NUM];
struct rte_flow *flow;
struct rte_flow_error error;
struct rte_flow_action_queue queue = { .index = rx_q };
struct rte_flow_item_ipv4 ip_spec;
struct rte_flow_item_ipv4 ip_mask;

The following part create the flow attributes, in our case ingress.

memset(&attr, 0, sizeof(struct rte_flow_attr));
attr.ingress = 1;

The third part defines the action to be taken when a packet matches
the rule. In this case send the packet to queue.

action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
action[0].conf = &queue;
action[1].type = RTE_FLOW_ACTION_TYPE_END;

The fourth part is responsible for creating the pattern and is built from
number of steps. In each step we build one level of the pattern starting with
the lowest one.

Setting the first level of the pattern ETH:

pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;

Setting the second level of the pattern IP:

memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
ip_spec.hdr.dst_addr = htonl(dest_ip);
ip_mask.hdr.dst_addr = dest_mask;
ip_spec.hdr.src_addr = htonl(src_ip);
ip_mask.hdr.src_addr = src_mask;
pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[1].spec = &ip_spec;
pattern[1].mask = &ip_mask;

Closing the pattern part.

pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

The last part of the function is to validate the rule and create it.

int res = rte_flow_validate(port_id, &attr, pattern, action, &error);
if (!res)
 flow = rte_flow_create(port_id, &attr, pattern, action, &error);

10. IP Fragmentation Sample Application

The IPv4 Fragmentation application is a simple example of packet processing
using the Data Plane Development Kit (DPDK).
The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

10.1. Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:

	The first difference is that the IP Fragmentation sample application makes use of indirect buffers.

	The second difference is that the forwarding decision is taken
based on information read from the input packet’s IP header.

	The third difference is that the application differentiates between
IP and non-IP traffic by means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number,
associated with that IP address.
Any unmatched packets are forwarded to the originating port.

By default, input frame sizes up to 9.5 KB are supported.
Before forwarding, the input IP packet is fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

10.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_fragmentation sub-directory.

10.3. Running the Application

The LPM object is created and loaded with the pre-configured entries read from
global l3fwd_ipv4_route_array and l3fwd_ipv6_route_array tables.
For each input packet, the packet forwarding decision
(that is, the identification of the output interface for the packet) is taken as a result of LPM lookup.
If the IP packet size is greater than default output MTU,
then the input packet is fragmented and several fragments are sent via the output interface.

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-q NQ]

where:

	-p PORTMASK is a hexadecimal bitmask of ports to configure

	-q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linux environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_fragmentation -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)
...
IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...
IP_FRAG: entering main loop on lcore 4
IP_FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: -- lcoreid=2 portid=0

To run the example in linux environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_fragmentation -l 4 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
 {RTE_IPV4(100, 10, 0, 0), 16, 0},
 {RTE_IPV4(100, 20, 0, 0), 16, 1},
 {RTE_IPV4(100, 30, 0, 0), 16, 2},
 {RTE_IPV4(100, 40, 0, 0), 16, 3},
 {RTE_IPV4(100, 50, 0, 0), 16, 4},
 {RTE_IPV4(100, 60, 0, 0), 16, 5},
 {RTE_IPV4(100, 70, 0, 0), 16, 6},
 {RTE_IPV4(100, 80, 0, 0), 16, 7},
};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
};

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198 bytes,
seven IPv4 packets will be sent out from port #0 to the destination address 100.10.1.1:
six of those packets will have length 1500 bytes and one packet will have length 318 bytes.
IP Fragmentation sample application provides basic NUMA support
in that all the memory structures are allocated on all sockets that have active lcores on them.

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

11. IPv4 Multicast Sample Application

The IPv4 Multicast application is a simple example of packet processing
using the Data Plane Development Kit (DPDK).
The application performs L3 multicasting.

11.1. Overview

The application demonstrates the use of zero-copy buffers for packet forwarding.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
This guide highlights the differences between the two applications.
There are two key differences from the L2 Forwarding sample application:

	The IPv4 Multicast sample application makes use of indirect buffers.

	The forwarding decision is taken based on information read from the input packet’s IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method.
The lookup table is composed of pairs of destination IPv4 address (the FBK)
and a port mask associated with that IPv4 address.

Note

The max port mask supported in the given hash table is 0xf, so only first
four ports can be supported.
If using non-consecutive ports, use the destination IPv4 address accordingly.

For convenience and simplicity, this sample application does not take IANA-assigned multicast addresses into account,
but instead equates the last four bytes of the multicast group (that is, the last four bytes of the destination IP address)
with the mask of ports to multicast packets to.
Also, the application does not consider the Ethernet addresses;
it looks only at the IPv4 destination address for any given packet.

11.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ipv4_multicast sub-directory.

11.3. Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-q NQ: determines the number of queues per lcore

Note

Unlike the basic L2/L3 Forwarding sample applications,
NUMA support is not provided in the IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -l 0-3 -n 3 -- -p 0x3 -q 1

In this command:

	The -l option enables cores 0, 1, 2 and 3

	The -n option specifies 3 memory channels

	The -p option enables ports 0 and 1

	The -q option assigns 1 queue to each lcore

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

11.4. Explanation

The following sections provide some explanation of the code.
As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The following sections describe aspects that are specific to the IPv4 Multicast sample application.

11.4.1. Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools.
Two of the pools are for indirect buffers used for packet duplication purposes.
Memory pools for indirect buffers are initialized differently from the memory pool for direct buffers:

packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
 0, PKT_MBUF_DATA_SIZE, rte_socket_id());
header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
 0, HDR_MBUF_DATA_SIZE, rte_socket_id());
clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
 0, 0, rte_socket_id());

The reason for this is because indirect buffers are not supposed to hold any packet data and
therefore can be initialized with lower amount of reserved memory for each buffer.

11.4.2. Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

static int

init_mcast_hash(void)
{
 uint32_t i;
 mcast_hash_params.socket_id = rte_socket_id();

 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
 if (mcast_hash == NULL){
 return -1;
 }

 for (i = 0; i < N_MCAST_GROUPS; i ++){
 if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) {
 return -1;
 }
 }
 return 0;
}

11.4.3. Forwarding

All forwarding is done inside the mcast_forward() function.
Firstly, the Ethernet* header is removed from the packet and the IPv4 address is extracted from the IPv4 header:

/* Remove the Ethernet header from the input packet */

iphdr = (struct rte_ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct rte_ether_hdr));
RTE_ASSERT(iphdr != NULL);
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and
if the routing table has any ports assigned to the destination address:

if (!RTE_IS_IPV4_MCAST(dest_addr) ||
 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
 (port_mask = hash & enabled_port_mask) == 0) {
 rte_pktmbuf_free(m);
 return;
}

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt() function:

/* Get number of bits set. */

static inline uint32_t bitcnt(uint32_t v)
{
 uint32_t n;

 for (n = 0; v != 0; v &= v - 1, n++)
 ;
 return n;
}

This is done to determine which forwarding algorithm to use.
This is explained in more detail in the next section.

Thereafter, a destination Ethernet address is constructed:

/* construct destination Ethernet address */

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same destination Ethernet address.
The destination Ethernet address is constructed from the lower 23 bits of the multicast group OR-ed
with the Ethernet address 01:00:5e:00:00:00, as per RFC 1112:

#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated with a multicast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
 /* Prepare output packet and send it out. */

 if ((port_mask & 1) != 0) {
 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
 mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
 else if (use_clone == 0)
 rte_pktmbuf_free(m);
 }
}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint16_t port)
{
 struct rte_ether_hdr *ethdr;
 uint16_t len;

 /* Construct Ethernet header. */

 ethdr = (struct rte_ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t) sizeof(*ethdr));

 RTE_ASSERT(ethdr != NULL);

 rte_ether_addr_copy(dest_addr, ðdr->d_addr);
 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);

 /* Put new packet into the output queue */

 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = pkt;
 qconf->tx_mbufs[port].len = ++len;

 /* Transmit packets */

 if (unlikely(MAX_PKT_BURST == len))
 send_burst(qconf, port);
}

11.4.4. Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy buffer cloning.
There are two approaches for creating the outgoing packet and although both are based on the data zero-copy idea,
there are some differences in the detail.

The first approach creates a clone of the input packet, for example,
walk though all segments of the input packet and for each of segment,
create a new buffer and attach that new buffer to the segment
(refer to rte_pktmbuf_clone() in the rte_mbuf library for more details).
A new buffer is then allocated for the packet header and is prepended to the cloned buffer.

The second approach does not make a clone, it just increments the reference counter for all input packet segment,
allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of packet’s metadata.
The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata,
so we can safely modify the data pointer of the input packet.
That allows us to skip creation if the output packet is for the last destination port
and instead modify input packet’s header in place.
For example, for N destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet,
that is, the “clone” operation is skipped completely.
However, there is a price to pay.
The input packet’s metadata must remain intact, so for N destination ports,
we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet),
first approach is faster.
As the number of outgoing ports (and/or input segments) grows, the second approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask,
either the first (with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually cloning the buffers):

static inline struct rte_mbuf *mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{
 struct rte_mbuf *hdr;

 /* Create new mbuf for the header. */

 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
 return NULL;

 /* If requested, then make a new clone packet. */

 if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
 rte_pktmbuf_free(hdr);
 return NULL;
 }

 /* prepend new header */

 hdr->pkt.next = pkt;

 /* update header's fields */

 hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len);
 hdr->pkt.nb_segs = pkt->pkt.nb_segs + 1;

 /* copy metadata from source packet */

 hdr->pkt.in_port = pkt->pkt.in_port;
 hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
 hdr->pkt.hash = pkt->pkt.hash;
 rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1);

 return hdr;
}

12. IP Reassembly Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK.
The application performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

12.1. Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding
with reassembly for IPv4 and IPv6 fragmented packets.
The initialization and run- time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The main difference from the L2 Forwarding sample application is that
it reassembles fragmented IPv4 and IPv6 packets before forwarding.
The maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

	The first difference is that the forwarding decision is taken based on information read from the input packet’s IP header.

	The second difference is that the application differentiates between IP and non-IP traffic by means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number,
associated with that IPv4 address. Any unmatched packets are forwarded to the originating port.

12.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_reassembly sub-directory.

12.3. Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[(s|ms)]]

where:

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-q NQ: Number of RX queues per lcore

	–maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535). Default value: 4096.

	–flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet.
If all fragments of the packet wouldn’t appear within given time-out,
then they are considered as invalid and will be dropped.
Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linux environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_reassembly -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
...

IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...

IP_RSMBL: entering main loop on lcore 4
IP_RSMBL: -- lcoreid=4 portid=2
IP_RSMBL: entering main loop on lcore 2
IP_RSMBL: -- lcoreid=2 portid=0

To run the example in linux environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_reassembly -l 4 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

Please note that in order to test this application,
the traffic generator should be generating valid fragmented IP packets.
For IPv6, the only supported case is when no other extension headers other than
fragment extension header are present in the packet.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
 {RTE_IPV4(100, 10, 0, 0), 16, 0},
 {RTE_IPV4(100, 20, 0, 0), 16, 1},
 {RTE_IPV4(100, 30, 0, 0), 16, 2},
 {RTE_IPV4(100, 40, 0, 0), 16, 3},
 {RTE_IPV4(100, 50, 0, 0), 16, 4},
 {RTE_IPV4(100, 60, 0, 0), 16, 5},
 {RTE_IPV4(100, 70, 0, 0), 16, 6},
 {RTE_IPV4(100, 80, 0, 0), 16, 7},
};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
};

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1,
a reassembled IPv4 packet be sent out from port #0 to the destination address 100.10.1.1
once all the fragments are collected.

12.4. Explanation

The following sections provide some explanation of the sample application code.
As mentioned in the overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).
The following sections describe aspects that are specific to the IP reassemble sample application.

12.4.1. IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more detailed explanation of how to use this library.
Fragment table maintains information about already received fragments of the packet.
Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.
To avoid lock contention, each RX queue has its own Fragment Table,
e.g. the application can’t handle the situation when different fragments of the same packet arrive through different RX queues.
Each table entry can hold information about packet consisting of up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL)
{
 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue);
 return -1;
}

12.4.2. Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated.
At any given time up to (2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per packet>)
can be stored inside Fragment Table waiting for remaining fragments.
To keep mempool size under reasonable limits and to avoid situation when one RX queue can starve other queues,
each RX queue uses its own mempool.

nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);

snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);

if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
 rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

 RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
 return -1;
}

12.4.3. Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function.
If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 packets,
or rte_ipv6_reassemble_packet() for IPv6 packets.
These functions either return a pointer to valid mbuf that contains reassembled packet,
or NULL (if the packet can’t be reassembled for some reason).
Then l3fwd_simple_forward() continues with the code for the packet forwarding decision
(that is, the identification of the output interface for the packet) and
actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

	Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination Address, Packet ID>

	If the entry is found, then check if that entry already timed-out.
If yes, then free all previously received fragments,
and remove information about them from the entry.

	If no entry with such key is found, then try to create a new one by one of two ways:

	Use as empty entry

	Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.

	Update the entry with new fragment information and check
if a packet can be reassembled (the packet’s entry contains all fragments).

	If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled mbuf to the caller.

	If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error
(can’t insert new entry into the Fragment table, or invalid/timed-out fragment),
then it will free all associated with the packet fragments,
mark the table entry as invalid and return NULL to the caller.

12.4.4. Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table.
This macro is disabled by default.
To make ip_reassembly print the statistics to the standard output,
the user must send either an USR1, INT or TERM signal to the process.
For all of these signals, the ip_reassembly process prints Fragment table statistics for each RX queue,
plus the INT and TERM will cause process termination as usual.

13. Kernel NIC Interface Sample Application

The Kernel NIC Interface (KNI) is a DPDK control plane solution that
allows userspace applications to exchange packets with the kernel networking stack.
To accomplish this, DPDK userspace applications use an IOCTL call
to request the creation of a KNI virtual device in the Linux* kernel.
The IOCTL call provides interface information and the DPDK’s physical address space,
which is re-mapped into the kernel address space by the KNI kernel loadable module
that saves the information to a virtual device context.
The DPDK creates FIFO queues for packet ingress and egress
to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver,
which upon receiving the IOCTL call access the DPDK’s FIFO queue to
receive/transmit packets from/to the DPDK userspace application.
The FIFO queues contain pointers to data packets in the DPDK. This:

	Provides a faster mechanism to interface with the kernel net stack and eliminates system calls

	Facilitates the DPDK using standard Linux* userspace net tools (tshark, rsync, and so on)

	Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use
of the DPDK to create a path for packets to go through the Linux* kernel.
This is done by creating one or more kernel net devices for each of the DPDK ports.
The application allows the use of standard Linux tools (ethtool, iproute, tshark) with the DPDK ports and
also the exchange of packets between the DPDK application and the Linux* kernel.

The Kernel NIC Interface sample application requires that the
KNI kernel module rte_kni be loaded into the kernel. See
Kernel NIC Interface for more information on loading
the rte_kni kernel module.

13.1. Overview

The Kernel NIC Interface sample application kni allocates one or more
KNI interfaces for each physical NIC port. For each physical NIC port,
kni uses two DPDK threads in user space; one thread reads from the port and
writes to the corresponding KNI interfaces and the other thread reads from
the KNI interfaces and writes the data unmodified to the physical NIC port.

It is recommended to configure one KNI interface for each physical NIC port.
The application can be configured with more than one KNI interface for
each physical NIC port for performance testing or it can work together with
VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown
in the following figure.

[image: ../_images/kernel_nic.png]

Fig. 13.1 Kernel NIC Application Packet Flow

If link monitoring is enabled with the -m command line flag, one
additional pthread is launched which will check the link status of each
physical NIC port and will update the carrier status of the corresponding
KNI interface(s) to match the physical NIC port’s state. This means that
the KNI interface(s) will be disabled automatically when the Ethernet link
goes down and enabled when the Ethernet link goes up.

If link monitoring is enabled, the rte_kni kernel module should be loaded
such that the default carrier state is
set to off. This ensures that the KNI interface is only enabled after
the Ethernet link of the corresponding NIC port has reached the linkup state.

If link monitoring is not enabled, the rte_kni kernel module should be
loaded with the default carrier state
set to on. This sets the carrier state of the KNI interfaces to on
when the KNI interfaces are enabled without regard to the actual link state
of the corresponding NIC port. This is useful for testing in loopback
mode where the NIC port may not be physically connected to anything.

13.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples/kni sub-directory.

Note

This application is intended as a linux only.

13.3. Running the kni Example Application

The kni example application requires a number of command line options:

kni [EAL options] -- -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,(port,lcore_rx,lcore_tx[,lcore_kthread,...])]" [-P] [-m]

Where:

	-p PORTMASK:

Hexadecimal bitmask of ports to configure.

	--config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,(port,lcore_rx,lcore_tx[,lcore_kthread,...])]":

Determines which lcores the Rx and Tx DPDK tasks, and (optionally)
the KNI kernel thread(s) are bound to for each physical port.

	-P:

Optional flag to set all ports to promiscuous mode so that packets are
accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination
address set to the Ethernet address of the port are accepted.

	-m:

Optional flag to enable monitoring and updating of the Ethernet
carrier state. With this option set, a thread will be started which
will periodically check the Ethernet link status of the physical
Ethernet ports and set the carrier state of the corresponding KNI
network interface to match it. This means that the KNI interface will
be disabled automatically when the Ethernet link goes down and enabled
when the Ethernet link goes up.

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

The -c coremask or -l corelist parameter of the EAL options must
include the lcores specified by lcore_rx and lcore_tx for each port,
but does not need to include lcores specified by lcore_kthread as those
cores are used to pin the kernel threads in the rte_kni kernel module.

The --config parameter must include a set of
(port,lcore_rx,lcore_tx,[lcore_kthread,...]) values for each physical
port specified in the -p PORTMASK parameter.

The optional lcore_kthread lcore ID parameter in --config can be
specified zero, one or more times for each physical port.

If no lcore ID is specified for lcore_kthread, one KNI interface will
be created for the physical port port and the KNI kernel thread(s)
will have no specific core affinity.

If one or more lcore IDs are specified for lcore_kthread, a KNI interface
will be created for each lcore ID specified, bound to the physical port
port. If the rte_kni kernel module is loaded in multiple
kernel thread mode, a kernel thread will be created
for each KNI interface and bound to the specified core. If the rte_kni
kernel module is loaded in single kernel thread
mode, only one kernel thread is started for all KNI interfaces. The kernel
thread will be bound to the first lcore_kthread lcore ID specified.

13.3.1. Example Configurations

The following commands will first load the rte_kni kernel module in
multiple kernel thread mode. The kni
application is then started using two ports; Port 0 uses lcore 4 for the
Rx task, lcore 6 for the Tx task, and will create a single KNI interface
vEth0_0 with the kernel thread bound to lcore 8. Port 1 uses lcore
5 for the Rx task, lcore 7 for the Tx task, and will create a single KNI
interface vEth1_0 with the kernel thread bound to lcore 9.

rmmod rte_kni
insmod kmod/rte_kni.ko kthread_mode=multiple
./build/kni -l 4-7 -n 4 -- -P -p 0x3 -m --config="(0,4,6,8),(1,5,7,9)"

The following example is identical, except an additional lcore_kthread
core is specified per physical port. In this case, kni will create
four KNI interfaces: vEth0_0/vEth0_1 bound to physical port 0 and
vEth1_0/vEth1_1 bound to physical port 1.

The kernel thread for each interface will be bound as follows:

	vEth0_0 - bound to lcore 8.

	vEth0_1 - bound to lcore 10.

	vEth1_0 - bound to lcore 9.

	vEth1_1 - bound to lcore 11

rmmod rte_kni
insmod kmod/rte_kni.ko kthread_mode=multiple
./build/kni -l 4-7 -n 4 -- -P -p 0x3 -m --config="(0,4,6,8,10),(1,5,7,9,11)"

The following example can be used to test the interface between the kni
test application and the rte_kni kernel module. In this example,
the rte_kni kernel module is loaded in single kernel thread
mode, loopback mode
enabled, and the default carrier state
is set to on so that the corresponding physical NIC port does not have
to be connected in order to use the KNI interface. One KNI interface
vEth0_0 is created for port 0 and one KNI interface vEth1_0 is
created for port 1. Since rte_kni is loaded in “single kernel thread”
mode, the one kernel thread is bound to lcore 8.

Since the physical NIC ports are not being used, link monitoring can be
disabled by not specifying the -m flag to kni:

rmmod rte_kni
insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo carrier=on
./build/kni -l 4-7 -n 4 -- -P -p 0x3 --config="(0,4,6,8),(1,5,7,9)"

13.4. KNI Operations

Once the kni application is started, the user can use the normal
Linux commands to manage the KNI interfaces as if they were any other
Linux network interface.

Enable KNI interface and assign an IP address:

ip addr add dev vEth0_0 192.168.0.1

Show KNI interface configuration and statistics:

ip -s -d addr show vEth0_0

The user can also check and reset the packet statistics inside the kni
application by sending the app the USR1 and USR2 signals:

Print statistics
pkill -USR1 kni

Zero statistics
pkill -USR2 kni

Dump network traffic:

tshark -n -i vEth0_0

The normal Linux commands can also be used to change the MAC address and
MTU size used by the physical NIC which corresponds to the KNI interface.
However, if more than one KNI interface is configured for a physical port,
these commands will only work on the first KNI interface for that port.

Change the MAC address:

ip link set dev vEth0_0 lladdr 0C:01:02:03:04:08

Change the MTU size:

ip link set dev vEth0_0 mtu 1450

Limited ethtool support:

ethtool -i vEth0_0

When the kni application is closed, all the KNI interfaces are deleted
from the Linux kernel.

13.5. Explanation

The following sections provide some explanation of code.

13.5.1. Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Application (in Real and Virtualized Environments)..
In addition, one or more kernel NIC interfaces are allocated for each
of the configured ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is
in the function kni_alloc.

The other step in the initialization process that is unique to this sample application
is the association of each port with lcores for RX, TX and kernel threads.

	One lcore to read from the port and write to the associated one or more KNI devices

	Another lcore to read from one or more KNI devices and write to the port

	Other lcores for pinning the kernel threads on one by one

This is done by using the kni_port_params_array[] array, which is indexed by the port ID.
The code is in the function parse_config.

13.5.2. Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore.
This function first checks the lcore_id against the user provided lcore_rx and lcore_tx
to see if this lcore is reading from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces (kni_ingress),
the packet reception is the same as in L2 Forwarding sample application
(see Receive, Process and Transmit Packets).
The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst().
The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.

For the other case that reads from kernel NIC interfaces
and writes to a physical NIC port (kni_egress),
packets are retrieved by reading mbufs from kernel NIC interfaces by rte_kni_rx_burst().
The packet transmission is the same as in the L2 Forwarding sample application
(see Receive, Process and Transmit Packets).

14. Keep Alive Sample Application

The Keep Alive application is a simple example of a
heartbeat/watchdog for packet processing cores. It demonstrates how
to detect ‘failed’ DPDK cores and notify a fault management entity
of this failure. Its purpose is to ensure the failure of the core
does not result in a fault that is not detectable by a management
entity.

14.1. Overview

The application demonstrates how to protect against ‘silent outages’
on packet processing cores. A Keep Alive Monitor Agent Core (master)
monitors the state of packet processing cores (worker cores) by
dispatching pings at a regular time interval (default is 5ms) and
monitoring the state of the cores. Cores states are: Alive, MIA, Dead
or Buried. MIA indicates a missed ping, and Dead indicates two missed
pings within the specified time interval. When a core is Dead, a
callback function is invoked to restart the packet processing core;
A real life application might use this callback function to notify a
higher level fault management entity of the core failure in order to
take the appropriate corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism
or agent to supervise the Keep Alive Monitor Agent Core DPDK core is required
to detect its failure.

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtualized Environments). As
such, the initialization and run-time paths are very similar to those
of the L2 forwarding application.

14.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd_keep_alive sub-directory.

14.3. Running the Application

The application has a number of command line options:

./build/l2fwd-keepalive [EAL options] \
 -- -p PORTMASK [-q NQ] [-K PERIOD] [-T PERIOD]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

	T PERIOD: statistics will be refreshed each PERIOD seconds (0 to
disable, 10 default, 86400 maximum).

To run the application in linux environment with 4 lcores, 16 ports
8 RX queues per lcore and a ping interval of 10ms, issue the command:

./build/l2fwd-keepalive -l 0-3 -n 4 -- -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL)
options.

14.4. Explanation

The following sections provide some explanation of the The
Keep-Alive/’Liveliness’ conceptual scheme. As mentioned in the
overview section, the initialization and run-time paths are very
similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments).

The Keep-Alive/’Liveliness’ conceptual scheme:

	A Keep- Alive Agent Runs every N Milliseconds.

	DPDK Cores respond to the keep-alive agent.

	If keep-alive agent detects time-outs, it notifies the
fault management entity through a callback function.

The following sections provide some explanation of the code aspects
that are specific to the Keep Alive sample application.

The keepalive functionality is initialized with a struct
rte_keepalive and the callback function to invoke in the
case of a timeout.

rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
if (rte_global_keepalive_info == NULL)
 rte_exit(EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings()
is configured to run every check_period milliseconds.

if (rte_timer_reset(&hb_timer,
 (check_period * rte_get_timer_hz()) / 1000,
 PERIODICAL,
 rte_lcore_id(),
 &rte_keepalive_dispatch_pings,
 rte_global_keepalive_info
) != 0)
 rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows
the same paths as the L2 forwarding application. The only
addition to the main processing loop is the mark alive
functionality and the example random failures.

rte_keepalive_mark_alive(&rte_global_keepalive_info);
cur_tsc = rte_rdtsc();

/* Die randomly within 7 secs for demo purposes.. */
if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive(struct rte_keepalive *keepcfg)
{
 keepcfg->live_data[rte_lcore_id()].core_state = RTE_KA_STATE_ALIVE;
}

15. Packet copying using Intel® QuickData Technology

15.1. Overview

This sample is intended as a demonstration of the basic components of a DPDK
forwarding application and example of how to use IOAT driver API to make
packets copies.

Also while forwarding, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX port MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to compare performance of using software packet
copy with copy done using a DMA device for different sizes of packets.
The example will print out statistics each second. The stats shows
received/send packets and packets dropped or failed to copy.

15.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ioat sub-directory.

15.3. Running the Application

In order to run the hardware copy application, the copying device
needs to be bound to user-space IO driver.

Refer to the “IOAT Rawdev Driver” chapter in the “Rawdev Drivers” document
for information on using the driver.

The application requires a number of command line options:

./build/ioatfwd [EAL options] -- [-p MASK] [-q NQ] [-s RS] [-c <sw|hw>]
 [--[no-]mac-updating]

where,

	p MASK: A hexadecimal bitmask of the ports to configure (default is all)

	q NQ: Number of Rx queues used per port equivalent to CBDMA channels
per port (default is 1)

	c CT: Performed packet copy type: software (sw) or hardware using
DMA (hw) (default is hw)

	s RS: Size of IOAT rawdev ring for hardware copy mode or rte_ring for
software copy mode (default is 2048)

	–[no-]mac-updating: Whether MAC address of packets should be changed
or not (default is mac-updating)

The application can be launched in various configurations depending on
provided parameters. The app can use up to 2 lcores: one of them receives
incoming traffic and makes a copy of each packet. The second lcore then
updates MAC address and sends the copy. If one lcore per port is used,
both operations are done sequentially. For each configuration an additional
lcore is needed since the master lcore does not handle traffic but is
responsible for configuration, statistics printing and safe shutdown of
all ports and devices.

The application can use a maximum of 8 ports.

To run the application in a Linux environment with 3 lcores (the master lcore,
plus two forwarding cores), a single port (port 0), software copying and MAC
updating issue the command:

$./build/ioatfwd -l 0-2 -n 2 -- -p 0x1 --mac-updating -c sw

To run the application in a Linux environment with 2 lcores (the master lcore,
plus one forwarding core), 2 ports (ports 0 and 1), hardware copying and no MAC
updating issue the command:

$./build/ioatfwd -l 0-1 -n 1 -- -p 0x3 --no-mac-updating -c hw

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL) options.

15.4. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with
rte_ and are explained in detail in the DPDK API Documentation.

15.4.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL).
The argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

nb_mbufs = RTE_MAX(rte_eth_dev_count_avail() * (nb_rxd + nb_txd
 + MAX_PKT_BURST + rte_lcore_count() * MEMPOOL_CACHE_SIZE),
 MIN_POOL_SIZE);

/* Create the mbuf pool */
ioat_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs,
 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
 rte_socket_id());
if (ioat_pktmbuf_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes the ports:

/* Initialise each port */
RTE_ETH_FOREACH_DEV(portid) {
 port_init(portid, ioat_pktmbuf_pool);
}

Each port is configured using port_init() function. The Ethernet
ports are configured with local settings using the rte_eth_dev_configure()
function and the port_conf struct. The RSS is enabled so that
multiple Rx queues could be used for packet receiving and copying by
multiple CBDMA channels per port:

/* configuring port to use RSS for multiple RX queues */
static const struct rte_eth_conf port_conf = {
 .rxmode = {
 .mq_mode = ETH_MQ_RX_RSS,
 .max_rx_pkt_len = RTE_ETHER_MAX_LEN
 },
 .rx_adv_conf = {
 .rss_conf = {
 .rss_key = NULL,
 .rss_hf = ETH_RSS_PROTO_MASK,
 }
 }
};

For this example the ports are set up with the number of Rx queues provided
with -q option and 1 Tx queue using the rte_eth_rx_queue_setup()
and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

ret = rte_eth_dev_start(portid);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n",
 ret, portid);

Finally the Rx port is set in promiscuous mode:

rte_eth_promiscuous_enable(portid);

After that each port application assigns resources needed.

check_link_status(ioat_enabled_port_mask);

if (!cfg.nb_ports) {
 rte_exit(EXIT_FAILURE,
 "All available ports are disabled. Please set portmask.\n");
}

/* Check if there is enough lcores for all ports. */
cfg.nb_lcores = rte_lcore_count() - 1;
if (cfg.nb_lcores < 1)
 rte_exit(EXIT_FAILURE,
 "There should be at least one slave lcore.\n");

ret = 0;

if (copy_mode == COPY_MODE_IOAT_NUM) {
 assign_rawdevs();
} else /* copy_mode == COPY_MODE_SW_NUM */ {
 assign_rings();
}

Depending on mode set (whether copy should be done by software or by hardware)
special structures are assigned to each port. If software copy was chosen,
application have to assign ring structures for packet exchanging between lcores
assigned to ports.

static void
assign_rings(void)
{
 uint32_t i;

 for (i = 0; i < cfg.nb_ports; i++) {
 char ring_name[20];

 snprintf(ring_name, 20, "rx_to_tx_ring_%u", i);
 /* Create ring for inter core communication */
 cfg.ports[i].rx_to_tx_ring = rte_ring_create(
 ring_name, ring_size,
 rte_socket_id(), RING_F_SP_ENQ);

 if (cfg.ports[i].rx_to_tx_ring == NULL)
 rte_exit(EXIT_FAILURE, "%s\n",
 rte_strerror(rte_errno));
 }
}

When using hardware copy each Rx queue of the port is assigned an
IOAT device (assign_rawdevs()) using IOAT Rawdev Driver API
functions:

static void
assign_rawdevs(void)
{
 uint16_t nb_rawdev = 0, rdev_id = 0;
 uint32_t i, j;

 for (i = 0; i < cfg.nb_ports; i++) {
 for (j = 0; j < cfg.ports[i].nb_queues; j++) {
 struct rte_rawdev_info rdev_info = { 0 };

 do {
 if (rdev_id == rte_rawdev_count())
 goto end;
 rte_rawdev_info_get(rdev_id++, &rdev_info);
 } while (strcmp(rdev_info.driver_name,
 IOAT_PMD_RAWDEV_NAME_STR) != 0);

 cfg.ports[i].ioat_ids[j] = rdev_id - 1;
 configure_rawdev_queue(cfg.ports[i].ioat_ids[j]);
 ++nb_rawdev;
 }
 }
end:
 if (nb_rawdev < cfg.nb_ports * cfg.ports[0].nb_queues)
 rte_exit(EXIT_FAILURE,
 "Not enough IOAT rawdevs (%u) for all queues (%u).\n",
 nb_rawdev, cfg.nb_ports * cfg.ports[0].nb_queues);
 RTE_LOG(INFO, IOAT, "Number of used rawdevs: %u.\n", nb_rawdev);
}

The initialization of hardware device is done by rte_rawdev_configure()
function using rte_rawdev_info struct. After configuration the device is
started using rte_rawdev_start() function. Each of the above operations
is done in configure_rawdev_queue().

static void
configure_rawdev_queue(uint32_t dev_id)
{
 struct rte_ioat_rawdev_config dev_config = { .ring_size = ring_size };
 struct rte_rawdev_info info = { .dev_private = &dev_config };

 if (rte_rawdev_configure(dev_id, &info) != 0) {
 rte_exit(EXIT_FAILURE,
 "Error with rte_rawdev_configure()\n");
 }
 if (rte_rawdev_start(dev_id) != 0) {
 rte_exit(EXIT_FAILURE,
 "Error with rte_rawdev_start()\n");
 }
}

If initialization is successful, memory for hardware device
statistics is allocated.

Finally main() function starts all packet handling lcores and starts
printing stats in a loop on the master lcore. The application can be
interrupted and closed using Ctrl-C. The master lcore waits for
all slave processes to finish, deallocates resources and exits.

The processing lcores launching function are described below.

15.4.2. The Lcores Launching Functions

As described above, main() function invokes start_forwarding_cores()
function in order to start processing for each lcore:

static void start_forwarding_cores(void)
{
 uint32_t lcore_id = rte_lcore_id();

 RTE_LOG(INFO, IOAT, "Entering %s on lcore %u\n",
 __func__, rte_lcore_id());

 if (cfg.nb_lcores == 1) {
 lcore_id = rte_get_next_lcore(lcore_id, true, true);
 rte_eal_remote_launch((lcore_function_t *)rxtx_main_loop,
 NULL, lcore_id);
 } else if (cfg.nb_lcores > 1) {
 lcore_id = rte_get_next_lcore(lcore_id, true, true);
 rte_eal_remote_launch((lcore_function_t *)rx_main_loop,
 NULL, lcore_id);

 lcore_id = rte_get_next_lcore(lcore_id, true, true);
 rte_eal_remote_launch((lcore_function_t *)tx_main_loop, NULL,
 lcore_id);
 }
}

The function launches Rx/Tx processing functions on configured lcores
using rte_eal_remote_launch(). The configured ports, their number
and number of assigned lcores are stored in user-defined
rxtx_transmission_config struct:

struct rxtx_transmission_config {
 struct rxtx_port_config ports[RTE_MAX_ETHPORTS];
 uint16_t nb_ports;
 uint16_t nb_lcores;
};

The structure is initialized in ‘main()’ function with the values
corresponding to ports and lcores configuration provided by the user.

15.4.3. The Lcores Processing Functions

For receiving packets on each port, the ioat_rx_port() function is used.
The function receives packets on each configured Rx queue. Depending on the
mode the user chose, it will enqueue packets to IOAT rawdev channels and
then invoke copy process (hardware copy), or perform software copy of each
packet using pktmbuf_sw_copy() function and enqueue them to an rte_ring:

/* Receive packets on one port and enqueue to IOAT rawdev or rte_ring. */
static void
ioat_rx_port(struct rxtx_port_config *rx_config)
{
 uint32_t nb_rx, nb_enq, i, j;
 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
 for (i = 0; i < rx_config->nb_queues; i++) {

 nb_rx = rte_eth_rx_burst(rx_config->rxtx_port, i,
 pkts_burst, MAX_PKT_BURST);

 if (nb_rx == 0)
 continue;

 port_statistics.rx[rx_config->rxtx_port] += nb_rx;

 if (copy_mode == COPY_MODE_IOAT_NUM) {
 /* Perform packet hardware copy */
 nb_enq = ioat_enqueue_packets(pkts_burst,
 nb_rx, rx_config->ioat_ids[i]);
 if (nb_enq > 0)
 rte_ioat_do_copies(rx_config->ioat_ids[i]);
 } else {
 /* Perform packet software copy, free source packets */
 int ret;
 struct rte_mbuf *pkts_burst_copy[MAX_PKT_BURST];

 ret = rte_mempool_get_bulk(ioat_pktmbuf_pool,
 (void *)pkts_burst_copy, nb_rx);

 if (unlikely(ret < 0))
 rte_exit(EXIT_FAILURE,
 "Unable to allocate memory.\n");

 for (j = 0; j < nb_rx; j++)
 pktmbuf_sw_copy(pkts_burst[j],
 pkts_burst_copy[j]);

 rte_mempool_put_bulk(ioat_pktmbuf_pool,
 (void *)pkts_burst, nb_rx);

 nb_enq = rte_ring_enqueue_burst(
 rx_config->rx_to_tx_ring,
 (void *)pkts_burst_copy, nb_rx, NULL);

 /* Free any not enqueued packets. */
 rte_mempool_put_bulk(ioat_pktmbuf_pool,
 (void *)&pkts_burst_copy[nb_enq],
 nb_rx - nb_enq);
 }

 port_statistics.copy_dropped[rx_config->rxtx_port] +=
 (nb_rx - nb_enq);
 }
}

The packets are received in burst mode using rte_eth_rx_burst()
function. When using hardware copy mode the packets are enqueued in
copying device’s buffer using ioat_enqueue_packets() which calls
rte_ioat_enqueue_copy(). When all received packets are in the
buffer the copy operations are started by calling rte_ioat_do_copies().
Function rte_ioat_enqueue_copy() operates on physical address of
the packet. Structure rte_mbuf contains only physical address to
start of the data buffer (buf_iova). Thus the address is adjusted
by addr_offset value in order to get the address of rearm_data
member of rte_mbuf. That way both the packet data and metadata can
be copied in a single operation. This method can be used because the mbufs
are direct mbufs allocated by the apps. If another app uses external buffers,
or indirect mbufs, then multiple copy operations must be used.

static uint32_t
ioat_enqueue_packets(struct rte_mbuf **pkts,
 uint32_t nb_rx, uint16_t dev_id)
{
 int ret;
 uint32_t i;
 struct rte_mbuf *pkts_copy[MAX_PKT_BURST];

 const uint64_t addr_offset = RTE_PTR_DIFF(pkts[0]->buf_addr,
 &pkts[0]->rearm_data);

 ret = rte_mempool_get_bulk(ioat_pktmbuf_pool,
 (void *)pkts_copy, nb_rx);

 if (unlikely(ret < 0))
 rte_exit(EXIT_FAILURE, "Unable to allocate memory.\n");

 for (i = 0; i < nb_rx; i++) {
 /* Perform data copy */
 ret = rte_ioat_enqueue_copy(dev_id,
 pkts[i]->buf_iova
 - addr_offset,
 pkts_copy[i]->buf_iova
 - addr_offset,
 rte_pktmbuf_data_len(pkts[i])
 + addr_offset,
 (uintptr_t)pkts[i],
 (uintptr_t)pkts_copy[i],
 0 /* nofence */);

 if (ret != 1)
 break;
 }

 ret = i;
 /* Free any not enqueued packets. */
 rte_mempool_put_bulk(ioat_pktmbuf_pool, (void *)&pkts[i], nb_rx - i);
 rte_mempool_put_bulk(ioat_pktmbuf_pool, (void *)&pkts_copy[i],
 nb_rx - i);

 return ret;
}

All completed copies are processed by ioat_tx_port() function. When using
hardware copy mode the function invokes rte_ioat_completed_copies()
on each assigned IOAT channel to gather copied packets. If software copy
mode is used the function dequeues copied packets from the rte_ring. Then each
packet MAC address is changed if it was enabled. After that copies are sent
in burst mode using `` rte_eth_tx_burst()``.

/* Transmit packets from IOAT rawdev/rte_ring for one port. */
static void
ioat_tx_port(struct rxtx_port_config *tx_config)
{
 uint32_t i, j, nb_dq = 0;
 struct rte_mbuf *mbufs_src[MAX_PKT_BURST];
 struct rte_mbuf *mbufs_dst[MAX_PKT_BURST];

 for (i = 0; i < tx_config->nb_queues; i++) {
 if (copy_mode == COPY_MODE_IOAT_NUM) {
 /* Deque the mbufs from IOAT device. */
 nb_dq = rte_ioat_completed_copies(
 tx_config->ioat_ids[i], MAX_PKT_BURST,
 (void *)mbufs_src, (void *)mbufs_dst);
 } else {
 /* Deque the mbufs from rx_to_tx_ring. */
 nb_dq = rte_ring_dequeue_burst(
 tx_config->rx_to_tx_ring, (void *)mbufs_dst,
 MAX_PKT_BURST, NULL);
 }

 if (nb_dq == 0)
 return;

 if (copy_mode == COPY_MODE_IOAT_NUM)
 rte_mempool_put_bulk(ioat_pktmbuf_pool,
 (void *)mbufs_src, nb_dq);

 /* Update macs if enabled */
 if (mac_updating) {
 for (j = 0; j < nb_dq; j++)
 update_mac_addrs(mbufs_dst[j],
 tx_config->rxtx_port);
 }

 const uint16_t nb_tx = rte_eth_tx_burst(
 tx_config->rxtx_port, 0,
 (void *)mbufs_dst, nb_dq);

 port_statistics.tx[tx_config->rxtx_port] += nb_tx;

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_dq))
 rte_mempool_put_bulk(ioat_pktmbuf_pool,
 (void *)&mbufs_dst[nb_tx],
 nb_dq - nb_tx);
 }
}

15.4.4. The Packet Copying Functions

In order to perform packet copy there is a user-defined function
pktmbuf_sw_copy() used. It copies a whole packet by copying
metadata from source packet to new mbuf, and then copying a data
chunk of source packet. Both memory copies are done using
rte_memcpy():

static inline void
pktmbuf_sw_copy(struct rte_mbuf *src, struct rte_mbuf *dst)
{
 /* Copy packet metadata */
 rte_memcpy(&dst->rearm_data,
 &src->rearm_data,
 offsetof(struct rte_mbuf, cacheline1)
 - offsetof(struct rte_mbuf, rearm_data));

 /* Copy packet data */
 rte_memcpy(rte_pktmbuf_mtod(dst, char *),
 rte_pktmbuf_mtod(src, char *), src->data_len);
}

The metadata in this example is copied from rearm_data member of
rte_mbuf struct up to cacheline1.

In order to understand why software packet copying is done as shown
above please refer to the “Mbuf Library” section of the
DPDK Programmer’s Guide.

16. L2 Forwarding with Crypto Sample Application

The L2 Forwarding with Crypto (l2fwd-crypto) sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK), in conjunction with the Cryptodev library.

16.1. Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash)
specified by the user from command line (or using the default values),
with a crypto device capable of doing that operation,
for each packet that is received on a RX_PORT and performs L2 forwarding.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other.
Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

16.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-crypt sub-directory.

16.3. Running the Application

The application requires a number of command line options:

./build/l2fwd-crypto [EAL options] -- [-p PORTMASK] [-q NQ] [-s] [-T PERIOD] /
[--cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY/AEAD] /
[--cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[--cipher_key_random_size SIZE] [--cipher_iv IV] [--cipher_iv_random_size SIZE] /
[--auth_algo ALGO] [--auth_op GENERATE/VERIFY] [--auth_key KEY] /
[--auth_key_random_size SIZE] [--auth_iv IV] [--auth_iv_random_size SIZE] /
[--aead_algo ALGO] [--aead_op ENCRYPT/DECRYPT] [--aead_key KEY] /
[--aead_key_random_size SIZE] [--aead_iv] [--aead_iv_random_size SIZE] /
[--aad AAD] [--aad_random_size SIZE] /
[--digest size SIZE] [--sessionless] [--cryptodev_mask MASK] /
[--mac-updating] [--no-mac-updating]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

	q NQ: A number of queues (=ports) per lcore (default is 1)

	s: manage all ports from single core

	T PERIOD: statistics will be refreshed each PERIOD seconds

(0 to disable, 10 default, 86400 maximum)

	cdev_type: select preferred crypto device type: HW, SW or anything (ANY)

(default is ANY)

	chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),

Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash (HASH_ONLY)

or AEAD (AEAD)

(default is Cipher->Hash)

	cipher_algo: select the ciphering algorithm (default is aes-cbc)

	cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

	cipher_key: set the ciphering key to be used. Bytes has to be separated with “:”

	cipher_key_random_size: set the size of the ciphering key,

which will be generated randomly.

Note that if –cipher_key is used, this will be ignored.

	cipher_iv: set the cipher IV to be used. Bytes has to be separated with “:”

	cipher_iv_random_size: set the size of the cipher IV, which will be generated randomly.

Note that if –cipher_iv is used, this will be ignored.

	auth_algo: select the authentication algorithm (default is sha1-hmac)

	auth_op: select the authentication operation to perform: GENERATE or VERIFY

(default is GENERATE)

	auth_key: set the authentication key to be used. Bytes has to be separated with “:”

	auth_key_random_size: set the size of the authentication key,

which will be generated randomly.

Note that if –auth_key is used, this will be ignored.

	auth_iv: set the auth IV to be used. Bytes has to be separated with “:”

	auth_iv_random_size: set the size of the auth IV, which will be generated randomly.

Note that if –auth_iv is used, this will be ignored.

	aead_algo: select the AEAD algorithm (default is aes-gcm)

	aead_op: select the AEAD operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

	aead_key: set the AEAD key to be used. Bytes has to be separated with “:”

	aead_key_random_size: set the size of the AEAD key,

which will be generated randomly.

Note that if –aead_key is used, this will be ignored.

	aead_iv: set the AEAD IV to be used. Bytes has to be separated with “:”

	aead_iv_random_size: set the size of the AEAD IV, which will be generated randomly.

Note that if –aead_iv is used, this will be ignored.

	aad: set the AAD to be used. Bytes has to be separated with “:”

	aad_random_size: set the size of the AAD, which will be generated randomly.

Note that if –aad is used, this will be ignored.

	digest_size: set the size of the digest to be generated/verified.

	sessionless: no crypto session will be created.

	cryptodev_mask: A hexadecimal bitmask of the cryptodevs to be used by the
application.

(default is all cryptodevs).

	[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).

The application requires that crypto devices capable of performing
the specified crypto operation are available on application initialization.
This means that HW crypto device/s must be bound to a DPDK driver or
a SW crypto device/s (virtual crypto PMD) must be created (using –vdev).

To run the application in linux environment with 2 lcores, 2 ports and 2 crypto devices, issue the command:

$./build/l2fwd-crypto -l 0-1 -n 4 --vdev "crypto_aesni_mb0" \
--vdev "crypto_aesni_mb1" -- -p 0x3 --chain CIPHER_HASH \
--cipher_op ENCRYPT --cipher_algo aes-cbc \
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
--auth_op GENERATE --auth_algo aes-xcbc-mac \
--auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1e:1f

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

Note

	The l2fwd-crypto sample application requires IPv4 packets for crypto operation.

	If multiple Ethernet ports is passed, then equal number of crypto devices are to be passed.

	All crypto devices shall use the same session.

16.4. Explanation

The L2 forward with Crypto application demonstrates the performance of a crypto operation
on a packet received on a RX PORT before forwarding it to a TX PORT.

The following figure illustrates a sample flow of a packet in the application,
from reception until transmission.

[image: ../_images/l2_fwd_encrypt_flow.svg]
Fig. 16.1 Encryption flow Through the L2 Forwarding with Crypto Application

The following sections provide some explanation of the application.

16.4.1. Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s
(ciphering and/or authentication).
The crypto operation to be performed on the packet is parsed from the command line
(go to “Running the Application” section for all the options).

If no parameter is passed, the default crypto operation is:

	Encryption with AES-CBC with 128 bit key.

	Authentication with SHA1-HMAC (generation).

	Keys, IV and AAD are generated randomly.

There are two methods to pass keys, IV and ADD from the command line:

	Passing the full key, separated bytes by “:”:

--cipher_key 00:11:22:33:44

	Passing the size, so key is generated randomly:

--cipher_key_random_size 16

	Note:
	If full key is passed (first method) and the size is passed as well (second method),
the latter will be ignored.

Size of these keys are checked (regardless the method), before starting the app,
to make sure that it is supported by the crypto devices.

16.4.2. Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized.
The crypto devices must be either bound to a DPDK driver (if they are physical devices)
or created using the EAL option –vdev (if they are virtual devices),
when running the application.

The initialize_cryptodevs() function performs the device initialization.
It iterates through the list of the available crypto devices and
check which ones are capable of performing the operation.
Each device has a set of capabilities associated with it,
which are stored in the device info structure, so the function checks if the operation
is within the structure of each device.

The following code checks if the device supports the specified cipher algorithm
(similar for the authentication algorithm):

/* Check if device supports cipher algo */
i = 0;
opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
 cap_cipher_algo = cap->sym.cipher.algo;
 if (cap->sym.xform_type ==
 RTE_CRYPTO_SYM_XFORM_CIPHER) {
 if (cap_cipher_algo == opt_cipher_algo) {
 if (check_type(options, &dev_info) == 0)
 break;
 }
 }
 cap = &dev_info.capabilities[++i];
}

If a capable crypto device is found, key sizes are checked to see if they are supported
(cipher key and IV for the ciphering):

/*
 * Check if length of provided cipher key is supported
 * by the algorithm chosen.
 */
if (options->ckey_param) {
 if (check_supported_size(
 options->cipher_xform.cipher.key.length,
 cap->sym.cipher.key_size.min,
 cap->sym.cipher.key_size.max,
 cap->sym.cipher.key_size.increment)
 != 0) {
 printf("Unsupported cipher key length\n");
 return -1;
 }
/*
 * Check if length of the cipher key to be randomly generated
 * is supported by the algorithm chosen.
 */
} else if (options->ckey_random_size != -1) {
 if (check_supported_size(options->ckey_random_size,
 cap->sym.cipher.key_size.min,
 cap->sym.cipher.key_size.max,
 cap->sym.cipher.key_size.increment)
 != 0) {
 printf("Unsupported cipher key length\n");
 return -1;
 }
 options->cipher_xform.cipher.key.length =
 options->ckey_random_size;
/* No size provided, use minimum size. */
} else
 options->cipher_xform.cipher.key.length =
 cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the
crypto device list.

	Note:
	The number of crypto devices that supports the specified crypto operation
must be at least the number of ports to be used.

16.4.3. Session creation

The crypto operation has a crypto session associated to it, which contains
information such as the transform chain to perform (e.g. ciphering then hashing),
pointers to the keys, lengths… etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session *
initialize_crypto_session(struct l2fwd_crypto_options *options,
 uint8_t cdev_id)
{
 struct rte_crypto_sym_xform *first_xform;
 struct rte_cryptodev_sym_session *session;
 uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
 struct rte_mempool *sess_mp = session_pool_socket[socket_id];

 if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
 first_xform = &options->aead_xform;
 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
 first_xform = &options->cipher_xform;
 first_xform->next = &options->auth_xform;
 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
 first_xform = &options->auth_xform;
 first_xform->next = &options->cipher_xform;
 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
 first_xform = &options->cipher_xform;
 } else {
 first_xform = &options->auth_xform;
 }

 session = rte_cryptodev_sym_session_create(sess_mp);

 if (session == NULL)
 return NULL;

 if (rte_cryptodev_sym_session_init(cdev_id, session,
 first_xform, sess_mp) < 0)
 return NULL;

 return session;
}

...

port_cparams[i].session = initialize_crypto_session(options,
 port_cparams[i].dev_id);

16.4.4. Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated
and filled:

if (nb_rx) {
/*
 * If we can't allocate a crypto_ops, then drop
 * the rest of the burst and dequeue and
 * process the packets to free offload structs
 */
if (rte_crypto_op_bulk_alloc(
 l2fwd_crypto_op_pool,
 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 ops_burst, nb_rx) !=
 nb_rx) {
 for (j = 0; j < nb_rx; j++)
 rte_pktmbuf_free(pkts_burst[i]);

 nb_rx = 0;
}

After filling the crypto operation (including session attachment),
the mbuf which will be transformed is attached to it:

op->sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten
after the operation is done (in-place).

16.4.5. Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices.
Before doing so, for performance reasons, the operation stays in a buffer.
When the buffer has enough operations (MAX_PKT_BURST), they are enqueued in the device,
which will perform the operation at that moment:

static int
l2fwd_crypto_enqueue(struct rte_crypto_op *op,
 struct l2fwd_crypto_params *cparams)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();

 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->op_buf[cparams->dev_id].len;
 qconf->op_buf[cparams->dev_id].buffer[len] = op;
 len++;

 /* enough ops to be sent */
 if (len == MAX_PKT_BURST) {
 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
 len = 0;
 }

 qconf->op_buf[cparams->dev_id].len = len;
 return 0;
}

...

static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
 struct l2fwd_crypto_params *cparams)
{
 struct rte_crypto_op **op_buffer;
 unsigned ret;

 op_buffer = (struct rte_crypto_op **)
 qconf->op_buf[cparams->dev_id].buffer;

 ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
 cparams->qp_id, op_buffer, (uint16_t) n);

 crypto_statistics[cparams->dev_id].enqueued += ret;
 if (unlikely(ret < n)) {
 crypto_statistics[cparams->dev_id].errors += (n - ret);
 do {
 rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
 rte_crypto_op_free(op_buffer[ret]);
 } while (++ret < n);
 }

 return 0;
}

After this, the operations are dequeued from the device, and the transformed mbuf
is extracted from the operation. Then, the operation is freed and the mbuf is
forwarded as it is done in the L2 forwarding application.

/* Dequeue packets from Crypto device */
do {
 nb_rx = rte_cryptodev_dequeue_burst(
 cparams->dev_id, cparams->qp_id,
 ops_burst, MAX_PKT_BURST);

 crypto_statistics[cparams->dev_id].dequeued +=
 nb_rx;

 /* Forward crypto'd packets */
 for (j = 0; j < nb_rx; j++) {
 m = ops_burst[j]->sym->m_src;

 rte_crypto_op_free(ops_burst[j]);
 l2fwd_simple_forward(m, portid);
 }
} while (nb_rx == MAX_PKT_BURST);

17. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.

The L2 Forwarding sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) which
also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note

This application is a variation of L2 Forwarding sample application. It demonstrate possible
scheme of job stats library usage therefore some parts of this document is identical with original
L2 forwarding application.

17.1. Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
Also, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX port MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 17.1.

The application can also be used in a virtualized environment as shown in Fig. 17.2.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.

[image: ../_images/l2_fwd_benchmark_setup.svg]
Fig. 17.1 Performance Benchmark Setup (Basic Environment)

[image: ../_images/l2_fwd_virtenv_benchmark_setup.png]

Fig. 17.2 Performance Benchmark Setup (Virtualized Environment)

17.1.1. Virtual Function Setup Instructions

This application can use the virtual function available in the system and
therefore can be used in a virtual machine without passing through
the whole Network Device into a guest machine in a virtualized scenario.
The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC,
with two physical ports in the PCI configuration space.
It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
and Virtual Function 1 and 3 would belong to Physical Function 1,
in this case enabling a total of four Virtual Functions.

17.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-jobstats sub-directory.

17.3. Running the Application

The application requires a number of command line options:

./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l]

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	l: Use locale thousands separator when formatting big numbers.

To run the application in linux environment with 4 lcores, 16 ports, 8 RX queues per lcore and
thousands separator printing, issue the command:

$./build/l2fwd-jobstats -l 0-3 -n 4 -- -q 8 -p ffff -l

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

17.4. Explanation

The following sections provide some explanation of the code.

17.4.1. Command Line Arguments

The L2 Forwarding sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments
(see Running the Application).
The preferred way to parse parameters is to use the getopt() function,
since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function.
The method of argument parsing is not described here.
Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments.
This is done at the beginning of the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

17.4.2. Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created.
The mbuf pool contains a set of mbuf objects that will be used by the driver
and the application to store network packet data:

/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
 rte_socket_id());

if (l2fwd_pktmbuf_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver.
The number of allocated pkt mbufs is NB_MBUF, with a data room size of
RTE_MBUF_DEFAULT_BUF_SIZE each.
A per-lcore cache of MEMPOOL_CACHE_SIZE mbufs is kept.
The memory is allocated in rte_socket_id() socket,
but it is possible to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
An advanced application may want to use the mempool API to create the
mbuf pool with more control.

17.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
in the DPDK Programmer’s Guide and the DPDK API Reference.

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
 l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */
RTE_ETH_FOREACH_DEV(portid) {
 /* skip ports that are not enabled */
 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 if (nb_ports_in_mask % 2) {
 l2fwd_dst_ports[portid] = last_port;
 l2fwd_dst_ports[last_port] = portid;
 }
 else
 last_port = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: "
 "err=%d, port=%u\n",
 ret, portid);

17.4.4. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
 rte_eth_dev_socket_id(portid),
 NULL,
 l2fwd_pktmbuf_pool);

if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",
 ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
 truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

 struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
 struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

 struct rte_timer flush_timer;
 struct rte_jobstats flush_job;
 struct rte_jobstats idle_job;
 struct rte_jobstats_context jobs_context;

 rte_atomic16_t stats_read_pending;
 rte_spinlock_t lock;
} __rte_cache_aligned;

Values of struct lcore_queue_conf:

	n_rx_port and rx_port_list[] are used in the main packet processing loop
(see Section Receive, Process and Transmit Packets later in this chapter).

	rx_timers and flush_timer are used to ensure forced TX on low packet rate.

	flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd jobs.

	stats_read_pending and lock are used during job stats read phase.

17.4.5. TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
 rte_eth_dev_socket_id(portid),
 NULL);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",
 ret, (unsigned) portid);

17.4.6. Jobs statistics initialization

There are several statistics objects available:

	Flush job statistics

rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc,
 drain_tsc, 0);

rte_timer_init(&qconf->flush_timer);
ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL,
 lcore_id, &l2fwd_flush_job, NULL);

if (ret < 0) {
 rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",
 lcore_id, rte_strerror(-ret));
}

	Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);

rte_timer_init(&qconf->rx_timers[i]);
ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id,
 l2fwd_fwd_job, (void *)(uintptr_t)i);

if (ret < 0) {
 rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",
 lcore_id, qconf->rx_port_list[i], rte_strerror(-ret));
}

Following parameters are passed to rte_jobstats_init():

	0 as minimal poll period

	drain_tsc as maximum poll period

	MAX_PKT_BURST as desired target value (RX burst size)

17.4.7. Main loop

The forwarding path is reworked comparing to original L2 Forwarding application.
In the l2fwd_main_loop() function three loops are placed.

for (;;) {
 rte_spinlock_lock(&qconf->lock);

 do {
 rte_jobstats_context_start(&qconf->jobs_context);

 /* Do the Idle job:
 * - Read stats_read_pending flag
 * - check if some real job need to be executed
 */
 rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);

 do {
 uint8_t i;
 uint64_t now = rte_get_timer_cycles();

 need_manage = qconf->flush_timer.expire < now;
 /* Check if we was esked to give a stats. */
 stats_read_pending =
 rte_atomic16_read(&qconf->stats_read_pending);
 need_manage |= stats_read_pending;

 for (i = 0; i < qconf->n_rx_port && !need_manage; i++)
 need_manage = qconf->rx_timers[i].expire < now;

 } while (!need_manage);
 rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target);

 rte_timer_manage();
 rte_jobstats_context_finish(&qconf->jobs_context);
 } while (likely(stats_read_pending == 0));

 rte_spinlock_unlock(&qconf->lock);
 rte_pause();
}

First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. When any job is ready, the use rte_timer_manage() is used to call the job handler.
In this place functions l2fwd_fwd_job() and l2fwd_flush_job() are called when needed.
Then rte_jobstats_context_finish() is called to mark loop end - no other jobs are ready to execute. By this time stats are ready to be read
and if stats_read_pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready or stats job read is pending
for this lcore. Statistics from this part of code is considered as the headroom available for additional processing.

17.4.8. Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of particular port and forward it.
This is done using the following code:

total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
 MAX_PKT_BURST);

for (j = 0; j < total_nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 l2fwd_simple_forward(m, portid);
}

Packets are read in a burst of size MAX_PKT_BURST.
Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

After first read second try is issued.

if (total_nb_rx == MAX_PKT_BURST) {
 const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
 MAX_PKT_BURST);

 total_nb_rx += nb_rx;
 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 l2fwd_simple_forward(m, portid);
 }
}

This second read is important to give job stats library a feedback how many packets was processed.

/* Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {
 rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL,
 lcore_id, l2fwd_fwd_job, arg);
}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each l2fwd_fwd_job() call.
If total_nb_rx is smaller than target value job->period will be increased. If it is greater the period will be decreased.

Note

In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
a destination port is assigned that is either the next or previous enabled port from the portmask.
Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct rte_ether_hdr *eth;
 void *tmp;
 unsigned dst_port;

 dst_port = l2fwd_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

 /* src addr */

 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

 l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
to send all the received packets on the same TX port,
using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }

 qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job()
is called periodically to for each lcore draining TX queue of each port.
This technique introduces some latency when there are not many packets to send,
however it improves performance:

static void
l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg)
{
 uint64_t now;
 unsigned lcore_id;
 struct lcore_queue_conf *qconf;
 struct mbuf_table *m_table;
 uint16_t portid;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];

 rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job);

 now = rte_get_timer_cycles();
 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 m_table = &qconf->tx_mbufs[portid];
 if (m_table->len == 0 || m_table->next_flush_time <= now)
 continue;

 l2fwd_send_burst(qconf, portid);
 }

 /* Pass target to indicate that this job is happy of time interval
 * in which it was called. */
 rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);
}

18. L2 Forwarding Sample Application (in Real and Virtualized Environments)

The L2 Forwarding sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) which
also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note

Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
however, in later DPDK versions these sample applications have been merged.

18.1. Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received on an RX_PORT.
The destination port is the adjacent port from the enabled portmask, that is,
if the first four ports are enabled (portmask 0xf),
ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 18.1,
or in a virtualized environment as shown in Fig. 18.2.

[image: ../_images/l2_fwd_benchmark_setup.svg]
Fig. 18.1 Performance Benchmark Setup (Basic Environment)

[image: ../_images/l2_fwd_virtenv_benchmark_setup.png]

Fig. 18.2 Performance Benchmark Setup (Virtualized Environment)

This application may be used for basic VM to VM communication as shown in Fig. 18.3,
when MAC addresses updating is disabled.

[image: ../_images/l2_fwd_vm2vm.svg]
Fig. 18.3 Virtual Machine to Virtual Machine communication.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.

18.1.1. Virtual Function Setup Instructions

This application can use the virtual function available in the system and
therefore can be used in a virtual machine without passing through
the whole Network Device into a guest machine in a virtualized scenario.
The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC,
with two physical ports in the PCI configuration space.
It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
and Virtual Function 1 and 3 would belong to Physical Function 1,
in this case enabling a total of four Virtual Functions.

18.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd sub-directory.

18.3. Running the Application

The application requires a number of command line options:

./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	–[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).

To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
updating enabled, issue the command:

$./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

18.4. Explanation

The following sections provide some explanation of the code.

18.4.1. Command Line Arguments

The L2 Forwarding sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments.
The preferred way to parse parameters is to use the getopt() function,
since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function.
The method of argument parsing is not described here.
Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments.
This is done at the beginning of the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

18.4.2. Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created.
The mbuf pool contains a set of mbuf objects that will be used by the driver
and the application to store network packet data:

/* create the mbuf pool */

l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
 rte_socket_id());

if (l2fwd_pktmbuf_pool == NULL)
 rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver.
The number of allocated pkt mbufs is NB_MBUF, with a data room size of
RTE_MBUF_DEFAULT_BUF_SIZE each.
A per-lcore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0,
but it is possible to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
An advanced application may want to use the mempool API to create the
mbuf pool with more control.

18.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
in the DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
 l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */

RTE_ETH_FOREACH_DEV(portid) {
 /* skip ports that are not enabled */

 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 if (nb_ports_in_mask % 2) {
 l2fwd_dst_ports[portid] = last_port;
 l2fwd_dst_ports[last_port] = portid;
 }
 else
 last_port = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: "
 "err=%d, port=%u\n",
 ret, portid);

18.4.4. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
 "err=%d, port=%u\n",
 ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing loop
(see Receive, Process and Transmit Packets).

18.4.5. TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
 .tx_thresh = {
 .pthresh = TX_PTHRESH,
 .hthresh = TX_HTHRESH,
 .wthresh = TX_WTHRESH,
 },
 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};

18.4.6. Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
 * Read packet from RX queues
 */

for (i = 0; i < qconf->n_rx_port; i++) {
 portid = qconf->rx_port_list[i];
 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
 }
}

Packets are read in a burst of size MAX_PKT_BURST.
The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
addresses updating is enabled.

Note

In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
a destination port is assigned that is either the next or previous enabled port from the portmask.
Naturally, the number of ports in the portmask must be even, otherwise, the application exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct rte_ether_hdr *eth;
 void *tmp;
 unsigned dst_port;

 dst_port = l2fwd_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

 /* src addr */

 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

 l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
to send all the received packets on the same TX port,
using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that, so the same approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }

 qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
This technique introduces some latency when there are not many packets to send,
however it improves performance:

cur_tsc = rte_rdtsc();

/*
 * TX burst queue drain
 */

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 if (qconf->tx_mbufs[portid].len == 0)
 continue;

 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);

 qconf->tx_mbufs[portid].len = 0;
 }

 /* if timer is enabled */

 if (timer_period > 0) {
 /* advance the timer */

 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */

 if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
 /* do this only on master core */

 if (lcore_id == rte_get_master_lcore()) {
 print_stats();

 /* reset the timer */
 timer_tsc = 0;
 }
 }
 }

 prev_tsc = cur_tsc;
}

19. L2 Forwarding Eventdev Sample Application

The L2 Forwarding eventdev sample application is a simple example of packet
processing using the Data Plane Development Kit (DPDK) to demonstrate usage of
poll and event mode packet I/O mechanism.

19.1. Overview

The L2 Forwarding eventdev sample application, performs L2 forwarding for each
packet that is received on an RX_PORT. The destination port is the adjacent port
from the enabled portmask, that is, if the first four ports are enabled (portmask=0x0f),
ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

Application receives packets from RX_PORT using below mentioned methods:

	Poll mode

	Eventdev mode (default)

This application can be used to benchmark performance using a traffic-generator,
as shown in the Fig. 19.1.

[image: ../_images/l2_fwd_benchmark_setup.svg]
Fig. 19.1 Performance Benchmark Setup (Basic Environment)

19.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-event sub-directory.

19.3. Running the Application

The application requires a number of command line options:

./build/l2fwd-event [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating --mode=MODE --eventq-sched=SCHED_MODE

where,

	p PORTMASK: A hexadecimal bitmask of the ports to configure

	q NQ: A number of queues (=ports) per lcore (default is 1)

	–[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).

	–mode=MODE: Packet transfer mode for I/O, poll or eventdev. Eventdev by default.

	–eventq-sched=SCHED_MODE: Event queue schedule mode, Ordered, Atomic or Parallel. Atomic by default.

	–config: Configure forwarding port pair mapping. Alternate port pairs by default.

Sample usage commands are given below to run the application into different mode:

Poll mode with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address updating enabled,
issue the command:

./build/l2fwd-event -l 0-3 -n 4 -- -q 8 -p ffff --mode=poll

Eventdev mode with 4 lcores, 16 ports , sched method ordered and MAC address updating enabled,
issue the command:

./build/l2fwd-event -l 0-3 -n 4 -- -p ffff --eventq-sched=ordered

or

./build/l2fwd-event -l 0-3 -n 4 -- -q 8 -p ffff --mode=eventdev --eventq-sched=ordered

Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

To run application with S/W scheduler, it uses following DPDK services:

	Software scheduler

	Rx adapter service function

	Tx adapter service function

Application needs service cores to run above mentioned services. Service cores
must be provided as EAL parameters along with the –vdev=event_sw0 to enable S/W
scheduler. Following is the sample command:

./build/l2fwd-event -l 0-7 -s 0-3 -n 4 --vdev event_sw0 -- -q 8 -p ffff --mode=eventdev --eventq-sched=ordered

19.4. Explanation

The following sections provide some explanation of the code.

19.4.1. Command Line Arguments

The L2 Forwarding eventdev sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments.
The preferred way to parse parameters is to use the getopt() function,
since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function for non
eventdev parameters and in parse_eventdev_args() for eventdev parameters.
The method of argument parsing is not described here. Refer to the
glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments.
This is done at the beginning of the main() function and eventdev parameters
are parsed in eventdev_resource_setup() function during eventdev setup:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_panic("Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)
 rte_panic("Invalid L2FWD arguments\n");
.
.
.

/* Parse eventdev command line options */
ret = parse_eventdev_args(argc, argv);
if (ret < 0)
 return ret;

19.4.2. Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created.
The mbuf pool contains a set of mbuf objects that will be used by the driver
and the application to store network packet data:

/* create the mbuf pool */

l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
 MEMPOOL_CACHE_SIZE, 0,
 RTE_MBUF_DEFAULT_BUF_SIZE,
 rte_socket_id());
if (l2fwd_pktmbuf_pool == NULL)
 rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects.
In this case, it is necessary to create a pool that will be used by the driver.
The number of allocated pkt mbufs is NB_MBUF, with a data room size of
RTE_MBUF_DEFAULT_BUF_SIZE each.
A per-lcore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0,
but it is possible to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
An advanced application may want to use the mempool API to create the
mbuf pool with more control.

19.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization
of the driver. To fully understand this code, it is recommended to study the
chapters that related to the Poll Mode and Event mode Driver in the
DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
 l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */

RTE_ETH_FOREACH_DEV(portid) {
 /* skip ports that are not enabled */

 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
 continue;

 if (nb_ports_in_mask % 2) {
 l2fwd_dst_ports[portid] = last_port;
 l2fwd_dst_ports[last_port] = portid;
 }
 else
 last_port = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues. For each port, there is only
one RX queue (only one lcore is able to poll a given port). The number of TX
queues depends on the number of available lcores. The rte_eth_dev_configure()
function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
 rte_panic("Cannot configure device: err=%d, port=%u\n",
 ret, portid);

19.4.4. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q
option, which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four
ports with one lcore. If there are 16 ports on the target (and if the portmask
argument is -p ffff), the application will need four lcores to poll all the
ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0,
 &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

 rte_panic("rte_eth_rx_queue_setup: err=%d, port=%u\n",
 ret, portid);

The list of queues that must be polled for a given lcore is stored in a private
structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing
loop (see Receive, Process and Transmit Packets).

19.4.5. TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX
queue is initialized.

/* init one TX queue on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd,
 rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
 rte_panic("rte_eth_tx_queue_setup:err=%d, port=%u\n",
 ret, (unsigned) portid);

To configure eventdev support, application setups following components:

	Event dev

	Event queue

	Event Port

	Rx/Tx adapters

	Ethernet ports

19.4.6. Event device Initialization

Application can use either H/W or S/W based event device scheduler
implementation and supports single instance of event device. It configures event
device as per below configuration

struct rte_event_dev_config event_d_conf = {
 .nb_event_queues = ethdev_count, /* Dedicated to each Ethernet port */
 .nb_event_ports = num_workers, /* Dedicated to each lcore */
 .nb_events_limit = 4096,
 .nb_event_queue_flows = 1024,
 .nb_event_port_dequeue_depth = 128,
 .nb_event_port_enqueue_depth = 128
};

ret = rte_event_dev_configure(event_d_id, &event_d_conf);
if (ret < 0)
 rte_panic("Error in configuring event device\n");

In case of S/W scheduler, application runs eventdev scheduler service on service
core. Application retrieves service id and finds the best possible service core to
run S/W scheduler.

rte_event_dev_info_get(evt_rsrc->event_d_id, &evdev_info);
if (evdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) {
 ret = rte_event_dev_service_id_get(evt_rsrc->event_d_id,
 &service_id);
 if (ret != -ESRCH && ret != 0)
 rte_panic("Error in starting eventdev service\n");
 l2fwd_event_service_enable(service_id);
}

19.4.7. Event queue Initialization

Each Ethernet device is assigned a dedicated event queue which will be linked
to all available event ports i.e. each lcore can dequeue packets from any of the
Ethernet ports.

struct rte_event_queue_conf event_q_conf = {
 .nb_atomic_flows = 1024,
 .nb_atomic_order_sequences = 1024,
 .event_queue_cfg = 0,
 .schedule_type = RTE_SCHED_TYPE_ATOMIC,
 .priority = RTE_EVENT_DEV_PRIORITY_HIGHEST
};

/* User requested sched mode */
event_q_conf.schedule_type = eventq_sched_mode;
for (event_q_id = 0; event_q_id < ethdev_count; event_q_id++) {
 ret = rte_event_queue_setup(event_d_id, event_q_id,
 &event_q_conf);
 if (ret < 0)
 rte_panic("Error in configuring event queue\n");
}

In case of S/W scheduler, an extra event queue is created which will be used for
Tx adapter service function for enqueue operation.

19.4.8. Event port Initialization

Each worker thread is assigned a dedicated event port for enq/deq operations
to/from an event device. All event ports are linked with all available event
queues.

struct rte_event_port_conf event_p_conf = {
 .dequeue_depth = 32,
 .enqueue_depth = 32,
 .new_event_threshold = 4096
};

for (event_p_id = 0; event_p_id < num_workers; event_p_id++) {
 ret = rte_event_port_setup(event_d_id, event_p_id,
 &event_p_conf);
 if (ret < 0)
 rte_panic("Error in configuring event port %d\n", event_p_id);

 ret = rte_event_port_link(event_d_id, event_p_id, NULL,
 NULL, 0);
 if (ret < 0)
 rte_panic("Error in linking event port %d to queue\n",
 event_p_id);
}

In case of S/W scheduler, an extra event port is created by DPDK library which
is retrieved by the application and same will be used by Tx adapter service.

ret = rte_event_eth_tx_adapter_event_port_get(tx_adptr_id, &tx_port_id);
if (ret)
 rte_panic("Failed to get Tx adapter port id: %d\n", ret);

ret = rte_event_port_link(event_d_id, tx_port_id,
 &evt_rsrc.evq.event_q_id[
 evt_rsrc.evq.nb_queues - 1],
 NULL, 1);
if (ret != 1)
 rte_panic("Unable to link Tx adapter port to Tx queue:err=%d\n",
 ret);

19.4.9. Rx/Tx adapter Initialization

Each Ethernet port is assigned a dedicated Rx/Tx adapter for H/W scheduler. Each
Ethernet port’s Rx queues are connected to its respective event queue at
priority 0 via Rx adapter configuration and Ethernet port’s tx queues are
connected via Tx adapter.

RTE_ETH_FOREACH_DEV(port_id) {
 if ((rsrc->enabled_port_mask & (1 << port_id)) == 0)
 continue;
 ret = rte_event_eth_rx_adapter_create(adapter_id, event_d_id,
 &evt_rsrc->def_p_conf);
 if (ret)
 rte_panic("Failed to create rx adapter[%d]\n",
 adapter_id);

 /* Configure user requested sched type*/
 eth_q_conf.ev.sched_type = rsrc->sched_type;
 eth_q_conf.ev.queue_id = evt_rsrc->evq.event_q_id[q_id];
 ret = rte_event_eth_rx_adapter_queue_add(adapter_id, port_id,
 -1, ð_q_conf);
 if (ret)
 rte_panic("Failed to add queues to Rx adapter\n");

 ret = rte_event_eth_rx_adapter_start(adapter_id);
 if (ret)
 rte_panic("Rx adapter[%d] start Failed\n", adapter_id);

 evt_rsrc->rx_adptr.rx_adptr[adapter_id] = adapter_id;
 adapter_id++;
 if (q_id < evt_rsrc->evq.nb_queues)
 q_id++;
}

adapter_id = 0;
RTE_ETH_FOREACH_DEV(port_id) {
 if ((rsrc->enabled_port_mask & (1 << port_id)) == 0)
 continue;
 ret = rte_event_eth_tx_adapter_create(adapter_id, event_d_id,
 &evt_rsrc->def_p_conf);
 if (ret)
 rte_panic("Failed to create tx adapter[%d]\n",
 adapter_id);

 ret = rte_event_eth_tx_adapter_queue_add(adapter_id, port_id,
 -1);
 if (ret)
 rte_panic("Failed to add queues to Tx adapter\n");

 ret = rte_event_eth_tx_adapter_start(adapter_id);
 if (ret)
 rte_panic("Tx adapter[%d] start Failed\n", adapter_id);

 evt_rsrc->tx_adptr.tx_adptr[adapter_id] = adapter_id;
 adapter_id++;
}

For S/W scheduler instead of dedicated adapters, common Rx/Tx adapters are
configured which will be shared among all the Ethernet ports. Also DPDK library
need service cores to run internal services for Rx/Tx adapters. Application gets
service id for Rx/Tx adapters and after successful setup it runs the services
on dedicated service cores.

for (i = 0; i < evt_rsrc->rx_adptr.nb_rx_adptr; i++) {
 ret = rte_event_eth_rx_adapter_caps_get(evt_rsrc->event_d_id,
 evt_rsrc->rx_adptr.rx_adptr[i], &caps);
 if (ret < 0)
 rte_panic("Failed to get Rx adapter[%d] caps\n",
 evt_rsrc->rx_adptr.rx_adptr[i]);
 ret = rte_event_eth_rx_adapter_service_id_get(
 evt_rsrc->event_d_id,
 &service_id);
 if (ret != -ESRCH && ret != 0)
 rte_panic("Error in starting Rx adapter[%d] service\n",
 evt_rsrc->rx_adptr.rx_adptr[i]);
 l2fwd_event_service_enable(service_id);
}

for (i = 0; i < evt_rsrc->tx_adptr.nb_tx_adptr; i++) {
 ret = rte_event_eth_tx_adapter_caps_get(evt_rsrc->event_d_id,
 evt_rsrc->tx_adptr.tx_adptr[i], &caps);
 if (ret < 0)
 rte_panic("Failed to get Rx adapter[%d] caps\n",
 evt_rsrc->tx_adptr.tx_adptr[i]);
 ret = rte_event_eth_tx_adapter_service_id_get(
 evt_rsrc->event_d_id,
 &service_id);
 if (ret != -ESRCH && ret != 0)
 rte_panic("Error in starting Rx adapter[%d] service\n",
 evt_rsrc->tx_adptr.tx_adptr[i]);
 l2fwd_event_service_enable(service_id);
}

19.4.10. Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from
the RX queues. This is done using the following code:

/*
 * Read packet from RX queues
 */

for (i = 0; i < qconf->n_rx_port; i++) {
 portid = qconf->rx_port_list[i];
 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
 MAX_PKT_BURST);

 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 l2fwd_simple_forward(m, portid);
 }
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst()
function writes the mbuf pointers in a local table and returns the number of
available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward()
function. The processing is very simple: process the TX port from the RX port,
then replace the source and destination MAC addresses if MAC addresses updating
is enabled.

During the initialization process, a static array of destination ports
(l2fwd_dst_ports[]) is filled such that for each source port, a destination port
is assigned that is either the next or previous enabled port from the portmask.
If number of ports are odd in portmask then packet from last port will be
forwarded to first port i.e. if portmask=0x07, then forwarding will take place
like p0—>p1, p1—>p2, p2—>p0.

Also to optimize enqueue operation, l2fwd_simple_forward() stores incoming mbufs
up to MAX_PKT_BURST. Once it reaches up to limit, all packets are transmitted to
destination ports.

static void
l2fwd_simple_forward(struct rte_mbuf *m, uint32_t portid)
{
 uint32_t dst_port;
 int32_t sent;
 struct rte_eth_dev_tx_buffer *buffer;

 dst_port = l2fwd_dst_ports[portid];

 if (mac_updating)
 l2fwd_mac_updating(m, dst_port);

 buffer = tx_buffer[dst_port];
 sent = rte_eth_tx_buffer(dst_port, 0, buffer, m);
 if (sent)
 port_statistics[dst_port].tx += sent;
}

For this test application, the processing is exactly the same for all packets
arriving on the same RX port. Therefore, it would have been possible to call
the rte_eth_tx_buffer() function directly from the main loop to send all the
received packets on the same TX port, using the burst-oriented send function,
which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that, so the same approach can be
reused in a more complex application.

To ensure that no packets remain in the tables, each lcore does a draining of TX
queue in its main loop. This technique introduces some latency when there are
not many packets to send, however it improves performance:

cur_tsc = rte_rdtsc();

/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
 for (i = 0; i < qconf->n_rx_port; i++) {
 portid = l2fwd_dst_ports[qconf->rx_port_list[i]];
 buffer = tx_buffer[portid];
 sent = rte_eth_tx_buffer_flush(portid, 0,
 buffer);
 if (sent)
 port_statistics[portid].tx += sent;
 }

 /* if timer is enabled */
 if (timer_period > 0) {
 /* advance the timer */
 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */
 if (unlikely(timer_tsc >= timer_period)) {
 /* do this only on master core */
 if (lcore_id == rte_get_master_lcore()) {
 print_stats();
 /* reset the timer */
 timer_tsc = 0;
 }
 }
 }

 prev_tsc = cur_tsc;
}

In the l2fwd_event_loop() function, the main task is to read ingress
packets from the event ports. This is done using the following code:

/* Read packet from eventdev */
nb_rx = rte_event_dequeue_burst(event_d_id, event_p_id,
 events, deq_len, 0);
if (nb_rx == 0) {
 rte_pause();
 continue;
}

for (i = 0; i < nb_rx; i++) {
 mbuf[i] = events[i].mbuf;
 rte_prefetch0(rte_pktmbuf_mtod(mbuf[i], void *));
}

Before reading packets, deq_len is fetched to ensure correct allowed deq length
by the eventdev.
The rte_event_dequeue_burst() function writes the mbuf pointers in a local table
and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_eventdev_forward()
function. The processing is very simple: process the TX port from the RX port,
then replace the source and destination MAC addresses if MAC addresses updating
is enabled.

During the initialization process, a static array of destination ports
(l2fwd_dst_ports[]) is filled such that for each source port, a destination port
is assigned that is either the next or previous enabled port from the portmask.
If number of ports are odd in portmask then packet from last port will be
forwarded to first port i.e. if portmask=0x07, then forwarding will take place
like p0—>p1, p1—>p2, p2—>p0.

l2fwd_eventdev_forward() does not stores incoming mbufs. Packet will forwarded
be to destination ports via Tx adapter or generic event dev enqueue API
depending H/W or S/W scheduler is used.

nb_tx = rte_event_eth_tx_adapter_enqueue(event_d_id, port_id, ev,
 nb_rx);
while (nb_tx < nb_rx && !rsrc->force_quit)
 nb_tx += rte_event_eth_tx_adapter_enqueue(
 event_d_id, port_id,
 ev + nb_tx, nb_rx - nb_tx);

20. L2 Forwarding Sample Application with Cache Allocation Technology (CAT)

Basic Forwarding sample application is a simple skeleton example of
a forwarding application. It has been extended to make use of CAT via extended
command line options and linking against the libpqos library.

It is intended as a demonstration of the basic components of a DPDK forwarding
application and use of the libpqos library to program CAT.
For more detailed implementations see the L2 and L3 forwarding
sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s
last level cache. CAT introduces classes of service (COS) that are essentially
bitmasks. In current CAT implementations, a bit in a COS bitmask corresponds to
one cache way in last level cache.
A CPU core is always assigned to one of the CAT classes.
By programming CPU core assignment and COS bitmasks, applications can be given
exclusive, shared, or mixed access to the CPU’s last level cache.
CDP extends CAT so that there are two bitmasks per COS,
one for data and one for code.
The number of classes and number of valid bits in a COS bitmask is CPU model
specific and COS bitmasks need to be contiguous. Sample code calls this bitmask
cbm or capacity bitmask.
By default, after reset, all CPU cores are assigned to COS 0 and all classes
are programmed to allow fill into all cache ways.
CDP is off by default.

For more information about CAT please see:

	https://github.com/01org/intel-cmt-cat

White paper demonstrating example use case:

	Increasing Platform Determinism with Platform Quality of Service for the Data Plane Development Kit [http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html]

20.1. Compiling the Application

Note

Requires libpqos from Intel’s
intel-cmt-cat software package [https://github.com/01org/intel-cmt-cat]
hosted on GitHub repository. For installation notes, please see README file.

GIT:

	https://github.com/01org/intel-cmt-cat

	To compile the application export the path to PQoS lib
and the DPDK source tree and go to the example directory:

export PQOS_INSTALL_PATH=/path/to/libpqos

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-cat sub-directory.

20.2. Running the Application

To run the example in a linux environment and enable CAT on cpus 0-2:

./build/l2fwd-cat -l 1 -n 4 -- --l3ca="0x3@(0-2)"

or to enable CAT and CDP on cpus 1,3:

./build/l2fwd-cat -l 1 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not valid!
PQOS: Shutting down PQoS library...
EAL: Error - exiting with code: 1
 Cause: PQOS: L3CA init failed!

The option to enable CAT is:

	--l3ca='<common_cbm@cpus>[,<(code_cbm,data_cbm)@cpus>...]':

where cbm stands for capacity bitmask and must be expressed in
hexadecimal form.

common_cbm is a single mask, for a CDP enabled system, a group of two
masks (code_cbm and data_cbm) is used.

(and) are necessary if it’s a group.

cpus could be a single digit/range or a group and must be expressed in
decimal form.

(and) are necessary if it’s a group.

e.g. --l3ca='0x00F00@(1,3),0x0FF00@(4-6),0xF0000@7'

	cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;

	cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;

	cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;

	cpu 7 has exclusive access to all of its 4 ways;

e.g. --l3ca='(0x00C00,0x00300)@(1,3)' for CDP enabled system

	cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and
data ways are not overlapping.

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pqos tool
from Intel’s
intel-cmt-cat software package [https://github.com/01org/intel-cmt-cat].

To enabled or disable CDP:

sudo ./pqos -S cdp-on

sudo ./pqos -S cdp-off

to reset CAT configuration:

sudo ./pqos -R

to list CAT config:

sudo ./pqos -s

For more info about pqos tool please see its man page or
intel-cmt-cat wiki [https://github.com/01org/intel-cmt-cat/wiki].

20.3. Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

20.3.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The
argc and argv arguments are provided to the cat_init()
function. The value returned is the number of parsed arguments:

int ret = cat_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init() is a wrapper function which parses the command, validates
the requested parameters and configures CAT accordingly.

Parsing of command line arguments is done in parse_args(...).
libpqos is then initialized with the pqos_init(...) call. Next, libpqos is
queried for system CPU information and L3CA capabilities via
pqos_cap_get(...) and pqos_cap_get_type(..., PQOS_CAP_TYPE_L3CA, ...)
calls. When all capability and topology information is collected, the requested
CAT configuration is validated. A check is then performed (on per socket basis)
for a sufficient number of un-associated COS. COS are selected and
configured via the pqos_l3ca_set(...) call. Finally, COS are associated to
relevant CPUs via pqos_l3ca_assoc_set(...) calls.

atexit(...) is used to register cat_exit(...) to be called on
a clean exit. cat_exit(...) performs a simple CAT clean-up, by associating
COS 0 to all involved CPUs via pqos_l3ca_assoc_set(...) calls.

21. L3 Forwarding Sample Application

The L3 Forwarding application is a simple example of packet processing using
DPDK to demonstrate usage of poll and event mode packet I/O mechanism.
The application performs L3 forwarding.

21.1. Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK
to implement packet forwarding using poll or event mode PMDs for packet I/O.
The initialization and run-time paths are very similar to those of the
L2 Forwarding Sample Application (in Real and Virtualized Environments) and L2 Forwarding Eventdev Sample Application.
The main difference from the L2 Forwarding sample application is that optionally
packet can be Rx/Tx from/to eventdev instead of port directly and forwarding
decision is made based on information read from the input packet.

Eventdev can optionally use S/W or H/W (if supported by platform) scheduler
implementation for packet I/O based on run time parameters.

The lookup method is either hash-based or LPM-based and is selected at run time. When the selected lookup method is hash-based,
a hash object is used to emulate the flow classification stage.
The hash object is used in correlation with a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet:
Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
The ID of the output interface for the input packet is read from the identified flow table entry.
The set of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets.
The LPM object is used as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup.
The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.

21.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd sub-directory.

21.3. Running the Application

The application has a number of command line options:

./l3fwd [EAL options] -- -p PORTMASK
 [-P]
 [-E]
 [-L]
 --config(port,queue,lcore)[,(port,queue,lcore)]
 [--eth-dest=X,MM:MM:MM:MM:MM:MM]
 [--enable-jumbo [--max-pkt-len PKTLEN]]
 [--no-numa]
 [--hash-entry-num]
 [--ipv6]
 [--parse-ptype]
 [--per-port-pool]
 [--mode]
 [--eventq-sched]
 [--event-eth-rxqs]

Where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	-E: Optional, enable exact match.

	-L: Optional, enable longest prefix match.

	--config (port,queue,lcore)[,(port,queue,lcore)]: Determines which queues from which ports are mapped to which cores.

	--eth-dest=X,MM:MM:MM:MM:MM:MM: Optional, ethernet destination for port X.

	--enable-jumbo: Optional, enables jumbo frames.

	--max-pkt-len: Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-9600).

	--no-numa: Optional, disables numa awareness.

	--hash-entry-num: Optional, specifies the hash entry number in hexadecimal to be setup.

	--ipv6: Optional, set if running ipv6 packets.

	--parse-ptype: Optional, set to use software to analyze packet type. Without this option, hardware will check the packet type.

	--per-port-pool: Optional, set to use independent buffer pools per port. Without this option, single buffer pool is used for all ports.

	--mode: Optional, Packet transfer mode for I/O, poll or eventdev.

	--eventq-sched: Optional, Event queue synchronization method, Ordered, Atomic or Parallel. Only valid if –mode=eventdev.

	--event-eth-rxqs: Optional, Number of ethernet RX queues per device. Only valid if –mode=eventdev.

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
(which are in the same socket too), use the following command:

./build/l3fwd -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"

In this command:

	The -l option enables cores 1, 2

	The -p option enables ports 0 and 1

	The –config option enables one queue on each port and maps each (port,queue) pair to a specific core.
The following table shows the mapping in this example:

	Port

	Queue

	lcore

	Description

	0

	0

	1

	Map queue 0 from port 0 to lcore 1.

	1

	0

	2

	Map queue 0 from port 1 to lcore 2.

To use eventdev mode with sync method ordered on above mentioned environment,
Following is the sample command:

./build/l3fwd -l 0-3 -n 4 -w <event device> -- -p 0x3 --eventq-sched=ordered

or

./build/l3fwd -l 0-3 -n 4 -w <event device> -- -p 0x03 --mode=eventdev --eventq-sched=ordered

In this command:

	-w option whitelist the event device supported by platform. Way to pass this device may vary based on platform.

	The –mode option defines PMD to be used for packet I/O.

	The –eventq-sched option enables synchronization menthod of event queue so that packets will be scheduled accordingly.

If application uses S/W scheduler, it uses following DPDK services:

	Software scheduler

	Rx adapter service function

	Tx adapter service function

Application needs service cores to run above mentioned services. Service cores
must be provided as EAL parameters along with the –vdev=event_sw0 to enable S/W
scheduler. Following is the sample command:

./build/l3fwd -l 0-7 -s 0xf0000 -n 4 --vdev event_sw0 -- -p 0x3 --mode=eventdev --eventq-sched=ordered

In case of eventdev mode, –config option is not used for ethernet port
configuration. Instead each ethernet port will be configured with mentioned
setup:

	Single Rx/Tx queue

	Each Rx queue will be connected to event queue via Rx adapter.

	Each Tx queue will be connected via Tx adapter.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

21.4. Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments) and L2 Forwarding Eventdev Sample Application.
The following sections describe aspects that are specific to the L3 Forwarding sample application.

21.4.1. Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array,
and then generate the expected 5-tuple as key to keep consistence with those of real flow
for the convenience to execute hash performance test on 4M/8M/16M flows.

Note

The Hash initialization will setup both ipv4 and ipv6 hash table,
and populate the either table depending on the value of variable ipv6.
To support the hash performance test with up to 8M single direction flows/16M bi-direction flows,
populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry number(default 4M).

Note

Value of global variable ipv6 can be specified with –ipv6 in the command line.
Value of global variable hash_entry_number,
which is used to specify the total hash entry number for all used ports in hash performance test,
can be specified with –hash-entry-num VALUE in command line, being its default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

 static void
 setup_hash(int socketid)
 {
 // ...

 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
 if (ipv6 == 0) {
 /* populate the ipv4 hash */
 populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
 } else {
 /* populate the ipv6 hash */
 populate_ipv6_many_flow_into_table(ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
 }
 } else
 if (ipv6 == 0) {
 /* populate the ipv4 hash */
 populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
 } else {
 /* populate the ipv6 hash */
 populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
 }
 }
 }
#endif

21.4.2. LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm(int socketid)
{
 unsigned i;
 int ret;
 char s[64];

 /* create the LPM table */

 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);

 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);

 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
 " on socket %d\n", socketid);

 /* populate the LPM table */

 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
 /* skip unused ports */

 if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
 continue;

 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
 ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

 if (ret < 0) {
 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
 "l3fwd LPM table on socket %d\n", i, socketid);
 }

 printf("LPM: Adding route 0x%08x / %d (%d)\n",
 (unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
 }
}
#endif

21.4.3. Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets.
The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding
for any number of burst packets received,
and the packet forwarding decision (that is, the identification of the output interface for the packet)
for hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function.
The get_ipv4_dst_port() function is shown below:

static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
 int ret = 0;
 union ipv4_5tuple_host key;

 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct rte_ipv4_hdr, time_to_live);

 m128i data = _mm_loadu_si128((m128i*)(ipv4_hdr));

 /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */

 key.xmm = _mm_and_si128(data, mask0);

 /* Find destination port */

 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);

 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and ipv6 packets,
they leverage the multiple buffer optimization to boost the performance of forwarding packets with the exact match on hash table.
The key code snippet of simple_ipv4_fwd_4pkts() is shown below:

static inline void
simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint16_t portid, struct lcore_conf *qconf)
{
 // ...

 data[0] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
 data[1] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
 data[2] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
 data[3] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));

 key[0].xmm = _mm_and_si128(data[0], mask0);
 key[1].xmm = _mm_and_si128(data[1], mask0);
 key[2].xmm = _mm_and_si128(data[2], mask0);
 key[3].xmm = _mm_and_si128(data[3], mask0);

 const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};

 rte_hash_lookup_bulk(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);

 dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
 dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
 dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
 dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];

 // ...
}

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this mode.

21.4.4. Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function,
but the packet forwarding decision (that is, the identification of the output interface for the packet)
for LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
 uint8_t next_hop;

 return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
}

21.4.5. Eventdev Driver Initialization

Eventdev driver initialization is same as L2 forwarding eventdev application.
Refer L2 Forwarding Eventdev Sample Application for more details.

22. L3 Forwarding Graph Sample Application

The L3 Forwarding Graph application is a simple example of packet processing
using the DPDK Graph framework. The application performs L3 forwarding using
Graph framework and nodes written for graph framework.

22.1. Overview

The application demonstrates the use of the graph framework and graph nodes
ethdev_rx, ip4_lookup, ip4_rewrite, ethdev_tx and pkt_drop in DPDK to
implement packet forwarding.

The initialization is very similar to those of the L3 Forwarding Sample Application.
There is also additional initialization of graph for graph object creation
and configuration per lcore.
Run-time path is main thing that differs from L3 forwarding sample application.
Difference is that forwarding logic starting from Rx, followed by LPM lookup,
TTL update and finally Tx is implemented inside graph nodes. These nodes are
interconnected in graph framework. Application main loop needs to walk over
graph using rte_graph_walk() with graph objects created one per slave lcore.

The lookup method is as per implementation of ip4_lookup graph node.
The ID of the output interface for the input packet is the next hop returned by
the LPM lookup. The set of LPM rules used by the application is statically
configured and provided to ip4_lookup graph node and ip4_rewrite graph node
using node control API rte_node_ip4_route_add() and rte_node_ip4_rewrite_add().

In the sample application, only IPv4 forwarding is supported as of now.

22.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-graph sub-directory.

22.3. Running the Application

The application has a number of command line options similar to l3fwd:

./l3fwd-graph [EAL options] -- -p PORTMASK
 [-P]
 --config(port,queue,lcore)[,(port,queue,lcore)]
 [--eth-dest=X,MM:MM:MM:MM:MM:MM]
 [--enable-jumbo [--max-pkt-len PKTLEN]]
 [--no-numa]
 [--per-port-pool]

Where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	--config (port,queue,lcore)[,(port,queue,lcore)]: Determines which queues from which ports are mapped to which cores.

	--eth-dest=X,MM:MM:MM:MM:MM:MM: Optional, ethernet destination for port X.

	--enable-jumbo: Optional, enables jumbo frames.

	--max-pkt-len: Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-9600).

	--no-numa: Optional, disables numa awareness.

	--per-port-pool: Optional, set to use independent buffer pools per port. Without this option, single buffer pool is used for all ports.

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
(which are in the same socket too), use the following command:

./build/l3fwd-graph -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"

In this command:

	The -l option enables cores 1, 2

	The -p option enables ports 0 and 1

	The –config option enables one queue on each port and maps each (port,queue) pair to a specific core.
The following table shows the mapping in this example:

	Port

	Queue

	lcore

	Description

	0

	0

	1

	Map queue 0 from port 0 to lcore 1.

	1

	0

	2

	Map queue 0 from port 1 to lcore 2.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

22.4. Explanation

The following sections provide some explanation of the sample application code.
As mentioned in the overview section, the initialization is similar to that of
the L3 Forwarding Sample Application. Run-time path though similar in functionality to that of
L3 Forwarding Sample Application, major part of the implementation is in graph nodes via used
via librte_node library.
The following sections describe aspects that are specific to the L3 Forwarding
Graph sample application.

22.4.1. Graph Node Pre-Init Configuration

After device configuration and device Rx, Tx queue setup is complete,
a minimal config of port id, num_rx_queues, num_tx_queues, mempools etc will
be passed to ethdev_* node ctrl API rte_node_eth_config(). This will be
lead to the clone of ethdev_rx and ethdev_tx nodes as ethdev_rx-X-Y and
ethdev_tx-X where X, Y represent port id and queue id associated with them.
In case of ethdev_tx-X nodes, tx queue id assigned per instance of the node
is same as graph id.

These cloned nodes along with existing static nodes such as ip4_lookup and
ip4_rewrite will be used in graph creation to associate node’s to lcore
specific graph object.

RTE_ETH_FOREACH_DEV(portid)
{

 /* ... */
 ret = rte_eth_dev_configure(portid, nb_rx_queue,
 n_tx_queue, &local_port_conf);
 /* ... */

 /* Init one TX queue per couple (lcore,port) */
 queueid = 0;
 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
 /* ... */
 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
 socketid, txconf);
 /* ... */
 queueid++;
 }

 /* Setup ethdev node config */
 ethdev_conf[nb_conf].port_id = portid;
 ethdev_conf[nb_conf].num_rx_queues = nb_rx_queue;
 ethdev_conf[nb_conf].num_tx_queues = n_tx_queue;
 if (!per_port_pool)
 ethdev_conf[nb_conf].mp = pktmbuf_pool[0];
 else
 ethdev_conf[nb_conf].mp = pktmbuf_pool[portid];
 ethdev_conf[nb_conf].mp_count = NB_SOCKETS;

 nb_conf++;
 printf("\n");
}

for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
 /* Init RX queues */
 for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
 /* ... */
 if (!per_port_pool)
 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, socketid,
 &rxq_conf, pktmbuf_pool[0][socketid]);
 else
 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, socketid,
 &rxq_conf, pktmbuf_pool[portid][socketid]);
 /* ... */
 }
}

/* Ethdev node config, skip rx queue mapping */
ret = rte_node_eth_config(ethdev_conf, nb_conf, nb_graphs);

22.4.2. Graph Initialization

Now a graph needs to be created with a specific set of nodes for every lcore.
A graph object returned after graph creation is a per lcore object and
cannot be shared between lcores. Since ethdev_tx-X node is per port node,
it can be associated with all the graphs created as all the lcores should have
Tx capability for every port. But ethdev_rx-X-Y node is created per
(port, rx_queue_id), so they should be associated with a graph based on
the application argument --config specifying rx queue mapping to lcore.

Note

The Graph creation will fail if the passed set of shell node pattern’s
are not sufficient to meet their inter-dependency or even one node is not
found with a given regex node pattern.

static const char *const default_patterns[] = {
 "ip4*",
 "ethdev_tx-*",
 "pkt_drop",
};
const char **node_patterns;
uint16_t nb_pattern;

/* ... */

/* Create a graph object per lcore with common nodes and
 * lcore specific nodes based on application arguments
 */
nb_patterns = RTE_DIM(default_patterns);
node_patterns = malloc((MAX_RX_QUEUE_PER_LCORE + nb_patterns) *
 sizeof(*node_patterns));
memcpy(node_patterns, default_patterns,
 nb_patterns * sizeof(*node_patterns));

memset(&graph_conf, 0, sizeof(graph_conf));

/* Common set of nodes in every lcore's graph object */
graph_conf.node_patterns = node_patterns;

for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
 /* ... */

 /* Skip graph creation if no source exists */
 if (!qconf->n_rx_queue)
 continue;

 /* Add rx node patterns of this lcore based on --config */
 for (i = 0; i < qconf->n_rx_queue; i++) {
 graph_conf.node_patterns[nb_patterns + i] =
 qconf->rx_queue_list[i].node_name;
 }

 graph_conf.nb_node_patterns = nb_patterns + i;
 graph_conf.socket_id = rte_lcore_to_socket_id(lcore_id);

 snprintf(qconf->name, sizeof(qconf->name), "worker_%u", lcore_id);

 graph_id = rte_graph_create(qconf->name, &graph_conf);

 /* ... */

 qconf->graph = rte_graph_lookup(qconf->name);

 /* ... */
}

22.4.3. Forwarding data(Route, Next-Hop) addition

Once graph objects are created, node specific info like routes and rewrite
headers will be provided run-time using rte_node_ip4_route_add() and
rte_node_ip4_rewrite_add() API.

Note

Since currently ip4_lookup and ip4_rewrite nodes don’t support
lock-less mechanisms(RCU, etc) to add run-time forwarding data like route and
rewrite data, forwarding data is added before packet processing loop is
launched on slave lcore.

/* Add route to ip4 graph infra */
for (i = 0; i < IPV4_L3FWD_LPM_NUM_ROUTES; i++) {
 /* ... */

 dst_port = ipv4_l3fwd_lpm_route_array[i].if_out;
 next_hop = i;

 /* ... */
 ret = rte_node_ip4_route_add(ipv4_l3fwd_lpm_route_array[i].ip,
 ipv4_l3fwd_lpm_route_array[i].depth, next_hop,
 RTE_NODE_IP4_LOOKUP_NEXT_REWRITE);

 /* ... */

 memcpy(rewrite_data, val_eth + dst_port, rewrite_len);

 /* Add next hop for a given destination */
 ret = rte_node_ip4_rewrite_add(next_hop, rewrite_data,
 rewrite_len, dst_port);

 RTE_LOG(INFO, L3FWD_GRAPH, "Added route %s, next_hop %u\n",
 route_str, next_hop);
}

22.4.4. Packet Forwarding using Graph Walk

Now that all the device configurations are done, graph creations are done and
forwarding data is updated with nodes, slave lcores will be launched with graph
main loop. Graph main loop is very simple in the sense that it needs to
continuously call a non-blocking API rte_graph_walk() with it’s lcore
specific graph object that was already created.

Note

rte_graph_walk() will walk over all the sources nodes i.e ethdev_rx-X-Y
associated with a given graph and Rx the available packets and enqueue them
to the following node ip4_lookup which then will enqueue them to ip4_rewrite
node if LPM lookup succeeds. ip4_rewrite node then will update Ethernet header
as per next-hop data and transmit the packet via port ‘Z’ by enqueuing
to ethdev_tx-Z node instance in its graph object.

/* Main processing loop */
static int
graph_main_loop(void *conf)
{
 // ...

 lcore_id = rte_lcore_id();
 qconf = &lcore_conf[lcore_id];
 graph = qconf->graph;

 RTE_LOG(INFO, L3FWD_GRAPH,
 "Entering main loop on lcore %u, graph %s(%p)\n", lcore_id,
 qconf->name, graph);

 /* Walk over graph until signal to quit */
 while (likely(!force_quit))
 rte_graph_walk(graph);
 return 0;
}

23. L3 Forwarding with Power Management Sample Application

23.1. Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet processing using the DPDK.
The application is based on existing L3 Forwarding sample application,
with the power management algorithms to control the P-states and
C-states of the Intel processor via a power management library.

23.2. Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet forwarding.
The initialization and run-time paths are very similar to those of the L3 Forwarding Sample Application.
The main difference from the L3 Forwarding sample application is that this application introduces power-aware optimization algorithms
by leveraging the Power library to control P-state and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit (Tx) queues.
The design principle of this PMD is to access the Rx and Tx descriptors directly without any interrupts to quickly receive,
process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the following steps:

	Retrieve input packets through the PMD to poll Rx queue

	Process each received packet or provide received packets to other processing cores through software queues

	Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver,
at the cost of keeping cores active and running at the highest frequency,
hence consuming the maximum power all the time.
However, during the period of processing light network traffic,
which happens regularly in communication infrastructure systems due to well-known “tidal effect”,
the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor
to switch between different supported operating frequencies and voltages.
If configured correctly, according to system workload, this feature provides power savings.
CPUFreq is the infrastructure provided by the Linux* kernel to control the processor performance state capability.
CPUFreq supports a user space governor that enables setting frequency via manipulating the virtual file device from a user space application.
The Power library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space application
to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent to CPUFreq.
The algorithm uses the number of received and available Rx packets on recent polls to make a heuristic decision to scale frequency up/down.
Specifically, some thresholds are checked to see whether a specific core running an DPDK polling thread needs to increase frequency
a step up based on the near to full trend of polled Rx queues.
Also, it decreases frequency a step if packet processed per loop is far less than the expected threshold
or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states.
They allow software to put an Intel core into a low power idle state from which it is possible to exit via an event, such as an interrupt.
However, there is a tradeoff between the power consumed in the idle state and the time required to wake up from the idle state (exit latency).
Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is increased. Each C-state has a target residency.
It is essential that when entering into a C-state, the core remains in this C-state for at least as long as the target residency in order
to fully realize the benefits of entering the C-state.
CPUIdle is the infrastructure provide by the Linux kernel to control the processor C-state capability.
Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-state.
It actually has its own heuristic algorithms in kernel space to select target C-state to enter by executing privileged instructions like HLT and MWAIT,
based on the speculative sleep duration of the core.
In this application, we introduce a heuristic algorithm that allows packet processing cores to sleep for a short period
if there is no Rx packet received on recent polls.
In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states
instead of always running to the C0 state waiting for packets.

Note

To fully demonstrate the power saving capability of using C-states,
it is recommended to enable deeper C3 and C6 states in the BIOS during system boot up.

23.3. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-power sub-directory.

23.4. Running the Application

The application has a number of command line options:

./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	–config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores.

	–enable-jumbo: optional, enables jumbo frames

	–max-pkt-len: optional, maximum packet length in decimal (64-9600)

	–no-numa: optional, disables numa awareness

	–empty-poll: Traffic Aware power management. See below for details

	–telemetry: Telemetry mode.

See L3 Forwarding Sample Application for details.
The L3fwd-power example reuses the L3fwd command line options.

23.5. Explanation

The following sections provide some explanation of the sample application code.
As mentioned in the overview section,
the initialization and run-time paths are identical to those of the L3 forwarding application.
The following sections describe aspects that are specific to the L3 Forwarding with Power Management sample application.

23.5.1. Power Library Initialization

The Power library is initialized in the main routine.
It changes the P-state governor to userspace for specific cores that are under control.
The Timer library is also initialized and several timers are created later on,
responsible for checking if it needs to scale down frequency at run time by checking CPU utilization statistics.

Note

Only the power management related initialization is shown.

int main(int argc, char **argv)
{
 struct lcore_conf *qconf;
 int ret;
 unsigned nb_ports;
 uint16_t queueid, portid;
 unsigned lcore_id;
 uint64_t hz;
 uint32_t n_tx_queue, nb_lcores;
 uint8_t nb_rx_queue, queue, socketid;

 // ...

 /* init RTE timer library to be used to initialize per-core timers */

 rte_timer_subsystem_init();

 // ...

 /* per-core initialization */

 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
 if (rte_lcore_is_enabled(lcore_id) == 0)
 continue;

 /* init power management library for a specified core */

 ret = rte_power_init(lcore_id);
 if (ret)
 rte_exit(EXIT_FAILURE, "Power management library "
 "initialization failed on core%d\n", lcore_id);

 /* init timer structures for each enabled lcore */

 rte_timer_init(&power_timers[lcore_id]);

 hz = rte_get_hpet_hz();

 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);

 // ...
 }

 // ...
}

23.5.2. Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing
if the network load is actually heavy or light.
In this sample, sampling network load work is done by monitoring received and
available descriptors on NIC Rx queues in recent polls.
Based on the number of returned and available Rx descriptors,
this example implements algorithms to generate frequency scaling hints and speculative sleep duration,
and use them to control P-state and C-state of processors via the power management library.
Frequency (P-state) control and sleep state (C-state) control work individually for each logical core,
and the combination of them contributes to a power efficient packet processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the endless packet processing loop
to return the number of received and available Rx descriptors.
And those numbers of specific queue are passed to P-state and C-state heuristic algorithms
to generate hints based on recent network load trends.

Note

Only power control related code is shown.

static
__rte_noreturn int main_loop(__rte_unused void *dummy)
{
 // ...

 while (1) {
 // ...

 /**
 * Read packet from RX queues
 */

 lcore_scaleup_hint = FREQ_CURRENT;
 lcore_rx_idle_count = 0;

 for (i = 0; i < qconf->n_rx_queue; ++i)
 {
 rx_queue = &(qconf->rx_queue_list[i]);
 rx_queue->idle_hint = 0;
 portid = rx_queue->port_id;
 queueid = rx_queue->queue_id;

 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
 stats[lcore_id].nb_rx_processed += nb_rx;

 if (unlikely(nb_rx == 0)) {
 /**
 * no packet received from rx queue, try to
 * sleep for a while forcing CPU enter deeper
 * C states.
 */

 rx_queue->zero_rx_packet_count++;

 if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
 continue;

 rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
 lcore_rx_idle_count++;
 } else {
 rx_ring_length = rte_eth_rx_queue_count(portid, queueid);

 rx_queue->zero_rx_packet_count = 0;

 /**
 * do not scale up frequency immediately as
 * user to kernel space communication is costly
 * which might impact packet I/O for received
 * packets.
 */

 rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);
 }

 /* Prefetch and forward packets */

 // ...
 }

 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
 for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {
 x_queue = &(qconf->rx_queue_list[i]);

 if (rx_queue->freq_up_hint > lcore_scaleup_hint)

 lcore_scaleup_hint = rx_queue->freq_up_hint;
 }

 if (lcore_scaleup_hint == FREQ_HIGHEST)

 rte_power_freq_max(lcore_id);

 else if (lcore_scaleup_hint == FREQ_HIGHER)
 rte_power_freq_up(lcore_id);
 } else {
 /**
 * All Rx queues empty in recent consecutive polls,
 * sleep in a conservative manner, meaning sleep as
 * less as possible.
 */

 for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {
 rx_queue = &(qconf->rx_queue_list[i]);
 if (rx_queue->idle_hint < lcore_idle_hint)
 lcore_idle_hint = rx_queue->idle_hint;
 }

 if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
 /**
 * execute "pause" instruction to avoid context
 * switch for short sleep.
 */
 rte_delay_us(lcore_idle_hint);
 else
 /* long sleep force ruining thread to suspend */
 usleep(lcore_idle_hint);

 stats[lcore_id].sleep_time += lcore_idle_hint;
 }
 }
}

23.5.3. P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the specified logical core
according to available descriptor number returned from rte_eth_rx_queue_count().
On every poll for new packets, the length of available descriptor on an Rx queue is evaluated,
and the algorithm used for frequency hinting is as follows:

	If the size of available descriptors exceeds 96, the maximum frequency is hinted.

	If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

	If the length of the ring exceeds 32, the trend counter is incremented by 1.

	When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note

The assumption is that the Rx queue size is 128 and the thresholds specified above
must be adjusted accordingly based on actual hardware Rx queue size,
which are configured via the rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues.
Most likely, different queue have different load, so they would return different frequency hints.
The algorithm evaluates all the hints and then scales up frequency in an aggressive manner
by scaling up to highest frequency as long as one Rx queue requires.
In this way, we can minimize any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function.
Specifically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period,
or if the average packet per iteration is less than expectation, the frequency is decreased by one step.

23.5.4. C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets,
an idle counter begins incrementing for each successive zero poll.
At the same time, the function power_idle_heuristic() is called to generate speculative sleep duration
in order to force logical to enter deeper sleeping C-state.
There is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough
to select C-state to enter based on actual sleep period time of giving logical core.
The algorithm has the following sleeping behavior depending on the idle counter:

	If idle count less than 100, the counter value is used as a microsecond sleep value through rte_delay_us()
which execute pause instructions to avoid costly context switch but saving power at the same time.

	If idle count is between 100 and 999, a fixed sleep interval of 100 μs is used.
A 100 μs sleep interval allows the core to enter the C1 state while keeping a fast response time in case new traffic arrives.

	If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration is used.
This allows the core to enter the C3/C6 states.

Note

The thresholds specified above need to be adjusted for different Intel processors and traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values,
the algorithm controls the sleep time in a conservative manner by sleeping for the least possible time
in order to avoid a potential performance impact.

23.6. Empty Poll Mode

Additionally, there is a traffic aware mode of operation called “Empty
Poll” where the number of empty polls can be monitored to keep track
of how busy the application is. Empty poll mode can be enabled by the
command line option –empty-poll.

See Power Management chapter in the DPDK Programmer’s Guide for empty poll mode details.

./l3fwd-power -l xxx -n 4 -w 0000:xx:00.0 -w 0000:xx:00.1 -- -p 0x3 -P --config="(0,0,xx),(1,0,xx)" --empty-poll="0,0,0" -l 14 -m 9 -h 1

Where,

–empty-poll: Enable the empty poll mode instead of original algorithm

–empty-poll=”training_flag, med_threshold, high_threshold”

	training_flag : optional, enable/disable training mode. Default value is 0. If the training_flag is set as 1(true), then the application will start in training mode and print out the trained threshold values. If the training_flag is set as 0(false), the application will start in normal mode, and will use either the default thresholds or those supplied on the command line. The trained threshold values are specific to the user’s system, may give a better power profile when compared to the default threshold values.

	med_threshold : optional, sets the empty poll threshold of a modestly busy system state. If this is not supplied, the application will apply the default value of 350000.

	high_threshold : optional, sets the empty poll threshold of a busy system state. If this is not supplied, the application will apply the default value of 580000.

	-l : optional, set up the LOW power state frequency index

	-m : optional, set up the MED power state frequency index

	-h : optional, set up the HIGH power state frequency index

23.6.1. Empty Poll Mode Example Usage

To initially obtain the ideal thresholds for the system, the training
mode should be run first. This is achieved by running the l3fwd-power
app with the training flag set to “1”, and the other parameters set to
0.

./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "1,0,0" –P

This will run the training algorithm for x seconds on each core (cores 2
and 3), and then print out the recommended threshold values for those
cores. The thresholds should be very similar for each core.

POWER: Bring up the Timer
POWER: set the power freq to MED
POWER: Low threshold is 230277
POWER: MED threshold is 335071
POWER: HIGH threshold is 523769
POWER: Training is Complete for 2
POWER: set the power freq to MED
POWER: Low threshold is 236814
POWER: MED threshold is 344567
POWER: HIGH threshold is 538580
POWER: Training is Complete for 3

Once the values have been measured for a particular system, the app can
then be started without the training mode so traffic can start immediately.

./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "0,340000,540000" –P

23.7. Telemetry Mode

The telemetry mode support for l3fwd-power is a standalone mode, in this mode
l3fwd-power does simple l3fwding along with calculating empty polls, full polls,
and busy percentage for each forwarding core. The aggregation of these
values of all cores is reported as application level telemetry to metric
library for every 500ms from the master core.

The busy percentage is calculated by recording the poll_count
and when the count reaches a defined value the total
cycles it took is measured and compared with minimum and maximum
reference cycles and accordingly busy rate is set to either 0% or
50% or 100%.

Note

	The CONFIG_RTE_LIBRTE_TELEMETRY should be set in order to get the stats in DPDK telemetry.

./examples/l3fwd-power/build/l3fwd-power --telemetry -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --telemetry

The new stats empty_poll , full_poll and busy_percent can be viewed by running the script
/usertools/dpdk-telemetry-client.py and selecting the menu option Send for global Metrics.

24. L3 Forwarding with Access Control Sample Application

The L3 Forwarding with Access Control application is a simple example of packet processing using the DPDK.
The application performs a security check on received packets.
Packets that are in the Access Control List (ACL), which is loaded during initialization, are dropped.
Others are forwarded to the correct port.

24.1. Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control
and packet L3 forwarding.
The application loads two types of rules at initialization:

	Route information rules, which are used for L3 forwarding

	Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port,
the application extracts the necessary information from the TCP/IP header of the received packet and
performs a lookup in the rule database to figure out whether the packets should be dropped (in the ACL range)
or forwarded to desired ports.
The initialization and run-time paths are similar to those of the L3 Forwarding Sample Application.
However, there are significant differences in the two applications.
For example, the original L3 forwarding application uses either LPM or
an exact match algorithm to perform forwarding port lookup,
while this application uses the ACL library to perform both ACL and route entry lookup.
The following sections provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application.
The application also assumes that all the packets it processes are TCP/UDP packets and
always extracts source/destination port information from the packets.

24.1.1. Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically.
The 5-tuple syntax consist of a source IP address, a destination IP address,
a source port, a destination port and a protocol identifier.
The fields in the 5-tuple syntax have the following formats:

	Source IP address and destination IP address
: Each is either a 32-bit field (for IPv4), or a set of 4 32-bit fields (for IPv6) represented by a value and a mask length.
For example, an IPv4 range of 192.168.1.0 to 192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask length = 24.

	Source port and destination port
: Each is a 16-bit field, represented by a lower start and a higher end.
For example, a range of ports 0 to 8192 could be represented by lower = 0 and higher = 8192.

	Protocol identifier
: An 8-bit field, represented by a value and a mask, that covers a range of values.
To verify that a value is in the range, use the following expression: “(VAL & mask) == value”

The trick in how to represent a range with a mask and value is as follows.
A range can be enumerated in binary numbers with some bits that are never changed and some bits that are dynamically changed.
Set those bits that dynamically changed in mask and value with 0.
Set those bits that never changed in the mask with 1, in value with number expected.
For example, a range of 6 to 7 is enumerated as 0b110 and 0b111.
Bit 1-7 are bits never changed and bit 0 is the bit dynamically changed.
Therefore, set bit 0 in mask and value with 0, set bits 1-7 in mask with 1, and bits 1-7 in value with number 0b11.
So, mask is 0xfe, value is 0x6.

Note

The library assumes that each field in the rule is in LSB or Little Endian order when creating the database.
It internally converts them to MSB or Big Endian order.
When performing a lookup, the library assumes the input is in MSB or Big Endian order.

24.1.2. Access Rule Syntax

In this sample application, each rule is a combination of the following:

	5-tuple field: This field has a format described in Section.

	priority field: A weight to measure the priority of the rules.
The rule with the higher priority will ALWAYS be returned if the specific input has multiple matches in the rule database.
Rules with lower priority will NEVER be returned in any cases.

	userdata field: A user-defined field that could be any value.
It can be the forwarding port number if the rule is a route table entry or it can be a pointer to a mapping address
if the rule is used for address mapping in the NAT application.
The key point is that it is a useful reserved field for user convenience.

24.1.3. ACL and Route Rules

The application needs to acquire ACL and route rules before it runs.
Route rules are mandatory, while ACL rules are optional.
To simplify the complexity of the priority field for each rule, all ACL and route entries are assumed to be in the same file.
To read data from the specified file successfully, the application assumes the following:

	Each rule occupies a single line.

	Only the following four rule line types are valid in this application:

	ACL rule line, which starts with a leading character ‘@’

	Route rule line, which starts with a leading character ‘R’

	Comment line, which starts with a leading character ‘#’

	Empty line, which consists of a space, form-feed (’f’), newline (’n’),
carriage return (’r’), horizontal tab (’t’), or vertical tab (’v’).

Other lines types are considered invalid.

	Rules are organized in descending order of priority,
which means rules at the head of the file always have a higher priority than those further down in the file.

	A typical IPv4 ACL rule line should have a format as shown below:

[image: ../_images/ipv4_acl_rule.png]

Fig. 24.1 A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632.
They consist of the dot notation for the address and a prefix length separated by ‘/’.
For example, 192.168.0.34/32, where the address is 192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX,
where MIN and MAX are the inclusive minimum and maximum values of the range.
The range 0:65535 represents all possible ports in a range.
When MIN and MAX are the same value, a single port is represented, for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’.
For example: 6/0xfe matches protocol values 6 and 7.

	Route rules start with a leading character ‘R’ and have the same format as ACL rules except an extra field at the tail
that indicates the forwarding port number.

24.1.4. Rules File Example

[image: ../_images/example_rules.png]

Fig. 24.2 Rules example

Each rule is explained as follows:

	Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.*],
destination IP address = [192.168.0.36], protocol = [6]/[7]

	Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored.
It tells the application to forward packets with destination IP address = [192.168.0.36],
protocol = [6]/[7], destined to port 1.

	Rule 3 (the third line) tells the application to forward all packets to port 0.
This is something like a default route entry.

As described earlier, the application assume rules are listed in descending order of priority,
therefore Rule 1 has the highest priority, then Rule 2, and finally,
Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

	Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [6]

	Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol = [6]

	Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [8]

Observe that:

	Packet 1 matches all of the rules

	Packet 2 matches Rule 2 and Rule 3

	Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped.
Packet 2 matches Rule 2 and is forwarded to port 1.
Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format,
please refer to rule_ipv4.db and rule_ipv6.db files (inside <RTE_SDK>/examples/l3fwd-acl/).

24.1.5. Application Phases

Once the application starts, it transitions through three phases:

	Initialization Phase
- Perform the following tasks:

	Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores, receive and transmit queues.
Bind ports, queues and logical cores. Check ACL search options, and so on.

	Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize the environment and detect possible NICs.
The EAL creates several threads and sets affinity to a specific hardware thread CPU based on the configuration specified
by the command line arguments.

	Read the rule files and format the rules into the representation that the ACL library can recognize.
Call the ACL library function to add the rules into the database and compile them as a trie of pattern sets.
Note that application maintains a separate AC contexts for IPv4 and IPv6 rules.

	Runtime Phase
- Process the incoming packets from a port. Packets are processed in three steps:

	Retrieval: Gets a packet from the receive queue. Each logical core may process several queues for different ports.
This depends on the configuration specified by command line arguments.

	Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup over corresponding AC context.
If an ACL rule is matched, the packets will be dropped and return back to step 1.
If a route rule is matched, it indicates the packet is not in the ACL list and should be forwarded.
If there is no matches for the packet, then the packet is dropped.

	Forwarding: Forwards the packet to the corresponding port.

	Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

24.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-acl sub-directory.

24.3. Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] --rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.

	–config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores

	–rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

	–rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

	–scalar: Use a scalar function to perform rule lookup

	–enable-jumbo: optional, enables jumbo frames

	–max-pkt-len: optional, maximum packet length in decimal (64-9600)

	–no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
(which are in the same socket too), use the following command:

./build/l3fwd-acl -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)" --rule_ipv4="./rule_ipv4.db" -- rule_ipv6="./rule_ipv6.db" --scalar

In this command:

	The -l option enables cores 1, 2

	The -p option enables ports 0 and 1

	The –config option enables one queue on each port and maps each (port,queue) pair to a specific core.
The following table shows the mapping in this example:

	Port

	Queue

	lcore

	Description

	0

	0

	1

	Map queue 0 from port 0 to lcore 1.

	1

	0

	2

	Map queue 0 from port 1 to lcore 2.

	The –rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

	The –rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

	The –scalar option specifies the performing of rule lookup with a scalar function.

24.4. Explanation

The following sections provide some explanation of the sample application code.
The aspects of port, device and CPU configuration are similar to those of the L3 Forwarding Sample Application.
The following sections describe aspects that are specific to L3 forwarding with access control.

24.4.1. Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file.
The application parses the rules from the file and adds them to the database by calling the ACL library function.
It ignores empty and comment lines, and parses and validates the rules it reads.
If errors are detected, the application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields.
The ACL rules save the index to the specific rules in the userdata field,
while route rules save the forwarding port number.
In order to differentiate the two types of rules, ACL rules add a signature in the userdata field.
As for the priority field, the application assumes rules are organized in descending order of priority.
Therefore, the code only decreases the priority number with each rule it parses.

24.4.2. Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context handler
from the ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type,
application needs to calculate the expected offset of the fields from the start of the packet.
That’s why only packets with fixed IPv4/ IPv6 header are supported.
That allows to perform ACL classify straight over incoming packet buffer -
no extra protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled.
If it is, the application records the socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library,
adds rules parsed from the file into the database and build an ACL trie.
It is important to note that the application creates an independent copy of each database for each socket CPU
involved in the task to reduce the time for remote memory access.

25. Link Status Interrupt Sample Application

The Link Status Interrupt sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) that
demonstrates how network link status changes for a network port can be captured and
used by a DPDK application.

25.1. Overview

The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
and performs L2 forwarding for each packet that is received on an RX_PORT.
The following operations are performed:

	RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask

	The source MAC address is replaced by the TX_PORT MAC address

	The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
and the behavior of L2 forwarding each time the link status changes.

25.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the link_status_interrupt sub-directory.

25.3. Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]

where,

	-p PORTMASK: A hexadecimal bitmask of the ports to configure

	-q NQ: A number of queues (=ports) per lcore (default is 1)

	-T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
issue the command:

$./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

25.4. Explanation

The following sections provide some explanation of the code.

25.4.1. Command Line Arguments

The Link Status Interrupt sample application takes specific parameters,
in addition to Environment Abstraction Layer (EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
See Command Line Arguments for more information.

25.4.2. Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See Mbuf Pool Initialization for more information.

25.4.3. Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver.
To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide and the DPDK API Reference.

/*
 * Each logical core is assigned a dedicated TX queue on each port.
 */

RTE_ETH_FOREACH_DEV(portid) {
 /* skip ports that are not enabled */

 if ((lsi_enabled_port_mask & (1 << portid)) == 0)
 continue;

 /* save the destination port id */

 if (nb_ports_in_mask % 2) {
 lsi_dst_ports[portid] = portid_last;
 lsi_dst_ports[portid_last] = portid;
 }
 else
 portid_last = portid;

 nb_ports_in_mask++;

 rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues.
For each port, there is only one RX queue (only one lcore is able to poll a given port).
The number of TX queues depends on the number of available lcores.
The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
 .rxmode = {
 .split_hdr_size = 0,
 },
 .txmode = {},
 .intr_conf = {
 .lsc = 1, /**< link status interrupt feature enabled */
 },
};

Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
and no user space interrupt event is received.
The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
when a link status change is present and calls the user space callbacks registered by the application.
The public interface rte_eth_link_get() just reads the link status in a global structure
that would be updated in the interrupt host thread only.

25.4.4. Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event.
An example callback function that has been written as indicated below.

static void
lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
{
 struct rte_eth_link link;
 int ret;

 RTE_SET_USED(param);

 printf("\n\nIn registered callback...\n");

 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");

 ret = rte_eth_link_get_nowait(port_id, &link);
 if (ret < 0) {
 printf("Failed to get port %d link status: %s\n\n",
 port_id, rte_strerror(-ret));
 } else if (link.link_status) {
 printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
 } else
 printf("Port %d Link Down\n\n", port_id);
}

This function is called when a link status interrupt is present for the right port.
The port_id indicates which port the interrupt applies to.
The type parameter identifies the interrupt event type,
which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
The param parameter is the address of the parameter for the callback.
This function should be implemented with care since it will be called in the interrupt host thread,
which is different from the main thread of its caller.

The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:

rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.

25.4.5. RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff),
the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
 unsigned n_rx_port;
 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
 struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
(see Receive, Process and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
 .rx_thresh = {
 .pthresh = RX_PTHRESH,
 .hthresh = RX_HTHRESH,
 .wthresh = RX_WTHRESH,
 },
};

25.4.6. TX Queue Initialization

Each lcore should be able to transmit on any port.
For every port, a single TX queue is initialized.

/* init one TX queue logical core on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
 .tx_thresh = {
 .pthresh = TX_PTHRESH,
 .hthresh = TX_HTHRESH,
 .wthresh = TX_WTHRESH,
 },
 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};

25.4.7. Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/*
 * Read packet from RX queues
 */

for (i = 0; i < qconf->n_rx_port; i++) {
 portid = qconf->rx_port_list[i];
 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
 port_statistics[portid].rx += nb_rx;

 for (j = 0; j < nb_rx; j++) {
 m = pkts_burst[j];
 rte_prefetch0(rte_pktmbuf_mtod(m, void *));
 lsi_simple_forward(m, portid);
 }
}

Packets are read in a burst of size MAX_PKT_BURST.
The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function.
The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.

Note

In the following code, the two lines for calculating the output port require some explanation.
If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
If portId is odd, the first line subtracts one and the second line does nothing.
Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{
 struct rte_ether_hdr *eth;
 void *tmp;
 unsigned dst_port = lsi_dst_ports[portid];

 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

 /* 02:00:00:00:00:xx */

 tmp = ð->d_addr.addr_bytes[0];

 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);

 /* src addr */
 rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);

 lsi_send_packet(m, dst_port);
}

Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
to send all the received packets on the same TX port using
the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing),
packet N is not necessarily forwarded on the same port as packet N-1.
The application is implemented to illustrate that so the same approach can be reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:

/* Send the packet on an output interface */

static int
lsi_send_packet(struct rte_mbuf *m, uint16_t port)
{
 unsigned lcore_id, len;
 struct lcore_queue_conf *qconf;

 lcore_id = rte_lcore_id();
 qconf = &lcore_queue_conf[lcore_id];
 len = qconf->tx_mbufs[port].len;
 qconf->tx_mbufs[port].m_table[len] = m;
 len++;

 /* enough pkts to be sent */

 if (unlikely(len == MAX_PKT_BURST)) {
 lsi_send_burst(qconf, MAX_PKT_BURST, port);
 len = 0;
 }
 qconf->tx_mbufs[port].len = len;

 return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
This technique introduces some latency when there are not many packets to send.
However, it improves performance:

 cur_tsc = rte_rdtsc();

 /*
 * TX burst queue drain
 */

 diff_tsc = cur_tsc - prev_tsc;

 if (unlikely(diff_tsc > drain_tsc)) {
 /* this could be optimized (use queueid instead of * portid), but it is not called so often */

 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
 if (qconf->tx_mbufs[portid].len == 0)
 continue;

 lsi_send_burst(&lcore_queue_conf[lcore_id],
 qconf->tx_mbufs[portid].len, (uint8_t) portid);
 qconf->tx_mbufs[portid].len = 0;
 }

 /* if timer is enabled */

 if (timer_period > 0) {
 /* advance the timer */

 timer_tsc += diff_tsc;

 /* if timer has reached its timeout */

 if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
 /* do this only on master core */

 if (lcore_id == rte_get_master_lcore()) {
 print_stats();

 /* reset the timer */
 timer_tsc = 0;
 }
 }
 }
 prev_tsc = cur_tsc;
}

26. Server-Node EFD Sample Application

This sample application demonstrates the use of EFD library as a flow-level
load balancer, for more information about the EFD Library please refer to the
DPDK programmer’s guide.

This sample application is a variant of the
client-server sample application
where a specific target node is specified for every and each flow
(not in a round-robin fashion as the original load balancing sample application).

26.1. Overview

The architecture of the EFD flow-based load balancer sample application is
presented in the following figure.

[image: ../_images/server_node_efd.svg]
Fig. 26.1 Using EFD as a Flow-Level Load Balancer

As shown in Fig. 26.1,
the sample application consists of a front-end node (server)
using the EFD library to create a load-balancing table for flows,
for each flow a target backend worker node is specified. The EFD table does not
store the flow key (unlike a regular hash table), and hence, it can
individually load-balance millions of flows (number of targets * maximum number
of flows fit in a flow table per target) while still fitting in CPU cache.

It should be noted that although they are referred to as nodes, the frontend
server and worker nodes are processes running on the same platform.

26.1.1. Front-end Server

Upon initializing, the frontend server node (process) creates a flow
distributor table (based on the EFD library) which is populated with flow
information and its intended target node.

The sample application assigns a specific target node_id (process) for each of
the IP destination addresses as follows:

node_id = i % num_nodes; /* Target node id is generated */
ip_dst = rte_cpu_to_be_32(i); /* Specific ip destination address is
 assigned to this target node */

then the pair of <key,target> is inserted into the flow distribution table.

The main loop of the server process receives a burst of packets, then for
each packet, a flow key (IP destination address) is extracted. The flow
distributor table is looked up and the target node id is returned. Packets are
then enqueued to the specified target node id.

It should be noted that flow distributor table is not a membership test table.
I.e. if the key has already been inserted the target node id will be correct,
but for new keys the flow distributor table will return a value (which can be
valid).

26.1.2. Backend Worker Nodes

Upon initializing, the worker node (process) creates a flow table (a regular
hash table that stores the key default size 1M flows) which is populated with
only the flow information that is serviced at this node. This flow key is
essential to point out new keys that have not been inserted before.

The worker node’s main loop is simply receiving packets then doing a hash table
lookup. If a match occurs then statistics are updated for flows serviced by
this node. If no match is found in the local hash table then this indicates
that this is a new flow, which is dropped.

26.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the server_node_efd sub-directory.

26.3. Running the Application

The application has two binaries to be run: the front-end server
and the back-end node.

The frontend server (server) has the following command line options:

./server [EAL options] -- -p PORTMASK -n NUM_NODES -f NUM_FLOWS

Where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	-n NUM_NODES: Number of back-end nodes that will be used

	-f NUM_FLOWS: Number of flows to be added in the EFD table (1 million, by default)

The back-end node (node) has the following command line options:

./node [EAL options] -- -n NODE_ID

Where,

	-n NODE_ID: Node ID, which cannot be equal or higher than NUM_MODES

First, the server app must be launched, with the number of nodes that will be run.
Once it has been started, the node instances can be run, with different NODE_ID.
These instances have to be run as secondary processes, with --proc-type=secondary
in the EAL options, which will attach to the primary process memory, and therefore,
they can access the queues created by the primary process to distribute packets.

To successfully run the application, the command line used to start the
application has to be in sync with the traffic flows configured on the traffic
generator side.

For examples of application command lines and traffic generator flows, please
refer to the DPDK Test Report. For more details on how to set up and run the
sample applications provided with DPDK package, please refer to the
DPDK Getting Started Guide for Linux and
DPDK Getting Started Guide for FreeBSD.

26.4. Explanation

As described in previous sections, there are two processes in this example.

The first process, the front-end server, creates and populates the EFD table,
which is used to distribute packets to nodes, which the number of flows
specified in the command line (1 million, by default).

static void
create_efd_table(void)
{
 uint8_t socket_id = rte_socket_id();

 /* create table */
 efd_table = rte_efd_create("flow table", num_flows * 2, sizeof(uint32_t),
 1 << socket_id, socket_id);

 if (efd_table == NULL)
 rte_exit(EXIT_FAILURE, "Problem creating the flow table\n");
}

static void
populate_efd_table(void)
{
 unsigned int i;
 int32_t ret;
 uint32_t ip_dst;
 uint8_t socket_id = rte_socket_id();
 uint64_t node_id;

 /* Add flows in table */
 for (i = 0; i < num_flows; i++) {
 node_id = i % num_nodes;

 ip_dst = rte_cpu_to_be_32(i);
 ret = rte_efd_update(efd_table, socket_id,
 (void *)&ip_dst, (efd_value_t)node_id);
 if (ret < 0)
 rte_exit(EXIT_FAILURE, "Unable to add entry %u in "
 "EFD table\n", i);
 }

 printf("EFD table: Adding 0x%x keys\n", num_flows);
}

After initialization, packets are received from the enabled ports, and the IPv4
address from the packets is used as a key to look up in the EFD table,
which tells the node where the packet has to be distributed.

static void
process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[],
 uint16_t rx_count, unsigned int socket_id)
{
 uint16_t i;
 uint8_t node;
 efd_value_t data[EFD_BURST_MAX];
 const void *key_ptrs[EFD_BURST_MAX];

 struct rte_ipv4_hdr *ipv4_hdr;
 uint32_t ipv4_dst_ip[EFD_BURST_MAX];

 for (i = 0; i < rx_count; i++) {
 /* Handle IPv4 header.*/
 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i], struct rte_ipv4_hdr *,
 sizeof(struct rte_ether_hdr));
 ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
 key_ptrs[i] = (void *)&ipv4_dst_ip[i];
 }

 rte_efd_lookup_bulk(efd_table, socket_id, rx_count,
 (const void **) key_ptrs, data);
 for (i = 0; i < rx_count; i++) {
 node = (uint8_t) ((uintptr_t)data[i]);

 if (node >= num_nodes) {
 /*
 * Node is out of range, which means that
 * flow has not been inserted
 */
 flow_dist_stats.drop++;
 rte_pktmbuf_free(pkts[i]);
 } else {
 flow_dist_stats.distributed++;
 enqueue_rx_packet(node, pkts[i]);
 }
 }

 for (i = 0; i < num_nodes; i++)
 flush_rx_queue(i);
}

The burst of packets received is enqueued in temporary buffers (per node),
and enqueued in the shared ring between the server and the node.
After this, a new burst of packets is received and this process is
repeated infinitely.

static void
flush_rx_queue(uint16_t node)
{
 uint16_t j;
 struct node *cl;

 if (cl_rx_buf[node].count == 0)
 return;

 cl = &nodes[node];
 if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer,
 cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){
 for (j = 0; j < cl_rx_buf[node].count; j++)
 rte_pktmbuf_free(cl_rx_buf[node].buffer[j]);
 cl->stats.rx_drop += cl_rx_buf[node].count;
 } else
 cl->stats.rx += cl_rx_buf[node].count;

 cl_rx_buf[node].count = 0;
}

The second process, the back-end node, receives the packets from the shared
ring with the server and send them out, if they belong to the node.

At initialization, it attaches to the server process memory, to have
access to the shared ring, parameters and statistics.

rx_ring = rte_ring_lookup(get_rx_queue_name(node_id));
if (rx_ring == NULL)
 rte_exit(EXIT_FAILURE, "Cannot get RX ring - "
 "is server process running?\n");

mp = rte_mempool_lookup(PKTMBUF_POOL_NAME);
if (mp == NULL)
 rte_exit(EXIT_FAILURE, "Cannot get mempool for mbufs\n");

mz = rte_memzone_lookup(MZ_SHARED_INFO);
if (mz == NULL)
 rte_exit(EXIT_FAILURE, "Cannot get port info structure\n");
info = mz->addr;
tx_stats = &(info->tx_stats[node_id]);
filter_stats = &(info->filter_stats[node_id]);

Then, the hash table that contains the flows that will be handled
by the node is created and populated.

static struct rte_hash *
create_hash_table(const struct shared_info *info)
{
 uint32_t num_flows_node = info->num_flows / info->num_nodes;
 char name[RTE_HASH_NAMESIZE];
 struct rte_hash *h;

 /* create table */
 struct rte_hash_parameters hash_params = {
 .entries = num_flows_node * 2, /* table load = 50% */
 .key_len = sizeof(uint32_t), /* Store IPv4 dest IP address */
 .socket_id = rte_socket_id(),
 .hash_func_init_val = 0,
 };

 snprintf(name, sizeof(name), "hash_table_%d", node_id);
 hash_params.name = name;
 h = rte_hash_create(&hash_params);

 if (h == NULL)
 rte_exit(EXIT_FAILURE,
 "Problem creating the hash table for node %d\n",
 node_id);
 return h;
}

static void
populate_hash_table(const struct rte_hash *h, const struct shared_info *info)
{
 unsigned int i;
 int32_t ret;
 uint32_t ip_dst;
 uint32_t num_flows_node = 0;
 uint64_t target_node;

 /* Add flows in table */
 for (i = 0; i < info->num_flows; i++) {
 target_node = i % info->num_nodes;
 if (target_node != node_id)
 continue;

 ip_dst = rte_cpu_to_be_32(i);

 ret = rte_hash_add_key(h, (void *) &ip_dst);
 if (ret < 0)
 rte_exit(EXIT_FAILURE, "Unable to add entry %u "
 "in hash table\n", i);
 else
 num_flows_node++;

 }

 printf("Hash table: Adding 0x%x keys\n", num_flows_node);
}

After initialization, packets are dequeued from the shared ring
(from the server) and, like in the server process,
the IPv4 address from the packets is used as a key to look up in the hash table.
If there is a hit, packet is stored in a buffer, to be eventually transmitted
in one of the enabled ports. If key is not there, packet is dropped, since the
flow is not handled by the node.

static inline void
handle_packets(struct rte_hash *h, struct rte_mbuf **bufs, uint16_t num_packets)
{
 struct rte_ipv4_hdr *ipv4_hdr;
 uint32_t ipv4_dst_ip[PKT_READ_SIZE];
 const void *key_ptrs[PKT_READ_SIZE];
 unsigned int i;
 int32_t positions[PKT_READ_SIZE] = {0};

 for (i = 0; i < num_packets; i++) {
 /* Handle IPv4 header.*/
 ipv4_hdr = rte_pktmbuf_mtod_offset(bufs[i], struct rte_ipv4_hdr *,
 sizeof(struct rte_ether_hdr));
 ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
 key_ptrs[i] = &ipv4_dst_ip[i];
 }
 /* Check if packets belongs to any flows handled by this node */
 rte_hash_lookup_bulk(h, key_ptrs, num_packets, positions);

 for (i = 0; i < num_packets; i++) {
 if (likely(positions[i] >= 0)) {
 filter_stats->passed++;
 transmit_packet(bufs[i]);
 } else {
 filter_stats->drop++;
 /* Drop packet, as flow is not handled by this node */
 rte_pktmbuf_free(bufs[i]);
 }
 }
}

Finally, note that both processes updates statistics, such as transmitted, received
and dropped packets, which are shown and refreshed by the server app.

static void
do_stats_display(void)
{
 unsigned int i, j;
 const char clr[] = {27, '[', '2', 'J', '\0'};
 const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
 uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
 uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES];

 /* to get TX stats, we need to do some summing calculations */
 memset(port_tx, 0, sizeof(port_tx));
 memset(port_tx_drop, 0, sizeof(port_tx_drop));
 memset(node_tx, 0, sizeof(node_tx));
 memset(node_tx_drop, 0, sizeof(node_tx_drop));

 for (i = 0; i < num_nodes; i++) {
 const struct tx_stats *tx = &info->tx_stats[i];

 for (j = 0; j < info->num_ports; j++) {
 const uint64_t tx_val = tx->tx[info->id[j]];
 const uint64_t drop_val = tx->tx_drop[info->id[j]];

 port_tx[j] += tx_val;
 port_tx_drop[j] += drop_val;
 node_tx[i] += tx_val;
 node_tx_drop[i] += drop_val;
 }
 }

 /* Clear screen and move to top left */
 printf("%s%s", clr, topLeft);

 printf("PORTS\n");
 printf("-----\n");
 for (i = 0; i < info->num_ports; i++)
 printf("Port %u: '%s'\t", (unsigned int)info->id[i],
 get_printable_mac_addr(info->id[i]));
 printf("\n\n");
 for (i = 0; i < info->num_ports; i++) {
 printf("Port %u - rx: %9"PRIu64"\t"
 "tx: %9"PRIu64"\n",
 (unsigned int)info->id[i], info->rx_stats.rx[i],
 port_tx[i]);
 }

 printf("\nSERVER\n");
 printf("-----\n");
 printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n",
 flow_dist_stats.distributed, flow_dist_stats.drop);

 printf("\nNODES\n");
 printf("-------\n");
 for (i = 0; i < num_nodes; i++) {
 const unsigned long long rx = nodes[i].stats.rx;
 const unsigned long long rx_drop = nodes[i].stats.rx_drop;
 const struct filter_stats *filter = &info->filter_stats[i];

 printf("Node %2u - rx: %9llu, rx_drop: %9llu\n"
 " tx: %9"PRIu64", tx_drop: %9"PRIu64"\n"
 " filter_passed: %9"PRIu64", "
 "filter_drop: %9"PRIu64"\n",
 i, rx, rx_drop, node_tx[i], node_tx_drop[i],
 filter->passed, filter->drop);
 }

 printf("\n");
}

27. Service Cores Sample Application

The service cores sample application demonstrates the service cores capabilities
of DPDK. The service cores infrastructure is part of the DPDK EAL, and allows
any DPDK component to register a service. A service is a work item or task, that
requires CPU time to perform its duty.

This sample application registers 5 dummy services. These 5 services are used
to show how the service_cores API can be used to orchestrate these services to
run on different service lcores. This orchestration is done by calling the
service cores APIs, however the sample application introduces a “profile”
concept to contain the service mapping details. Note that the profile concept
is application specific, and not a part of the service cores API.

27.1. Compiling the Application

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/service_cores

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

27.2. Running the Application

To run the example, just execute the binary. Since the application dynamically
adds service cores in the application code itself, there is no requirement to
pass a service core-mask as an EAL argument at startup time.

$./build/service_cores

27.3. Explanation

The following sections provide some explanation of code focusing on
registering applications from an applications point of view, and modifying the
service core counts and mappings at runtime.

27.3.1. Registering a Service

The following code section shows how to register a service as an application.
Note that the service component header must be included by the application in
order to register services: rte_service_component.h, in addition
to the ordinary service cores header rte_service.h which provides
the runtime functions to add, remove and remap service cores.

struct rte_service_spec service = {
 .name = "service_name",
};
int ret = rte_service_component_register(services, &id);
if (ret)
 return -1;

/* set the service itself to be ready to run. In the case of
* ethdev, eventdev etc PMDs, this will be set when the
* appropriate configure or setup function is called.
*/
rte_service_component_runstate_set(id, 1);

/* Collect statistics for the service */
rte_service_set_stats_enable(id, 1);

/* The application sets the service to running state. Note that this
 * function enables the service to run - while the 'component' version
 * of this function (as above) marks the service itself as ready */
ret = rte_service_runstate_set(id, 1);

27.3.2. Controlling A Service Core

This section demonstrates how to add a service core. The rte_service.h
header file provides the functions for dynamically adding and removing cores.
The APIs to add and remove cores use lcore IDs similar to existing DPDK
functions.

These are the functions to start a service core, and have it run a service:

/* the lcore ID to use as a service core */
uint32_t service_core_id = 7;
ret = rte_service_lcore_add(service_core_id);
if(ret)
 return -1;

/* service cores are in "stopped" state when added, so start it */
ret = rte_service_lcore_start(service_core_id);
if(ret)
 return -1;

/* map a service to the service core, causing it to run the service */
uint32_t service_id; /* ID of a registered service */
uint32_t enable = 1; /* 1 maps the service, 0 unmaps */
ret = rte_service_map_lcore_set(service_id, service_core_id, enable);
if(ret)
 return -1;

27.3.3. Removing A Service Core

To remove a service core, the steps are similar to adding but in reverse order.
Note that it is not allowed to remove a service core if the service is running,
and the service-core is the only core running that service (see documentation
for rte_service_lcore_stop function for details).

27.3.4. Conclusion

The service cores infrastructure provides DPDK with two main features. The first
is to abstract away hardware differences: the service core can CPU cycles to
a software fallback implementation, allowing the application to be abstracted
from the difference in HW / SW availability. The second feature is a flexible
method of registering functions to be run, allowing the running of the
functions to be scaled across multiple CPUs.

28. Multi-process Sample Application

This chapter describes the example applications for multi-processing that are included in the DPDK.

28.1. Example Applications

28.1.1. Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications,
and as documented in the DPDK Getting Started Guide.

To compile the sample application see Compiling the Sample Applications.

The applications are located in the multi_process sub-directory.

Note

If just a specific multi-process application needs to be built,
the final make command can be run just in that application’s directory,
rather than at the top-level multi-process directory.

28.1.2. Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to demonstrate how
two DPDK processes can work together using queues and memory pools to share information.

28.1.2.1. Running the Application

To run the application, start one copy of the simple_mp binary in one terminal,
passing at least two cores in the coremask/corelist, as follows:

./build/simple_mp -l 0-1 -n 4 --proc-type=primary

For the first DPDK process run, the proc-type flag can be omitted or set to auto,
since all DPDK processes will default to being a primary instance,
meaning they have control over the hugepage shared memory regions.
The process should start successfully and display a command prompt as follows:

$./build/simple_mp -l 0-1 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 0
...

EAL: Requesting 2 pages of size 1073741824
EAL: Requesting 768 pages of size 2097152
EAL: Ask a virtual area of 0x40000000 bytes
EAL: Virtual area found at 0x7ff200000000 (size = 0x40000000)
...

EAL: check igb_uio module
EAL: check module finished
EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)

Starting core 1

simple_mp >

To run the secondary process to communicate with the primary process,
again run the same binary setting at least two cores in the coremask/corelist:

./build/simple_mp -l 2-3 -n 4 --proc-type=secondary

When running a secondary process such as that shown above, the proc-type parameter can again be specified as auto.
However, omitting the parameter altogether will cause the process to try and start as a primary rather than secondary process.

Once the process type is specified correctly,
the process starts up, displaying largely similar status messages to the primary instance as it initializes.
Once again, you will be presented with a command prompt.

Once both processes are running, messages can be sent between them using the send command.
At any stage, either process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5f89820) EAL: Master core 8 is ready (tid=864a3820)
EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready (tid=85995700)
Starting core 11 Starting core 9
simple_mp > send hello_secondary simple_mp > core 9: Received 'hello_secondary'
simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primary
simple_mp > quit simple_mp > quit

Note

If the primary instance is terminated, the secondary instance must also be shut-down and restarted after the primary.
This is necessary because the primary instance will clear and reset the shared memory regions on startup,
invalidating the secondary process’s pointers.
The secondary process can be stopped and restarted without affecting the primary process.

28.1.2.2. How the Application Works

The core of this example application is based on using two queues and a single memory pool in shared memory.
These three objects are created at startup by the primary process,
since the secondary process cannot create objects in memory as it cannot reserve memory zones,
and the secondary process then uses lookup functions to attach to these objects as it starts up.

if (rte_eal_process_type() == RTE_PROC_PRIMARY){
 send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);
 recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);
 message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data_sz, NULL, NULL, NULL, NULL, SOCKET0, flags);
} else {
 recv_ring = rte_ring_lookup(_PRI_2_SEC);
 send_ring = rte_ring_lookup(_SEC_2_PRI);
 message_pool = rte_mempool_lookup(_MSG_POOL);
}

Note, however, that the named ring structure used as send_ring in the primary process is the recv_ring in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary processes,
the application simply dedicates two threads to sending and receiving messages respectively.
The receive thread simply dequeues any messages on the receive ring, prints them,
and frees the buffer space used by the messages back to the memory pool.
The send thread makes use of the command-prompt library to interactively request user input for messages to send.
Once a send command is issued by the user, a buffer is allocated from the memory pool, filled in with the message contents,
then enqueued on the appropriate rte_ring.

28.1.3. Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can run in parallel,
with each process performing the same set of packet- processing operations.
(Since each process is identical in functionality to the others,
we refer to this as symmetric multi-processing, to differentiate it from asymmetric multi- processing -
such as a client-server mode of operation seen in the next example,
where different processes perform different tasks, yet co-operate to form a packet-processing system.)
The following diagram shows the data-flow through the application, using two processes.

[image: ../_images/sym_multi_proc_app.png]

Fig. 28.1 Example Data Flow in a Symmetric Multi-process Application

As the diagram shows, each process reads packets from each of the network ports in use.
RSS is used to distribute incoming packets on each port to different hardware RX queues.
Each process reads a different RX queue on each port and so does not contend with any other process for that queue access.
Similarly, each process writes outgoing packets to a different TX queue on each port.

28.1.3.1. Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run as the primary instance,
though with a number of other application- specific parameters also provided after the EAL arguments.
These additional parameters are:

	-p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system are to be used.
For example: -p 3 to use ports 0 and 1 only.

	–num-procs <N>, where N is the total number of symmetric_mp instances that will be run side-by-side to perform packet processing.
This parameter is used to configure the appropriate number of receive queues on each network port.

	–proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes, specified above).
This identifies which symmetric_mp instance is being run, so that each process can read a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified,
and the first two must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4,
all performing level-2 forwarding of packets between ports 0 and 1,
the following commands can be used (assuming run as root):

./build/symmetric_mp -l 1 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
./build/symmetric_mp -l 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
./build/symmetric_mp -l 3 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
./build/symmetric_mp -l 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3

Note

In the above example, the process type can be explicitly specified as primary or secondary, rather than auto.
When using auto, the first process run creates all the memory structures needed for all processes -
irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note

For the symmetric multi-process example, since all processes work in the same manner,
once the hugepage shared memory and the network ports are initialized,
it is not necessary to restart all processes if the primary instance dies.
Instead, that process can be restarted as a secondary,
by explicitly setting the proc-type to secondary on the command line.
(All subsequent instances launched will also need this explicitly specified,
as auto-detection will detect no primary processes running and therefore attempt to re-initialize shared memory.)

28.1.3.2. How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most part,
calling the rte_eal_init(), 1 G and 10 G driver initialization and then probing devices.
Thereafter, the initialization done depends on whether the process is configured as a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports to be used are initialized -
the number of RX and TX queues per port being determined by the num-procs parameter passed on the command-line.
The structures for the initialized network ports are stored in shared memory and
therefore will be accessible by the secondary process as it initializes.

if (num_ports & 1)
 rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i < num_ports; i++){
 if(proc_type == RTE_PROC_PRIMARY)
 if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)
 rte_exit(EXIT_FAILURE, "Error initializing ports\n");
}

In the secondary instance, rather than initializing the network ports, the port information exported by the primary process is used,
giving the secondary process access to the hardware and software rings for each network port.
Similarly, the memory pool of mbufs is accessed by doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_create(_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)

Once this initialization is complete, the main loop of each process, both primary and secondary,
is exactly the same - each process reads from each port using the queue corresponding to its proc-id parameter,
and writes to the corresponding transmit queue on the output port.

28.1.4. Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can
use a client-server type multi-process design to do packet processing.
In this example, a single server process performs the packet reception from the ports being used and
distributes these packets using round-robin ordering among a set of client processes,
which perform the actual packet processing.
In this case, the client applications just perform level-2 forwarding of packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

[image: ../_images/client_svr_sym_multi_proc_app.png]

Fig. 28.2 Example Data Flow in a Client-Server Symmetric Multi-process Application

28.1.4.1. Running the Application

The server process must be run initially as the primary process to set up all memory structures for use by the clients.
In addition to the EAL parameters, the application- specific parameters are:

	-p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system are to be used.
For example: -p 3 to use ports 0 and 1 only.

	-n <num-clients>, where the num-clients parameter is the number of client processes that will process the packets received
by the server application.

Note

In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the coremask/corelist, performs all packet I/O.
If a coremask/corelist is specified with more than a single lcore bit set in it,
an additional lcore will be used for a thread to periodically print packet count statistics.

Since the server application stores configuration data in shared memory, including the network ports to be used,
the only application parameter needed by a client process is its client instance ID.
Therefore, to run a server application on lcore 1 (with lcore 2 printing statistics) along with two client processes running on lcores 3 and 4,
the following commands could be used:

./mp_server/build/mp_server -l 1-2 -n 4 -- -p 3 -n 2
./mp_client/build/mp_client -l 3 -n 4 --proc-type=auto -- -n 0
./mp_client/build/mp_client -l 4 -n 4 --proc-type=auto -- -n 1

Note

If the server application dies and needs to be restarted, all client applications also need to be restarted,
as there is no support in the server application for it to run as a secondary process.
Any client processes that need restarting can be restarted without affecting the server process.

28.1.4.2. How the Application Works

The server process performs the network port and data structure initialization much as the symmetric multi-process application does when run as primary.
One additional enhancement in this sample application is that the server process stores its port configuration data in a memory zone in hugepage shared memory.
This eliminates the need for the client processes to have the portmask parameter passed into them on the command line,
as is done for the symmetric multi-process application, and therefore eliminates mismatched parameters as a potential source of errors.

In the same way that the server process is designed to be run as a primary process instance only,
the client processes are designed to be run as secondary instances only.
They have no code to attempt to create shared memory objects.
Instead, handles to all needed rings and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup().
The network ports for use by the processes are obtained by loading the network port drivers and probing the PCI bus,
which will, as in the symmetric multi-process example,
automatically get access to the network ports using the settings already configured by the primary/server process.

Once all applications are initialized, the server operates by reading packets from each network port in turn and
distributing those packets to the client queues (software rings, one for each client process) in round-robin order.
On the client side, the packets are read from the rings in as big of bursts as possible, then routed out to a different network port.
The routing used is very simple. All packets received on the first NIC port are transmitted back out on the second port and vice versa.
Similarly, packets are routed between the 3rd and 4th network ports and so on.
The sending of packets is done by writing the packets directly to the network ports; they are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent,
so as to allow the sending of multiple packets in a single burst to improve efficiency.
For example, the client process will buffer packets to send,
until either the buffer is full or until we receive no further packets from the server.

29. QoS Metering Sample Application

The QoS meter sample application is an example that demonstrates the use of DPDK to provide QoS marking and metering,
as defined by RFC2697 for Single Rate Three Color Marker (srTCM) and RFC 2698 for Two Rate Three Color Marker (trTCM) algorithm.

29.1. Overview

The application uses a single thread for reading the packets from the RX port,
metering, marking them with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or
changing the color of the packet in a static manner depending on both the input and output colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:

	Simple forwarding

	srTCM color blind

	srTCM color aware

	srTCM color blind

	srTCM color aware

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable parameters
(CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when
all the incoming packets are colored as green.

29.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the qos_meter sub-directory.

29.3. Running the Application

The application execution command line is as below:

./qos_meter [EAL options] -- -p PORTMASK

The application is constrained to use a single core in the EAL core mask and 2 ports only in the application port mask
(first port from the port mask is used for RX and the other port in the core mask is used for TX).

Refer to DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

29.4. Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0
#define APP_MODE_SRTCM_COLOR_BLIND 1
#define APP_MODE_SRTCM_COLOR_AWARE 2
#define APP_MODE_TRTCM_COLOR_BLIND 3
#define APP_MODE_TRTCM_COLOR_AWARE 4

#define APP_MODE APP_MODE_SRTCM_COLOR_BLIND

To simplify debugging (for example, by using the traffic generator RX side MAC address based packet filtering feature),
the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default values:

struct rte_meter_srtcm_params app_srtcm_params[] = {

 {.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},

};

struct rte_meter_trtcm_params app_trtcm_params[] = {

 {.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},

};

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames (IPv4 packet size of 46 bytes)
and green, the expected output traffic should be marked as shown in the following table:

Table 29.1 Output Traffic Marking

	Mode

	Green (Mpps)

	Yellow (Mpps)

	Red (Mpps)

	srTCM blind

	1

	1

	12.88

	srTCM color

	1

	1

	12.88

	trTCM blind

	1

	0.5

	13.38

	trTCM color

	1

	0.5

	13.38

	FWD

	14.88

	0

	0

To set up the policing scheme as desired, it is necessary to modify the main.h source file,
where this policy is implemented as a static structure, as follows:

int policer_table[e_RTE_METER_COLORS][e_RTE_METER_COLORS] =
{
 { GREEN, RED, RED},
 { DROP, YELLOW, RED},
 { DROP, DROP, RED}
};

Where rows indicate the input color, columns indicate the output color,
and the value that is stored in the table indicates the action to be taken for that particular case.

There are four different actions:

	GREEN: The packet’s color is changed to green.

	YELLOW: The packet’s color is changed to yellow.

	RED: The packet’s color is changed to red.

	DROP: The packet is dropped.

In this particular case:

	Every packet which input and output color are the same, keeps the same color.

	Every packet which color has improved is dropped (this particular case can’t happen, so these values will not be used).

	For the rest of the cases, the color is changed to red.

Note

	In color blind mode, first row GREEN color is only valid.

	To drop the packet, policer_table action has to be set to DROP.

30. QoS Scheduler Sample Application

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

30.1. Overview

The architecture of the QoS scheduler application is shown in the following figure.

[image: ../_images/qos_sched_app_arch.png]

Fig. 30.1 QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application,
with two or three threads per each packet flow configuration being used.
The RX thread reads packets from the RX port,
classifies the packets based on the double VLAN (outer and inner) and
the lower byte of the IP destination address and puts them into the ring queue.
The worker thread dequeues the packets from the ring and calls the QoS scheduler enqueue/dequeue functions.
If a separate TX core is used, these are sent to the TX ring.
Otherwise, they are sent directly to the TX port.
The TX thread, if present, reads from the TX ring and write the packets to the TX port.

30.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the qos_sched sub-directory.

Note

This application is intended as a linux only.

Note

To get statistics on the sample app using the command line interface as described in the next section,
DPDK must be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS,
which can be done by changing the configuration file for the specific target to be compiled.

30.3. Running the Application

Note

In order to run the application, a total of at least 4
G of huge pages must be set up for each of the used sockets (depending on the cores in use).

The application has a number of command line options:

./qos_sched [EAL options] -- <APP PARAMS>

Mandatory application parameters include:

	–pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configuration.
Multiple pfc entities can be configured in the command line,
having 4 or 5 items (if TX core defined or not).

Optional application parameters include:

	-i: It makes the application to start in the interactive mode.
In this mode, the application shows a command line that can be used for obtaining statistics while
scheduling is taking place (see interactive mode below for more information).

	–mst n: Master core index (the default value is 1).

	–rsz “A, B, C”: Ring sizes:

	A = Size (in number of buffer descriptors) of each of the NIC RX rings read
by the I/O RX lcores (the default value is 128).

	B = Size (in number of elements) of each of the software rings used
by the I/O RX lcores to send packets to worker lcores (the default value is 8192).

	C = Size (in number of buffer descriptors) of each of the NIC TX rings written
by worker lcores (the default value is 256)

	–bsz “A, B, C, D”: Burst sizes

	A = I/O RX lcore read burst size from the NIC RX (the default value is 64)

	B = I/O RX lcore write burst size to the output software rings,
worker lcore read burst size from input software rings,QoS enqueue size (the default value is 64)

	C = QoS dequeue size (the default value is 32)

	D = Worker lcore write burst size to the NIC TX (the default value is 64)

	–msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)

	–rth “A, B, C”: The RX queue threshold parameters

	A = RX prefetch threshold (the default value is 8)

	B = RX host threshold (the default value is 8)

	C = RX write-back threshold (the default value is 4)

	–tth “A, B, C”: TX queue threshold parameters

	A = TX prefetch threshold (the default value is 36)

	B = TX host threshold (the default value is 0)

	C = TX write-back threshold (the default value is 0)

	–cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters
needed for the QoS scheduler configuration.

The profile file has the following format:

; port configuration [port]

frame overhead = 24
number of subports per port = 1

; Subport configuration

[subport 0]
number of pipes per subport = 4096
queue sizes = 64 64 64 64 64 64 64 64 64 64 64 64 64
tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 1250000000; Bytes per second
tc 1 rate = 1250000000; Bytes per second
tc 2 rate = 1250000000; Bytes per second
tc 3 rate = 1250000000; Bytes per second
tc 4 rate = 1250000000; Bytes per second
tc 5 rate = 1250000000; Bytes per second
tc 6 rate = 1250000000; Bytes per second
tc 7 rate = 1250000000; Bytes per second
tc 8 rate = 1250000000; Bytes per second
tc 9 rate = 1250000000; Bytes per second
tc 10 rate = 1250000000; Bytes per second
tc 11 rate = 1250000000; Bytes per second
tc 12 rate = 1250000000; Bytes per second

tc period = 10; Milliseconds
tc oversubscription period = 10; Milliseconds

pipe 0-4095 = 0; These pipes are configured with pipe profile 0

; Pipe configuration

[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc 4 rate = 305175; Bytes per second
tc 5 rate = 305175; Bytes per second
tc 6 rate = 305175; Bytes per second
tc 7 rate = 305175; Bytes per second
tc 8 rate = 305175; Bytes per second
tc 9 rate = 305175; Bytes per second
tc 10 rate = 305175; Bytes per second
tc 11 rate = 305175; Bytes per second
tc 12 rate = 305175; Bytes per second
tc period = 40; Milliseconds

tc 0 oversubscription weight = 1
tc 1 oversubscription weight = 1
tc 2 oversubscription weight = 1
tc 3 oversubscription weight = 1
tc 4 oversubscription weight = 1
tc 5 oversubscription weight = 1
tc 6 oversubscription weight = 1
tc 7 oversubscription weight = 1
tc 8 oversubscription weight = 1
tc 9 oversubscription weight = 1
tc 10 oversubscription weight = 1
tc 11 oversubscription weight = 1
tc 12 oversubscription weight = 1

tc 12 wrr weights = 1 1 1 1

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 48 40 32
tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 48 40 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

tc 4 wred min = 48 40 32
tc 4 wred max = 64 64 64
tc 4 wred inv prob = 10 10 10
tc 4 wred weight = 9 9 9

tc 5 wred min = 48 40 32
tc 5 wred max = 64 64 64
tc 5 wred inv prob = 10 10 10
tc 5 wred weight = 9 9 9

tc 6 wred min = 48 40 32
tc 6 wred max = 64 64 64
tc 6 wred inv prob = 10 10 10
tc 6 wred weight = 9 9 9

tc 7 wred min = 48 40 32
tc 7 wred max = 64 64 64
tc 7 wred inv prob = 10 10 10
tc 7 wred weight = 9 9 9

tc 8 wred min = 48 40 32
tc 8 wred max = 64 64 64
tc 8 wred inv prob = 10 10 10
tc 8 wred weight = 9 9 9

tc 9 wred min = 48 40 32
tc 9 wred max = 64 64 64
tc 9 wred inv prob = 10 10 10
tc 9 wred weight = 9 9 9

tc 10 wred min = 48 40 32
tc 10 wred max = 64 64 64
tc 10 wred inv prob = 10 10 10
tc 10 wred weight = 9 9 9

tc 11 wred min = 48 40 32
tc 11 wred max = 64 64 64
tc 11 wred inv prob = 10 10 10
tc 11 wred weight = 9 9 9

tc 12 wred min = 48 40 32
tc 12 wred max = 64 64 64
tc 12 wred inv prob = 10 10 10
tc 12 wred weight = 9 9 9

30.3.1. Interactive mode

These are the commands that are currently working under the command line interface:

	Control Commands

	–quit: Quits the application.

	General Statistics

	stats app: Shows a table with in-app calculated statistics.

	stats port X subport Y: For a specific subport, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes.
The information is displayed in a table separating it in different traffic classes.

	stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes.
This information is displayed in a table separating it in individual queues.

	Average queue size

All of these commands work the same way, averaging the number of packets throughout a specific subset of queues.

Two parameters can be configured for this prior to calling any of these commands:

	qavg n X: n is the number of times that the calculation will take place.
Bigger numbers provide higher accuracy. The default value is 10.

	qavg period X: period is the number of microseconds that will be allowed between each calculation.
The default value is 100.

The commands that can be used for measuring average queue size are:

	qavg port X subport Y: Show average queue size per subport.

	qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic class.

	qavg port X subport Y pipe Z: Show average queue size per pipe.

	qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic class.

	qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

30.3.2. Example

The following is an example command with a single packet flow configuration:

./qos_sched -l 1,5,7 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg

This example uses a single packet flow configuration which creates one RX thread on lcore 5 reading
from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same core for QoS scheduler is given below:

./qos_sched -l 1,2,6,7 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg

Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread are also supported,
providing flexibility to balance the work.

The EAL coremask/corelist is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.

30.4. Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS application:

	A subport represents a predefined group of users.

	A pipe represents an individual user/subscriber.

	A traffic class is the representation of a different traffic type with a specific loss rate,
delay and jitter requirements; such as data voice, video or data transfers.

	A queue hosts packets from one or multiple connections of the same type belonging to the same user.

The traffic flows that need to be configured are application dependent.
This application classifies based on the QinQ double VLAN tags and the IP destination address as indicated in the following table.

Table 30.1 Entity Types

	Level Name

	Siblings per Parent

	QoS Functional Description

	Selected By

	Port

	
	

	Ethernet port

	Physical port

	Subport

	Config (8)

	Traffic shaped (token bucket)

	Outer VLAN tag

	Pipe

	Config (4k)

	Traffic shaped (token bucket)

	Inner VLAN tag

	Traffic Class

	13

	TCs of the same pipe services in strict priority

	Destination IP address (0.0.0.X)

	Queue

	High Priority TC: 1,
Lowest Priority TC: 4

	Queue of lowest priority traffic
class (Best effort) serviced in WRR

	Destination IP address (0.0.0.X)

Please refer to the “QoS Scheduler” chapter in the DPDK Programmer’s Guide for more information about these parameters.

31. Timer Sample Application

The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK application.
This application prints some messages from different lcores regularly, demonstrating the use of timers.

31.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the timer sub-directory.

31.2. Running the Application

To run the example in linux environment:

$./build/timer -l 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

31.3. Explanation

The following sections provide some explanation of the code.

31.3.1. Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte_timer_subsystem_init() function.

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_panic("Cannot init EAL\n");

/* init RTE timer library */

rte_timer_subsystem_init();

After timer creation (see the next paragraph),
the main loop is executed on each slave lcore using the well-known rte_eal_remote_launch() and also on the master.

/* call lcore_mainloop() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
 rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);
}

/* call it on master lcore too */

(void) lcore_mainloop(NULL);

The main loop is very simple in this example:

while (1) {
 /*
 * Call the timer handler on each core: as we don't
 * need a very precise timer, so only call
 * rte_timer_manage() every ~10ms (at 2 GHz). In a real
 * application, this will enhance performances as
 * reading the HPET timer is not efficient.
 */

 cur_tsc = rte_rdtsc();

 diff_tsc = cur_tsc - prev_tsc;

 if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
 rte_timer_manage();
 prev_tsc = cur_tsc;
 }
}

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the
rte_timer_manage() function must be called or not.
In this example, the resolution of the timer is 10 milliseconds.

31.3.2. Managing Timers

In the main() function, the two timers are initialized.
This call to rte_timer_init() is necessary before doing any other operation on the timer structure.

/* init timer structures */

rte_timer_init(&timer0);
rte_timer_init(&timer1);

Then, the two timers are configured:

	The first timer (timer0) is loaded on the master lcore and expires every second.
Since the PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem.
The callback function is timer0_cb().

	The second timer (timer1) is loaded on the next available lcore every 333 ms.
The SINGLE flag means that the timer expires only once and must be reloaded manually if required.
The callback function is timer1_cb().

/* load timer0, every second, on master lcore, reloaded automatically */

hz = rte_get_hpet_hz();

lcore_id = rte_lcore_id();

rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);

/* load timer1, every second/3, on next lcore, reloaded manually */

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);

The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after 20 seconds).
In this case, the timer is stopped using the rte_timer_stop() function.

/* timer0 callback */

static void
timer0_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
{
 static unsigned counter = 0;

 unsigned lcore_id = rte_lcore_id();

 printf("%s() on lcore %u\n", FUNCTION , lcore_id);

 /* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */

 if ((counter ++) == 20)
 rte_timer_stop(tim);
}

The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore, using the
rte_timer_reset() function:

/* timer1 callback */

static void
timer1_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
{
 unsigned lcore_id = rte_lcore_id();
 uint64_t hz;

 printf("%s() on lcore %u\\n", FUNCTION , lcore_id);

 /* reload it on another lcore */

 hz = rte_get_hpet_hz();

 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

 rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}

32. Packet Ordering Application

The Packet Ordering sample app simply shows the impact of reordering a stream.
It’s meant to stress the library with different configurations for performance.

32.1. Overview

The application uses at least three CPU cores:

	RX core (maser core) receives traffic from the NIC ports and feeds Worker
cores with traffic through SW queues.

	Worker core (slave core) basically do some light work on the packet.
Currently it modifies the output port of the packet for configurations with
more than one port enabled.

	TX Core (slave core) receives traffic from Worker cores through software queues,
inserts out-of-order packets into reorder buffer, extracts ordered packets
from the reorder buffer and sends them to the NIC ports for transmission.

32.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the packet_ordering sub-directory.

32.3. Running the Application

Refer to DPDK Getting Started Guide for general information on running applications
and the Environment Abstraction Layer (EAL) options.

32.3.1. Application Command Line

The application execution command line is:

./packet_ordering [EAL options] -- -p PORTMASK [--disable-reorder] [--insight-worker]

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores.
The first CPU core in the core mask is the master core and would be assigned to
RX core, the last to TX core and the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers.
When setting more than 1 port, traffic would be forwarded in pairs.
For example, if we enable 4 ports, traffic from port 0 to 1 and from 1 to 0,
then the other pair from 2 to 3 and from 3 to 2, having [0,1] and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering
of traffic, which should help evaluate reordering performance impact.

The insight-worker long option enables output the packet statistics of each worker thread.

33. VMDQ and DCB Forwarding Sample Application

The VMDQ and DCB Forwarding sample application is a simple example of packet processing using the DPDK.
The application performs L2 forwarding using VMDQ and DCB to divide the incoming traffic into queues.
The traffic splitting is performed in hardware by the VMDQ and DCB features of the Intel® 82599 and X710/XL710 Ethernet Controllers.

33.1. Overview

This sample application can be used as a starting point for developing a new application that is based on the DPDK and
uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on MAC and VLAN traffic to divide the traffic into input queues on the basis of the Destination MAC
address, VLAN ID and VLAN user priority fields.
VMDQ filters split the traffic into 16 or 32 groups based on the Destination MAC and VLAN ID.
Then, DCB places each packet into one of queues within that group, based upon the VLAN user priority field.

All traffic is read from a single incoming port (port 0) and output on port 1, without any processing being performed.
With Intel® 82599 NIC, for example, the traffic is split into 128 queues on input, where each thread of the application reads from
multiple queues. When run with 8 threads, that is, with the -c FF option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 32 pools with 4 queues each as indicated in Fig. 33.1.
The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the splitting of traffic into 16 pools of 8 queues. While the
Intel® X710 or XL710 Ethernet Controller NICs support many configurations of VMDQ pools of 4 or 8 queues each. For simplicity, only 16
or 32 pools is supported in this sample. And queues numbers for each VMDQ pool can be changed by setting CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM
in config/common_* file.
The nb-pools, nb-tcs and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdq_dcb [EAL options] -- -p PORTMASK --nb-pools NP --nb-tcs TC --enable-rss

where, NP can be 16 or 32, TC can be 4 or 8, rss is disabled by default.

[image: ../_images/vmdq_dcb_example.svg]
Fig. 33.1 Packet Flow Through the VMDQ and DCB Sample Application

In Linux* user space, the application can display statistics with the number of packets received on each queue.
To have the application display the statistics, send a SIGHUP signal to the running application process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2 Forwarding application
(see L2 Forwarding Sample Application (in Real and Virtualized Environments))
as it performs unidirectional L2 forwarding of packets from one port to a second port.
No command-line options are taken by this application apart from the standard EAL command-line options.

Note

Since VMD queues are being used for VMM, this application works correctly
when VTd is disabled in the BIOS or Linux* kernel (intel_iommu=off).

33.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the vmdq_dcb sub-directory.

33.3. Running the Application

To run the example in a linux environment:

user@target:~$./build/vmdq_dcb -l 0-3 -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

33.4. Explanation

The following sections provide some explanation of the code.

33.4.1. Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application,
as is the creation of the mbuf pool.
See L2 Forwarding Sample Application (in Real and Virtualized Environments).
Where this example application differs is in the configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the appropriate values in the
rte_eth_conf structure passed to the rte_eth_dev_configure() API.
Initially in the application,
a default structure is provided for VMDQ and DCB configuration to be filled in later by the application.

/* empty vmdq+dcb configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_dcb_conf_default = {
 .rxmode = {
 .mq_mode = ETH_MQ_RX_VMDQ_DCB,
 .split_hdr_size = 0,
 },
 .txmode = {
 .mq_mode = ETH_MQ_TX_VMDQ_DCB,
 },
 /*
 * should be overridden separately in code with
 * appropriate values
 */
 .rx_adv_conf = {
 .vmdq_dcb_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .enable_default_pool = 0,
 .default_pool = 0,
 .nb_pool_maps = 0,
 .pool_map = {{0, 0},},
 .dcb_tc = {0},
 },
 .dcb_rx_conf = {
 .nb_tcs = ETH_4_TCS,
 /** Traffic class each UP mapped to. */
 .dcb_tc = {0},
 },
 .vmdq_rx_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .enable_default_pool = 0,
 .default_pool = 0,
 .nb_pool_maps = 0,
 .pool_map = {{0, 0},},
 },
 },
 .tx_adv_conf = {
 .vmdq_dcb_tx_conf = {
 .nb_queue_pools = ETH_32_POOLS,
 .dcb_tc = {0},
 },
 },
};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values,
based on the global vlan_tags array,
and dividing up the possible user priority values equally among the individual queues
(also referred to as traffic classes) within each pool. With Intel® 82599 NIC,
if the number of pools is 32, then the user priority fields are allocated 2 to a queue.
If 16 pools are used, then each of the 8 user priority fields is allocated to its own queue within the pool.
With Intel® X710/XL710 NICs, if number of tcs is 4, and number of queues in pool is 8,
then the user priority fields are allocated 2 to one tc, and a tc has 2 queues mapping to it, then
RSS will determine the destination queue in 2.
For the VLAN IDs, each one can be allocated to possibly multiple pools of queues,
so the pools parameter in the rte_eth_vmdq_dcb_conf structure is specified as a bitmask value.
For destination MAC, each VMDQ pool will be assigned with a MAC address. In this sample, each VMDQ pool
is assigned to the MAC like 52:54:00:12:<port_id>:<pool_id>, that is,
the MAC of VMDQ pool 2 on port 1 is 52:54:00:12:01:02.

const uint16_t vlan_tags[] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31
};

/* pool mac addr template, pool mac addr is like: 52 54 00 12 port# pool# */
static struct rte_ether_addr pool_addr_template = {
 .addr_bytes = {0x52, 0x54, 0x00, 0x12, 0x00, 0x00}
};

/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array
 * given above, and the number of traffic classes available for use. */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf)
{
 struct rte_eth_vmdq_dcb_conf conf;
 struct rte_eth_vmdq_rx_conf vmdq_conf;
 struct rte_eth_dcb_rx_conf dcb_conf;
 struct rte_eth_vmdq_dcb_tx_conf tx_conf;
 uint8_t i;

 conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 vmdq_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 tx_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 conf.nb_pool_maps = num_pools;
 vmdq_conf.nb_pool_maps = num_pools;
 conf.enable_default_pool = 0;
 vmdq_conf.enable_default_pool = 0;
 conf.default_pool = 0; /* set explicit value, even if not used */
 vmdq_conf.default_pool = 0;

 for (i = 0; i < conf.nb_pool_maps; i++) {
 conf.pool_map[i].vlan_id = vlan_tags[i];
 vmdq_conf.pool_map[i].vlan_id = vlan_tags[i];
 conf.pool_map[i].pools = 1UL << i ;
 vmdq_conf.pool_map[i].pools = 1UL << i;
 }
 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){
 conf.dcb_tc[i] = i % num_tcs;
 dcb_conf.dcb_tc[i] = i % num_tcs;
 tx_conf.dcb_tc[i] = i % num_tcs;
 }
 dcb_conf.nb_tcs = (enum rte_eth_nb_tcs)num_tcs;
 (void)(rte_memcpy(eth_conf, &vmdq_dcb_conf_default, sizeof(*eth_conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &conf,
 sizeof(conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.dcb_rx_conf, &dcb_conf,
 sizeof(dcb_conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &vmdq_conf,
 sizeof(vmdq_conf)));
 (void)(rte_memcpy(ð_conf->tx_adv_conf.vmdq_dcb_tx_conf, &tx_conf,
 sizeof(tx_conf)));
 if (rss_enable) {
 eth_conf->rxmode.mq_mode= ETH_MQ_RX_VMDQ_DCB_RSS;
 eth_conf->rx_adv_conf.rss_conf.rss_hf = ETH_RSS_IP |
 ETH_RSS_UDP |
 ETH_RSS_TCP |
 ETH_RSS_SCTP;
 }
 return 0;
}

......

/* Set mac for each pool.*/
for (q = 0; q < num_pools; q++) {
 struct rte_ether_addr mac;
 mac = pool_addr_template;
 mac.addr_bytes[4] = port;
 mac.addr_bytes[5] = q;
 printf("Port %u vmdq pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",
 port, q,
 mac.addr_bytes[0], mac.addr_bytes[1],
 mac.addr_bytes[2], mac.addr_bytes[3],
 mac.addr_bytes[4], mac.addr_bytes[5]);
 retval = rte_eth_dev_mac_addr_add(port, &mac,
 q + vmdq_pool_base);
 if (retval) {
 printf("mac addr add failed at pool %d\n", q);
 return retval;
 }
}

Once the network port has been initialized using the correct VMDQ and DCB values,
the initialization of the port’s RX and TX hardware rings is performed similarly to that
in the L2 Forwarding sample application.
See L2 Forwarding Sample Application (in Real and Virtualized Environments) for more information.

33.4.2. Statistics Display

When run in a linux environment,
the VMDQ and DCB Forwarding sample application can display statistics showing the number of packets read from each RX queue.
This is provided by way of a signal handler for the SIGHUP signal,
which simply prints to standard output the packet counts in grid form.
Each row of the output is a single pool with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_dcb_app

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is running,
rather than the terminal from which the HUP signal was sent.

34. VMDq Forwarding Sample Application

The VMDq Forwarding sample application is a simple example of packet processing using the DPDK.
The application performs L2 forwarding using VMDq to divide the incoming traffic into queues.
The traffic splitting is performed in hardware by the VMDq feature of the Intel® 82599 and X710/XL710 Ethernet Controllers.

34.1. Overview

This sample application can be used as a starting point for developing a new application that is based on the DPDK and
uses VMDq for traffic partitioning.

VMDq filters split the incoming packets up into different “pools” - each with its own set of RX queues - based upon
the MAC address and VLAN ID within the VLAN tag of the packet.

All traffic is read from a single incoming port and output on another port, without any processing being performed.
With Intel® 82599 NIC, for example, the traffic is split into 128 queues on input, where each thread of the application reads from
multiple queues. When run with 8 threads, that is, with the -c FF option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDq feature to have 32 pools with 4 queues each.
The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the splitting of traffic into 16 pools of 2 queues.
While the Intel® X710 or XL710 Ethernet Controller NICs support many configurations of VMDq pools of 4 or 8 queues each.
And queues numbers for each VMDq pool can be changed by setting CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM
in config/common_* file.
The nb-pools and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdq_app [EAL options] -- -p PORTMASK --nb-pools NP --enable-rss

where, NP can be 8, 16 or 32, rss is disabled by default.

In Linux* user space, the application can display statistics with the number of packets received on each queue.
To have the application display the statistics, send a SIGHUP signal to the running application process.

The VMDq Forwarding sample application is in many ways simpler than the L2 Forwarding application
(see L2 Forwarding Sample Application (in Real and Virtualized Environments))
as it performs unidirectional L2 forwarding of packets from one port to a second port.
No command-line options are taken by this application apart from the standard EAL command-line options.

34.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the vmdq sub-directory.

34.3. Running the Application

To run the example in a Linux environment:

user@target:~$./build/vmdq_app -l 0-3 -n 4 -- -p 0x3 --nb-pools 16

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

34.4. Explanation

The following sections provide some explanation of the code.

34.4.1. Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application,
as is the creation of the mbuf pool.
See L2 Forwarding Sample Application (in Real and Virtualized Environments).
Where this example application differs is in the configuration of the NIC port for RX.

The VMDq hardware feature is configured at port initialization time by setting the appropriate values in the
rte_eth_conf structure passed to the rte_eth_dev_configure() API.
Initially in the application,
a default structure is provided for VMDq configuration to be filled in later by the application.

/* empty vmdq configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_conf_default = {
 .rxmode = {
 .mq_mode = ETH_MQ_RX_VMDQ_ONLY,
 .split_hdr_size = 0,
 },

 .txmode = {
 .mq_mode = ETH_MQ_TX_NONE,
 },
 .rx_adv_conf = {
 /*
 * should be overridden separately in code with
 * appropriate values
 */
 .vmdq_rx_conf = {
 .nb_queue_pools = ETH_8_POOLS,
 .enable_default_pool = 0,
 .default_pool = 0,
 .nb_pool_maps = 0,
 .pool_map = {{0, 0},},
 },
 },
};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values,
based on the global vlan_tags array.
For the VLAN IDs, each one can be allocated to possibly multiple pools of queues.
For destination MAC, each VMDq pool will be assigned with a MAC address. In this sample, each VMDq pool
is assigned to the MAC like 52:54:00:12:<port_id>:<pool_id>, that is,
the MAC of VMDq pool 2 on port 1 is 52:54:00:12:01:02.

const uint16_t vlan_tags[] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31,
 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47,
 48, 49, 50, 51, 52, 53, 54, 55,
 56, 57, 58, 59, 60, 61, 62, 63,
};

/* pool mac addr template, pool mac addr is like: 52 54 00 12 port# pool# */
static struct rte_ether_addr pool_addr_template = {
 .addr_bytes = {0x52, 0x54, 0x00, 0x12, 0x00, 0x00}
};

/*
 * Builds up the correct configuration for vmdq based on the vlan tags array
 * given above, and determine the queue number and pool map number according to
 * valid pool number
 */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_pools)
{
 struct rte_eth_vmdq_rx_conf conf;
 unsigned i;

 conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
 conf.nb_pool_maps = num_pools;
 conf.enable_default_pool = 0;
 conf.default_pool = 0; /* set explicit value, even if not used */

 for (i = 0; i < conf.nb_pool_maps; i++) {
 conf.pool_map[i].vlan_id = vlan_tags[i];
 conf.pool_map[i].pools = (1UL << (i % num_pools));
 }

 (void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
 (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &conf,
 sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
 return 0;
}

......

/*
 * Set mac for each pool.
 * There is no default mac for the pools in i40.
 * Removes this after i40e fixes this issue.
 */
for (q = 0; q < num_pools; q++) {
 struct rte_ether_addr mac;
 mac = pool_addr_template;
 mac.addr_bytes[4] = port;
 mac.addr_bytes[5] = q;
 printf("Port %u vmdq pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",
 port, q,
 mac.addr_bytes[0], mac.addr_bytes[1],
 mac.addr_bytes[2], mac.addr_bytes[3],
 mac.addr_bytes[4], mac.addr_bytes[5]);
 retval = rte_eth_dev_mac_addr_add(port, &mac,
 q + vmdq_pool_base);
 if (retval) {
 printf("mac addr add failed at pool %d\n", q);
 return retval;
 }
}

Once the network port has been initialized using the correct VMDq values,
the initialization of the port’s RX and TX hardware rings is performed similarly to that
in the L2 Forwarding sample application.
See L2 Forwarding Sample Application (in Real and Virtualized Environments) for more information.

34.4.2. Statistics Display

When run in a Linux environment,
the VMDq Forwarding sample application can display statistics showing the number of packets read from each RX queue.
This is provided by way of a signal handler for the SIGHUP signal,
which simply prints to standard output the packet counts in grid form.
Each row of the output is a single pool with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_app

Please note that the statistics output will appear on the terminal where the vmdq_app is running,
rather than the terminal from which the HUP signal was sent.

35. Vhost Sample Application

The vhost sample application demonstrates integration of the Data Plane
Development Kit (DPDK) with the Linux* KVM hypervisor by implementing the
vhost-net offload API. The sample application performs simple packet
switching between virtual machines based on Media Access Control (MAC)
address or Virtual Local Area Network (VLAN) tag. The splitting of Ethernet
traffic from an external switch is performed in hardware by the Virtual
Machine Device Queues (VMDQ) and Data Center Bridging (DCB) features of
the Intel® 82599 10 Gigabit Ethernet Controller.

35.1. Testing steps

This section shows the steps how to test a typical PVP case with this
vhost-switch sample, whereas packets are received from the physical NIC
port first and enqueued to the VM’s Rx queue. Through the guest testpmd’s
default forwarding mode (io forward), those packets will be put into
the Tx queue. The vhost-switch example, in turn, gets the packets and
puts back to the same physical NIC port.

35.1.1. Build

To compile the sample application see Compiling the Sample Applications.

The application is located in the vhost sub-directory.

Note

In this example, you need build DPDK both on the host and inside guest.

35.1.2. Start the vswitch example

./vhost-switch -l 0-3 -n 4 --socket-mem 1024 \
 -- --socket-file /tmp/sock0 --client \
 ...

Check the Parameters section for the explanations on what do those
parameters mean.

35.1.3. Start the VM

qemu-system-x86_64 -machine accel=kvm -cpu host \
 -m $mem -object memory-backend-file,id=mem,size=$mem,mem-path=/dev/hugepages,share=on \
 -mem-prealloc -numa node,memdev=mem \
 \
 -chardev socket,id=char1,path=/tmp/sock0,server \
 -netdev type=vhost-user,id=hostnet1,chardev=char1 \
 -device virtio-net-pci,netdev=hostnet1,id=net1,mac=52:54:00:00:00:14 \
 ...

Note

For basic vhost-user support, QEMU 2.2 (or above) is required. For
some specific features, a higher version might be need. Such as
QEMU 2.7 (or above) for the reconnect feature.

35.1.4. Run testpmd inside guest

Make sure you have DPDK built inside the guest. Also make sure the
corresponding virtio-net PCI device is bond to a uio driver, which
could be done by:

modprobe uio_pci_generic
$RTE_SDK/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Then start testpmd for packet forwarding testing.

./x86_64-native-gcc/app/testpmd -l 0-1 -- -i
> start tx_first

35.2. Inject packets

While a virtio-net is connected to vhost-switch, a VLAN tag starts with
1000 is assigned to it. So make sure configure your packet generator
with the right MAC and VLAN tag, you should be able to see following
log from the vhost-switch console. It means you get it work:

VHOST_DATA: (0) mac 52:54:00:00:00:14 and vlan 1000 registered

35.3. Parameters

–socket-file path
Specifies the vhost-user socket file path.

–client
DPDK vhost-user will act as the client mode when such option is given.
In the client mode, QEMU will create the socket file. Otherwise, DPDK
will create it. Put simply, it’s the server to create the socket file.

–vm2vm mode
The vm2vm parameter sets the mode of packet switching between guests in
the host.

	0 disables vm2vm, implying that VM’s packets will always go to the NIC port.

	1 means a normal mac lookup packet routing.

	2 means hardware mode packet forwarding between guests, it allows packets
go to the NIC port, hardware L2 switch will determine which guest the
packet should forward to or need send to external, which bases on the
packet destination MAC address and VLAN tag.

–mergeable 0|1
Set 0/1 to disable/enable the mergeable Rx feature. It’s disabled by default.

–stats interval
The stats parameter controls the printing of virtio-net device statistics.
The parameter specifies an interval (in unit of seconds) to print statistics,
with an interval of 0 seconds disabling statistics.

–rx-retry 0|1
The rx-retry option enables/disables enqueue retries when the guests Rx queue
is full. This feature resolves a packet loss that is observed at high data
rates, by allowing it to delay and retry in the receive path. This option is
enabled by default.

–rx-retry-num num
The rx-retry-num option specifies the number of retries on an Rx burst, it
takes effect only when rx retry is enabled. The default value is 4.

–rx-retry-delay msec
The rx-retry-delay option specifies the timeout (in micro seconds) between
retries on an RX burst, it takes effect only when rx retry is enabled. The
default value is 15.

–dequeue-zero-copy
Dequeue zero copy will be enabled when this option is given. it is worth to
note that if NIC is bound to driver with iommu enabled, dequeue zero copy
cannot work at VM2NIC mode (vm2vm=0) due to currently we don’t setup iommu
dma mapping for guest memory.

–vlan-strip 0|1
VLAN strip option is removed, because different NICs have different behaviors
when disabling VLAN strip. Such feature, which heavily depends on hardware,
should be removed from this example to reduce confusion. Now, VLAN strip is
enabled and cannot be disabled.

–builtin-net-driver
A very simple vhost-user net driver which demonstrates how to use the generic
vhost APIs will be used when this option is given. It is disabled by default.

35.4. Common Issues

	QEMU fails to allocate memory on hugetlbfs, with an error like the
following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory

When running QEMU the above error indicates that it has failed to allocate
memory for the Virtual Machine on the hugetlbfs. This is typically due to
insufficient hugepages being free to support the allocation request. The
number of free hugepages can be checked as follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU’s
allocation request.

	Failed to build DPDK in VM

Make sure “-cpu host” QEMU option is given.

	Device start fails if NIC’s max queues > the default number of 128

mbuf pool size is dependent on the MAX_QUEUES configuration, if NIC’s
max queue number is larger than 128, device start will fail due to
insufficient mbuf.

Change the default number to make it work as below, just set the number
according to the NIC’s property.

make EXTRA_CFLAGS="-DMAX_QUEUES=320"

	Option “builtin-net-driver” is incompatible with QEMU

QEMU vhost net device start will fail if protocol feature is not negotiated.
DPDK virtio-user pmd can be the replacement of QEMU.

	Device start fails when enabling “builtin-net-driver” without memory
pre-allocation

The builtin example doesn’t support dynamic memory allocation. When vhost
backend enables “builtin-net-driver”, “–socket-mem” option should be
added at virtio-user pmd side as a startup item.

36. Vhost_blk Sample Application

The vhost_blk sample application implemented a simple block device,
which used as the backend of Qemu vhost-user-blk device. Users can extend
the exist example to use other type of block device(e.g. AIO) besides
memory based block device. Similar with vhost-user-net device, the sample
application used domain socket to communicate with Qemu, and the virtio
ring (split or packed format) was processed by vhost_blk sample application.

The sample application reuse lots codes from SPDK(Storage Performance
Development Kit, https://github.com/spdk/spdk) vhost-user-blk target,
for DPDK vhost library used in storage area, user can take SPDK as
reference as well.

36.1. Testing steps

This section shows the steps how to start a VM with the block device as
fast data path for critical application.

36.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

You will also need to build DPDK both on the host and inside the guest

36.2.1. Start the vhost_blk example

./vhost_blk -m 1024

36.2.2. Start the VM

qemu-system-x86_64 -machine accel=kvm \
 -m $mem -object memory-backend-file,id=mem,size=$mem,\
 mem-path=/dev/hugepages,share=on -numa node,memdev=mem \
 -drive file=os.img,if=none,id=disk \
 -device ide-hd,drive=disk,bootindex=0 \
 -chardev socket,id=char0,reconnect=1,path=/tmp/vhost.socket \
 -device vhost-user-blk-pci,packed=on,chardev=char0,num-queues=1 \
 ...

Note

You must check whether your Qemu can support “vhost-user-blk” or not,
Qemu v4.0 or newer version is required.
reconnect=1 means live recovery support that qemu can reconnect vhost_blk
after we restart vhost_blk example.
packed=on means the device support packed ring but need the guest kernel
version >= 5.0.
Now Qemu commit 9bb73502321d46f4d320fa17aa38201445783fc4 both support the
vhost-blk reconnect and packed ring.

37. Vhost_Crypto Sample Application

The vhost_crypto sample application implemented a simple Crypto device,
which used as the backend of Qemu vhost-user-crypto device. Similar with
vhost-user-net and vhost-user-scsi device, the sample application used
domain socket to communicate with Qemu, and the virtio ring was processed
by vhost_crypto sample application.

37.1. Testing steps

This section shows the steps how to start a VM with the crypto device as
fast data path for critical application.

37.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

37.2.1. Start the vhost_crypto example

./vhost_crypto [EAL options] --
 --config (lcore,cdev-id,queue-id)[,(lcore,cdev-id,queue-id)]
 --socket-file lcore,PATH
 [--zero-copy]
 [--guest-polling]

where,

	config (lcore,cdev-id,queue-id): build the lcore-cryptodev id-queue id
connection. Once specified, the specified lcore will only work with
specified cryptodev’s queue.

	socket-file lcore,PATH: the path of UNIX socket file to be created and
the lcore id that will deal with the all workloads of the socket. Multiple
instances of this config item is supported and one lcore supports processing
multiple sockets.

	zero-copy: the presence of this item means the ZERO-COPY feature will be
enabled. Otherwise it is disabled. PLEASE NOTE the ZERO-COPY feature is still
in experimental stage and may cause the problem like segmentation fault. If
the user wants to use LKCF in the guest, this feature shall be turned off.

	guest-polling: the presence of this item means the application assumes the
guest works in polling mode, thus will NOT notify the guest completion of
processing.

The application requires that crypto devices capable of performing
the specified crypto operation are available on application initialization.
This means that HW crypto device/s must be bound to a DPDK driver or
a SW crypto device/s (virtual crypto PMD) must be created (using –vdev).

37.2.2. Start the VM

qemu-system-x86_64 -machine accel=kvm \
 -m $mem -object memory-backend-file,id=mem,size=$mem,\
 mem-path=/dev/hugepages,share=on -numa node,memdev=mem \
 -drive file=os.img,if=none,id=disk \
 -device ide-hd,drive=disk,bootindex=0 \
 -chardev socket,id={chardev_id},path={PATH} \
 -object cryptodev-vhost-user,id={obj_id},chardev={chardev_id} \
 -device virtio-crypto-pci,id={dev_id},cryptodev={obj_id} \
 ...

Note

You must check whether your Qemu can support “vhost-user-crypto” or not.

38. Vdpa Sample Application

The vdpa sample application creates vhost-user sockets by using the
vDPA backend. vDPA stands for vhost Data Path Acceleration which utilizes
virtio ring compatible devices to serve virtio driver directly to enable
datapath acceleration. As vDPA driver can help to set up vhost datapath,
this application doesn’t need to launch dedicated worker threads for vhost
enqueue/dequeue operations.

38.1. Testing steps

This section shows the steps of how to start VMs with vDPA vhost-user
backend and verify network connection & live migration.

38.1.1. Build

To compile the sample application see Compiling the Sample Applications.

The application is located in the vdpa sub-directory.

38.1.2. Start the vdpa example

./vdpa [EAL options] -- [--client] [--interactive|-i] or [--iface SOCKET_PATH]

where

	–client means running vdpa app in client mode, in the client mode, QEMU needs
to run as the server mode and take charge of socket file creation.

	–iface specifies the path prefix of the UNIX domain socket file, e.g.
/tmp/vhost-user-, then the socket files will be named as /tmp/vhost-user-<n>
(n starts from 0).

	–interactive means run the vdpa sample in interactive mode, currently 4
internal cmds are supported:

	help: show help message

	list: list all available vdpa devices

	create: create a new vdpa port with socket file and vdpa device address

	quit: unregister vhost driver and exit the application

Take IFCVF driver for example:

./vdpa -c 0x2 -n 4 --socket-mem 1024,1024 \
 -w 0000:06:00.3,vdpa=1 -w 0000:06:00.4,vdpa=1 \
 -- --interactive

Note

Here 0000:06:00.3 and 0000:06:00.4 refer to virtio ring compatible devices,
and we need to bind vfio-pci to them before running vdpa sample.

	modprobe vfio-pci

	./usertools/dpdk-devbind.py -b vfio-pci 06:00.3 06:00.4

Then we can create 2 vdpa ports in interactive cmdline.

vdpa> list
device id device address queue num supported features
0 0000:06:00.3 1 0x14c238020
1 0000:06:00.4 1 0x14c238020
2 0000:06:00.5 1 0x14c238020

vdpa> create /tmp/vdpa-socket0 0000:06:00.3
vdpa> create /tmp/vdpa-socket1 0000:06:00.4

38.1.3. Start the VMs

qemu-system-x86_64 -cpu host -enable-kvm \
<snip>
-mem-prealloc \
-chardev socket,id=char0,path=<socket_file created in above steps> \
-netdev type=vhost-user,id=vdpa,chardev=char0 \
-device virtio-net-pci,netdev=vdpa,mac=00:aa:bb:cc:dd:ee,page-per-vq=on \

After the VMs launches, we can login the VMs and configure the ip, verify the
network connection via ping or netperf.

Note

Suggest to use QEMU 3.0.0 which extends vhost-user for vDPA.

38.1.4. Live Migration

vDPA supports cross-backend live migration, user can migrate SW vhost backend
VM to vDPA backend VM and vice versa. Here are the detailed steps. Assume A is
the source host with SW vhost VM and B is the destination host with vDPA.

	Start vdpa sample and launch a VM with exact same parameters as the VM on A,
in migration-listen mode:

B: <qemu-command-line> -incoming tcp:0:4444 (or other PORT))

	Start the migration (on source host):

A: (qemu) migrate -d tcp:<B ip>:4444 (or other PORT)

	Check the status (on source host):

A: (qemu) info migrate

39. Internet Protocol (IP) Pipeline Application

39.1. Application overview

The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development of packet processing
applications on multi-core CPUs.

Following OpenFlow and P4 design principles, the application can be used to create functional blocks called pipelines out
of input/output ports, tables and actions in a modular way. Multiple pipelines can be inter-connected through packet queues
to create complete applications (super-pipelines).

The pipelines are mapped to application threads, with each pipeline executed by a single thread and each thread able to run
one or several pipelines. The possibilities of creating pipelines out of ports, tables and actions, connecting multiple
pipelines together and mapping the pipelines to execution threads are endless, therefore this application can be seen as
a true application generator.

Pipelines are created and managed through Command Line Interface (CLI):

	Any standard TCP client (e.g. telnet, netcat, custom script, etc) is typically able to connect to the application, send
commands through the network and wait for the response before pushing the next command.

	
	All the application objects are created and managed through CLI commands:
	
	‘Primitive’ objects used to create pipeline ports: memory pools, links (i.e. network interfaces), SW queues, traffic managers, etc.

	Action profiles: used to define the actions to be executed by pipeline input/output ports and tables.

	Pipeline components: input/output ports, tables, pipelines, mapping of pipelines to execution threads.

39.2. Running the application

The application startup command line is:

ip_pipeline [EAL_ARGS] -- [-s SCRIPT_FILE] [-h HOST] [-p PORT]

The application startup arguments are:

-s SCRIPT_FILE

	Optional: Yes

	Default: Not present

	Argument: Path to the CLI script file to be run at application startup.
No CLI script file will run at startup if this argument is not present.

-h HOST

	Optional: Yes

	Default: 0.0.0.0

	Argument: IP Address of the host running ip pipeline application to be used by
remote TCP based client (telnet, netcat, etc.) for connection.

-p PORT

	Optional: Yes

	Default: 8086

	Argument: TCP port number at which the ip pipeline is running.
This port number should be used by remote TCP client (such as telnet, netcat, etc.) to connect to host application.

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstraction Layer (EAL) options.

The following is an example command to run ip pipeline application configured for layer 2 forwarding:

$./build/ip_pipeline -c 0x3 -- -s examples/route_ecmp.cli

The application should start successfully and display as follows:

EAL: Detected 40 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: Multi-process socket /var/run/.rte_unix
EAL: Probing VFIO support...
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb net_ixgbe
...

To run remote client (e.g. telnet) to communicate with the ip pipeline application:

$ telnet 127.0.0.1 8086

When running a telnet client as above, command prompt is displayed:

Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Welcome to IP Pipeline!

pipeline>

Once application and telnet client start running, messages can be sent from client to application.
At any stage, telnet client can be terminated using the quit command.

39.3. Application stages

39.3.1. Initialization

During this stage, EAL layer is initialised and application specific arguments are parsed. Furthermore, the data structures
(i.e. linked lists) for application objects are initialized. In case of any initialization error, an error message
is displayed and the application is terminated.

39.3.2. Run-time

The master thread is creating and managing all the application objects based on CLI input.

Each data plane thread runs one or several pipelines previously assigned to it in round-robin order. Each data plane thread
executes two tasks in time-sharing mode:

	Packet processing task: Process bursts of input packets read from the pipeline input ports.

	Message handling task: Periodically, the data plane thread pauses the packet processing task and polls for request
messages send by the master thread. Examples: add/remove pipeline to/from current data plane thread, add/delete rules
to/from given table of a specific pipeline owned by the current data plane thread, read statistics, etc.

39.4. Examples

Table 39.1 Pipeline examples provided with the application

	Name

	Table(s)

	Actions

	Messages

	L2fwd

Note: Implemented
using pipeline with
a simple pass-through
connection between
input and output
ports.

	Stub

	Forward

	
	Mempool create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table

	Pipeline port in table

	Pipeline enable

	Pipeline table rule add

	Flow classification

	Exact match

	
	Key = byte array
	(16 bytes)

	Offset = 278

	Table size = 64K

	Forward

	
	Mempool create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table

	Pipeline port in table

	Pipeline enable

	Pipeline table rule add default

	Pipeline table rule add

	KNI

	Stub

	Forward

	
	Mempool create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table

	Pipeline port in table

	Pipeline enable

	Pipeline table rule add

	Firewall

	ACL

	Key = n-tuple

	Offset = 270

	Table size = 4K

	Allow/Drop

	
	Mempool create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table

	Pipeline port in table

	Pipeline enable

	Pipeline table rule add default

	Pipeline table rule add

	IP routing

	LPM (IPv4)

	Key = IP dest addr

	Offset = 286

	Table size = 4K

	Forward

	
	Mempool Create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table

	Pipeline port in table

	Pipeline enable

	Pipeline table rule add default

	Pipeline table rule add

	Equal-cost multi-path
routing (ECMP)

	LPM (IPv4)

	Key = IP dest addr

	Offset = 286

	Table size = 4K

Array

	Key = Array index

	Offset = 256

	Size = 64K

	Forward,
load balance,
encap ether

	
	Mempool Create

	Link create

	Pipeline create

	Pipeline port in/out

	Pipeline table (LPM)

	Pipeline table (Array)

	Pipeline port in table (LPM)

	Pipeline enable

	Pipeline table rule add default

	Pipeline table rule add(LPM)

	Pipeline table rule add(Array)

39.5. Command Line Interface (CLI)

39.5.1. Link

Link configuration

link <link_name>
 dev <device_name>|port <port_id>
 rxq <n_queues> <queue_size> <mempool_name>
 txq <n_queues> <queue_size> promiscuous on | off
 [rss <qid_0> ... <qid_n>]

Note: The PCI device name must be specified in the Domain:Bus:Device.Function format.

39.5.2. Mempool

Mempool create

mempool <mempool_name> buffer <buffer_size>
pool <pool_size> cache <cache_size> cpu <cpu_id>

39.5.3. Software queue

Create software queue

swq <swq_name> size <size> cpu <cpu_id>

39.5.4. Traffic manager

Add traffic manager subport profile

tmgr subport profile
 <tb_rate> <tb_size>
 <tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate> <tc4_rate>
 <tc5_rate> <tc6_rate> <tc7_rate> <tc8_rate>
 <tc9_rate> <tc10_rate> <tc11_rate> <tc12_rate>
 <tc_period>
 pps <n_pipes_per_subport>
 qsize <qsize_tc0> <qsize_tc1> <qsize_tc2>
 <qsize_tc3> <qsize_tc4> <qsize_tc5> <qsize_tc6>
 <qsize_tc7> <qsize_tc8> <qsize_tc9> <qsize_tc10>
 <qsize_tc11> <qsize_tc12>

Add traffic manager pipe profile

tmgr pipe profile
 <tb_rate> <tb_size>
 <tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate> <tc4_rate>
 <tc5_rate> <tc6_rate> <tc7_rate> <tc8_rate>
 <tc9_rate> <tc10_rate> <tc11_rate> <tc12_rate>
 <tc_period>
 <tc_ov_weight>
 <wrr_weight0..3>

Create traffic manager port

tmgr <tmgr_name>
 rate <rate>
 spp <n_subports_per_port>
 fo <frame_overhead>
 mtu <mtu>
 cpu <cpu_id>

Configure traffic manager subport

tmgr <tmgr_name>
 subport <subport_id>
 profile <subport_profile_id>

Configure traffic manager pipe

tmgr <tmgr_name>
 subport <subport_id>
 pipe from <pipe_id_first> to <pipe_id_last>
 profile <pipe_profile_id>

39.5.5. Tap

Create tap port

tap <name>

39.5.6. Kni

Create kni port

kni <kni_name>
 link <link_name>
 mempool <mempool_name>
 [thread <thread_id>]

39.5.7. Cryptodev

Create cryptodev port

cryptodev <cryptodev_name>
 dev <DPDK Cryptodev PMD name>
 queue <n_queues> <queue_size>

39.5.8. Action profile

Create action profile for pipeline input port

port in action profile <profile_name>
 [filter match | mismatch offset <key_offset> mask <key_mask> key <key_value> port <port_id>]
 [balance offset <key_offset> mask <key_mask> port <port_id0> ... <port_id15>]

Create action profile for the pipeline table

table action profile <profile_name>
 ipv4 | ipv6
 offset <ip_offset>
 fwd
 [balance offset <key_offset> mask <key_mask> outoffset <out_offset>]
 [meter srtcm | trtcm
 tc <n_tc>
 stats none | pkts | bytes | both]
 [tm spp <n_subports_per_port> pps <n_pipes_per_subport>]
 [encap ether | vlan | qinq | mpls | pppoe]
 [nat src | dst
 proto udp | tcp]
 [ttl drop | fwd
 stats none | pkts]
 [stats pkts | bytes | both]
 [sym_crypto cryptodev <cryptodev_name>
 mempool_create <mempool_name> mempool_init <mempool_name>]
 [time]

39.5.9. Pipeline

Create pipeline

pipeline <pipeline_name>
 period <timer_period_ms>
 offset_port_id <offset_port_id>
 cpu <cpu_id>

Create pipeline input port

pipeline <pipeline_name> port in
 bsz <burst_size>
 link <link_name> rxq <queue_id>
 | swq <swq_name>
 | tmgr <tmgr_name>
 | tap <tap_name> mempool <mempool_name> mtu <mtu>
 | kni <kni_name>
 | source mempool <mempool_name> file <file_name> bpp <n_bytes_per_pkt>
 [action <port_in_action_profile_name>]
 [disabled]

Create pipeline output port

pipeline <pipeline_name> port out
 bsz <burst_size>
 link <link_name> txq <txq_id>
 | swq <swq_name>
 | tmgr <tmgr_name>
 | tap <tap_name>
 | kni <kni_name>
 | sink [file <file_name> pkts <max_n_pkts>]

Create pipeline table

pipeline <pipeline_name> table
 match
 acl
 ipv4 | ipv6
 offset <ip_header_offset>
 size <n_rules>
 | array
 offset <key_offset>
 size <n_keys>
 | hash
 ext | lru
 key <key_size>
 mask <key_mask>
 offset <key_offset>
 buckets <n_buckets>
 size <n_keys>
 | lpm
 ipv4 | ipv6
 offset <ip_header_offset>
 size <n_rules>
 | stub
 [action <table_action_profile_name>]

Connect pipeline input port to table

pipeline <pipeline_name> port in <port_id> table <table_id>

Display statistics for specific pipeline input port, output port
or table

pipeline <pipeline_name> port in <port_id> stats read [clear]
pipeline <pipeline_name> port out <port_id> stats read [clear]
pipeline <pipeline_name> table <table_id> stats read [clear]

Enable given input port for specific pipeline instance

pipeline <pipeline_name> port out <port_id> disable

Disable given input port for specific pipeline instance

pipeline <pipeline_name> port out <port_id> disable

Add default rule to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add
 match
 default
 action
 fwd
 drop
 | port <port_id>
 | meta
 | table <table_id>

Add rule to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add

match
 acl
 priority <priority>
 ipv4 | ipv6 <sa> <sa_depth> <da> <da_depth>
 <sp0> <sp1> <dp0> <dp1> <proto>
 | array <pos>
 | hash
 raw <key>
 | ipv4_5tuple <sa> <da> <sp> <dp> <proto>
 | ipv6_5tuple <sa> <da> <sp> <dp> <proto>
 | ipv4_addr <addr>
 | ipv6_addr <addr>
 | qinq <svlan> <cvlan>
 | lpm
 ipv4 | ipv6 <addr> <depth>

action
 fwd
 drop
 | port <port_id>
 | meta
 | table <table_id>
 [balance <out0> ... <out7>]
 [meter
 tc0 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
 [tc1 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
 tc2 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
 tc3 meter <meter_profile_id> policer g <pa> y <pa> r <pa>]]
 [tm subport <subport_id> pipe <pipe_id>]
 [encap
 ether <da> <sa>
 | vlan <da> <sa> <pcp> <dei> <vid>
 | qinq <da> <sa> <pcp> <dei> <vid> <pcp> <dei> <vid>
 | mpls unicast | multicast
 <da> <sa>
 label0 <label> <tc> <ttl>
 [label1 <label> <tc> <ttl>
 [label2 <label> <tc> <ttl>
 [label3 <label> <tc> <ttl>]]]
 | pppoe <da> <sa> <session_id>]
 [nat ipv4 | ipv6 <addr> <port>]
 [ttl dec | keep]
 [stats]
 [time]
 [sym_crypto
 encrypt | decrypt
 type
 | cipher
 cipher_algo <algo> cipher_key <key> cipher_iv <iv>
 | cipher_auth
 cipher_algo <algo> cipher_key <key> cipher_iv <iv>
 auth_algo <algo> auth_key <key> digest_size <size>
 | aead
 aead_algo <algo> aead_key <key> aead_iv <iv> aead_aad <aad>
 digest_size <size>
 data_offset <data_offset>]

where:
 <pa> ::= g | y | r | drop

Add bulk rules to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add bulk <file_name> <n_rules>

Where:
- file_name = path to file
- File line format = match <match> action <action>

Delete table rule for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule delete
 match <match>

Delete default table rule for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule delete
 match
 default

Add meter profile to the table for specific pipeline instance

pipeline <pipeline_name> table <table_id> meter profile <meter_profile_id>
 add srtcm cir <cir> cbs <cbs> ebs <ebs>
 | trtcm cir <cir> pir <pir> cbs <cbs> pbs <pbs>

Delete meter profile from the table for specific pipeline instance

pipeline <pipeline_name> table <table_id>
 meter profile <meter_profile_id> delete

Update the dscp table for meter or traffic manager action for specific
pipeline instance

pipeline <pipeline_name> table <table_id> dscp <file_name>

Where:
 - file_name = path to file
 - exactly 64 lines
 - File line format = <tc_id> <tc_queue_id> <color>, with <color> as: g | y | r

39.5.10. Pipeline enable/disable

Enable given pipeline instance for specific data plane thread

thread <thread_id> pipeline <pipeline_name> enable

Disable given pipeline instance for specific data plane thread

thread <thread_id> pipeline <pipeline_name> disable

40. Test Pipeline Application

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite.
Its purpose is to demonstrate the performance of single-table DPDK pipelines.

40.1. Overview

The application uses three CPU cores:

	Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through SW queues.

	Core B (“Pipeline core”) implements a single-table DPDK pipeline
whose type is selectable through specific command line parameter.
Core B receives traffic from core A through software queues,
processes it according to the actions configured in the table entries that
are hit by the input packets and feeds it to core C through another set of software queues.

	Core C (“TX core”) receives traffic from core B through software queues and sends it to the NIC ports for transmission.

[image: ../_images/test_pipeline_app.png]

Fig. 40.1 Test Pipeline Application

40.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications

The application is located in the $RTE_SDK/app/test-pipeline directory.

40.3. Running the Application

40.3.1. Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE

The -c or -l EAL CPU coremask/corelist option has to contain exactly 3 CPU cores.
The first CPU core in the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

40.3.2. Table Types and Behavior

Table 40.1 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys.
For hash tables, the following parameters can be selected:

	Configurable key size implementation or fixed (specialized) key size implementation (e.g. hash-8-ext or hash-spec-8-ext).
The key size specialized implementations are expected to provide better performance for 8-byte and 16-byte key sizes,
while the key-size-non-specialized implementation is expected to provide better performance for larger key sizes;

	Key size (e.g. hash-spec-8-ext or hash-spec-16-ext).
The available options are 8, 16 and 32 bytes;

	Table type (e.g. hash-spec-16-ext or hash-spec-16-lru).
The available options are ext (extendable bucket) or lru (least recently used).

Table 40.1 Table Types

	#

	TABLE_TYPE

	Description of Core B Table

	Pre-added Table Entries

	1

	none

	Core B is not implementing a DPDK pipeline.
Core B is implementing a pass-through from its input set
of software queues to its output set of software queues.

	N/A

	2

	stub

	Stub table. Core B is implementing the same pass-through
functionality as described for the “none” option by
using the DPDK Packet Framework by using one
stub table for each input NIC port.

	N/A

	3

	hash-[spec]-8-lru

	LRU hash table with 8-byte key size and 16 million
entries.

	16 million entries are successfully added to the
hash table with the following key format:

[4-byte index, 4 bytes of 0]

The action configured for all table entries is
“Sendto output port”, with the output port index
uniformly distributed for the range of output ports.

The default table rule (used in the case of a lookup
miss) is to drop the packet.

At run time, core A is creating the following lookup
key and storing it into the packet meta data for
core B to use for table lookup:

[destination IPv4 address, 4 bytes of 0]

	4

	hash-[spec]-8-ext

	Extendable bucket hash table with 8-byte key size
and 16 million entries.

	Same as hash-[spec]-8-lru table entries, above.

	5

	hash-[spec]-16-lru

	LRU hash table with 16-byte key size and 16 million
entries.

	16 million entries are successfully added to the hash
table with the following key format:

[4-byte index, 12 bytes of 0]

The action configured for all table entries is
“Send to output port”, with the output port index
uniformly distributed for the range of output ports.

The default table rule (used in the case of a lookup
miss) is to drop the packet.

At run time, core A is creating the following lookup
key and storing it into the packet meta data for core
B to use for table lookup:

[destination IPv4 address, 12 bytes of 0]

	6

	hash-[spec]-16-ext

	Extendable bucket hash table with 16-byte key size
and 16 million entries.

	Same as hash-[spec]-16-lru table entries, above.

	7

	hash-[spec]-32-lru

	LRU hash table with 32-byte key size and 16 million
entries.

	16 million entries are successfully added to the hash
table with the following key format:

[4-byte index, 28 bytes of 0].

The action configured for all table entries is
“Send to output port”, with the output port index
uniformly distributed for the range of output ports.

The default table rule (used in the case of a lookup
miss) is to drop the packet.

At run time, core A is creating the following lookup
key and storing it into the packet meta data for
Lpmcore B to use for table lookup:

[destination IPv4 address, 28 bytes of 0]

	8

	hash-[spec]-32-ext

	Extendable bucket hash table with 32-byte key size
and 16 million entries.

	Same as hash-[spec]-32-lru table entries, above.

	9

	lpm

	Longest Prefix Match (LPM) IPv4 table.

	In the case of two ports, two routes
are added to the table:

[0.0.0.0/9 => send to output port 0]

[0.128.0.0/9 => send to output port 1]

In case of four ports, four entries are added to the
table:

[0.0.0.0/10 => send to output port 0]

[0.64.0.0/10 => send to output port 1]

[0.128.0.0/10 => send to output port 2]

[0.192.0.0/10 => send to output port 3]

The default table rule (used in the case of a lookup
miss) is to drop the packet.

At run time, core A is storing the IPv4 destination
within the packet meta data to be later used by core
B as the lookup key.

	10

	acl

	Access Control List (ACL) table

	In the case of two ports, two ACL rules are added to
the table:

[priority = 0 (highest),

IPv4 source = ANY,

IPv4 destination = 0.0.0.0/9,

L4 protocol = ANY,

TCP source port = ANY,

TCP destination port = ANY

=> send to output port 0]

[priority = 0 (highest),

IPv4 source = ANY,

IPv4 destination = 0.128.0.0/9,

L4 protocol = ANY,

TCP source port = ANY,

TCP destination port = ANY

=> send to output port 0].

The default table rule (used in the case of a lookup
miss) is to drop the packet.

40.3.3. Input Traffic

Regardless of the table type used for the core B pipeline,
the same input traffic can be used to hit all table entries with uniform distribution,
which results in uniform distribution of packets sent out on the set of output NIC ports.
The profile for input traffic is TCP/IPv4 packets with:

	destination IP address as A.B.C.D with A fixed to 0 and B, C,D random

	source IP address fixed to 0.0.0.0

	destination TCP port fixed to 0

	source TCP port fixed to 0

41. Eventdev Pipeline Sample Application

The eventdev pipeline sample application is a sample app that demonstrates
the usage of the eventdev API using the software PMD. It shows how an
application can configure a pipeline and assign a set of worker cores to
perform the processing required.

The application has a range of command line arguments allowing it to be
configured for various numbers worker cores, stages,queue depths and cycles per
stage of work. This is useful for performance testing as well as quickly testing
a particular pipeline configuration.

41.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

41.2. Running the Application

The application has a lot of command line options. This allows specification of
the eventdev PMD to use, and a number of attributes of the processing pipeline
options.

An example eventdev pipeline running with the software eventdev PMD using
these settings is shown below:

	-r1: core mask 0x1 for RX

	-t1: core mask 0x1 for TX

	-e4: core mask 0x4 for the software scheduler

	-w FF00: core mask for worker cores, 8 cores from 8th to 16th

	-s4: 4 atomic stages

	-n0: process infinite packets (run forever)

	-c32: worker dequeue depth of 32

	-W1000: do 1000 cycles of work per packet in each stage

	-D: dump statistics on exit

./build/eventdev_pipeline --vdev event_sw0 -- -r1 -t1 -e4 -w FF00 -s4 -n0 -c32 -W1000 -D

The application has some sanity checking built-in, so if there is a function
(e.g.; the RX core) which doesn’t have a cpu core mask assigned, the application
will print an error message:

Core part of pipeline was not assigned any cores. This will stall the
pipeline, please check core masks (use -h for details on setting core masks):
 rx: 0
 tx: 1

Configuration of the eventdev is covered in detail in the programmers guide,
see the Event Device Library section.

41.3. Observing the Application

At runtime the eventdev pipeline application prints out a summary of the
configuration, and some runtime statistics like packets per second. On exit the
worker statistics are printed, along with a full dump of the PMD statistics if
required. The following sections show sample output for each of the output
types.

41.3.1. Configuration

This provides an overview of the pipeline,
scheduling type at each stage, and parameters to options such as how many
flows to use and what eventdev PMD is in use. See the following sample output
for details:

Config:
 ports: 2
 workers: 8
 packets: 0
 priorities: 1
 Queue-prio: 0
 qid0 type: atomic
 Cores available: 44
 Cores used: 10
 Eventdev 0: event_sw
Stages:
 Stage 0, Type Atomic Priority = 128
 Stage 1, Type Atomic Priority = 128
 Stage 2, Type Atomic Priority = 128
 Stage 3, Type Atomic Priority = 128

41.3.2. Runtime

At runtime, the statistics of the consumer are printed, stating the number of
packets received, runtime in milliseconds, average mpps, and current mpps.

consumer RX= xxxxxxx, time yyyy ms, avg z.zzz mpps [current w.www mpps]

41.3.3. Shutdown

At shutdown, the application prints the number of packets received and
transmitted, and an overview of the distribution of work across worker cores.

Signal 2 received, preparing to exit...
 worker 12 thread done. RX=4966581 TX=4966581
 worker 13 thread done. RX=4963329 TX=4963329
 worker 14 thread done. RX=4953614 TX=4953614
 worker 0 thread done. RX=0 TX=0
 worker 11 thread done. RX=4970549 TX=4970549
 worker 10 thread done. RX=4986391 TX=4986391
 worker 9 thread done. RX=4970528 TX=4970528
 worker 15 thread done. RX=4974087 TX=4974087
 worker 8 thread done. RX=4979908 TX=4979908
 worker 2 thread done. RX=0 TX=0

Port Workload distribution:
worker 0 : 12.5 % (4979876 pkts)
worker 1 : 12.5 % (4970497 pkts)
worker 2 : 12.5 % (4986359 pkts)
worker 3 : 12.5 % (4970517 pkts)
worker 4 : 12.5 % (4966566 pkts)
worker 5 : 12.5 % (4963297 pkts)
worker 6 : 12.5 % (4953598 pkts)
worker 7 : 12.5 % (4974055 pkts)

To get a full dump of the state of the eventdev PMD, pass the -D flag to
this application. When the app is terminated using Ctrl+C, the
rte_event_dev_dump() function is called, resulting in a dump of the
statistics that the PMD provides. The statistics provided depend on the PMD
used, see the Event Device Drivers section for a list of eventdev PMDs.

42. Distributor Sample Application

The distributor sample application is a simple example of packet distribution
to cores using the Data Plane Development Kit (DPDK). It also makes use of
Intel Speed Select Technology - Base Frequency (Intel SST-BF) to pin the
distributor to the higher frequency core if available.

42.1. Overview

The distributor application performs the distribution of packets that are received
on an RX_PORT to different cores. When processed by the cores, the destination
port of a packet is the port from the enabled port mask adjacent to the one on
which the packet was received, that is, if the first four ports are enabled
(port mask 0xf), ports 0 and 1 RX/TX into each other, and ports 2 and 3 RX/TX
into each other.

This application can be used to benchmark performance using the traffic
generator as shown in the figure below.

[image: ../_images/dist_perf.svg]
Fig. 42.1 Performance Benchmarking Setup (Basic Environment)

42.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the distributor sub-directory.

42.3. Running the Application

	The application has a number of command line options:

./build/distributor_app [EAL options] -- -p PORTMASK

where,

	-p PORTMASK: Hexadecimal bitmask of ports to configure

	To run the application in linux environment with 10 lcores, 4 ports,
issue the command:

$./build/distributor_app -l 1-9,22 -n 4 -- -p f

	Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

42.4. Explanation

The distributor application consists of four types of threads: a receive
thread (lcore_rx()), a distributor thread (lcore_dist()), a set of
worker threads (lcore_worker()), and a transmit thread(lcore_tx()).
How these threads work together is shown in Fig. 42.2 below.
The main() function launches threads of these four types. Each thread
has a while loop which will be doing processing and which is terminated
only upon SIGINT or ctrl+C.

The receive thread receives the packets using rte_eth_rx_burst() and will
enqueue them to an rte_ring. The distributor thread will dequeue the packets
from the ring and assign them to workers (using rte_distributor_process() API).
This assignment is based on the tag (or flow ID) of the packet - indicated by
the hash field in the mbuf. For IP traffic, this field is automatically filled
by the NIC with the “usr” hash value for the packet, which works as a per-flow
tag. The distributor thread communicates with the worker threads using a
cache-line swapping mechanism, passing up to 8 mbuf pointers at a time
(one cache line) to each worker.

More than one worker thread can exist as part of the application, and these
worker threads do simple packet processing by requesting packets from
the distributor, doing a simple XOR operation on the input port mbuf field
(to indicate the output port which will be used later for packet transmission)
and then finally returning the packets back to the distributor thread.

The distributor thread will then call the distributor api
rte_distributor_returned_pkts() to get the processed packets, and will enqueue
them to another rte_ring for transfer to the TX thread for transmission on the
output port. The transmit thread will dequeue the packets from the ring and
transmit them on the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C
(or send SIGINT to the app). Upon this signal, a signal handler provided
in the application will terminate all running threads gracefully and print
final statistics to the user.

[image: ../_images/dist_app.svg]
Fig. 42.2 Distributor Sample Application Layout

42.5. Intel SST-BF Support

In DPDK 19.05, support was added to the power management library for
Intel-SST-BF, a technology that allows some cores to run at a higher
frequency than others. An application note for Intel SST-BF is available,
and is entitled
Intel Speed Select Technology – Base Frequency - Enhancing Performance [https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf]

The distributor application was also enhanced to be aware of these higher
frequency SST-BF cores, and when starting the application, if high frequency
SST-BF cores are present in the core mask, the application will identify these
cores and pin the workloads appropriately. The distributor core is usually
the bottleneck, so this is given first choice of the high frequency SST-BF
cores, followed by the rx core and the tx core.

42.6. Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment
the line “#define DEBUG” defined in start of the application in main.c to enable debug logs.

42.7. Statistics

The main function will print statistics on the console every second. These
statistics include the number of packets enqueued and dequeued at each stage
in the application, and also key statistics per worker, including how many
packets of each burst size (1-8) were sent to each worker thread.

42.8. Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Command Line Arguments.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See Mbuf Pool Initialization.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample
Application. See Driver Initialization.

RX queue initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See RX Queue Initialization.

TX queue initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See TX Queue Initialization.

43. Virtual Machine Power Management Application

Applications running in virtual environments have an abstract view of
the underlying hardware on the host. Specifically, applications cannot
see the binding of virtual components to physical hardware. When looking
at CPU resourcing, the pinning of Virtual CPUs (vCPUs) to Physical CPUs
(pCPUs) on the host is not apparent to an application and this pinning
may change over time. In addition, operating systems on Virtual Machines
(VMs) do not have the ability to govern their own power policy. The
Machine Specific Registers (MSRs) for enabling P-state transitions are
not exposed to the operating systems running on the VMs.

The solution demonstrated in this sample application shows an example of
how a DPDK application can indicate its processing requirements using
VM-local only information (vCPU/lcore, and so on) to a host resident VM
Power Manager. The VM Power Manager is responsible for:

	Accepting requests for frequency changes for a vCPU

	Translating the vCPU to a pCPU using libvirt

	Performing the change in frequency

This application demonstrates the following features:

	The handling of VM application requests to change frequency.
VM applications can request frequency changes for a vCPU. The VM
Power Management Application uses libvirt to translate that
virtual CPU (vCPU) request to a physical CPU (pCPU) request and
performs the frequency change.

	The acceptance of power management policies from VM applications.
A VM application can send a policy to the host application. The
policy contains rules that define the power management behaviour
of the VM. The host application then applies the rules of the
policy independent of the VM application. For example, the
policy can contain time-of-day information for busy/quiet
periods, and the host application can scale up/down the relevant
cores when required. See Command Line Options Available When Sending a Policy to the Host for information on
setting policy values.

	Out-of-band monitoring of workloads using core hardware event counters.
The host application can manage power for an application by looking
at the event counters of the cores and taking action based on the
branch miss/hit ratio. See Command Line Options for Enabling Out-of-band Branch Ratio Monitoring.

Note: This functionality also applies in non-virtualised environments.

In addition to the librte_power library used on the host, the
application uses a special version of librte_power on each VM, which
directs frequency changes and policies to the host monitor rather than
the APCI cpufreq sysfs interface used on the host in non-virtualised
environments.

[image: ../_images/vm_power_mgr_highlevel.svg]
Fig. 43.1 Highlevel Solution

In the above diagram, the DPDK Applications are shown running in
virtual machines, and the VM Power Monitor application is shown running
in the host.

DPDK VM Application

	Reuse librte_power interface, but uses an implementation that
forwards frequency requests to the host using a virtio-serial channel

	Each lcore has exclusive access to a single channel

	Sample application reuses l3fwd_power

	A CLI for changing frequency from within a VM is also included

VM Power Monitor

	Accepts VM commands over virtio-serial endpoints, monitored
using epoll

	Commands include the virtual core to be modified, using libvirt to get
the physical core mapping

	Uses librte_power to affect frequency changes using Linux userspace
power governor (acpi_cpufreq OR intel_pstate driver)

	CLI: For adding VM channels to monitor, inspecting and changing channel
state, manually altering CPU frequency. Also allows for the changings
of vCPU to pCPU pinning

43.1. Sample Application Architecture Overview

The VM power management solution employs qemu-kvm to provide
communications channels between the host and VMs in the form of a
virtio-serial connection that appears as a para-virtualised serial
device on a VM and can be configured to use various backends on the
host. For this example, the configuration of each virtio-serial endpoint
on the host as an AF_UNIX file socket, supporting poll/select and
epoll for event notification. In this example, each channel endpoint on
the host is monitored for EPOLLIN events using epoll. Each channel
is specified as qemu-kvm arguments or as libvirt XML for each VM,
where each VM can have several channels up to a maximum of 64 per VM. In this
example, each DPDK lcore on a VM has exclusive access to a channel.

To enable frequency changes from within a VM, the VM forwards a
librte_power request over the virtio-serial channel to the host. Each
request contains the vCPU and power command (scale up/down/min/max). The
API for the host librte_power and guest librte_power is consistent
across environments, with the selection of VM or host implementation
determined automatically at runtime based on the environment. On
receiving a request, the host translates the vCPU to a pCPU using the
libvirt API before forwarding it to the host librte_power.

[image: ../_images/vm_power_mgr_vm_request_seq.svg]
In addition to the ability to send power management requests to the
host, a VM can send a power management policy to the host. In some
cases, using a power management policy is a preferred option because it
can eliminate possible latency issues that can occur when sending power
management requests. Once the VM sends the policy to the host, the VM no
longer needs to worry about power management, because the host now
manages the power for the VM based on the policy. The policy can specify
power behavior that is based on incoming traffic rates or time-of-day
power adjustment (busy/quiet hour power adjustment for example). See
Command Line Options Available When Sending a Policy to the Host for more information.

One method of power management is to sense how busy a core is when
processing packets and adjusting power accordingly. One technique for
doing this is to monitor the ratio of the branch miss to branch hits
counters and scale the core power accordingly. This technique is based
on the premise that when a core is not processing packets, the ratio of
branch misses to branch hits is very low, but when the core is
processing packets, it is measurably higher. The implementation of this
capability is as a policy of type BRANCH_RATIO.
See Command Line Options Available When Sending a Policy to the Host for more information on using the
BRANCH_RATIO policy option.

A JSON interface enables the specification of power management requests
and policies in JSON format. The JSON interfaces provide a more
convenient and more easily interpreted interface for the specification
of requests and policies. See JSON Interface for Power Management Requests and Policies for more information.

43.1.1. Performance Considerations

While the Haswell microarchitecture allows for independent power control
for each core, earlier microarchitectures do not offer such fine-grained
control. When deploying on pre-Haswell platforms, greater care must be
taken when selecting which cores are assigned to a VM, for example, a
core does not scale down in frequency until all of its siblings are
similarly scaled down.

43.2. Configuration

43.2.1. BIOS

To use the power management features of the DPDK, you must enable
Enhanced Intel SpeedStep® Technology in the platform BIOS. Otherwise,
the sys file folder /sys/devices/system/cpu/cpu0/cpufreq does not
exist, and you cannot use CPU frequency-based power management. Refer to the
relevant BIOS documentation to determine how to access these settings.

43.2.2. Host Operating System

The DPDK Power Management library can use either the acpi_cpufreq or
the intel_pstate kernel driver for the management of core frequencies. In
many cases, the intel_pstate driver is the default power management
environment.

Should the acpi-cpufreq driver be required, the intel_pstate
module must be disabled, and the acpi-cpufreq module loaded in its place.

To disable the intel_pstate driver, add the following to the grub
Linux command line:

intel_pstate=disable

On reboot, load the acpi_cpufreq module:

modprobe acpi_cpufreq

43.2.3. Hypervisor Channel Configuration

Configure virtio-serial channels using libvirt XML.
The XML structure is as follows:

<name>{vm_name}</name>
<controller type='virtio-serial' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</controller>
<channel type='unix'>
 <source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
 <target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}'/>
 <address type='virtio-serial' controller='0' bus='0' port='{N}'/>
</channel>

Where a single controller of type virtio-serial is created, up to 32
channels can be associated with a single controller, and multiple
controllers can be specified. The convention is to use the name of the
VM in the host path {vm_name} and to increment {channel_num} for each
channel. Likewise, the port value {N} must be incremented for each
channel.

On the host, for each channel to appear in the path, ensure the creation
of the /tmp/powermonitor/ directory and the assignment of qemu
permissions:

mkdir /tmp/powermonitor/
chown qemu:qemu /tmp/powermonitor

Note that files and directories in /tmp are generally removed when
rebooting the host and you may need to perform the previous steps after
each reboot.

The serial device as it appears on a VM is configured with the target
element attribute name and must be in the form:
virtio.serial.port.poweragent.{vm_channel_num}, where
vm_channel_num is typically the lcore channel to be used in
DPDK VM applications.

Each channel on a VM is present at:

/dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}

43.3. Compiling and Running the Host Application

43.3.1. Compiling the Host Application

For information on compiling the DPDK and sample applications, see
see Compiling the Sample Applications.

The application is located in the vm_power_manager subdirectory.

To build just the vm_power_manager application using make:

export RTE_SDK=/path/to/rte_sdk
export RTE_TARGET=build
cd ${RTE_SDK}/examples/vm_power_manager/
make

The resulting binary is ${RTE_SDK}/build/examples/vm_power_manager.

To build just the vm_power_manager application using meson/ninja:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}
meson build
cd build
ninja
meson configure -Dexamples=vm_power_manager
ninja

The resulting binary is ${RTE_SDK}/build/examples/dpdk-vm_power_manager.

43.3.2. Running the Host Application

The application does not have any specific command line options other
than the EAL options:

./build/vm_power_mgr [EAL options]

The application requires exactly two cores to run. One core for the CLI
and the other for the channel endpoint monitor. For example, to run on
cores 0 and 1 on a system with four memory channels, issue the command:

./build/vm_power_mgr -l 0-1 -n 4

After successful initialization, the VM Power Manager CLI prompt appears:

vm_power>

Now, it is possible to add virtual machines to the VM Power Manager:

vm_power> add_vm {vm_name}

When a {vm_name} is specified with the add_vm command, a lookup is
performed with libvirt to ensure that the VM exists. {vm_name} is a
unique identifier to associate channels with a particular VM and for
executing operations on a VM within the CLI. VMs do not have to be
running to add them.

It is possible to issue several commands from the CLI to manage VMs.

Remove the virtual machine identified by {vm_name} from the VM Power
Manager using the command:

rm_vm {vm_name}

Add communication channels for the specified VM using the following
command. The virtio channels must be enabled in the VM configuration
(qemu/libvirt) and the associated VM must be active. {list} is a
comma-separated list of channel numbers to add. Specifying the keyword
all attempts to add all channels for the VM:

 set_pcpu {vm_name} {vcpu} {pcpu}

Enable query of physical core information from a VM:

set_query {vm_name} enable|disable

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

 show_cpu_freq_mask {mask}

Set the current frequency for the cores specified in {core_mask} by scaling each up/down/min/max:

add_channels {vm_name} {list}|all

Enable or disable the communication channels in {list} (comma-separated)
for the specified VM. Alternatively, replace list with the keyword
all. Disabled channels receive packets on the host. However, the commands
they specify are ignored. Set the status to enabled to begin processing
requests again:

set_channel_status {vm_name} {list}|all enabled|disabled

Print to the CLI information on the specified VM. The information lists
the number of vCPUs, the pinning to pCPU(s) as a bit mask, along with
any communication channels associated with each VM, and the status of
each channel:

show_vm {vm_name}

Set the binding of a virtual CPU on a VM with name {vm_name} to the
physical CPU mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu}

Set the binding of the virtual CPU on the VM to the physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}

It is also possible to perform manual control and inspection in relation
to CPU frequency scaling.

Get the current frequency for each core specified in the mask:

show_cpu_freq_mask {mask}

Set the current frequency for the cores specified in {core_mask} by
scaling each up/down/min/max:

set_cpu_freq {core_mask} up|down|min|max

Get the current frequency for the specified core:

show_cpu_freq {core_num}

Set the current frequency for the specified core by scaling up/down/min/max:

set_cpu_freq {core_num} up|down|min|max

43.3.3. Command Line Options for Enabling Out-of-band Branch Ratio Monitoring

There are a couple of command line parameters for enabling the out-of-band
monitoring of branch ratios on cores doing busy polling using PMDs as
described below:

	--core-list {list of cores}
	Specify the list of cores to monitor the ratio of branch misses
to branch hits. A tightly-polling PMD thread has a very low
branch ratio, therefore the core frequency scales down to the
minimum allowed value. On receiving packets, the code path changes,
causing the branch ratio to increase. When the ratio goes above
the ratio threshold, the core frequency scales up to the maximum
allowed value.

	--branch-ratio {ratio}
	Specify a floating-point number that identifies the threshold at which
to scale up or down for the given workload. The default branch ratio
is 0.01 and needs adjustment for different workloads.

43.4. Compiling and Running the Guest Applications

It is possible to use the l3fwd-power application (for example) with the
vm_power_manager.

The distribution also provides a guest CLI for validating the setup.

For both l3fwd-power and the guest CLI, the host application must use
the add_channels command to monitor the channels for the VM. To do this,
issue the following commands in the host application:

vm_power> add_vm vmname
vm_power> add_channels vmname all
vm_power> set_channel_status vmname all enabled
vm_power> show_vm vmname

43.4.1. Compiling the Guest Application

For information on compiling DPDK and the sample applications in general,
see Compiling the Sample Applications.

For compiling and running the l3fwd-power sample application, see
L3 Forwarding with Power Management Sample Application.

The application is in the guest_cli subdirectory under vm_power_manager.

To build just the guest_vm_power_manager application using make, issue
the following commands:

export RTE_SDK=/path/to/rte_sdk
export RTE_TARGET=build
cd ${RTE_SDK}/examples/vm_power_manager/guest_cli/
make

The resulting binary is ${RTE_SDK}/build/examples/guest_cli.

Note: This sample application conditionally links in the Jansson JSON
library. Consequently, if you are using a multilib or cross-compile
environment, you may need to set the PKG_CONFIG_LIBDIR environmental
variable to point to the relevant pkgconfig folder so that the correct
library is linked in.

For example, if you are building for a 32-bit target, you could find the
correct directory using the following find command:

find /usr -type d -name pkgconfig
/usr/lib/i386-linux-gnu/pkgconfig
/usr/lib/x86_64-linux-gnu/pkgconfig

Then use:

export PKG_CONFIG_LIBDIR=/usr/lib/i386-linux-gnu/pkgconfig

You then use the make command as normal, which should find the 32-bit
version of the library, if it installed. If not, the application builds
without the JSON interface functionality.

To build just the vm_power_manager application using meson/ninja:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}
meson build
cd build
ninja
meson configure -Dexamples=vm_power_manager/guest_cli
ninja

The resulting binary is ${RTE_SDK}/build/examples/guest_cli.

43.4.2. Running the Guest Application

The standard EAL command line parameters are necessary:

./build/vm_power_mgr [EAL options] -- [guest options]

The guest example uses a channel for each lcore enabled. For example, to
run on cores 0, 1, 2 and 3:

./build/guest_vm_power_mgr -l 0-3

43.4.3. Command Line Options Available When Sending a Policy to the Host

Optionally, there are several command line options for a user who needs
to send a power policy to the host application:

	--vm-name {name of guest vm}
	Allows the user to change the virtual machine name
passed down to the host application using the power policy.
The default is ubuntu2.

	--vcpu-list {list vm cores}
	A comma-separated list of cores in the VM that the user
wants the host application to monitor.
The list of cores in any VM starts at zero,
and the host application maps these to the physical cores
once the policy passes down to the host.
Valid syntax includes individual cores 2,3,4,
a range of cores 2-4, or a combination of both 1,3,5-7.

	--busy-hours {list of busy hours}
	A comma-separated list of hours in which to set the core
frequency to the maximum.
Valid syntax includes individual hours 2,3,4,
a range of hours 2-4, or a combination of both 1,3,5-7.
Valid hour values are 0 to 23.

	--quiet-hours {list of quiet hours}
	A comma-separated list of hours in which to set the core frequency
to minimum. Valid syntax includes individual hours 2,3,4,
a range of hours 2-4, or a combination of both 1,3,5-7.
Valid hour values are 0 to 23.

	--policy {policy type}
	The type of policy. This can be one of the following values:

	TRAFFIC - Based on incoming traffic rates on the NIC.

	TIME - Uses a busy/quiet hours policy.

	BRANCH_RATIO - Uses branch ratio counters to determine core busyness.

	WORKLOAD - Sets the frequency to low, medium or high
based on the received policy setting.

Note: Not all policy types need all parameters.
For example, BRANCH_RATIO only needs the vcpu-list parameter.

After successful initialization, the VM Power Manager Guest CLI prompt
appears:

vm_power(guest)>

To change the frequency of an lcore, use a set_cpu_freq command similar
to the following:

set_cpu_freq {core_num} up|down|min|max

where, {core_num} is the lcore and channel to change frequency by
scaling up/down/min/max.

To start an application, configure the power policy, and send it to the
host, use a command like the following:

./build/guest_vm_power_mgr -l 0-3 -n 4 -- --vm-name=ubuntu --policy=BRANCH_RATIO --vcpu-list=2-4

Once the VM Power Manager Guest CLI appears, issuing the ‘send_policy now’ command
will send the policy to the host:

send_policy now

Once the policy is sent to the host, the host application takes over the power monitoring
of the specified cores in the policy.

43.5. JSON Interface for Power Management Requests and Policies

In addition to the command line interface for the host command, and a
virtio-serial interface for VM power policies, there is also a JSON
interface through which power commands and policies can be sent.

Note: This functionality adds a dependency on the Jansson library.
Install the Jansson development package on the system to avail of the
JSON parsing functionality in the app. Issue the apt-get install
libjansson-dev command to install the development package. The command
and package name may be different depending on your operating system. It
is worth noting that the app builds successfully if this package is not
present, but a warning displays during compilation, and the JSON parsing
functionality is not present in the app.

Send a request or policy to the VM Power Manager by simply opening a
fifo file at /tmp/powermonitor/fifo, writing a JSON string to that file,
and closing the file.

The JSON string can be a power management request or a policy, and takes
the following format:

{"packet_type": {
"pair_1": value,
"pair_2": value
}}

The packet_type header can contain one of two values, depending on
whether a power management request or policy is being sent. The two
possible values are instruction and policy and the expected name-value
pairs are different depending on which type is sent.

The pairs are in the format of standard JSON name-value pairs. The value
type varies between the different name-value pairs, and may be integers,
strings, arrays, and so on. See JSON Interface Examples
for examples of policies and instructions and
JSON Name-value Pairs for the supported names and value types.

43.5.1. JSON Interface Examples

The following is an example JSON string that creates a time-profile
policy.

{"policy": {
"name": "ubuntu",
"command": "create",
"policy_type": "TIME",
"busy_hours":[17, 18, 19, 20, 21, 22, 23],
"quiet_hours":[2, 3, 4, 5, 6],
"core_list":[11]
}}

The following is an example JSON string that removes the named policy.

{"policy": {
"name": "ubuntu",
"command": "destroy",
}}

The following is an example JSON string for a power management request.

{"instruction": {
"name": "ubuntu",
"command": "power",
"unit": "SCALE_MAX",
"resource_id": 10
}}

To query the available frequences of an lcore, use the query_cpu_freq command.
Where {core_num} is the lcore to query.
Before using this command, please enable responses via the set_query command on the host.

query_cpu_freq {core_num}|all

To query the capabilities of an lcore, use the query_cpu_caps command.
Where {core_num} is the lcore to query.
Before using this command, please enable responses via the set_query command on the host.

query_cpu_caps {core_num}|all

To start the application and configure the power policy, and send it to the host:

./build/guest_vm_power_mgr -l 0-3 -n 4 -- --vm-name=ubuntu --policy=BRANCH_RATIO --vcpu-list=2-4

Once the VM Power Manager Guest CLI appears, issuing the ‘send_policy now’ command
will send the policy to the host:

send_policy now

Once the policy is sent to the host, the host application takes over the power monitoring
of the specified cores in the policy.

43.5.2. JSON Name-value Pairs

The following are the name-value pairs supported by the JSON interface:

	avg_packet_thresh

	busy_hours

	command

	core_list

	mac_list

	max_packet_thresh

	name

	policy_type

	quiet_hours

	resource_id

	unit

	workload

43.5.2.1. avg_packet_thresh

	Description
	The threshold below which the frequency is set to the minimum value
for the TRAFFIC policy.
If the traffic rate is above this value and below the maximum value,
the frequency is set to medium.

	Type
	integer

	Values
	The number of packets below which the TRAFFIC policy applies
the minimum frequency, or the medium frequency
if between the average and maximum thresholds.

	Required
	Yes

	Example
	"avg_packet_thresh": 100000

43.5.2.2. busy_hours

	Description
	The hours of the day in which we scale up the cores for busy times.

	Type
	array of integers

	Values
	An array with a list of hour values (0-23).

	Required
	For the TIME policy only.

	Example
	"busy_hours":[17, 18, 19, 20, 21, 22, 23]

43.5.2.3. command

	Description
	The type of packet to send to the VM Power Manager.
It is possible to create or destroy a policy or send a direct command
to adjust the frequency of a core,
as is possible on the command line interface.

	Type
	string

	Values
	Possible values are:
- CREATE: Create a new policy.
- DESTROY: Remove an existing policy.
- POWER: Send an immediate command, max, min, and so on.

	Required
	Yes

	Example
	"command": "CREATE"

43.5.2.4. core_list

	Description
	The cores to which to apply a policy.

	Type
	array of integers

	Values
	An array with a list of virtual CPUs.

	Required
	For CREATE/DESTROY policy requests only.

	Example
	"core_list":[10, 11]

43.5.2.5. mac_list

	Description
	When the policy is of type TRAFFIC,
it is necessary to specify the MAC addresses that the host must monitor.

	Type
	array of strings

	Values
	An array with a list of MAC address strings.

	Required
	For TRAFFIC policy types only.

	Example
	"mac_list":["de:ad:be:ef:01:01","de:ad:be:ef:01:02"]

43.5.2.6. max_packet_thresh

	Description
	In a policy of type TRAFFIC,
the threshold value above which the frequency is set to a maximum.

	Type
	integer

	Values
	The number of packets per interval above which
the TRAFFIC policy applies the maximum frequency.

	Required
	For the TRAFFIC policy only.

	Example
	"max_packet_thresh": 500000

43.5.2.7. name

	Description
	The name of the VM or host.
Allows the parser to associate the policy with the relevant VM or host OS.

	Type
	string

	Values
	Any valid string.

	Required
	Yes

	Example
	"name": "ubuntu2"

43.5.2.8. policy_type

	Description
	The type of policy to apply.
See the --policy option description for more information.

	Type
	string

	Values
	Possible values are:

	TIME: Time-of-day policy.
Scale the frequencies of the relevant cores up/down
depending on busy and quiet hours.

	TRAFFIC: Use statistics from the NIC and scale up and down accordingly.

	WORKLOAD: Determine how heavily loaded the cores are
and scale up and down accordingly.

	BRANCH_RATIO: An out-of-band policy that looks at the ratio
between branch hits and misses on a core
and uses that information to determine how much packet processing
a core is doing.

	Required
	For CREATE and DESTROY policy requests only.

	Example
	"policy_type": "TIME"

43.5.2.9. quiet_hours

	Description
	The hours of the day to scale down the cores for quiet times.

	Type
	array of integers

	Values
	An array with a list of hour numbers with values in the range 0 to 23.

	Required
	For the TIME policy only.

	Example
	"quiet_hours":[2, 3, 4, 5, 6]

43.5.2.10. resource_id

	Description
	The core to which to apply a power command.

	Type
	integer

	Values
	A valid core ID for the VM or host OS.

	Required
	For the POWER instruction only.

	Example
	"resource_id": 10

43.5.2.11. unit

	Description
	The type of power operation to apply in the command.

	Type
	string

	Values
	
	SCALE_MAX: Scale the frequency of this core to the maximum.

	SCALE_MIN: Scale the frequency of this core to the minimum.

	SCALE_UP: Scale up the frequency of this core.

	SCALE_DOWN: Scale down the frequency of this core.

	ENABLE_TURBO: Enable Intel® Turbo Boost Technology for this core.

	DISABLE_TURBO: Disable Intel® Turbo Boost Technology for this core.

	Required
	For the POWER instruction only.

	Example
	"unit": "SCALE_MAX"

43.5.2.12. workload

	Description
	In a policy of type WORKLOAD,
it is necessary to specify how heavy the workload is.

	Type
	string

	Values
	
	HIGH: Scale the frequency of this core to maximum.

	MEDIUM: Scale the frequency of this core to minimum.

	LOW: Scale up the frequency of this core.

	Required
	For the WORKLOAD policy only.

	Example
	"workload": "MEDIUM"

44. TEP termination Sample Application

The TEP (Tunnel End point) termination sample application simulates a VXLAN
Tunnel Endpoint (VTEP) termination in DPDK, which is used to demonstrate
the offload and filtering capabilities of Intel® XL710 10/40 Gigabit Ethernet
Controller for VXLAN packet.
This sample uses the basic virtio devices management mechanism from vhost example,
and also uses the us-vHost interface and tunnel filtering mechanism to direct
a specified traffic to a specific VM.
In addition, this sample is also designed to show how tunneling protocols can be handled.

44.1. Background

With virtualization, overlay networks allow a network structure to be built
or imposed across physical nodes which is abstracted away from the actual
underlining physical network connections.
This allows network isolation, QOS, etc to be provided on a per client basis.

[image: ../_images/overlay_networking.svg]
Fig. 44.1 Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point (VEP/TEP).
The TEP is normally located at the physical host level ideally in the software switch.
Due to processing constraints and the inevitable bottleneck that the switch
becomes, the ability to offload overlay support features becomes an important requirement.
Intel® XL710 10/40 Gigabit Ethernet network card provides hardware filtering
and offload capabilities to support overlay networks implementations such as MAC in UDP and MAC in GRE.

44.2. Sample Code Overview

The DPDK TEP termination sample code demonstrates the offload and filtering
capabilities of Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library.
The vhost library is developed for user space Ethernet switch to easily integrate with vhost functionality.

The sample will support the followings:

	Tunneling packet recognition.

	The port of UDP tunneling is configurable

	Directing incoming traffic to the correct queue based on the tunnel filter type.
The supported filter type are listed below.

	Inner MAC and VLAN and tenant ID

	Inner MAC and tenant ID, and Outer MAC

	Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device ID.
Each device will receive a unique device ID.
The inner MAC will be learned by the first packet transmitted from a device.

	Decapsulation of RX VXLAN traffic. This is a software only operation.

	Encapsulation of TX VXLAN traffic. This is a software only operation.

	Inner IP and inner L4 checksum offload.

	TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample
application based on DPDK vhost lib.

[image: ../_images/tep_termination_arch.svg]
Fig. 44.2 TEP termination Framework Overview

44.3. Supported Distributions

The example in this section have been validated with the following distributions:

	Fedora* 18

	Fedora* 19

	Fedora* 20

44.4. Compiling the Sample Code

To enable vhost, turn on vhost library in the configure file
config/common_linux.

CONFIG_RTE_LIBRTE_VHOST=y

Then following the to compile the sample application shown in
Compiling the Sample Applications.

44.5. Running the Sample Code

	Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

	Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 -p 0x1 --dev-basename tep-termination --nb-devices 4
 --udp-port 4789 --filter-type 1

Note

Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB page hugetlbfs.

44.5.1. Parameters

The same parameters with the vhost sample.

Refer to Parameters for detailed explanation.

Number of Devices.

The nb-devices option specifies the number of virtIO device.
The default value is 2.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 2

Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet.
The default value is 4789.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --udp-port 4789

Filter Type.

The filter-type option is used to specify which filter type is used to
filter UDP tunneling packet to a specified queue.
The default value is 1, which means the filter type of inner MAC and tenant ID is used.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --udp-port 4789 --filter-type 1

TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload.
The default value is 0, which means the checksum offload is disabled.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 2 --tx-checksum

TCP segment size.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet.
The default value is 0, which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --tx-checksum --tso-segsz 800

Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN packet.
The default value is 1.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 4 --udp-port 4789 --decap 1

Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet.
The default value is 1.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
 --nb-devices 4 --udp-port 4789 --encap 1

44.6. Running the Virtual Machine (QEMU)

Refer to Start the VM.

44.7. Running DPDK in the Virtual Machine

Refer to Run testpmd inside guest.

44.8. Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include
both the virtio-net device’s MAC address.
The DPDK sample code behaves in a similar manner to a learning switch in that
it learns the MAC address of the virtio-net devices from the first transmitted packet.
On learning the MAC address,
the DPDK vhost sample code prints a message with the MAC address and tenant ID virtio-net device.
For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and VNI 1000.
Any packets received on the NIC with these values are placed on the devices receive queue.

45. PTP Client Sample Application

The PTP (Precision Time Protocol) client sample application is a simple
example of using the DPDK IEEE1588 API to communicate with a PTP master clock
to synchronize the time on the NIC and, optionally, on the Linux system.

Note, PTP is a time syncing protocol and cannot be used within DPDK as a
time-stamping mechanism. See the following for an explanation of the protocol:
Precision Time Protocol [https://en.wikipedia.org/wiki/Precision_Time_Protocol].

45.1. Limitations

The PTP sample application is intended as a simple reference implementation of
a PTP client using the DPDK IEEE1588 API.
In order to keep the application simple the following assumptions are made:

	The first discovered master is the master for the session.

	Only L2 PTP packets are supported.

	Only the PTP v2 protocol is supported.

	Only the slave clock is implemented.

45.2. How the Application Works

[image: ../_images/ptpclient.svg]
Fig. 45.1 PTP Synchronization Protocol

The PTP synchronization in the sample application works as follows:

	Master sends Sync message - the slave saves it as T2.

	Master sends Follow Up message and sends time of T1.

	Slave sends Delay Request frame to PTP Master and stores T3.

	Master sends Delay Response T4 time which is time of received T3.

The adjustment for slave can be represented as:

adj = -[(T2-T1)-(T4 - T3)]/2

If the command line parameter -T 1 is used the application also
synchronizes the PTP PHC clock with the Linux kernel clock.

45.3. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ptpclient sub-directory.

Note

To compile the application edit the config/common_linux configuration file to enable IEEE1588
and then recompile DPDK:

CONFIG_RTE_LIBRTE_IEEE1588=y

45.4. Running the Application

To run the example in a linux environment:

./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0

Refer to DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

	-p portmask: Hexadecimal portmask.

	-T 0: Update only the PTP slave clock.

	-T 1: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.

45.5. Code Explanation

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with rte_
and are explained in detail in the DPDK API Documentation.

45.5.1. The Main Function

The main() function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The
argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

And than we parse application specific arguments

argc -= ret;
argv += ret;

ret = ptp_parse_args(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the “Mbuf Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined
port_init() function with portmask provided by user:

for (portid = 0; portid < nb_ports; portid++)
 if ((ptp_enabled_port_mask & (1 << portid)) != 0) {

 if (port_init(portid, mbuf_pool) == 0) {
 ptp_enabled_ports[ptp_enabled_port_nb] = portid;
 ptp_enabled_port_nb++;
 } else {
 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
 portid);
 }
 }

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example lcore_main() is called on a single
lcore.

lcore_main();

The lcore_main() function is explained below.

45.5.2. The Lcores Main

As we saw above the main() function calls an application function on the
available lcores.

The main work of the application is done within the loop:

for (portid = 0; portid < ptp_enabled_port_nb; portid++) {

 portid = ptp_enabled_ports[portid];
 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);

 if (likely(nb_rx == 0))
 continue;

 if (m->ol_flags & PKT_RX_IEEE1588_PTP)
 parse_ptp_frames(portid, m);

 rte_pktmbuf_free(m);
}

Packets are received one by one on the RX ports and, if required, PTP response
packets are transmitted on the TX ports.

If the offload flags in the mbuf indicate that the packet is a PTP packet then
the packet is parsed to determine which type:

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
 parse_ptp_frames(portid, m);

All packets are freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using
Ctrl-C.

45.5.3. PTP parsing

The parse_ptp_frames() function processes PTP packets, implementing slave
PTP IEEE1588 L2 functionality.

void
parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
 struct ptp_header *ptp_hdr;
 struct rte_ether_hdr *eth_hdr;
 uint16_t eth_type;

 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);

 if (eth_type == PTP_PROTOCOL) {
 ptp_data.m = m;
 ptp_data.portid = portid;
 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
 + sizeof(struct rte_ether_hdr));

 switch (ptp_hdr->msgtype) {
 case SYNC:
 parse_sync(&ptp_data);
 break;
 case FOLLOW_UP:
 parse_fup(&ptp_data);
 break;
 case DELAY_RESP:
 parse_drsp(&ptp_data);
 print_clock_info(&ptp_data);
 break;
 default:
 break;
 }
 }
}

There are 3 types of packets on the RX path which we must parse to create a minimal
implementation of the PTP slave client:

	SYNC packet.

	FOLLOW UP packet

	DELAY RESPONSE packet.

When we parse the FOLLOW UP packet we also create and send a DELAY_REQUEST packet.
Also when we parse the DELAY RESPONSE packet, and all conditions are met we adjust the PTP slave clock.

46. Performance Thread Sample Application

The performance thread sample application is a derivative of the standard L3
forwarding application that demonstrates different threading models.

46.1. Overview

For a general description of the L3 forwarding applications capabilities
please refer to the documentation of the standard application in
L3 Forwarding Sample Application.

The performance thread sample application differs from the standard L3
forwarding example in that it divides the TX and RX processing between
different threads, and makes it possible to assign individual threads to
different cores.

Three threading models are considered:

	When there is one EAL thread per physical core.

	When there are multiple EAL threads per physical core.

	When there are multiple lightweight threads per EAL thread.

Since DPDK release 2.0 it is possible to launch applications using the
--lcores EAL parameter, specifying cpu-sets for a physical core. With the
performance thread sample application its is now also possible to assign
individual RX and TX functions to different cores.

As an alternative to dividing the L3 forwarding work between different EAL
threads the performance thread sample introduces the possibility to run the
application threads as lightweight threads (L-threads) within one or
more EAL threads.

In order to facilitate this threading model the example includes a primitive
cooperative scheduler (L-thread) subsystem. More details of the L-thread
subsystem can be found in The L-thread subsystem.

Note: Whilst theoretically possible it is not anticipated that multiple
L-thread schedulers would be run on the same physical core, this mode of
operation should not be expected to yield useful performance and is considered
invalid.

46.2. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the performance-thread/l3fwd-thread sub-directory.

46.3. Running the Application

The application has a number of command line options:

./build/l3fwd-thread [EAL options] --
 -p PORTMASK [-P]
 --rx(port,queue,lcore,thread)[,(port,queue,lcore,thread)]
 --tx(lcore,thread)[,(lcore,thread)]
 [--enable-jumbo] [--max-pkt-len PKTLEN]] [--no-numa]
 [--hash-entry-num] [--ipv6] [--no-lthreads] [--stat-lcore lcore]
 [--parse-ptype]

Where:

	-p PORTMASK: Hexadecimal bitmask of ports to configure.

	-P: optional, sets all ports to promiscuous mode so that packets are
accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address
set to the Ethernet address of the port are accepted.

	--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread)]: the list of
NIC RX ports and queues handled by the RX lcores and threads. The parameters
are explained below.

	--tx (lcore,thread)[,(lcore,thread)]: the list of TX threads identifying
the lcore the thread runs on, and the id of RX thread with which it is
associated. The parameters are explained below.

	--enable-jumbo: optional, enables jumbo frames.

	--max-pkt-len: optional, maximum packet length in decimal (64-9600).

	--no-numa: optional, disables numa awareness.

	--hash-entry-num: optional, specifies the hash entry number in hex to be
setup.

	--ipv6: optional, set it if running ipv6 packets.

	--no-lthreads: optional, disables l-thread model and uses EAL threading
model. See below.

	--stat-lcore: optional, run CPU load stats collector on the specified
lcore.

	--parse-ptype: optional, set to use software to analyze packet type.
Without this option, hardware will check the packet type.

The parameters of the --rx and --tx options are:

	--rx parameters

	port

	RX port

	queue

	RX queue that will be read on the specified RX port

	lcore

	Core to use for the thread

	thread

	Thread id (continuously from 0 to N)

	--tx parameters

	lcore

	Core to use for L3 route match and transmit

	thread

	Id of RX thread to be associated with this TX thread

The l3fwd-thread application allows you to start packet processing in two
threading models: L-Threads (default) and EAL Threads (when the
--no-lthreads parameter is used). For consistency all parameters are used
in the same way for both models.

46.3.1. Running with L-threads

When the L-thread model is used (default option), lcore and thread parameters
in --rx/--tx are used to affinitize threads to the selected scheduler.

For example, the following places every l-thread on different lcores:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)"

The following places RX l-threads on lcore 0 and TX l-threads on lcore 1 and 2
and so on:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(1,0)(2,1)"

46.3.2. Running with EAL threads

When the --no-lthreads parameter is used, the L-threading model is turned
off and EAL threads are used for all processing. EAL threads are enumerated in
the same way as L-threads, but the --lcores EAL parameter is used to
affinitize threads to the selected cpu-set (scheduler). Thus it is possible to
place every RX and TX thread on different lcores.

For example, the following places every EAL thread on different lcores:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

To affinitize two or more EAL threads to one cpu-set, the EAL --lcores
parameter is used.

The following places RX EAL threads on lcore 0 and TX EAL threads on lcore 1
and 2 and so on:

l3fwd-thread -l 0-7 -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

46.3.3. Examples

For selected scenarios the command line configuration of the application for L-threads
and its corresponding EAL threads command line can be realized as follows:

	Start every thread on different scheduler (1:1):

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)"

EAL thread equivalent:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

	Start all threads on one core (N:1).

Start 4 L-threads on lcore 0:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(0,0)(0,1)"

Start 4 EAL threads on cpu-set 0:

l3fwd-thread -l 0-7 -n 2 --lcores="(0-3)@0" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

	Start threads on different cores (N:M).

Start 2 L-threads for RX on lcore 0, and 2 L-threads for TX on lcore 1:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,0,1)" \
 --tx="(1,0)(1,1)"

Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on
cpu-set 1:

l3fwd-thread -l 0-7 -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
 --rx="(0,0,0,0)(1,0,1,1)" \
 --tx="(2,0)(3,1)" \
 --no-lthreads

46.4. Explanation

To a great extent the sample application differs little from the standard L3
forwarding application, and readers are advised to familiarize themselves with
the material covered in the L3 Forwarding Sample Application documentation before proceeding.

The following explanation is focused on the way threading is handled in the
performance thread example.

46.4.1. Mode of operation with EAL threads

The performance thread sample application has split the RX and TX functionality
into two different threads, and the RX and TX threads are
interconnected via software rings. With respect to these rings the RX threads
are producers and the TX threads are consumers.

On initialization the TX and RX threads are started according to the command
line parameters.

The RX threads poll the network interface queues and post received packets to a
TX thread via a corresponding software ring.

The TX threads poll software rings, perform the L3 forwarding hash/LPM match,
and assemble packet bursts before performing burst transmit on the network
interface.

As with the standard L3 forward application, burst draining of residual packets
is performed periodically with the period calculated from elapsed time using
the timestamps counter.

The diagram below illustrates a case with two RX threads and three TX threads.

[image: ../_images/performance_thread_1.svg]

46.4.2. Mode of operation with L-threads

Like the EAL thread configuration the application has split the RX and TX
functionality into different threads, and the pairs of RX and TX threads are
interconnected via software rings.

On initialization an L-thread scheduler is started on every EAL thread. On all
but the master EAL thread only a dummy L-thread is initially started.
The L-thread started on the master EAL thread then spawns other L-threads on
different L-thread schedulers according the command line parameters.

The RX threads poll the network interface queues and post received packets
to a TX thread via the corresponding software ring.

The ring interface is augmented by means of an L-thread condition variable that
enables the TX thread to be suspended when the TX ring is empty. The RX thread
signals the condition whenever it posts to the TX ring, causing the TX thread
to be resumed.

Additionally the TX L-thread spawns a worker L-thread to take care of
polling the software rings, whilst it handles burst draining of the transmit
buffer.

The worker threads poll the software rings, perform L3 route lookup and
assemble packet bursts. If the TX ring is empty the worker thread suspends
itself by waiting on the condition variable associated with the ring.

Burst draining of residual packets, less than the burst size, is performed by
the TX thread which sleeps (using an L-thread sleep function) and resumes
periodically to flush the TX buffer.

This design means that L-threads that have no work, can yield the CPU to other
L-threads and avoid having to constantly poll the software rings.

The diagram below illustrates a case with two RX threads and three TX functions
(each comprising a thread that processes forwarding and a thread that
periodically drains the output buffer of residual packets).

[image: ../_images/performance_thread_2.svg]

46.4.3. CPU load statistics

It is possible to display statistics showing estimated CPU load on each core.
The statistics indicate the percentage of CPU time spent: processing
received packets (forwarding), polling queues/rings (waiting for work),
and doing any other processing (context switch and other overhead).

When enabled statistics are gathered by having the application threads set and
clear flags when they enter and exit pertinent code sections. The flags are
then sampled in real time by a statistics collector thread running on another
core. This thread displays the data in real time on the console.

This feature is enabled by designating a statistics collector core, using the
--stat-lcore parameter.

46.5. The L-thread subsystem

The L-thread subsystem resides in the examples/performance-thread/common
directory and is built and linked automatically when building the
l3fwd-thread example.

The subsystem provides a simple cooperative scheduler to enable arbitrary
functions to run as cooperative threads within a single EAL thread.
The subsystem provides a pthread like API that is intended to assist in
reuse of legacy code written for POSIX pthreads.

The following sections provide some detail on the features, constraints,
performance and porting considerations when using L-threads.

46.5.1. Comparison between L-threads and POSIX pthreads

The fundamental difference between the L-thread and pthread models is the
way in which threads are scheduled. The simplest way to think about this is to
consider the case of a processor with a single CPU. To run multiple threads
on a single CPU, the scheduler must frequently switch between the threads,
in order that each thread is able to make timely progress.
This is the basis of any multitasking operating system.

This section explores the differences between the pthread model and the
L-thread model as implemented in the provided L-thread subsystem. If needed a
theoretical discussion of preemptive vs cooperative multi-threading can be
found in any good text on operating system design.

46.5.1.1. Scheduling and context switching

The POSIX pthread library provides an application programming interface to
create and synchronize threads. Scheduling policy is determined by the host OS,
and may be configurable. The OS may use sophisticated rules to determine which
thread should be run next, threads may suspend themselves or make other threads
ready, and the scheduler may employ a time slice giving each thread a maximum
time quantum after which it will be preempted in favor of another thread that
is ready to run. To complicate matters further threads may be assigned
different scheduling priorities.

By contrast the L-thread subsystem is considerably simpler. Logically the
L-thread scheduler performs the same multiplexing function for L-threads
within a single pthread as the OS scheduler does for pthreads within an
application process. The L-thread scheduler is simply the main loop of a
pthread, and in so far as the host OS is concerned it is a regular pthread
just like any other. The host OS is oblivious about the existence of and
not at all involved in the scheduling of L-threads.

The other and most significant difference between the two models is that
L-threads are scheduled cooperatively. L-threads cannot not preempt each
other, nor can the L-thread scheduler preempt a running L-thread (i.e.
there is no time slicing). The consequence is that programs implemented with
L-threads must possess frequent rescheduling points, meaning that they must
explicitly and of their own volition return to the scheduler at frequent
intervals, in order to allow other L-threads an opportunity to proceed.

In both models switching between threads requires that the current CPU
context is saved and a new context (belonging to the next thread ready to run)
is restored. With pthreads this context switching is handled transparently
and the set of CPU registers that must be preserved between context switches
is as per an interrupt handler.

An L-thread context switch is achieved by the thread itself making a function
call to the L-thread scheduler. Thus it is only necessary to preserve the
callee registers. The caller is responsible to save and restore any other
registers it is using before a function call, and restore them on return,
and this is handled by the compiler. For X86_64 on both Linux and BSD the
System V calling convention is used, this defines registers RSP, RBP, and
R12-R15 as callee-save registers (for more detailed discussion a good reference
is X86 Calling Conventions [https://en.wikipedia.org/wiki/X86_calling_conventions]).

Taking advantage of this, and due to the absence of preemption, an L-thread
context switch is achieved with less than 20 load/store instructions.

The scheduling policy for L-threads is fixed, there is no prioritization of
L-threads, all L-threads are equal and scheduling is based on a FIFO
ready queue.

An L-thread is a struct containing the CPU context of the thread
(saved on context switch) and other useful items. The ready queue contains
pointers to threads that are ready to run. The L-thread scheduler is a simple
loop that polls the ready queue, reads from it the next thread ready to run,
which it resumes by saving the current context (the current position in the
scheduler loop) and restoring the context of the next thread from its thread
struct. Thus an L-thread is always resumed at the last place it yielded.

A well behaved L-thread will call the context switch regularly (at least once
in its main loop) thus returning to the scheduler’s own main loop. Yielding
inserts the current thread at the back of the ready queue, and the process of
servicing the ready queue is repeated, thus the system runs by flipping back
and forth the between L-threads and scheduler loop.

In the case of pthreads, the preemptive scheduling, time slicing, and support
for thread prioritization means that progress is normally possible for any
thread that is ready to run. This comes at the price of a relatively heavier
context switch and scheduling overhead.

With L-threads the progress of any particular thread is determined by the
frequency of rescheduling opportunities in the other L-threads. This means that
an errant L-thread monopolizing the CPU might cause scheduling of other threads
to be stalled. Due to the lower cost of context switching, however, voluntary
rescheduling to ensure progress of other threads, if managed sensibly, is not
a prohibitive overhead, and overall performance can exceed that of an
application using pthreads.

46.5.1.2. Mutual exclusion

With pthreads preemption means that threads that share data must observe
some form of mutual exclusion protocol.

The fact that L-threads cannot preempt each other means that in many cases
mutual exclusion devices can be completely avoided.

Locking to protect shared data can be a significant bottleneck in
multi-threaded applications so a carefully designed cooperatively scheduled
program can enjoy significant performance advantages.

So far we have considered only the simplistic case of a single core CPU,
when multiple CPUs are considered things are somewhat more complex.

First of all it is inevitable that there must be multiple L-thread schedulers,
one running on each EAL thread. So long as these schedulers remain isolated
from each other the above assertions about the potential advantages of
cooperative scheduling hold true.

A configuration with isolated cooperative schedulers is less flexible than the
pthread model where threads can be affinitized to run on any CPU. With isolated
schedulers scaling of applications to utilize fewer or more CPUs according to
system demand is very difficult to achieve.

The L-thread subsystem makes it possible for L-threads to migrate between
schedulers running on different CPUs. Needless to say if the migration means
that threads that share data end up running on different CPUs then this will
introduce the need for some kind of mutual exclusion system.

Of course rte_ring software rings can always be used to interconnect
threads running on different cores, however to protect other kinds of shared
data structures, lock free constructs or else explicit locking will be
required. This is a consideration for the application design.

In support of this extended functionality, the L-thread subsystem implements
thread safe mutexes and condition variables.

The cost of affinitizing and of condition variable signaling is significantly
lower than the equivalent pthread operations, and so applications using these
features will see a performance benefit.

46.5.1.3. Thread local storage

As with applications written for pthreads an application written for L-threads
can take advantage of thread local storage, in this case local to an L-thread.
An application may save and retrieve a single pointer to application data in
the L-thread struct.

For legacy and backward compatibility reasons two alternative methods are also
offered, the first is modeled directly on the pthread get/set specific APIs,
the second approach is modeled on the RTE_PER_LCORE macros, whereby
PER_LTHREAD macros are introduced, in both cases the storage is local to
the L-thread.

46.5.2. Constraints and performance implications when using L-threads

46.5.2.1. API compatibility

The L-thread subsystem provides a set of functions that are logically equivalent
to the corresponding functions offered by the POSIX pthread library, however not
all pthread functions have a corresponding L-thread equivalent, and not all
features available to pthreads are implemented for L-threads.

The pthread library offers considerable flexibility via programmable attributes
that can be associated with threads, mutexes, and condition variables.

By contrast the L-thread subsystem has fixed functionality, the scheduler policy
cannot be varied, and L-threads cannot be prioritized. There are no variable
attributes associated with any L-thread objects. L-threads, mutexes and
conditional variables, all have fixed functionality. (Note: reserved parameters
are included in the APIs to facilitate possible future support for attributes).

The table below lists the pthread and equivalent L-thread APIs with notes on
differences and/or constraints. Where there is no L-thread entry in the table,
then the L-thread subsystem provides no equivalent function.

Table 46.1 Pthread and equivalent L-thread APIs.

	Pthread function

	L-thread function

	Notes

	pthread_barrier_destroy

	
	

	pthread_barrier_init

	
	

	pthread_barrier_wait

	
	

	pthread_cond_broadcast

	lthread_cond_broadcast

	See note 1

	pthread_cond_destroy

	lthread_cond_destroy

	

	pthread_cond_init

	lthread_cond_init

	

	pthread_cond_signal

	lthread_cond_signal

	See note 1

	pthread_cond_timedwait

	
	

	pthread_cond_wait

	lthread_cond_wait

	See note 5

	pthread_create

	lthread_create

	See notes 2, 3

	pthread_detach

	lthread_detach

	See note 4

	pthread_equal

	
	

	pthread_exit

	lthread_exit

	

	pthread_getspecific

	lthread_getspecific

	

	pthread_getcpuclockid

	
	

	pthread_join

	lthread_join

	

	pthread_key_create

	lthread_key_create

	

	pthread_key_delete

	lthread_key_delete

	

	pthread_mutex_destroy

	lthread_mutex_destroy

	

	pthread_mutex_init

	lthread_mutex_init

	

	pthread_mutex_lock

	lthread_mutex_lock

	See note 6

	pthread_mutex_trylock

	lthread_mutex_trylock

	See note 6

	pthread_mutex_timedlock

	
	

	pthread_mutex_unlock

	lthread_mutex_unlock

	

	pthread_once

	
	

	pthread_rwlock_destroy

	
	

	pthread_rwlock_init

	
	

	pthread_rwlock_rdlock

	
	

	pthread_rwlock_timedrdlock

	
	

	pthread_rwlock_timedwrlock

	
	

	pthread_rwlock_tryrdlock

	
	

	pthread_rwlock_trywrlock

	
	

	pthread_rwlock_unlock

	
	

	pthread_rwlock_wrlock

	
	

	pthread_self

	lthread_current

	

	pthread_setspecific

	lthread_setspecific

	

	pthread_spin_init

	
	See note 10

	pthread_spin_destroy

	
	See note 10

	pthread_spin_lock

	
	See note 10

	pthread_spin_trylock

	
	See note 10

	pthread_spin_unlock

	
	See note 10

	pthread_cancel

	lthread_cancel

	

	pthread_setcancelstate

	
	

	pthread_setcanceltype

	
	

	pthread_testcancel

	
	

	pthread_getschedparam

	
	

	pthread_setschedparam

	
	

	pthread_yield

	lthread_yield

	See note 7

	pthread_setaffinity_np

	lthread_set_affinity

	See notes 2, 3, 8

	
	lthread_sleep

	See note 9

	
	lthread_sleep_clks

	See note 9

Note 1:

Neither lthread signal nor broadcast may be called concurrently by L-threads
running on different schedulers, although multiple L-threads running in the
same scheduler may freely perform signal or broadcast operations. L-threads
running on the same or different schedulers may always safely wait on a
condition variable.

Note 2:

Pthread attributes may be used to affinitize a pthread with a cpu-set. The
L-thread subsystem does not support a cpu-set. An L-thread may be affinitized
only with a single CPU at any time.

Note 3:

If an L-thread is intended to run on a different NUMA node than the node that
creates the thread then, when calling lthread_create() it is advantageous
to specify the destination core as a parameter of lthread_create(). See
Memory allocation and NUMA awareness for details.

Note 4:

An L-thread can only detach itself, and cannot detach other L-threads.

Note 5:

A wait operation on a pthread condition variable is always associated with and
protected by a mutex which must be owned by the thread at the time it invokes
pthread_wait(). By contrast L-thread condition variables are thread safe
(for waiters) and do not use an associated mutex. Multiple L-threads (including
L-threads running on other schedulers) can safely wait on a L-thread condition
variable. As a consequence the performance of an L-thread condition variables
is typically an order of magnitude faster than its pthread counterpart.

Note 6:

Recursive locking is not supported with L-threads, attempts to take a lock
recursively will be detected and rejected.

Note 7:

lthread_yield() will save the current context, insert the current thread
to the back of the ready queue, and resume the next ready thread. Yielding
increases ready queue backlog, see Ready queue backlog for more details
about the implications of this.

N.B. The context switch time as measured from immediately before the call to
lthread_yield() to the point at which the next ready thread is resumed,
can be an order of magnitude faster that the same measurement for
pthread_yield.

Note 8:

lthread_set_affinity() is similar to a yield apart from the fact that the
yielding thread is inserted into a peer ready queue of another scheduler.
The peer ready queue is actually a separate thread safe queue, which means that
threads appearing in the peer ready queue can jump any backlog in the local
ready queue on the destination scheduler.

The context switch time as measured from the time just before the call to
lthread_set_affinity() to just after the same thread is resumed on the new
scheduler can be orders of magnitude faster than the same measurement for
pthread_setaffinity_np().

Note 9:

Although there is no pthread_sleep() function, lthread_sleep() and
lthread_sleep_clks() can be used wherever sleep(), usleep() or
nanosleep() might ordinarily be used. The L-thread sleep functions suspend
the current thread, start an rte_timer and resume the thread when the
timer matures. The rte_timer_manage() entry point is called on every pass
of the scheduler loop. This means that the worst case jitter on timer expiry
is determined by the longest period between context switches of any running
L-threads.

In a synthetic test with many threads sleeping and resuming then the measured
jitter is typically orders of magnitude lower than the same measurement made
for nanosleep().

Note 10:

Spin locks are not provided because they are problematical in a cooperative
environment, see Locks and spinlocks for a more detailed
discussion on how to avoid spin locks.

46.5.2.2. Thread local storage

Of the three L-thread local storage options the simplest and most efficient is
storing a single application data pointer in the L-thread struct.

The PER_LTHREAD macros involve a run time computation to obtain the address
of the variable being saved/retrieved and also require that the accesses are
de-referenced via a pointer. This means that code that has used
RTE_PER_LCORE macros being ported to L-threads might need some slight
adjustment (see Thread local storage for hints about porting
code that makes use of thread local storage).

The get/set specific APIs are consistent with their pthread counterparts both
in use and in performance.

46.5.2.3. Memory allocation and NUMA awareness

All memory allocation is from DPDK huge pages, and is NUMA aware. Each
scheduler maintains its own caches of objects: lthreads, their stacks, TLS,
mutexes and condition variables. These caches are implemented as unbounded lock
free MPSC queues. When objects are created they are always allocated from the
caches on the local core (current EAL thread).

If an L-thread has been affinitized to a different scheduler, then it can
always safely free resources to the caches from which they originated (because
the caches are MPSC queues).

If the L-thread has been affinitized to a different NUMA node then the memory
resources associated with it may incur longer access latency.

The commonly used pattern of setting affinity on entry to a thread after it has
started, means that memory allocation for both the stack and TLS will have been
made from caches on the NUMA node on which the threads creator is running.
This has the side effect that access latency will be sub-optimal after
affinitizing.

This side effect can be mitigated to some extent (although not completely) by
specifying the destination CPU as a parameter of lthread_create() this
causes the L-thread’s stack and TLS to be allocated when it is first scheduled
on the destination scheduler, if the destination is a on another NUMA node it
results in a more optimal memory allocation.

Note that the lthread struct itself remains allocated from memory on the
creating node, this is unavoidable because an L-thread is known everywhere by
the address of this struct.

46.5.2.4. Object cache sizing

The per lcore object caches pre-allocate objects in bulk whenever a request to
allocate an object finds a cache empty. By default 100 objects are
pre-allocated, this is defined by LTHREAD_PREALLOC in the public API
header file lthread_api.h. This means that the caches constantly grow to meet
system demand.

In the present implementation there is no mechanism to reduce the cache sizes
if system demand reduces. Thus the caches will remain at their maximum extent
indefinitely.

A consequence of the bulk pre-allocation of objects is that every 100 (default
value) additional new object create operations results in a call to
rte_malloc(). For creation of objects such as L-threads, which trigger the
allocation of even more objects (i.e. their stacks and TLS) then this can
cause outliers in scheduling performance.

If this is a problem the simplest mitigation strategy is to dimension the
system, by setting the bulk object pre-allocation size to some large number
that you do not expect to be exceeded. This means the caches will be populated
once only, the very first time a thread is created.

46.5.2.5. Ready queue backlog

One of the more subtle performance considerations is managing the ready queue
backlog. The fewer threads that are waiting in the ready queue then the faster
any particular thread will get serviced.

In a naive L-thread application with N L-threads simply looping and yielding,
this backlog will always be equal to the number of L-threads, thus the cost of
a yield to a particular L-thread will be N times the context switch time.

This side effect can be mitigated by arranging for threads to be suspended and
wait to be resumed, rather than polling for work by constantly yielding.
Blocking on a mutex or condition variable or even more obviously having a
thread sleep if it has a low frequency workload are all mechanisms by which a
thread can be excluded from the ready queue until it really does need to be
run. This can have a significant positive impact on performance.

46.5.2.6. Initialization, shutdown and dependencies

The L-thread subsystem depends on DPDK for huge page allocation and depends on
the rte_timer subsystem. The DPDK EAL initialization and
rte_timer_subsystem_init() MUST be completed before the L-thread sub
system can be used.

Thereafter initialization of the L-thread subsystem is largely transparent to
the application. Constructor functions ensure that global variables are properly
initialized. Other than global variables each scheduler is initialized
independently the first time that an L-thread is created by a particular EAL
thread.

If the schedulers are to be run as isolated and independent schedulers, with
no intention that L-threads running on different schedulers will migrate between
schedulers or synchronize with L-threads running on other schedulers, then
initialization consists simply of creating an L-thread, and then running the
L-thread scheduler.

If there will be interaction between L-threads running on different schedulers,
then it is important that the starting of schedulers on different EAL threads
is synchronized.

To achieve this an additional initialization step is necessary, this is simply
to set the number of schedulers by calling the API function
lthread_num_schedulers_set(n), where n is the number of EAL threads
that will run L-thread schedulers. Setting the number of schedulers to a
number greater than 0 will cause all schedulers to wait until the others have
started before beginning to schedule L-threads.

The L-thread scheduler is started by calling the function lthread_run()
and should be called from the EAL thread and thus become the main loop of the
EAL thread.

The function lthread_run(), will not return until all threads running on
the scheduler have exited, and the scheduler has been explicitly stopped by
calling lthread_scheduler_shutdown(lcore) or
lthread_scheduler_shutdown_all().

All these function do is tell the scheduler that it can exit when there are no
longer any running L-threads, neither function forces any running L-thread to
terminate. Any desired application shutdown behavior must be designed and
built into the application to ensure that L-threads complete in a timely
manner.

Important Note: It is assumed when the scheduler exits that the application
is terminating for good, the scheduler does not free resources before exiting
and running the scheduler a subsequent time will result in undefined behavior.

46.5.3. Porting legacy code to run on L-threads

Legacy code originally written for a pthread environment may be ported to
L-threads if the considerations about differences in scheduling policy, and
constraints discussed in the previous sections can be accommodated.

This section looks in more detail at some of the issues that may have to be
resolved when porting code.

46.5.3.1. pthread API compatibility

The first step is to establish exactly which pthread APIs the legacy
application uses, and to understand the requirements of those APIs. If there
are corresponding L-lthread APIs, and where the default pthread functionality
is used by the application then, notwithstanding the other issues discussed
here, it should be feasible to run the application with L-threads. If the
legacy code modifies the default behavior using attributes then if may be
necessary to make some adjustments to eliminate those requirements.

46.5.3.2. Blocking system API calls

It is important to understand what other system services the application may be
using, bearing in mind that in a cooperatively scheduled environment a thread
cannot block without stalling the scheduler and with it all other cooperative
threads. Any kind of blocking system call, for example file or socket IO, is a
potential problem, a good tool to analyze the application for this purpose is
the strace utility.

There are many strategies to resolve these kind of issues, each with it
merits. Possible solutions include:

	Adopting a polled mode of the system API concerned (if available).

	Arranging for another core to perform the function and synchronizing with
that core via constructs that will not block the L-thread.

	Affinitizing the thread to another scheduler devoted (as a matter of policy)
to handling threads wishing to make blocking calls, and then back again when
finished.

46.5.3.3. Locks and spinlocks

Locks and spinlocks are another source of blocking behavior that for the same
reasons as system calls will need to be addressed.

If the application design ensures that the contending L-threads will always
run on the same scheduler then it its probably safe to remove locks and spin
locks completely.

The only exception to the above rule is if for some reason the
code performs any kind of context switch whilst holding the lock
(e.g. yield, sleep, or block on a different lock, or on a condition variable).
This will need to determined before deciding to eliminate a lock.

If a lock cannot be eliminated then an L-thread mutex can be substituted for
either kind of lock.

An L-thread blocking on an L-thread mutex will be suspended and will cause
another ready L-thread to be resumed, thus not blocking the scheduler. When
default behavior is required, it can be used as a direct replacement for a
pthread mutex lock.

Spin locks are typically used when lock contention is likely to be rare and
where the period during which the lock may be held is relatively short.
When the contending L-threads are running on the same scheduler then an
L-thread blocking on a spin lock will enter an infinite loop stopping the
scheduler completely (see Infinite loops below).

If the application design ensures that contending L-threads will always run
on different schedulers then it might be reasonable to leave a short spin lock
that rarely experiences contention in place.

If after all considerations it appears that a spin lock can neither be
eliminated completely, replaced with an L-thread mutex, or left in place as
is, then an alternative is to loop on a flag, with a call to
lthread_yield() inside the loop (n.b. if the contending L-threads might
ever run on different schedulers the flag will need to be manipulated
atomically).

Spinning and yielding is the least preferred solution since it introduces
ready queue backlog (see also Ready queue backlog).

46.5.3.4. Sleeps and delays

Yet another kind of blocking behavior (albeit momentary) are delay functions
like sleep(), usleep(), nanosleep() etc. All will have the
consequence of stalling the L-thread scheduler and unless the delay is very
short (e.g. a very short nanosleep) calls to these functions will need to be
eliminated.

The simplest mitigation strategy is to use the L-thread sleep API functions,
of which two variants exist, lthread_sleep() and lthread_sleep_clks().
These functions start an rte_timer against the L-thread, suspend the L-thread
and cause another ready L-thread to be resumed. The suspended L-thread is
resumed when the rte_timer matures.

46.5.3.5. Infinite loops

Some applications have threads with loops that contain no inherent
rescheduling opportunity, and rely solely on the OS time slicing to share
the CPU. In a cooperative environment this will stop everything dead. These
kind of loops are not hard to identify, in a debug session you will find the
debugger is always stopping in the same loop.

The simplest solution to this kind of problem is to insert an explicit
lthread_yield() or lthread_sleep() into the loop. Another solution
might be to include the function performed by the loop into the execution path
of some other loop that does in fact yield, if this is possible.

46.5.3.6. Thread local storage

If the application uses thread local storage, the use case should be
studied carefully.

In a legacy pthread application either or both the __thread prefix, or the
pthread set/get specific APIs may have been used to define storage local to a
pthread.

In some applications it may be a reasonable assumption that the data could
or in fact most likely should be placed in L-thread local storage.

If the application (like many DPDK applications) has assumed a certain
relationship between a pthread and the CPU to which it is affinitized, there
is a risk that thread local storage may have been used to save some data items
that are correctly logically associated with the CPU, and others items which
relate to application context for the thread. Only a good understanding of the
application will reveal such cases.

If the application requires an that an L-thread is to be able to move between
schedulers then care should be taken to separate these kinds of data, into per
lcore, and per L-thread storage. In this way a migrating thread will bring with
it the local data it needs, and pick up the new logical core specific values
from pthread local storage at its new home.

46.5.4. Pthread shim

A convenient way to get something working with legacy code can be to use a
shim that adapts pthread API calls to the corresponding L-thread ones.
This approach will not mitigate any of the porting considerations mentioned
in the previous sections, but it will reduce the amount of code churn that
would otherwise been involved. It is a reasonable approach to evaluate
L-threads, before investing effort in porting to the native L-thread APIs.

46.5.4.1. Overview

The L-thread subsystem includes an example pthread shim. This is a partial
implementation but does contain the API stubs needed to get basic applications
running. There is a simple “hello world” application that demonstrates the
use of the pthread shim.

A subtlety of working with a shim is that the application will still need
to make use of the genuine pthread library functions, at the very least in
order to create the EAL threads in which the L-thread schedulers will run.
This is the case with DPDK initialization, and exit.

To deal with the initialization and shutdown scenarios, the shim is capable of
switching on or off its adaptor functionality, an application can control this
behavior by the calling the function pt_override_set(). The default state
is disabled.

The pthread shim uses the dynamic linker loader and saves the loaded addresses
of the genuine pthread API functions in an internal table, when the shim
functionality is enabled it performs the adaptor function, when disabled it
invokes the genuine pthread function.

The function pthread_exit() has additional special handling. The standard
system header file pthread.h declares pthread_exit() with
__rte_noreturn this is an optimization that is possible because
the pthread is terminating and this enables the compiler to omit the normal
handling of stack and protection of registers since the function is not
expected to return, and in fact the thread is being destroyed. These
optimizations are applied in both the callee and the caller of the
pthread_exit() function.

In our cooperative scheduling environment this behavior is inadmissible. The
pthread is the L-thread scheduler thread, and, although an L-thread is
terminating, there must be a return to the scheduler in order that the system
can continue to run. Further, returning from a function with attribute
noreturn is invalid and may result in undefined behavior.

The solution is to redefine the pthread_exit function with a macro,
causing it to be mapped to a stub function in the shim that does not have the
noreturn attribute. This macro is defined in the file
pthread_shim.h. The stub function is otherwise no different than any of
the other stub functions in the shim, and will switch between the real
pthread_exit() function or the lthread_exit() function as
required. The only difference is that the mapping to the stub by macro
substitution.

A consequence of this is that the file pthread_shim.h must be included in
legacy code wishing to make use of the shim. It also means that dynamic
linkage of a pre-compiled binary that did not include pthread_shim.h is not be
supported.

Given the requirements for porting legacy code outlined in
Porting legacy code to run on L-threads most applications will require at
least some minimal adjustment and recompilation to run on L-threads so
pre-compiled binaries are unlikely to be met in practice.

In summary the shim approach adds some overhead but can be a useful tool to help
establish the feasibility of a code reuse project. It is also a fairly
straightforward task to extend the shim if necessary.

Note: Bearing in mind the preceding discussions about the impact of making
blocking calls then switching the shim in and out on the fly to invoke any
pthread API this might block is something that should typically be avoided.

46.5.4.2. Building and running the pthread shim

The shim example application is located in the sample application
in the performance-thread folder

To build and run the pthread shim example

	Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/pthread_shim

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

	To run the pthread_shim example

lthread-pthread-shim -c core_mask -n number_of_channels

46.5.5. L-thread Diagnostics

When debugging you must take account of the fact that the L-threads are run in
a single pthread. The current scheduler is defined by
RTE_PER_LCORE(this_sched), and the current lthread is stored at
RTE_PER_LCORE(this_sched)->current_lthread. Thus on a breakpoint in a GDB
session the current lthread can be obtained by displaying the pthread local
variable per_lcore_this_sched->current_lthread.

Another useful diagnostic feature is the possibility to trace significant
events in the life of an L-thread, this feature is enabled by changing the
value of LTHREAD_DIAG from 0 to 1 in the file lthread_diag_api.h.

Tracing of events can be individually masked, and the mask may be programmed
at run time. An unmasked event results in a callback that provides information
about the event. The default callback simply prints trace information. The
default mask is 0 (all events off) the mask can be modified by calling the
function lthread_diagniostic_set_mask().

It is possible register a user callback function to implement more
sophisticated diagnostic functions.
Object creation events (lthread, mutex, and condition variable) accept, and
store in the created object, a user supplied reference value returned by the
callback function.

The lthread reference value is passed back in all subsequent event callbacks,
the mutex and APIs are provided to retrieve the reference value from
mutexes and condition variables. This enables a user to monitor, count, or
filter for specific events, on specific objects, for example to monitor for a
specific thread signaling a specific condition variable, or to monitor
on all timer events, the possibilities and combinations are endless.

The callback function can be set by calling the function
lthread_diagnostic_enable() supplying a callback function pointer and an
event mask.

Setting LTHREAD_DIAG also enables counting of statistics about cache and
queue usage, and these statistics can be displayed by calling the function
lthread_diag_stats_display(). This function also performs a consistency
check on the caches and queues. The function should only be called from the
master EAL thread after all slave threads have stopped and returned to the C
main program, otherwise the consistency check will fail.

47. Federal Information Processing Standards (FIPS) CryptoDev Validation

47.1. Overview

Federal Information Processing Standards (FIPS) are publicly announced standards
developed by the United States federal government for use in computer systems by
non-military government agencies and government contractors.

This application is used to parse and perform symmetric cryptography
computation to the NIST Cryptographic Algorithm Validation Program (CAVP) test
vectors.

For an algorithm implementation to be listed on a cryptographic module
validation certificate as an Approved security function, the algorithm
implementation must meet all the requirements of FIPS 140-2 and must
successfully complete the cryptographic algorithm validation process.

47.2. Limitations

	Only NIST CAVP request files are parsed by this application.

	The version of request file supported is CAVS 21.0

	If the header comment in a .req file does not contain a Algo tag
i.e AES,TDES,GCM you need to manually add it into the header comment for
example:

VARIABLE KEY - KAT for CBC / # TDES VARIABLE KEY - KAT for CBC

	The application does not supply the test vectors. The user is expected to
obtain the test vector files from NIST [https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers] website. To obtain the .req files you need to
email a person from the NIST website and pay for the .req files.
The .rsp files from the site can be used to validate and compare with
the .rsp files created by the FIPS application.

	
	Supported test vectors
	
	AES-CBC (128,192,256) - GFSbox, KeySbox, MCT, MMT

	AES-GCM (128,192,256) - EncryptExtIV, Decrypt

	AES-CCM (128) - VADT, VNT, VPT, VTT, DVPT

	AES-CMAC (128) - Generate, Verify

	HMAC (SHA1, SHA224, SHA256, SHA384, SHA512)

	TDES-CBC (1 Key, 2 Keys, 3 Keys) - MMT, Monte, Permop, Subkey, Varkey,
VarText

47.3. Application Information

If a .req is used as the input file after the application is finished
running it will generate a response file or .rsp. Differences between the
two files are, the .req file has missing information for instance if doing
encryption you will not have the cipher text and that will be generated in the
response file. Also if doing decryption it will not have the plain text until it
finished the work and in the response file it will be added onto the end of each
operation.

The application can be run with a .rsp file and what the outcome of that
will be is it will add a extra line in the generated .rsp which should be
the same as the .rsp used to run the application, this is useful for
validating if the application has done the operation correctly.

47.4. Compiling the Application

	Compile Application

make -C examples/fips_validation

	Run dos2unix on the request files

dos2unix AES/req/*
dos2unix AES_GCM/req/*
dos2unix CCM/req/*
dos2unix CMAC/req/*
dos2unix HMAC/req/*
dos2unix TDES/req/*

47.5. Running the Application

The application requires a number of command line options:

./fips_validation [EAL options]
-- --req-file FILE_PATH/FOLDER_PATH
--rsp-file FILE_PATH/FOLDER_PATH
[--cryptodev DEVICE_NAME] [--cryptodev-id ID] [--path-is-folder]

	where,
	
	req-file: The path of the request file or folder, separated by
path-is-folder option.

	rsp-file: The path that the response file or folder is stored. separated by
path-is-folder option.

	cryptodev: The name of the target DPDK Crypto device to be validated.

	cryptodev-id: The id of the target DPDK Crypto device to be validated.

	path-is-folder: If presented the application expects req-file and rsp-file
are folder paths.

To run the application in linux environment to test one AES FIPS test data
file for crypto_aesni_mb PMD, issue the command:

$./fips_validation --vdev crypto_aesni_mb --
--req-file /PATH/TO/REQUEST/FILE.req --rsp-file ./PATH/TO/RESPONSE/FILE.rsp
--cryptodev crypto_aesni_mb

To run the application in linux environment to test all AES-GCM FIPS test
data files in one folder for crypto_aesni_gcm PMD, issue the command:

$./fips_validation --vdev crypto_aesni_gcm0 --
--req-file /PATH/TO/REQUEST/FILE/FOLDER/
--rsp-file ./PATH/TO/RESPONSE/FILE/FOLDER/
--cryptodev-id 0 --path-is-folder

48. IPsec Security Gateway Sample Application

The IPsec Security Gateway application is an example of a “real world”
application using DPDK cryptodev framework.

48.1. Overview

The application demonstrates the implementation of a Security Gateway
(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
RFC4303, RFC3602 and RFC2404.

Internet Key Exchange (IKE) is not implemented, so only manual setting of
Security Policies and Security Associations is supported.

The Security Policies (SP) are implemented as ACL rules, the Security
Associations (SA) are stored in a table and the routing is implemented
using LPM.

The application classifies the ports as Protected and Unprotected.
Thus, traffic received on an Unprotected or Protected port is consider
Inbound or Outbound respectively.

The application also supports complete IPsec protocol offload to hardware
(Look aside crypto accelerator or using ethernet device). It also support
inline ipsec processing by the supported ethernet device during transmission.
These modes can be selected during the SA creation configuration.

In case of complete protocol offload, the processing of headers(ESP and outer
IP header) is done by the hardware and the application does not need to
add/remove them during outbound/inbound processing.

For inline offloaded outbound traffic, the application will not do the LPM
lookup for routing, as the port on which the packet has to be forwarded will be
part of the SA. Security parameters will be configured on that port only, and
sending the packet on other ports could result in unencrypted packets being
sent out.

The Path for IPsec Inbound traffic is:

	Read packets from the port.

	Classify packets between IPv4 and ESP.

	Perform Inbound SA lookup for ESP packets based on their SPI.

	Perform Verification/Decryption (Not needed in case of inline ipsec).

	Remove ESP and outer IP header (Not needed in case of protocol offload).

	Inbound SP check using ACL of decrypted packets and any other IPv4 packets.

	Routing.

	Write packet to port.

The Path for the IPsec Outbound traffic is:

	Read packets from the port.

	Perform Outbound SP check using ACL of all IPv4 traffic.

	Perform Outbound SA lookup for packets that need IPsec protection.

	Add ESP and outer IP header (Not needed in case protocol offload).

	Perform Encryption/Digest (Not needed in case of inline ipsec).

	Routing.

	Write packet to port.

The application supports two modes of operation: poll mode and event mode.

	In the poll mode a core receives packets from statically configured list
of eth ports and eth ports’ queues.

	In the event mode a core receives packets as events. After packet processing
is done core submits them back as events to an event device. This enables
multicore scaling and HW assisted scheduling by making use of the event device
capabilities. The event mode configuration is predefined. All packets reaching
given eth port will arrive at the same event queue. All event queues are mapped
to all event ports. This allows all cores to receive traffic from all ports.
Since the underlying event device might have varying capabilities, the worker
threads can be drafted differently to maximize performance. For example, if an
event device - eth device pair has Tx internal port, then application can call
rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst().
So a thread which assumes that the device pair has internal port will not be the
right solution for another pair. The infrastructure added for the event mode aims
to help application to have multiple worker threads by maximizing performance from
every type of event device without affecting existing paths/use cases. The worker
to be used will be determined by the operating conditions and the underlying device
capabilities. Currently the application provides non-burst, internal port worker
threads and supports inline protocol only. It also provides infrastructure for
non-internal port however does not define any worker threads.

Additionally the event mode introduces two submodes of processing packets:

	Driver submode: This submode has bare minimum changes in the application to support
IPsec. There are no lookups, no routing done in the application. And for inline
protocol use case, the worker thread resembles l2fwd worker thread as the IPsec
processing is done entirely in HW. This mode can be used to benchmark the raw
performance of the HW. The driver submode is selected with –single-sa option
(used also by poll mode). When –single-sa option is used in conjution with event
mode then index passed to –single-sa is ignored.

	App submode: This submode has all the features currently implemented with the
application (non librte_ipsec path). All the lookups, routing follows existing
methods and report numbers that can be compared against regular poll mode
benchmark numbers.

48.2. Constraints

	No IPv6 options headers.

	No AH mode.

	Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL.

	Each SA must be handle by a unique lcore (1 RX queue per port).

48.3. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ipsec-secgw sub-directory.

	[Optional] Build the application for debugging:
This option adds some extra flags, disables compiler optimizations and
is verbose:

make DEBUG=1

48.4. Running the Application

The application has a number of command line options:

./build/ipsec-secgw [EAL options] --
 -p PORTMASK -P -u PORTMASK -j FRAMESIZE
 -l -w REPLAY_WINOW_SIZE -e -a
 -c SAD_CACHE_SIZE
 -s NUMBER_OF_MBUFS_IN_PACKET_POOL
 -f CONFIG_FILE_PATH
 --config (port,queue,lcore)[,(port,queue,lcore)]
 --single-sa SAIDX
 --cryptodev_mask MASK
 --transfer-mode MODE
 --event-schedule-type TYPE
 --rxoffload MASK
 --txoffload MASK
 --reassemble NUM
 --mtu MTU
 --frag-ttl FRAG_TTL_NS

Where:

	-p PORTMASK: Hexadecimal bitmask of ports to configure.

	-P: optional. Sets all ports to promiscuous mode so that packets are
accepted regardless of the packet’s Ethernet MAC destination address.
Without this option, only packets with the Ethernet MAC destination address
set to the Ethernet address of the port are accepted (default is enabled).

	-u PORTMASK: hexadecimal bitmask of unprotected ports

	-j FRAMESIZE: optional. data buffer size (in bytes),
in other words maximum data size for one segment.
Packets with length bigger then FRAMESIZE still can be received,
but will be segmented.
Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
Maximum value: UINT16_MAX (65535).

	-l: enables code-path that uses librte_ipsec.

	-w REPLAY_WINOW_SIZE: specifies the IPsec sequence number replay window
size for each Security Association (available only with librte_ipsec
code path).

	-e: enables Security Association extended sequence number processing
(available only with librte_ipsec code path).

	-a: enables Security Association sequence number atomic behavior
(available only with librte_ipsec code path).

	-c: specifies the SAD cache size. Stores the most recent SA in a per
lcore cache. Cache represents flat array containing SA’s indexed by SPI.
Zero value disables cache.
Default value: 128.

	-s: sets number of mbufs in packet pool, if not provided number of mbufs
will be calculated based on number of cores, eth ports and crypto queues.

	-f CONFIG_FILE_PATH: the full path of text-based file containing all
configuration items for running the application (See Configuration file
syntax section below). -f CONFIG_FILE_PATH must be specified.
ONLY the UNIX format configuration file is accepted.

	--config (port,queue,lcore)[,(port,queue,lcore)]: in poll mode determines
which queues from which ports are mapped to which cores. In event mode this
option is not used as packets are dynamically scheduled to cores by HW.

	--single-sa SAIDX: in poll mode use a single SA for outbound traffic,
bypassing the SP on both Inbound and Outbound. This option is meant for
debugging/performance purposes. In event mode selects driver submode, SA index
value is ignored.

	--cryptodev_mask MASK: hexadecimal bitmask of the crypto devices
to configure.

	--transfer-mode MODE: sets operating mode of the application
“poll” : packet transfer via polling (default)
“event” : Packet transfer via event device

	--event-schedule-type TYPE: queue schedule type, applies only when
–transfer-mode is set to event.
“ordered” : Ordered (default)
“atomic” : Atomic
“parallel” : Parallel
When –event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event
device will ensure the ordering. Ordering will be lost when tried in PARALLEL.

	--rxoffload MASK: RX HW offload capabilities to enable/use on this port
(bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and
allows user to disable some of the RX HW offload capabilities.
By default all HW RX offloads are enabled.

	--txoffload MASK: TX HW offload capabilities to enable/use on this port
(bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and
allows user to disable some of the TX HW offload capabilities.
By default all HW TX offloads are enabled.

	--reassemble NUM: max number of entries in reassemble fragment table.
Zero value disables reassembly functionality.
Default value: 0.

	--mtu MTU: MTU value (in bytes) on all attached ethernet ports.
Outgoing packets with length bigger then MTU will be fragmented.
Incoming packets with length bigger then MTU will be discarded.
Default value: 1500.

	--frag-ttl FRAG_TTL_NS: fragment lifetime (in nanoseconds).
If packet is not reassembled within this time, received fragments
will be discarded. Fragment lifetime should be decreased when
there is a high fragmented traffic loss in high bandwidth networks.
Should be lower for low number of reassembly buckets.
Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s).

The mapping of lcores to port/queues is similar to other l3fwd applications.

For example, given the following command line to run application in poll mode:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
 --vdev "crypto_null" -- -p 0xf -P -u 0x3 \
 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
 -f /path/to/config_file --transfer-mode poll \

where each option means:

	The -l option enables cores 20 and 21.

	The -n option sets memory 4 channels.

	The --socket-mem to use 2GB on socket 1.

	The --vdev "crypto_null" option creates virtual NULL cryptodev PMD.

	The -p option enables ports (detected) 0, 1, 2 and 3.

	The -P option enables promiscuous mode.

	The -u option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected.

	The --config option enables one queue per port with the following mapping:

	Port

	Queue

	lcore

	Description

	0

	0

	20

	Map queue 0 from port 0 to lcore 20.

	1

	0

	20

	Map queue 0 from port 1 to lcore 20.

	2

	0

	21

	Map queue 0 from port 2 to lcore 21.

	3

	0

	21

	Map queue 0 from port 3 to lcore 21.

	The -f /path/to/config_file option enables the application read and
parse the configuration file specified, and configures the application
with a given set of SP, SA and Routing entries accordingly. The syntax of
the configuration file will be explained below in more detail. Please
note the parser only accepts UNIX format text file. Other formats
such as DOS/MAC format will cause a parse error.

	The --transfer-mode option selects poll mode for processing packets.

Similarly for example, given the following command line to run application in
event app mode:

./build/ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1 \
 -f /path/to/config_file --transfer-mode event \
 --event-schedule-type parallel \

where each option means:

	The -c option selects cores 0 and 1 to run on.

	The -P option enables promiscuous mode.

	The -p option enables ports (detected) 0 and 1.

	The -u option sets ports 0 as unprotected, leaving 1 as protected.

	The -f /path/to/config_file option has the same behavior as in poll
mode example.

	The --transfer-mode option selects event mode for processing packets.

	The --event-schedule-type option selects parallel ordering of event queues.

Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

The application would do a best effort to “map” crypto devices to cores, with
hardware devices having priority. Basically, hardware devices if present would
be assigned to a core before software ones.
This means that if the application is using a single core and both hardware
and software crypto devices are detected, hardware devices will be used.

A way to achieve the case where you want to force the use of virtual crypto
devices is to whitelist the Ethernet devices needed and therefore implicitly
blacklisting all hardware crypto devices.

For example, something like the following command line:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
 -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
 --vdev "crypto_aesni_mb" --vdev "crypto_null" \
 -- \
 -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
 -f sample.cfg

48.5. Configurations

The following sections provide the syntax of configurations to initialize
your SP, SA, Routing and Neighbour tables.
Configurations shall be specified in the configuration file to be passed to
the application. The file is then parsed by the application. The successful
parsing will result in the appropriate rules being applied to the tables
accordingly.

48.5.1. Configuration File Syntax

As mention in the overview, the Security Policies are ACL rules.
The application parsers the rules specified in the configuration file and
passes them to the ACL table, and replicates them per socket in use.

Following are the configuration file syntax.

48.5.1.1. General rule syntax

The parse treats one line in the configuration file as one configuration
item (unless the line concatenation symbol exists). Every configuration
item shall follow the syntax of either SP, SA, Routing or Neighbour
rules specified below.

The configuration parser supports the following special symbols:

	Comment symbol #. Any character from this symbol to the end of
line is treated as comment and will not be parsed.

	Line concatenation symbol \. This symbol shall be placed in the end
of the line to be concatenated to the line below. Multiple lines’
concatenation is supported.

48.5.1.2. SP rule syntax

The SP rule syntax is shown as follows:

sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
<proto> <sport> <dport>

where each options means:

<ip_ver>

	IP protocol version

	Optional: No

	Available options:

	ipv4: IP protocol version 4

	ipv6: IP protocol version 6

<dir>

	The traffic direction

	Optional: No

	Available options:

	in: inbound traffic

	out: outbound traffic

<action>

	IPsec action

	Optional: No

	Available options:

	protect <SA_idx>: the specified traffic is protected by SA rule
with id SA_idx

	bypass: the specified traffic traffic is bypassed

	discard: the specified traffic is discarded

<priority>

	Rule priority

	Optional: Yes, default priority 0 will be used

	Syntax: pri <id>

<src_ip>

	The source IP address and mask

	Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

	Syntax:

	src X.X.X.X/Y for IPv4

	src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<dst_ip>

	The destination IP address and mask

	Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

	Syntax:

	dst X.X.X.X/Y for IPv4

	dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<proto>

	The protocol start and end range

	Optional: yes, default range of 0 to 0 will be used

	Syntax: proto X:Y

<sport>

	The source port start and end range

	Optional: yes, default range of 0 to 0 will be used

	Syntax: sport X:Y

<dport>

	The destination port start and end range

	Optional: yes, default range of 0 to 0 will be used

	Syntax: dport X:Y

Example SP rules:

sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
dport 0:65535

sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
0000:0000/96 sport 0:65535 dport 0:65535

48.5.1.3. SA rule syntax

The successfully parsed SA rules will be stored in an array table.

The SA rule syntax is shown as follows:

sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
<mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback>
<flow-direction> <port_id> <queue_id>

where each options means:

<dir>

	The traffic direction

	Optional: No

	Available options:

	in: inbound traffic

	out: outbound traffic

<spi>

	The SPI number

	Optional: No

	Syntax: unsigned integer number

<cipher_algo>

	Cipher algorithm

	Optional: Yes, unless <aead_algo> is not used

	Available options:

	null: NULL algorithm

	aes-128-cbc: AES-CBC 128-bit algorithm

	aes-192-cbc: AES-CBC 192-bit algorithm

	aes-256-cbc: AES-CBC 256-bit algorithm

	aes-128-ctr: AES-CTR 128-bit algorithm

	3des-cbc: 3DES-CBC 192-bit algorithm

	Syntax: cipher_algo <your algorithm>

<cipher_key>

	Cipher key, NOT available when ‘null’ algorithm is used

	Optional: Yes, unless <aead_algo> is not used.
Must be followed by <cipher_algo> option

	Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’.
The number of bytes should be as same as the specified cipher algorithm
key size.

For example: cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
A1:B2:C3:D4

<auth_algo>

	Authentication algorithm

	Optional: Yes, unless <aead_algo> is not used

	Available options:

	null: NULL algorithm

	sha1-hmac: HMAC SHA1 algorithm

<auth_key>

	Authentication key, NOT available when ‘null’ or ‘aes-128-gcm’ algorithm
is used.

	Optional: Yes, unless <aead_algo> is not used.
Must be followed by <auth_algo> option

	Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’.
The number of bytes should be as same as the specified authentication
algorithm key size.

For example: auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
A1:B2:C3:D4

<aead_algo>

	AEAD algorithm

	Optional: Yes, unless <cipher_algo> and <auth_algo> are not used

	Available options:

	aes-128-gcm: AES-GCM 128-bit algorithm

	aes-192-gcm: AES-GCM 192-bit algorithm

	aes-256-gcm: AES-GCM 256-bit algorithm

	Syntax: cipher_algo <your algorithm>

<aead_key>

	Cipher key, NOT available when ‘null’ algorithm is used

	Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
Must be followed by <aead_algo> option

	Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’.
Last 4 bytes of the provided key will be used as ‘salt’ and so, the
number of bytes should be same as the sum of specified AEAD algorithm
key size and salt size (4 bytes).

For example: aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
A1:B2:C3:D4:A1:B2:C3:D4

<mode>

	The operation mode

	Optional: No

	Available options:

	ipv4-tunnel: Tunnel mode for IPv4 packets

	ipv6-tunnel: Tunnel mode for IPv6 packets

	transport: transport mode

	Syntax: mode XXX

<src_ip>

	The source IP address. This option is not available when
transport mode is used

	Optional: Yes, default address 0.0.0.0 will be used

	Syntax:

	src X.X.X.X for IPv4

	src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX for IPv6

<dst_ip>

	The destination IP address. This option is not available when
transport mode is used

	Optional: Yes, default address 0.0.0.0 will be used

	Syntax:

	dst X.X.X.X for IPv4

	dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX for IPv6

<type>

	Action type to specify the security action. This option specify
the SA to be performed with look aside protocol offload to HW
accelerator or protocol offload on ethernet device or inline
crypto processing on the ethernet device during transmission.

	Optional: Yes, default type no-offload

	Available options:

	lookaside-protocol-offload: look aside protocol offload to HW accelerator

	inline-protocol-offload: inline protocol offload on ethernet device

	inline-crypto-offload: inline crypto processing on ethernet device

	no-offload: no offloading to hardware

<port_id>

	Port/device ID of the ethernet/crypto accelerator for which the SA is
configured. For inline-crypto-offload and inline-protocol-offload, this
port will be used for routing. The routing table will not be referred in
this case.

	Optional: No, if type is not no-offload

	Syntax:

	port_id X X is a valid device number in decimal

<fallback>

	Action type for ingress IPsec packets that inline processor failed to
process. Only a combination of inline-crypto-offload as a primary
session and lookaside-none as a fall-back session is supported at the
moment.

If used in conjunction with IPsec window, its width needs be increased
due to different processing times of inline and lookaside modes which
results in packet reordering.

	Optional: Yes.

	Available options:

	lookaside-none: use automatically chosen cryptodev to process packets

	Syntax:

	fallback lookaside-none

<flow-direction>

	Option for redirecting a specific inbound ipsec flow of a port to a specific
queue of that port.

	Optional: Yes.

	Available options:

	port_id: Port ID of the NIC for which the SA is configured.

	queue_id: Queue ID to which traffic should be redirected.

Example SA rules:

sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
src 172.16.1.5 dst 172.16.2.5

sa out 25 cipher_algo aes-128-cbc \
cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
auth_algo sha1-hmac \
auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
mode ipv6-tunnel \
src 1111:1111:1111:1111:1111:1111:1111:5555 \
dst 2222:2222:2222:2222:2222:2222:2222:5555

sa in 105 aead_algo aes-128-gcm \
aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5

sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
type lookaside-protocol-offload port_id 4

sa in 35 aead_algo aes-128-gcm \
aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
type inline-crypto-offload port_id 0

sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \
dst 172.16.1.7 flow-direction 0 2

48.5.1.4. Routing rule syntax

The Routing rule syntax is shown as follows:

rt <ip_ver> <src_ip> <dst_ip> <port>

where each options means:

<ip_ver>

	IP protocol version

	Optional: No

	Available options:

	ipv4: IP protocol version 4

	ipv6: IP protocol version 6

<src_ip>

	The source IP address and mask

	Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

	Syntax:

	src X.X.X.X/Y for IPv4

	src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<dst_ip>

	The destination IP address and mask

	Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

	Syntax:

	dst X.X.X.X/Y for IPv4

	dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<port>

	The traffic output port id

	Optional: yes, default output port 0 will be used

	Syntax: port X

Example SP rules:

rt ipv4 dst 172.16.1.5/32 port 0

rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0

48.5.1.5. Neighbour rule syntax

The Neighbour rule syntax is shown as follows:

neigh <port> <dst_mac>

where each options means:

<port>

	The output port id

	Optional: No

	Syntax: port X

<dst_mac>

	The destination ethernet address to use for that port

	Optional: No

	Syntax:

	XX:XX:XX:XX:XX:XX

Example Neighbour rules:

neigh port 0 DE:AD:BE:EF:01:02

48.6. Test directory

The test directory contains scripts for testing the various encryption
algorithms.

The purpose of the scripts is to automate ipsec-secgw testing
using another system running linux as a DUT.

The user must setup the following environment variables:

	SGW_PATH: path to the ipsec-secgw binary to test.

	REMOTE_HOST: IP address/hostname of the DUT.

	REMOTE_IFACE: interface name for the test-port on the DUT.

	ETH_DEV: ethernet device to be used on the SUT by DPDK (‘-w <pci-id>’)

Also the user can optionally setup:

	SGW_LCORE: lcore to run ipsec-secgw on (default value is 0)

	CRYPTO_DEV: crypto device to be used (‘-w <pci-id>’). If none specified
appropriate vdevs will be created by the script

Scripts can be used for multiple test scenarios. To check all available
options run:

/bin/bash run_test.sh -h

Note that most of the tests require the appropriate crypto PMD/device to be
available.

48.6.1. Server configuration

Two servers are required for the tests, SUT and DUT.

Make sure the user from the SUT can ssh to the DUT without entering the password.
To enable this feature keys must be setup on the DUT.

ssh-keygen will make a private & public key pair on the SUT.

ssh-copy-id <user name>@<target host name> on the SUT will copy the public
key to the DUT. It will ask for credentials so that it can upload the public key.

The SUT and DUT are connected through at least 2 NIC ports.

One NIC port is expected to be managed by linux on both machines and will be
used as a control path.

The second NIC port (test-port) should be bound to DPDK on the SUT, and should
be managed by linux on the DUT.

The script starts ipsec-secgw with 2 NIC devices: test-port and
tap vdev.

It then configures the local tap interface and the remote interface and IPsec
policies in the following way:

Traffic going over the test-port in both directions has to be protected by IPsec.

Traffic going over the TAP port in both directions does not have to be protected.

i.e:

DUT OS(NIC1)–(IPsec)–>(NIC1)ipsec-secgw(TAP)–(plain)–>(TAP)SUT OS

SUT OS(TAP)–(plain)–>(TAP)psec-secgw(NIC1)–(IPsec)–>(NIC1)DUT OS

It then tries to perform some data transfer using the scheme described above.

48.6.2. Usage

In the ipsec-secgw/test directory run

/bin/bash run_test.sh <options> <ipsec_mode>

Available options:

	-4 Perform tests with use of IPv4. One or both [-46] options needs to be
selected.

	-6 Perform tests with use of IPv6. One or both [-46] options needs to be
selected.

	-m Add IPSec tunnel mixed IP version tests - outer IP version different
than inner. Inner IP version will match selected option [-46].

	-i Run tests in inline mode. Regular tests will not be invoked.

	-f Run tests for fallback mechanism. Regular tests will not be invoked.

	-l Run tests in legacy mode only. It cannot be used with options [-fsc].
On default library mode is used.

	-s Run all tests with reassembly support. On default only tests for
fallback mechanism use reassembly support.

	-c Run tests with use of cpu-crypto. For inline tests it will not be
applied. On default lookaside-none is used.

	-p Perform packet validation tests. Option [-46] is not required.

	-h Show usage.

If <ipsec_mode> is specified, only tests for that mode will be invoked. For the
list of available modes please refer to run_test.sh.

49. Loop-back Sample Application using Baseband Device (bbdev)

The baseband sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) for baseband workloads using Wireless
Device abstraction library.

49.1. Overview

The Baseband device sample application performs a loop-back operation using a
baseband device capable of transceiving data packets.
A packet is received on an ethernet port -> enqueued for downlink baseband
operation -> dequeued from the downlink baseband device -> enqueued for uplink
baseband operation -> dequeued from the baseband device -> then the received
packet is compared with the baseband operations output. Then it’s looped back to
the ethernet port.

	The MAC header is preserved in the packet

49.2. Limitations

	Only one baseband device and one ethernet port can be used.

49.3. Compiling the Application

	DPDK needs to be built with baseband_turbo_sw PMD driver enabled along
with FLEXRAN SDK Libraries. Refer to SW Turbo Poll Mode Driver
documentation for more details on this.

	Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/bbdev_app

	Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

	Build the application:

make

49.4. Running the Application

The application accepts a number of command line options:

$./build/bbdev [EAL options] -- [-e ENCODING_CORES] [-d DECODING_CORES] /
[-p ETH_PORT_ID] [-b BBDEV_ID]

where:

	e ENCODING_CORES: hexmask for encoding lcores (default = 0x2)

	d DECODING_CORES: hexmask for decoding lcores (default = 0x4)

	p ETH_PORT_ID: ethernet port ID (default = 0)

	b BBDEV_ID: BBDev ID (default = 0)

The application requires that baseband devices is capable of performing
the specified baseband operation are available on application initialization.
This means that HW baseband device/s must be bound to a DPDK driver or
a SW baseband device/s (virtual BBdev) must be created (using –vdev).

To run the application in linux environment with the turbo_sw baseband device
using the whitelisted port running on 1 encoding lcore and 1 decoding lcore
issue the command:

$./build/bbdev --vdev='baseband_turbo_sw' -w <NIC0PCIADDR> -c 0x38 --socket-mem=2,2 \
--file-prefix=bbdev -- -e 0x10 -d 0x20

where, NIC0PCIADDR is the PCI address of the Rx port

This command creates one virtual bbdev devices baseband_turbo_sw where the
device gets linked to a corresponding ethernet port as whitelisted by
the parameter -w.
3 cores are allocated to the application, and assigned as:

	core 3 is the master and used to print the stats live on screen,

	core 4 is the encoding lcore performing Rx and Turbo Encode operations

	core 5 is the downlink lcore performing Turbo Decode, validation and Tx
operations

Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

49.5. Using Packet Generator with baseband device sample application

To allow the bbdev sample app to do the loopback, an influx of traffic is required.
This can be done by using DPDK Pktgen to burst traffic on two ethernet ports, and
it will print the transmitted along with the looped-back traffic on Rx ports.
Executing the command below will generate traffic on the two whitelisted ethernet
ports.

$./pktgen-3.4.0/app/x86_64-native-linux-gcc/pktgen -c 0x3 \
--socket-mem=1,1 --file-prefix=pg -w <NIC1PCIADDR> -- -m 1.0 -P

where:

	-c COREMASK: A hexadecimal bitmask of cores to run on

	--socket-mem: Memory to allocate on specific sockets (use comma separated values)

	--file-prefix: Prefix for hugepage filenames

	-w <NIC1PCIADDR>: Add a PCI device in white list. The argument format is <[domain:]bus:devid.func>.

	-m <string>: Matrix for mapping ports to logical cores.

	-P: PROMISCUOUS mode

Refer to The Pktgen Application documents for general information on running
Pktgen with DPDK applications.

50. NTB Sample Application

The ntb sample application shows how to use ntb rawdev driver.
This sample provides interactive mode to do packet based processing
between two systems.

This sample supports 4 types of packet forwarding mode.

	file-trans: transmit files between two systems. The sample will
be polling to receive files from the peer and save the file as
ntb_recv_file[N], [N] represents the number of received file.

	rxonly: NTB receives packets but doesn’t transmit them.

	txonly: NTB generates and transmits packets without receiving any.

	iofwd: iofwd between NTB device and ethdev.

50.1. Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ntb sub-directory.

50.2. Running the Application

The application requires an available core for each port, plus one.
The only available options are the standard ones for the EAL:

./build/ntb_fwd -c 0xf -n 6 -- -i

Refer to the DPDK Getting Started Guide for general information on
running applications and the Environment Abstraction Layer (EAL)
options.

50.3. Command-line Options

The application supports the following command-line options.

	--buf-size=N

Set the data size of the mbufs used to N bytes, where N < 65536.
The default value is 2048.

	--fwd-mode=mode

Set the packet forwarding mode as file-trans, txonly,
rxonly or iofwd.

	--nb-desc=N

Set number of descriptors of queue as N, namely queue size,
where 64 <= N <= 1024. The default value is 1024.

	--txfreet=N

Set the transmit free threshold of TX rings to N, where 0 <= N <=
the value of --nb-desc. The default value is 256.

	--burst=N

Set the number of packets per burst to N, where 1 <= N <= 32.
The default value is 32.

	--qp=N

Set the number of queues as N, where qp > 0. The default value is 1.

50.4. Using the application

The application is console-driven using the cmdline DPDK interface:

ntb>

From this interface the available commands and descriptions of what
they do as follows:

	send [filepath]: Send file to the peer host. Need to be in
file-trans forwarding mode first.

	start: Start transmission.

	stop: Stop transmission.

	show/clear port stats: Show/Clear port stats and throughput.

	set fwd file-trans/rxonly/txonly/iofwd: Set packet forwarding
mode.

	quit: Exit program.

Programmer’s Guide

	1. Introduction
	1.1. Documentation Roadmap

	1.2. Related Publications

	2. Overview
	2.1. Development Environment

	2.2. Environment Abstraction Layer

	2.3. Core Components
	2.3.1. Ring Manager (librte_ring)

	2.3.2. Memory Pool Manager (librte_mempool)

	2.3.3. Network Packet Buffer Management (librte_mbuf)

	2.3.4. Timer Manager (librte_timer)

	2.4. Ethernet* Poll Mode Driver Architecture

	2.5. Packet Forwarding Algorithm Support

	2.6. librte_net

	3. Environment Abstraction Layer
	3.1. EAL in a Linux-userland Execution Environment
	3.1.1. Initialization and Core Launching

	3.1.2. Shutdown and Cleanup

	3.1.3. Multi-process Support

	3.1.4. Memory Mapping Discovery and Memory Reservation

	3.1.5. Support for Externally Allocated Memory

	3.1.6. Per-lcore and Shared Variables

	3.1.7. Logs

	3.1.8. CPU Feature Identification

	3.1.9. User Space Interrupt Event

	3.1.10. Blacklisting

	3.1.11. Misc Functions

	3.1.12. IOVA Mode Detection

	3.1.13. IOVA Mode Configuration

	3.2. Memory Segments and Memory Zones (memzone)

	3.3. Multiple pthread
	3.3.1. EAL pthread and lcore Affinity

	3.3.2. non-EAL pthread support

	3.3.3. Public Thread API

	3.3.4. Control Thread API

	3.3.5. Known Issues

	3.3.6. cgroup control

	3.4. Malloc
	3.4.1. Cookies

	3.4.2. Alignment and NUMA Constraints

	3.4.3. Use Cases

	3.4.4. Internal Implementation

	4. Service Cores
	4.1. Service Core Initialization

	4.2. Enabling Services on Cores

	4.3. Service Core Statistics

	5. Trace Library
	5.1. Overview

	5.2. DPDK tracing library features

	5.3. How to add a tracepoint?
	5.3.1. Create the tracepoint header file

	5.3.2. Register the tracepoint

	5.4. Fast path tracepoint

	5.5. Event record mode

	5.6. Trace file location

	5.7. View and analyze the recorded events
	5.7.1. Use the babeltrace command-line tool

	5.7.2. Use the tracecompass GUI tool

	5.8. Quick start

	5.9. Implementation details
	5.9.1. Trace metadata creation

	5.9.2. Trace memory

	5.9.3. Trace memory layout

	6. RCU Library
	6.1. What is Quiescent State

	6.2. Factors affecting the RCU mechanism

	6.3. RCU in DPDK

	6.4. How to use this library

	6.5. Resource reclamation framework for DPDK

	7. Ring Library
	7.1. References for Ring Implementation in FreeBSD*

	7.2. Lockless Ring Buffer in Linux*

	7.3. Additional Features
	7.3.1. Name

	7.4. Use Cases

	7.5. Anatomy of a Ring Buffer
	7.5.1. Single Producer Enqueue

	7.5.2. Single Consumer Dequeue

	7.5.3. Multiple Producers Enqueue

	7.5.4. Modulo 32-bit Indexes

	7.6. Producer/consumer synchronization modes
	7.6.1. MP/MC (default one)

	7.6.2. SP/SC

	7.6.3. MP_RTS/MC_RTS

	7.6.4. MP_HTS/MC_HTS

	7.7. Ring Peek API

	7.8. References

	8. Stack Library
	8.1. Implementation
	8.1.1. Lock-based Stack

	8.1.2. Lock-free Stack

	9. Mempool Library
	9.1. Cookies

	9.2. Stats

	9.3. Memory Alignment Constraints on x86 architecture

	9.4. Local Cache

	9.5. Mempool Handlers

	9.6. Use Cases

	10. Mbuf Library
	10.1. Design of Packet Buffers

	10.2. Buffers Stored in Memory Pools

	10.3. Constructors

	10.4. Allocating and Freeing mbufs

	10.5. Manipulating mbufs

	10.6. Meta Information

	10.7. Direct and Indirect Buffers

	10.8. Debug

	10.9. Use Cases

	11. Poll Mode Driver
	11.1. Requirements and Assumptions

	11.2. Design Principles

	11.3. Logical Cores, Memory and NIC Queues Relationships

	11.4. Device Identification, Ownership and Configuration
	11.4.1. Device Identification

	11.4.2. Port Ownership

	11.4.3. Device Configuration

	11.4.4. On-the-Fly Configuration

	11.4.5. Configuration of Transmit Queues

	11.4.6. Free Tx mbuf on Demand

	11.4.7. Hardware Offload

	11.5. Poll Mode Driver API
	11.5.1. Generalities

	11.5.2. Generic Packet Representation

	11.5.3. Ethernet Device API

	11.5.4. Ethernet Device Standard Device Arguments

	11.5.5. Extended Statistics API

	11.5.6. NIC Reset API

	12. Generic flow API (rte_flow)
	12.1. Overview

	12.2. Flow rule
	12.2.1. Description

	12.2.2. Attributes

	12.2.3. Pattern item

	12.2.4. Matching pattern

	12.2.5. Meta item types

	12.2.6. Data matching item types

	12.2.7. Actions

	12.2.8. Action types

	12.2.9. Negative types

	12.2.10. Planned types

	12.3. Rules management
	12.3.1. Validation

	12.3.2. Creation

	12.3.3. Destruction

	12.3.4. Flush

	12.3.5. Query

	12.4. Flow isolated mode

	12.5. Verbose error reporting

	12.6. Helpers
	12.6.1. Error initializer

	12.6.2. Object conversion

	12.7. Caveats

	12.8. PMD interface

	12.9. Device compatibility
	12.9.1. Global bit-masks

	12.9.2. Unsupported layer types

	12.9.3. ANY pattern item

	12.9.4. Unsupported actions

	12.9.5. Flow rules priority

	12.10. Future evolutions

	13. Switch Representation within DPDK Applications
	13.1. Introduction

	13.2. Port Representors

	13.3. Basic SR-IOV

	13.4. Controlled SR-IOV
	13.4.1. Initialization

	13.4.2. VF Representors

	13.4.3. Traffic Steering

	13.5. Flow API (rte_flow)
	13.5.1. Extensions

	13.5.2. Traffic Direction

	13.5.3. Transferring Traffic

	13.5.4. Pattern Items And Actions

	13.5.5. Actions Order and Repetition

	13.6. Switching Examples
	13.6.1. Associating VF 1 with Physical Port 0

	13.6.2. Sharing Broadcasts

	13.6.3. Encapsulating VF 2 Traffic in VXLAN

	14. Traffic Metering and Policing API
	14.1. Overview

	14.2. Configuration steps

	14.3. Run-time processing

	15. Traffic Management API
	15.1. Overview

	15.2. Capability API

	15.3. Scheduling Algorithms

	15.4. Traffic Shaping

	15.5. Congestion Management

	15.6. Packet Marking

	15.7. Steps to Setup the Hierarchy
	15.7.1. Initial Hierarchy Specification

	15.7.2. Hierarchy Commit

	15.7.3. Run-Time Hierarchy Updates

	16. Wireless Baseband Device Library
	16.1. Design Principles

	16.2. Device Management
	16.2.1. Device Creation

	16.2.2. Device Identification

	16.2.3. Device Configuration

	16.2.4. Queues Configuration

	16.2.5. Device & Queues Management

	16.2.6. Logical Cores, Memory and Queues Relationships

	16.3. Device Operation Capabilities
	16.3.1. Capabilities Discovery

	16.4. Operation Processing
	16.4.1. Enqueue / Dequeue Burst APIs

	16.4.2. Operation Representation

	16.4.3. Operation Management and Allocation

	16.4.4. BBDEV Inbound/Outbound Memory

	16.4.5. BBDEV Turbo Encode Operation

	16.4.6. BBDEV Turbo Decode Operation

	16.4.7. BBDEV LDPC Encode Operation

	16.4.8. BBDEV LDPC Decode Operation

	16.5. Sample code
	16.5.1. BBDEV Device API

	17. Cryptography Device Library
	17.1. Design Principles

	17.2. Device Management
	17.2.1. Device Creation

	17.2.2. Device Identification

	17.2.3. Device Configuration

	17.2.4. Configuration of Queue Pairs

	17.2.5. Logical Cores, Memory and Queues Pair Relationships

	17.3. Device Features and Capabilities
	17.3.1. Device Features

	17.3.2. Device Operation Capabilities

	17.3.3. Capabilities Discovery

	17.4. Operation Processing
	17.4.1. Private data

	17.4.2. Enqueue / Dequeue Burst APIs

	17.4.3. Operation Representation

	17.4.4. Operation Management and Allocation

	17.5. Symmetric Cryptography Support
	17.5.1. Session and Session Management

	17.5.2. Transforms and Transform Chaining

	17.5.3. Symmetric Operations

	17.6. Synchronous mode

	17.7. Sample code

	17.8. Asymmetric Cryptography
	17.8.1. Session and Session Management

	17.8.2. Asymmetric Sessionless Support

	17.8.3. Transforms and Transform Chaining

	17.8.4. Asymmetric Operations

	17.9. Asymmetric crypto Sample code
	17.9.1. Asymmetric Crypto Device API

	18. Compression Device Library
	18.1. Device Management
	18.1.1. Device Creation

	18.1.2. Device Identification

	18.1.3. Device Configuration

	18.1.4. Configuration of Queue Pairs

	18.1.5. Logical Cores, Memory and Queues Pair Relationships

	18.2. Device Features and Capabilities
	18.2.1. Capabilities

	18.2.2. Capabilities Discovery

	18.3. Compression Operation
	18.3.1. Operation Representation

	18.3.2. Operation Management and Allocation

	18.3.3. Passing source data as mbuf-chain

	18.3.4. Operation Status

	18.3.5. Operation status after enqueue / dequeue

	18.3.6. Produced, Consumed And Operation Status

	18.4. Transforms

	18.5. Compression API Hash support

	18.6. Compression API Stateless operation
	18.6.1. priv_xform in Stateless operation

	18.6.2. Stateless and OUT_OF_SPACE

	18.6.3. Hash in Stateless

	18.6.4. Checksum in Stateless

	18.7. Compression API Stateful operation
	18.7.1. Stream in Stateful operation

	18.7.2. Stateful and OUT_OF_SPACE

	18.7.3. Hash in Stateful

	18.7.4. Checksum in Stateful

	18.8. Burst in compression API
	18.8.1. Enqueue / Dequeue Burst APIs

	18.9. Sample code
	18.9.1. Compression Device API

	19. Security Library
	19.1. Design Principles
	19.1.1. Inline Crypto

	19.1.2. Inline protocol offload

	19.1.3. Lookaside protocol offload

	19.1.4. PDCP Flow Diagram

	19.2. Device Features and Capabilities
	19.2.1. Device Capabilities For Security Operations

	19.2.2. Capabilities Discovery

	19.2.3. Security Session Create/Free

	19.2.4. Security session configuration

	19.2.5. Security API

	19.2.6. Flow based Security Session

	20. Rawdevice Library
	20.1. Introduction

	20.2. Design
	20.2.1. Device Identification

	21. Link Bonding Poll Mode Driver Library
	21.1. Link Bonding Modes Overview

	21.2. Implementation Details
	21.2.1. Link Status Change Interrupts / Polling

	21.2.2. Requirements / Limitations

	21.2.3. Configuration

	21.3. Using Link Bonding Devices
	21.3.1. Using the Poll Mode Driver from an Application

	21.3.2. Using Link Bonding Devices from the EAL Command Line

	22. Timer Library
	22.1. Implementation Details

	22.2. Use Cases

	22.3. References

	23. Hash Library
	23.1. Hash API Overview

	23.2. Multi-process support

	23.3. Multi-thread support

	23.4. Extendable Bucket Functionality support

	23.5. Implementation Details (non Extendable Bucket Case)

	23.6. Implementation Details (with Extendable Bucket)

	23.7. Entry distribution in hash table

	23.8. Use Case: Flow Classification

	23.9. References

	24. Elastic Flow Distributor Library
	24.1. Introduction

	24.2. Flow Based Distribution
	24.2.1. Computation Based Schemes

	24.2.2. Flow-Table Based Schemes

	24.2.3. EFD Based Scheme

	24.3. Example of EFD Library Usage

	24.4. Library API Overview
	24.4.1. EFD Table Create

	24.4.2. EFD Insert and Update

	24.4.3. EFD Lookup

	24.4.4. EFD Delete

	24.5. Library Internals
	24.5.1. Insert Function Internals

	24.5.2. Lookup Function Internals

	24.5.3. Group Rebalancing Function Internals

	24.6. References

	25. Membership Library
	25.1. Introduction

	25.2. Vector of Bloom Filters

	25.3. Hash-Table based Set-Summaries
	25.3.1. Set-Summaries with False Negative Probability

	25.4. Library API Overview
	25.4.1. Set-summary Create

	25.4.2. Set-summary Element Insertion

	25.4.3. Set-summary Element Lookup

	25.4.4. Set-summary Element Delete

	25.5. References

	26. LPM Library
	26.1. LPM API Overview

	26.2. Implementation Details
	26.2.1. Addition

	26.2.2. Lookup

	26.2.3. Limitations in the Number of Rules

	26.2.4. Use Case: IPv4 Forwarding

	26.2.5. References

	27. LPM6 Library
	27.1. LPM6 API Overview
	27.1.1. Implementation Details

	27.1.2. Addition

	27.1.3. Lookup

	27.1.4. Limitations in the Number of Rules

	27.2. Use Case: IPv6 Forwarding

	28. Flow Classification Library
	28.1. Overview
	28.1.1. Classifier creation

	28.1.2. Adding a table to the Classifier

	28.1.3. Flow Parsing

	28.1.4. Adding Flow Rules

	28.1.5. Deleting Flow Rules

	28.1.6. Packet Matching

	29. Packet Distributor Library
	29.1. Distributor Core Operation

	29.2. Worker Operation

	30. Reorder Library
	30.1. Operation

	30.2. Implementation Details

	30.3. Use Case: Packet Distributor

	31. IP Fragmentation and Reassembly Library
	31.1. Packet fragmentation

	31.2. Packet reassembly
	31.2.1. IP Fragment Table

	31.2.2. Packet Reassembly

	31.2.3. Debug logging and Statistics Collection

	32. Generic Receive Offload Library
	32.1. Overview

	32.2. Two Sets of API
	32.2.1. Lightweight Mode API

	32.2.2. Heavyweight Mode API

	32.3. Reassembly Algorithm
	32.3.1. Challenges

	32.3.2. Key-based Reassembly Algorithm

	32.4. TCP/IPv4 GRO

	32.5. VxLAN GRO

	32.6. GRO Library Limitations

	33. Generic Segmentation Offload Library
	33.1. Overview

	33.2. Limitations

	33.3. Packet Segmentation
	33.3.1. GSO Output Segment Format

	33.4. Supported GSO Packet Types
	33.4.1. TCP/IPv4 GSO

	33.4.2. UDP/IPv4 GSO

	33.4.3. VxLAN GSO

	33.4.4. GRE GSO

	33.5. How to Segment a Packet

	34. The librte_pdump Library
	34.1. Operation

	34.2. Implementation Details

	34.3. Use Case: Packet Capturing

	35. Multi-process Support
	35.1. Memory Sharing

	35.2. Deployment Models
	35.2.1. Symmetric/Peer Processes

	35.2.2. Asymmetric/Non-Peer Processes

	35.2.3. Running Multiple Independent DPDK Applications

	35.2.4. Running Multiple Independent Groups of DPDK Applications

	35.3. Multi-process Limitations

	35.4. Communication between multiple processes
	35.4.1. Registering for incoming messages

	35.4.2. Sending messages

	35.4.3. Sending requests

	35.4.4. Receiving and responding to messages

	35.4.5. Misc considerations

	36. Kernel NIC Interface
	36.1. The DPDK KNI Kernel Module
	36.1.1. Loopback Mode

	36.1.2. Kernel Thread Mode

	36.1.3. Default Carrier State

	36.2. KNI Creation and Deletion

	36.3. DPDK mbuf Flow

	36.4. Use Case: Ingress

	36.5. Use Case: Egress

	36.6. IOVA = VA: Support

	36.7. Ethtool

	37. Thread Safety of DPDK Functions
	37.1. Fast-Path APIs

	37.2. Performance Insensitive API

	37.3. Library Initialization

	37.4. Interrupt Thread

	38. Event Device Library
	38.1. Event struct
	38.1.1. Event Metadata

	38.1.2. Event Payload

	38.1.3. Queues

	38.1.4. Ports

	38.2. API Walk-through
	38.2.1. Init and Config

	38.2.2. Setting up Queues

	38.2.3. Setting up Ports

	38.2.4. Linking Queues and Ports

	38.2.5. Starting the EventDev

	38.2.6. Ingress of New Events

	38.2.7. Forwarding of Events

	38.2.8. Egress of Events

	38.3. Summary

	39. Event Ethernet Rx Adapter Library
	39.1. API Walk-through
	39.1.1. Creating an Adapter Instance

	39.1.2. Adding Rx Queues to the Adapter Instance

	39.1.3. Querying Adapter Capabilities

	39.1.4. Configuring the Service Function

	39.1.5. Starting the Adapter Instance

	39.1.6. Getting Adapter Statistics

	39.1.7. Interrupt Based Rx Queues

	39.1.8. Rx Callback for SW Rx Adapter

	40. Event Ethernet Tx Adapter Library
	40.1. API Walk-through
	40.1.1. Creating an Adapter Instance

	40.1.2. Adding Tx Queues to the Adapter Instance

	40.1.3. Querying Adapter Capabilities

	40.1.4. Linking a Queue to the Adapter’s Event Port

	40.1.5. Configuring the Service Function

	40.1.6. Starting the Adapter Instance

	40.1.7. Enqueuing Packets to the Adapter

	40.1.8. Getting Adapter Statistics

	41. Event Timer Adapter Library
	41.1. Event Timer struct
	41.1.1. Timer Expiry Event

	41.1.2. Timeout Ticks

	41.1.3. State

	41.1.4. User Metadata

	41.2. API Overview
	41.2.1. Create and Configure an Adapter Instance

	41.2.2. Retrieve Event Timer Adapter Contextual Information

	41.2.3. Configuring the Service Component

	41.2.4. Starting the Adapter Instance

	41.2.5. Arming Event Timers

	41.2.6. Canceling Event Timers

	41.3. Processing Timer Expiry Events

	41.4. Summary

	42. Event Crypto Adapter Library
	42.1. Adapter Mode
	42.1.1. RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode

	42.1.2. RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

	42.2. API Overview
	42.2.1. Create an adapter instance

	42.2.2. Querying adapter capabilities

	42.2.3. Adding queue pair to the adapter instance

	42.2.4. Configure the service function

	42.2.5. Set event request/response information

	42.2.6. Start the adapter instance

	42.2.7. Get adapter statistics

	43. Quality of Service (QoS) Framework
	43.1. Packet Pipeline with QoS Support

	43.2. Hierarchical Scheduler
	43.2.1. Overview

	43.2.2. Scheduling Hierarchy

	43.2.3. Application Programming Interface (API)

	43.2.4. Implementation

	43.2.5. Worst Case Scenarios for Performance

	43.3. Dropper
	43.3.1. Configuration

	43.3.2. Enqueue Operation

	43.3.3. Queue Empty Operation

	43.3.4. Source Files Location

	43.3.5. Integration with the DPDK QoS Scheduler

	43.3.6. Integration with the DPDK QoS Scheduler Sample Application

	43.3.7. Application Programming Interface (API)

	43.4. Traffic Metering
	43.4.1. Functional Overview

	43.4.2. Implementation Overview

	44. Power Management
	44.1. CPU Frequency Scaling

	44.2. Core-load Throttling through C-States

	44.3. Per-core Turbo Boost

	44.4. Use of Power Library in a Hyper-Threaded Environment

	44.5. API Overview of the Power Library

	44.6. User Cases

	44.7. Empty Poll API
	44.7.1. Abstract

	44.7.2. Proposed Solution

	44.7.3. API Overview for Empty Poll Power Management

	44.8. User Cases

	44.9. References

	45. Packet Classification and Access Control
	45.1. Overview
	45.1.1. Rule definition

	45.1.2. RT memory size limit

	45.1.3. Classification methods

	45.2. Application Programming Interface (API) Usage
	45.2.1. Classify with Multiple Categories

	46. Packet Framework
	46.1. Design Objectives

	46.2. Overview

	46.3. Port Library Design
	46.3.1. Port Types

	46.3.2. Port Interface

	46.4. Table Library Design
	46.4.1. Table Types

	46.4.2. Table Interface

	46.4.3. Hash Table Design

	46.5. Pipeline Library Design
	46.5.1. Connectivity of Ports and Tables

	46.5.2. Port Actions

	46.5.3. Table Actions

	46.6. Multicore Scaling
	46.6.1. Shared Data Structures

	46.7. Interfacing with Accelerators

	47. Vhost Library
	47.1. Vhost API Overview

	47.2. Vhost-user Implementations

	47.3. Guest memory requirement

	47.4. Vhost supported vSwitch reference

	47.5. Vhost data path acceleration (vDPA)

	48. Metrics Library
	48.1. Initializing the library

	48.2. Registering metrics

	48.3. Updating metric values

	48.4. Querying metrics

	48.5. Deinitialising the library

	48.6. Bit-rate statistics library
	48.6.1. Initialization

	48.6.2. Controlling the sampling rate

	48.7. Latency statistics library
	48.7.1. Initialization

	48.7.2. Triggering statistic updates

	48.7.3. Library shutdown

	48.7.4. Timestamp and latency calculation

	49. Telemetry Library
	49.1. Registering Commands

	49.2. Formatting JSON response

	50. Berkeley Packet Filter Library
	50.1. Not currently supported eBPF features

	51. IPsec Packet Processing Library
	51.1. SA level API
	51.1.1. RTE_SECURITY_ACTION_TYPE_NONE

	51.1.2. RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO

	51.1.3. RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO

	51.1.4. RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL

	51.1.5. RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL

	51.2. SA database API
	51.2.1. Create/destroy

	51.2.2. Add/delete rules

	51.2.3. Lookup

	51.3. Supported features

	51.4. Limitations

	52. Graph Library and Inbuilt Nodes
	52.1. Features

	52.2. Advantages of Graph architecture

	52.3. Performance tuning parameters

	52.4. Programming model
	52.4.1. Anatomy of Node:

	52.4.2. Node creation and registration

	52.4.3. Link the Nodes to create the graph topology

	52.4.4. Create the graph object

	52.4.5. Multicore graph processing

	52.4.6. In fast path

	52.4.7. Context update when graph walk in action

	52.4.8. Get the node statistics using graph cluster

	52.4.9. Node writing guidelines

	52.4.10. Static nodes

	52.4.11. Intermediate nodes

	52.5. Graph object memory layout

	52.6. Inbuilt Nodes
	52.6.1. ethdev_rx

	52.6.2. ethdev_tx

	52.6.3. pkt_drop

	52.6.4. ip4_lookup

	52.6.5. ip4_rewrite

	52.6.6. null

	53. Source Organization
	53.1. Makefiles and Config

	53.2. Libraries

	53.3. Drivers

	53.4. Applications

	54. Development Kit Build System
	54.1. Building the Development Kit Binary
	54.1.1. Build Directory Concept

	54.2. Building External Applications

	54.3. Makefile Description
	54.3.1. General Rules For DPDK Makefiles

	54.3.2. Makefile Types

	54.3.3. Internally Generated Build Tools

	54.3.4. Useful Variables Provided by the Build System

	54.3.5. Variables that Can be Set/Overridden in a Makefile Only

	54.3.6. Variables that can be Set/Overridden by the User on the Command Line Only

	54.3.7. Variables that Can be Set/Overridden by the User in a Makefile or Command Line

	55. Development Kit Root Makefile Help
	55.1. Configuration Targets

	55.2. Build Targets

	55.3. Install Targets

	55.4. Test Targets

	55.5. Documentation Targets

	55.6. Misc Targets

	55.7. Other Useful Command-line Variables

	55.8. Make in a Build Directory

	55.9. Compiling for Debug

	56. Installing DPDK Using the meson build system
	56.1. Summary

	56.2. Getting the Tools

	56.3. Configuring the Build

	56.4. Performing the Build

	56.5. Installing the Compiled Files

	56.6. Cross Compiling DPDK

	56.7. Using the DPDK within an Application

	57. Running DPDK Unit Tests with Meson
	57.1. Grouping of test cases

	57.2. Dealing with skipped test cases

	58. Extending the DPDK
	58.1. Example: Adding a New Library libfoo
	58.1.1. Example: Using libfoo in the Test Application

	59. Building Your Own Application
	59.1. Compiling a Sample Application in the Development Kit Directory

	59.2. Build Your Own Application Outside the Development Kit

	59.3. Customizing Makefiles
	59.3.1. Application Makefile

	59.3.2. Library Makefile

	59.3.3. Customize Makefile Actions

	60. External Application/Library Makefile help
	60.1. Prerequisites

	60.2. Build Targets

	60.3. Help Targets

	60.4. Other Useful Command-line Variables

	60.5. Make from Another Directory

	61. Performance Optimization Guidelines
	61.1. Introduction

	62. Writing Efficient Code
	62.1. Memory
	62.1.1. Memory Copy: Do not Use libc in the Data Plane

	62.1.2. Memory Allocation

	62.1.3. Concurrent Access to the Same Memory Area

	62.1.4. NUMA

	62.1.5. Distribution Across Memory Channels

	62.1.6. Locking memory pages

	62.2. Communication Between lcores

	62.3. PMD Driver
	62.3.1. Lower Packet Latency

	62.4. Locks and Atomic Operations

	62.5. Coding Considerations
	62.5.1. Inline Functions

	62.5.2. Branch Prediction

	62.6. Setting the Target CPU Type

	63. Link Time Optimization

	64. Profile Your Application
	64.1. Profiling on x86
	64.1.1. Profiling with VTune

	64.2. Profiling on ARM64
	64.2.1. Using Linux perf

	64.2.2. Low-resolution generic counter

	64.2.3. High-resolution cycle counter

	65. Glossary

1. Introduction

This document provides software architecture information,
development environment information and optimization guidelines.

For programming examples and for instructions on compiling and running each sample application,
see the DPDK Sample Applications User Guide for details.

For general information on compiling and running applications, see the DPDK Getting Started Guide.

1.1. Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

	Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on.
Also, provides the answers to frequently asked questions in FAQ format.

	Getting Started Guide : Describes how to install and configure the DPDK software;
designed to get users up and running quickly with the software.

	FreeBSD* Getting Started Guide : A document describing the use of the DPDK with FreeBSD*
has been added in DPDK Release 1.6.0.
Refer to this guide for installation and configuration instructions to get started using the DPDK with FreeBSD*.

	Programmer’s Guide (this document): Describes:

	The software architecture and how to use it (through examples),
specifically in a Linux* application (linux) environment

	The content of the DPDK, the build system
(including the commands that can be used in the root DPDK Makefile to build the development kit and an application)
and guidelines for porting an application

	Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

	API Reference : Provides detailed information about DPDK functions,
data structures and other programming constructs.

	Sample Applications User Guide: Describes a set of sample applications.
Each chapter describes a sample application that showcases specific functionality
and provides instructions on how to compile, run and use the sample application.

1.2. Related Publications

The following documents provide information that is relevant to the development of applications using the DPDK:

	Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide

 Part 1: Architecture Overview

2. Overview

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple,
complete framework for fast packet processing in data plane applications.
Users may use the code to understand some of the techniques employed,
to build upon for prototyping or to add their own protocol stacks.
Alternative ecosystem options that use the DPDK are available.

The framework creates a set of libraries for specific environments
through the creation of an Environment Abstraction Layer (EAL),
which may be specific to a mode of the Intel® architecture (32-bit or 64-bit),
Linux* user space compilers or a specific platform.
These environments are created through the use of make files and configuration files.
Once the EAL library is created, the user may link with the library to create their own applications.
Other libraries, outside of EAL, including the Hash,
Longest Prefix Match (LPM) and rings libraries are also provided.
Sample applications are provided to help show the user how to use various features of the DPDK.

The DPDK implements a run to completion model for packet processing,
where all resources must be allocated prior to calling Data Plane applications,
running as execution units on logical processing cores.
The model does not support a scheduler and all devices are accessed by polling.
The primary reason for not using interrupts is the performance overhead imposed by interrupt processing.

In addition to the run-to-completion model,
a pipeline model may also be used by passing packets or messages between cores via the rings.
This allows work to be performed in stages and may allow more efficient use of code on cores.

2.1. Development Environment

The DPDK project installation requires Linux and the associated toolchain,
such as one or more compilers, assembler, make utility,
editor and various libraries to create the DPDK components and libraries.

Once these libraries are created for the specific environment and architecture,
they may then be used to create the user’s data plane application.

When creating applications for the Linux user space, the glibc library is used.
For DPDK applications, two environmental variables (RTE_SDK and RTE_TARGET)
must be configured before compiling the applications.
The following are examples of how the variables can be set:

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for information on setting up the development environment.

2.2. Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface
that hides the environment specifics from the applications and libraries.
The services provided by the EAL are:

	DPDK loading and launching

	Support for multi-process and multi-thread execution types

	Core affinity/assignment procedures

	System memory allocation/de-allocation

	Atomic/lock operations

	Time reference

	PCI bus access

	Trace and debug functions

	CPU feature identification

	Interrupt handling

	Alarm operations

	Memory management (malloc)

The EAL is fully described in Environment Abstraction Layer.

2.3. Core Components

The core components are a set of libraries that provide all the elements needed
for high-performance packet processing applications.

[image: ../_images/architecture-overview.svg]
Fig. 2.1 Core Components Architecture

2.3.1. Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO API in a finite size table.
It has some advantages over lockless queues; easier to implement, adapted to bulk operations and faster.
A ring is used by the Memory Pool Manager (librte_mempool)
and may be used as a general communication mechanism between cores
and/or execution blocks connected together on a logical core.

This ring buffer and its usage are fully described in Ring Library.

2.3.2. Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory.
A pool is identified by name and uses a ring to store free objects.
It provides some other optional services,
such as a per-core object cache and an alignment helper to ensure that objects are padded to spread them equally on all RAM channels.

This memory pool allocator is described in Mempool Library.

2.3.3. Network Packet Buffer Management (librte_mbuf)

The mbuf library provides the facility to create and destroy buffers
that may be used by the DPDK application to store message buffers.
The message buffers are created at startup time and stored in a mempool, using the DPDK mempool library.

This library provides an API to allocate/free mbufs, manipulate
packet buffers which are used to carry network packets.

Network Packet Buffer Management is described in Mbuf Library.

2.3.4. Timer Manager (librte_timer)

This library provides a timer service to DPDK execution units,
providing the ability to execute a function asynchronously.
It can be periodic function calls, or just a one-shot call.
It uses the timer interface provided by the Environment Abstraction Layer (EAL)
to get a precise time reference and can be initiated on a per-core basis as required.

The library documentation is available in Timer Library.

2.4. Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtualized virtio
Ethernet controllers which are designed to work without asynchronous, interrupt-based signaling mechanisms.

See Poll Mode Driver.

2.5. Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm)
libraries to support the corresponding packet forwarding algorithms.

See Hash Library and LPM Library for more information.

2.6. librte_net

The librte_net library is a collection of IP protocol definitions and convenience macros.
It is based on code from the FreeBSD* IP stack and contains protocol numbers (for use in IP headers),
IP-related macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header structures.

3. Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level resources such as hardware and memory space.
It provides a generic interface that hides the environment specifics from the applications and libraries.
It is the responsibility of the initialization routine to decide how to allocate these resources
(that is, memory space, devices, timers, consoles, and so on).

Typical services expected from the EAL are:

	DPDK Loading and Launching:
The DPDK and its application are linked as a single application and must be loaded by some means.

	Core Affinity/Assignment Procedures:
The EAL provides mechanisms for assigning execution units to specific cores as well as creating execution instances.

	System Memory Reservation:
The EAL facilitates the reservation of different memory zones, for example, physical memory areas for device interactions.

	Trace and Debug Functions: Logs, dump_stack, panic and so on.

	Utility Functions: Spinlocks and atomic counters that are not provided in libc.

	CPU Feature Identification: Determine at runtime if a particular feature, for example, Intel® AVX is supported.
Determine if the current CPU supports the feature set that the binary was compiled for.

	Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt sources.

	Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

3.1. EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application using the pthread library.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page sizes to increase performance).
This memory is exposed to DPDK service layers such as the Mempool Library.

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls,
each execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel API through a mmap() call.

3.1.1. Initialization and Core Launching

Part of the initialization is done by the start function of glibc.
A check is also performed at initialization time to ensure that the micro architecture type chosen in the config file is supported by the CPU.
Then, the main() function is called. The core initialization and launch is done in rte_eal_init() (see the API documentation).
It consist of calls to the pthread library (more specifically, pthread_self(), pthread_create(), and pthread_setaffinity_np()).

[image: ../_images/linuxapp_launch.svg]
Fig. 3.1 EAL Initialization in a Linux Application Environment

Note

Initialization of objects, such as memory zones, rings, memory pools, lpm tables and hash tables,
should be done as part of the overall application initialization on the master lcore.
The creation and initialization functions for these objects are not multi-thread safe.
However, once initialized, the objects themselves can safely be used in multiple threads simultaneously.

3.1.2. Shutdown and Cleanup

During the initialization of EAL resources such as hugepage backed memory can be
allocated by core components. The memory allocated during rte_eal_init()
can be released by calling the rte_eal_cleanup() function. Refer to the
API documentation for details.

3.1.3. Multi-process Support

The Linux EAL allows a multi-process as well as a multi-threaded (pthread) deployment model.
See chapter
Multi-process Support for more details.

3.1.4. Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesystem.
The EAL provides an API to reserve named memory zones in this contiguous memory.
The physical address of the reserved memory for that memory zone is also returned to the user by the memory zone reservation API.

There are two modes in which DPDK memory subsystem can operate: dynamic mode,
and legacy mode. Both modes are explained below.

Note

Memory reservations done using the APIs provided by rte_malloc are also backed by pages from the hugetlbfs filesystem.

	Dynamic memory mode

Currently, this mode is only supported on Linux.

In this mode, usage of hugepages by DPDK application will grow and shrink based
on application’s requests. Any memory allocation through rte_malloc(),
rte_memzone_reserve() or other methods, can potentially result in more
hugepages being reserved from the system. Similarly, any memory deallocation can
potentially result in hugepages being released back to the system.

Memory allocated in this mode is not guaranteed to be IOVA-contiguous. If large
chunks of IOVA-contiguous are required (with “large” defined as “more than one
page”), it is recommended to either use VFIO driver for all physical devices (so
that IOVA and VA addresses can be the same, thereby bypassing physical addresses
entirely), or use legacy memory mode.

For chunks of memory which must be IOVA-contiguous, it is recommended to use
rte_memzone_reserve() function with RTE_MEMZONE_IOVA_CONTIG flag
specified. This way, memory allocator will ensure that, whatever memory mode is
in use, either reserved memory will satisfy the requirements, or the allocation
will fail.

There is no need to preallocate any memory at startup using -m or
--socket-mem command-line parameters, however it is still possible to do so,
in which case preallocate memory will be “pinned” (i.e. will never be released
by the application back to the system). It will be possible to allocate more
hugepages, and deallocate those, but any preallocated pages will not be freed.
If neither -m nor --socket-mem were specified, no memory will be
preallocated, and all memory will be allocated at runtime, as needed.

Another available option to use in dynamic memory mode is
--single-file-segments command-line option. This option will put pages in
single files (per memseg list), as opposed to creating a file per page. This is
normally not needed, but can be useful for use cases like userspace vhost, where
there is limited number of page file descriptors that can be passed to VirtIO.

If the application (or DPDK-internal code, such as device drivers) wishes to
receive notifications about newly allocated memory, it is possible to register
for memory event callbacks via rte_mem_event_callback_register() function.
This will call a callback function any time DPDK’s memory map has changed.

If the application (or DPDK-internal code, such as device drivers) wishes to be
notified about memory allocations above specified threshold (and have a chance
to deny them), allocation validator callbacks are also available via
rte_mem_alloc_validator_callback_register() function.

A default validator callback is provided by EAL, which can be enabled with a
--socket-limit command-line option, for a simple way to limit maximum amount
of memory that can be used by DPDK application.

Warning

Memory subsystem uses DPDK IPC internally, so memory allocations/callbacks
and IPC must not be mixed: it is not safe to allocate/free memory inside
memory-related or IPC callbacks, and it is not safe to use IPC inside
memory-related callbacks. See chapter
Multi-process Support for more details about
DPDK IPC.

	Legacy memory mode

This mode is enabled by specifying --legacy-mem command-line switch to the
EAL. This switch will have no effect on FreeBSD as FreeBSD only supports
legacy mode anyway.

This mode mimics historical behavior of EAL. That is, EAL will reserve all
memory at startup, sort all memory into large IOVA-contiguous chunks, and will
not allow acquiring or releasing hugepages from the system at runtime.

If neither -m nor --socket-mem were specified, the entire available
hugepage memory will be preallocated.

	Hugepage allocation matching

This behavior is enabled by specifying the --match-allocations command-line
switch to the EAL. This switch is Linux-only and not supported with
--legacy-mem nor --no-huge.

Some applications using memory event callbacks may require that hugepages be
freed exactly as they were allocated. These applications may also require
that any allocation from the malloc heap not span across allocations
associated with two different memory event callbacks. Hugepage allocation
matching can be used by these types of applications to satisfy both of these
requirements. This can result in some increased memory usage which is
very dependent on the memory allocation patterns of the application.

	32-bit support

Additional restrictions are present when running in 32-bit mode. In dynamic
memory mode, by default maximum of 2 gigabytes of VA space will be preallocated,
and all of it will be on master lcore NUMA node unless --socket-mem flag is
used.

In legacy mode, VA space will only be preallocated for segments that were
requested (plus padding, to keep IOVA-contiguousness).

	Maximum amount of memory

All possible virtual memory space that can ever be used for hugepage mapping in
a DPDK process is preallocated at startup, thereby placing an upper limit on how
much memory a DPDK application can have. DPDK memory is stored in segment lists,
each segment is strictly one physical page. It is possible to change the amount
of virtual memory being preallocated at startup by editing the following config
variables:

	CONFIG_RTE_MAX_MEMSEG_LISTS controls how many segment lists can DPDK have

	CONFIG_RTE_MAX_MEM_MB_PER_LIST controls how much megabytes of memory each
segment list can address

	CONFIG_RTE_MAX_MEMSEG_PER_LIST controls how many segments each segment can
have

	CONFIG_RTE_MAX_MEMSEG_PER_TYPE controls how many segments each memory type
can have (where “type” is defined as “page size + NUMA node” combination)

	CONFIG_RTE_MAX_MEM_MB_PER_TYPE controls how much megabytes of memory each
memory type can address

	CONFIG_RTE_MAX_MEM_MB places a global maximum on the amount of memory
DPDK can reserve

Normally, these options do not need to be changed.

Note

Preallocated virtual memory is not to be confused with preallocated hugepage
memory! All DPDK processes preallocate virtual memory at startup. Hugepages
can later be mapped into that preallocated VA space (if dynamic memory mode
is enabled), and can optionally be mapped into it at startup.

	Segment file descriptors

On Linux, in most cases, EAL will store segment file descriptors in EAL. This
can become a problem when using smaller page sizes due to underlying limitations
of glibc library. For example, Linux API calls such as select() may not
work correctly because glibc does not support more than certain number of
file descriptors.

There are two possible solutions for this problem. The recommended solution is
to use --single-file-segments mode, as that mode will not use a file
descriptor per each page, and it will keep compatibility with Virtio with
vhost-user backend. This option is not available when using --legacy-mem
mode.

Another option is to use bigger page sizes. Since fewer pages are required to
cover the same memory area, fewer file descriptors will be stored internally
by EAL.

3.1.5. Support for Externally Allocated Memory

It is possible to use externally allocated memory in DPDK. There are two ways in
which using externally allocated memory can work: the malloc heap API’s, and
manual memory management.

	Using heap API’s for externally allocated memory

Using a set of malloc heap API’s is the recommended way to use externally
allocated memory in DPDK. In this way, support for externally allocated memory
is implemented through overloading the socket ID - externally allocated heaps
will have socket ID’s that would be considered invalid under normal
circumstances. Requesting an allocation to take place from a specified
externally allocated memory is a matter of supplying the correct socket ID to
DPDK allocator, either directly (e.g. through a call to rte_malloc) or
indirectly (through data structure-specific allocation API’s such as
rte_ring_create). Using these API’s also ensures that mapping of externally
allocated memory for DMA is also performed on any memory segment that is added
to a DPDK malloc heap.

Since there is no way DPDK can verify whether memory is available or valid, this
responsibility falls on the shoulders of the user. All multiprocess
synchronization is also user’s responsibility, as well as ensuring that all
calls to add/attach/detach/remove memory are done in the correct order. It is
not required to attach to a memory area in all processes - only attach to memory
areas as needed.

The expected workflow is as follows:

	Get a pointer to memory area

	Create a named heap

	
	Add memory area(s) to the heap
	
	If IOVA table is not specified, IOVA addresses will be assumed to be
unavailable, and DMA mappings will not be performed

	Other processes must attach to the memory area before they can use it

	Get socket ID used for the heap

	Use normal DPDK allocation procedures, using supplied socket ID

	
	If memory area is no longer needed, it can be removed from the heap
	
	Other processes must detach from this memory area before it can be removed

	
	If heap is no longer needed, remove it
	
	Socket ID will become invalid and will not be reused

For more information, please refer to rte_malloc API documentation,
specifically the rte_malloc_heap_* family of function calls.

	Using externally allocated memory without DPDK API’s

While using heap API’s is the recommended method of using externally allocated
memory in DPDK, there are certain use cases where the overhead of DPDK heap API
is undesirable - for example, when manual memory management is performed on an
externally allocated area. To support use cases where externally allocated
memory will not be used as part of normal DPDK workflow, there is also another
set of API’s under the rte_extmem_* namespace.

These API’s are (as their name implies) intended to allow registering or
unregistering externally allocated memory to/from DPDK’s internal page table, to
allow API’s like rte_mem_virt2memseg etc. to work with externally allocated
memory. Memory added this way will not be available for any regular DPDK
allocators; DPDK will leave this memory for the user application to manage.

The expected workflow is as follows:

	Get a pointer to memory area

	
	Register memory within DPDK
	
	If IOVA table is not specified, IOVA addresses will be assumed to be
unavailable

	Other processes must attach to the memory area before they can use it

	Perform DMA mapping with rte_dev_dma_map if needed

	Use the memory area in your application

	
	If memory area is no longer needed, it can be unregistered
	
	If the area was mapped for DMA, unmapping must be performed before
unregistering memory

	Other processes must detach from the memory area before it can be
unregistered

Since these externally allocated memory areas will not be managed by DPDK, it is
therefore up to the user application to decide how to use them and what to do
with them once they’re registered.

3.1.6. Per-lcore and Shared Variables

Note

lcore refers to a logical execution unit of the processor, sometimes called a hardware thread.

Shared variables are the default behavior.
Per-lcore variables are implemented using Thread Local Storage (TLS) to provide per-thread local storage.

3.1.7. Logs

A logging API is provided by EAL.
By default, in a Linux application, logs are sent to syslog and also to the console.
However, the log function can be overridden by the user to use a different logging mechanism.

3.1.7.1. Trace and Debug Functions

There are some debug functions to dump the stack in glibc.
The rte_panic() function can voluntarily provoke a SIG_ABORT,
which can trigger the generation of a core file, readable by gdb.

3.1.8. CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_features() function) to determine which CPU features are available.

3.1.9. User Space Interrupt Event

	User Space Interrupt and Alarm Handling in Host Thread

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts.
Callbacks can be registered or unregistered by the EAL functions for a specific interrupt event
and are called in the host thread asynchronously.
The EAL also allows timed callbacks to be used in the same way as for NIC interrupts.

Note

In DPDK PMD, the only interrupts handled by the dedicated host thread are those for link status change
(link up and link down notification) and for sudden device removal.

	RX Interrupt Event

The receive and transmit routines provided by each PMD don’t limit themselves to execute in polling thread mode.
To ease the idle polling with tiny throughput, it’s useful to pause the polling and wait until the wake-up event happens.
The RX interrupt is the first choice to be such kind of wake-up event, but probably won’t be the only one.

EAL provides the event APIs for this event-driven thread mode.
Taking Linux as an example, the implementation relies on epoll. Each thread can monitor an epoll instance
in which all the wake-up events’ file descriptors are added. The event file descriptors are created and mapped to
the interrupt vectors according to the UIO/VFIO spec.
From FreeBSD’s perspective, kqueue is the alternative way, but not implemented yet.

EAL initializes the mapping between event file descriptors and interrupt vectors, while each device initializes the mapping
between interrupt vectors and queues. In this way, EAL actually is unaware of the interrupt cause on the specific vector.
The eth_dev driver takes responsibility to program the latter mapping.

Note

Per queue RX interrupt event is only allowed in VFIO which supports multiple MSI-X vector. In UIO, the RX interrupt
together with other interrupt causes shares the same vector. In this case, when RX interrupt and LSC(link status change)
interrupt are both enabled(intr_conf.lsc == 1 && intr_conf.rxq == 1), only the former is capable.

The RX interrupt are controlled/enabled/disabled by ethdev APIs - ‘rte_eth_dev_rx_intr_*’. They return failure if the PMD
hasn’t support them yet. The intr_conf.rxq flag is used to turn on the capability of RX interrupt per device.

	Device Removal Event

This event is triggered by a device being removed at a bus level. Its
underlying resources may have been made unavailable (i.e. PCI mappings
unmapped). The PMD must make sure that on such occurrence, the application can
still safely use its callbacks.

This event can be subscribed to in the same way one would subscribe to a link
status change event. The execution context is thus the same, i.e. it is the
dedicated interrupt host thread.

Considering this, it is likely that an application would want to close a
device having emitted a Device Removal Event. In such case, calling
rte_eth_dev_close() can trigger it to unregister its own Device Removal Event
callback. Care must be taken not to close the device from the interrupt handler
context. It is necessary to reschedule such closing operation.

3.1.10. Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted,
so they are ignored by the DPDK.
The ports to be blacklisted are identified using the PCIe* description (Domain:Bus:Device.Function).

3.1.11. Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

3.1.12. IOVA Mode Detection

IOVA Mode is selected by considering what the current usable Devices on the
system require and/or support.

On FreeBSD, RTE_IOVA_PA is always the default. On Linux, the IOVA mode is
detected based on a 2-step heuristic detailed below.

For the first step, EAL asks each bus its requirement in terms of IOVA mode
and decides on a preferred IOVA mode.

	if all buses report RTE_IOVA_PA, then the preferred IOVA mode is RTE_IOVA_PA,

	if all buses report RTE_IOVA_VA, then the preferred IOVA mode is RTE_IOVA_VA,

	if all buses report RTE_IOVA_DC, no bus expressed a preferrence, then the
preferred mode is RTE_IOVA_DC,

	if the buses disagree (at least one wants RTE_IOVA_PA and at least one wants
RTE_IOVA_VA), then the preferred IOVA mode is RTE_IOVA_DC (see below with the
check on Physical Addresses availability),

If the buses have expressed no preference on which IOVA mode to pick, then a
default is selected using the following logic:

	if physical addresses are not available, RTE_IOVA_VA mode is used

	if /sys/kernel/iommu_groups is not empty, RTE_IOVA_VA mode is used

	otherwise, RTE_IOVA_PA mode is used

In the case when the buses had disagreed on their preferred IOVA mode, part of
the buses won’t work because of this decision.

The second step checks if the preferred mode complies with the Physical
Addresses availability since those are only available to root user in recent
kernels. Namely, if the preferred mode is RTE_IOVA_PA but there is no access to
Physical Addresses, then EAL init fails early, since later probing of the
devices would fail anyway.

Note

The RTE_IOVA_VA mode is preferred as the default in most cases for the
following reasons:

	All drivers are expected to work in RTE_IOVA_VA mode, irrespective of
physical address availability.

	By default, the mempool, first asks for IOVA-contiguous memory using
RTE_MEMZONE_IOVA_CONTIG. This is slow in RTE_IOVA_PA mode and it may
affect the application boot time.

	It is easy to enable large amount of IOVA-contiguous memory use-cases
with IOVA in VA mode.

It is expected that all PCI drivers work in both RTE_IOVA_PA and
RTE_IOVA_VA modes.

If a PCI driver does not support RTE_IOVA_PA mode, the
RTE_PCI_DRV_NEED_IOVA_AS_VA flag is used to dictate that this PCI
driver can only work in RTE_IOVA_VA mode.

When the KNI kernel module is detected, RTE_IOVA_PA mode is preferred as a
performance penalty is expected in RTE_IOVA_VA mode.

3.1.13. IOVA Mode Configuration

Auto detection of the IOVA mode, based on probing the bus and IOMMU configuration, may not report
the desired addressing mode when virtual devices that are not directly attached to the bus are present.
To facilitate forcing the IOVA mode to a specific value the EAL command line option --iova-mode can
be used to select either physical addressing(‘pa’) or virtual addressing(‘va’).

3.2. Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL.
As physical memory can have gaps, the memory is described in a table of descriptors,
and each descriptor (called rte_memseg) describes a physical page.

On top of this, the memzone allocator’s role is to reserve contiguous portions of physical memory.
These zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure.
This structure is accessed using rte_eal_get_configuration().
The lookup (by name) of a memory zone returns a descriptor containing the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align parameter
(by default, they are aligned to cache line size).
The alignment value should be a power of two and not less than the cache line size (64 bytes).
Memory zones can also be reserved from either 2 MB or 1 GB hugepages, provided that both are available on the system.

Both memsegs and memzones are stored using rte_fbarray structures. Please
refer to DPDK API Reference for more information.

3.3. Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching.
This allows for significant performance gains, but lacks flexibility and is not always efficient.

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency.
However, alternately it is possible to utilize the idle cycles available to take advantage of
the full capability of the CPU.

By taking advantage of cgroup, the CPU utilization quota can be simply assigned.
This gives another way to improve the CPU efficiency, however, there is a prerequisite;
DPDK must handle the context switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

3.3.1. EAL pthread and lcore Affinity

The term “lcore” refers to an EAL thread, which is really a Linux/FreeBSD pthread.
“EAL pthreads” are created and managed by EAL and execute the tasks issued by remote_launch.
In each EAL pthread, there is a TLS (Thread Local Storage) called _lcore_id for unique identification.
As EAL pthreads usually bind 1:1 to the physical CPU, the _lcore_id is typically equal to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL pthread and a specified physical CPU.
The EAL pthread may have affinity to a CPU set, and as such the _lcore_id will not be the same as the CPU ID.
For this reason, there is an EAL long option ‘–lcores’ defined to assign the CPU affinity of lcores.
For a specified lcore ID or ID group, the option allows setting the CPU set for that EAL pthread.

	The format pattern:
	–lcores=’<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],…]’

‘lcore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is “<number>-<number>”; a group is “(<number|range>[,<number|range>,…])”.

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘lcore_set’.

For example, "--lcores='1,2@(5-7),(3-5)@(0,2),(0,6),7-8'" which means start 9 EAL thread;
 lcore 0 runs on cpuset 0x41 (cpu 0,6);
 lcore 1 runs on cpuset 0x2 (cpu 1);
 lcore 2 runs on cpuset 0xe0 (cpu 5,6,7);
 lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);
 lcore 6 runs on cpuset 0x41 (cpu 0,6);
 lcore 7 runs on cpuset 0x80 (cpu 7);
 lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given lcore ID, the associated CPUs can be assigned.
It’s also compatible with the pattern of corelist(‘-l’) option.

3.3.2. non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. Non-EAL pthreads).
In a non-EAL pthread, the _lcore_id is always LCORE_ID_ANY which identifies that it is not an EAL thread with a valid, unique, _lcore_id.
Some libraries will use an alternative unique ID (e.g. TID), some will not be impacted at all, and some will work but with limitations (e.g. timer and mempool libraries).

All these impacts are mentioned in Known Issues section.

3.3.3. Public Thread API

There are two public APIs rte_thread_set_affinity() and rte_thread_get_affinity() introduced for threads.
When they’re used in any pthread context, the Thread Local Storage(TLS) will be set/get.

Those TLS include _cpuset and _socket_id:

	_cpuset stores the CPUs bitmap to which the pthread is affinitized.

	_socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to different NUMA node, the _socket_id will be set to SOCKET_ID_ANY.

3.3.4. Control Thread API

It is possible to create Control Threads using the public API
rte_ctrl_thread_create().
Those threads can be used for management/infrastructure tasks and are used
internally by DPDK for multi process support and interrupt handling.

Those threads will be scheduled on CPUs part of the original process CPU
affinity from which the dataplane and service lcores are excluded.

For example, on a 8 CPUs system, starting a dpdk application with -l 2,3
(dataplane cores), then depending on the affinity configuration which can be
controlled with tools like taskset (Linux) or cpuset (FreeBSD),

	with no affinity configuration, the Control Threads will end up on
0-1,4-7 CPUs.

	with affinity restricted to 2-4, the Control Threads will end up on
CPU 4.

	with affinity restricted to 2-3, the Control Threads will end up on
CPU 2 (master lcore, which is the default when no CPU is available).

3.3.5. Known Issues

	rte_mempool

The rte_mempool uses a per-lcore cache inside the mempool.
For non-EAL pthreads, rte_lcore_id() will not return a valid number.
So for now, when rte_mempool is used with non-EAL pthreads, the put/get operations will bypass the default mempool cache and there is a performance penalty because of this bypass.
Only user-owned external caches can be used in a non-EAL context in conjunction with rte_mempool_generic_put() and rte_mempool_generic_get() that accept an explicit cache parameter.

	rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue.
However, it is non-preemptive, this has a knock on effect of making rte_mempool non-preemptable.

Note

The “non-preemptive” constraint means:

	a pthread doing multi-producers enqueues on a given ring must not
be preempted by another pthread doing a multi-producer enqueue on
the same ring.

	a pthread doing multi-consumers dequeues on a given ring must not
be preempted by another pthread doing a multi-consumer dequeue on
the same ring.

Bypassing this constraint may cause the 2nd pthread to spin until the 1st one is scheduled again.
Moreover, if the 1st pthread is preempted by a context that has an higher priority, it may even cause a dead lock.

This means, use cases involving preemptible pthreads should consider using rte_ring carefully.

	It CAN be used for preemptible single-producer and single-consumer use case.

	It CAN be used for non-preemptible multi-producer and preemptible single-consumer use case.

	It CAN be used for preemptible single-producer and non-preemptible multi-consumer use case.

	It MAY be used by preemptible multi-producer and/or preemptible multi-consumer pthreads whose scheduling policy are all SCHED_OTHER(cfs), SCHED_IDLE or SCHED_BATCH. User SHOULD be aware of the performance penalty before using it.

	It MUST not be used by multi-producer/consumer pthreads, whose scheduling policies are SCHED_FIFO or SCHED_RR.

Alternatively, applications can use the lock-free stack mempool handler. When
considering this handler, note that:

	It is currently limited to the aarch64 and x86_64 platforms, because it uses
an instruction (16-byte compare-and-swap) that is not yet available on other
platforms.

	It has worse average-case performance than the non-preemptive rte_ring, but
software caching (e.g. the mempool cache) can mitigate this by reducing the
number of stack accesses.

	rte_timer

Running rte_timer_manage() on a non-EAL pthread is not allowed. However, resetting/stopping the timer from a non-EAL pthread is allowed.

	rte_log

In non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are used.

	misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in a non-EAL pthread.

3.3.6. cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1) doing packet I/O on the same core ($CPU).
We expect only 50% of CPU spend on packet IO.

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo $cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

3.4. Malloc

The EAL provides a malloc API to allocate any-sized memory.

The objective of this API is to provide malloc-like functions to allow
allocation from hugepage memory and to facilitate application porting.
The DPDK API Reference manual describes the available functions.

Typically, these kinds of allocations should not be done in data plane
processing because they are slower than pool-based allocation and make
use of locks within the allocation and free paths.
However, they can be used in configuration code.

Refer to the rte_malloc() function description in the DPDK API Reference
manual for more information.

3.4.1. Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains
overwrite protection fields to help identify buffer overflows.

3.4.2. Alignment and NUMA Constraints

The rte_malloc() takes an align argument that can be used to request a memory
area that is aligned on a multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return
memory that has been allocated on the NUMA socket of the core which made the call.
A set of APIs is also provided, to allow memory to be explicitly allocated on a
NUMA socket directly, or by allocated on the NUMA socket where another core is
located, in the case where the memory is to be used by a logical core other than
on the one doing the memory allocation.

3.4.3. Use Cases

This API is meant to be used by an application that requires malloc-like
functions at initialization time.

For allocating/freeing data at runtime, in the fast-path of an application,
the memory pool library should be used instead.

3.4.4. Internal Implementation

3.4.4.1. Data Structures

There are two data structure types used internally in the malloc library:

	struct malloc_heap - used to track free space on a per-socket basis

	struct malloc_elem - the basic element of allocation and free-space
tracking inside the library.

3.4.4.1.1. Structure: malloc_heap

The malloc_heap structure is used to manage free space on a per-socket basis.
Internally, there is one heap structure per NUMA node, which allows us to
allocate memory to a thread based on the NUMA node on which this thread runs.
While this does not guarantee that the memory will be used on that NUMA node,
it is no worse than a scheme where the memory is always allocated on a fixed
or random node.

The key fields of the heap structure and their function are described below
(see also diagram above):

	lock - the lock field is needed to synchronize access to the heap.
Given that the free space in the heap is tracked using a linked list,
we need a lock to prevent two threads manipulating the list at the same time.

	free_head - this points to the first element in the list of free nodes for
this malloc heap.

	first - this points to the first element in the heap.

	last - this points to the last element in the heap.

[image: ../_images/malloc_heap.svg]
Fig. 3.2 Example of a malloc heap and malloc elements within the malloc library

3.4.4.1.2. Structure: malloc_elem

The malloc_elem structure is used as a generic header structure for various
blocks of memory.
It is used in two different ways - all shown in the diagram above:

	As a header on a block of free or allocated memory - normal case

	As a padding header inside a block of memory

The most important fields in the structure and how they are used are described below.

Malloc heap is a doubly-linked list, where each element keeps track of its
previous and next elements. Due to the fact that hugepage memory can come and
go, neighboring malloc elements may not necessarily be adjacent in memory.
Also, since a malloc element may span multiple pages, its contents may not
necessarily be IOVA-contiguous either - each malloc element is only guaranteed
to be virtually contiguous.

Note

If the usage of a particular field in one of the above three usages is not
described, the field can be assumed to have an undefined value in that
situation, for example, for padding headers only the “state” and “pad”
fields have valid values.

	heap - this pointer is a reference back to the heap structure from which
this block was allocated.
It is used for normal memory blocks when they are being freed, to add the
newly-freed block to the heap’s free-list.

	prev - this pointer points to previous header element/block in memory. When
freeing a block, this pointer is used to reference the previous block to
check if that block is also free. If so, and the two blocks are immediately
adjacent to each other, then the two free blocks are merged to form a single
larger block.

	next - this pointer points to next header element/block in memory. When
freeing a block, this pointer is used to reference the next block to check
if that block is also free. If so, and the two blocks are immediately
adjacent to each other, then the two free blocks are merged to form a single
larger block.

	free_list - this is a structure pointing to previous and next elements in
this heap’s free list.
It is only used in normal memory blocks; on malloc() to find a suitable
free block to allocate and on free() to add the newly freed element to
the free-list.

	state - This field can have one of three values: FREE, BUSY or
PAD.
The former two are to indicate the allocation state of a normal memory block
and the latter is to indicate that the element structure is a dummy structure
at the end of the start-of-block padding, i.e. where the start of the data
within a block is not at the start of the block itself, due to alignment
constraints.
In that case, the pad header is used to locate the actual malloc element
header for the block.

	pad - this holds the length of the padding present at the start of the block.
In the case of a normal block header, it is added to the address of the end
of the header to give the address of the start of the data area, i.e. the
value passed back to the application on a malloc.
Within a dummy header inside the padding, this same value is stored, and is
subtracted from the address of the dummy header to yield the address of the
actual block header.

	size - the size of the data block, including the header itself.

3.4.4.2. Memory Allocation

On EAL initialization, all preallocated memory segments are setup as part of the
malloc heap. This setup involves placing an element header
with FREE at the start of each virtually contiguous segment of memory.
The FREE element is then added to the free_list for the malloc heap.

This setup also happens whenever memory is allocated at runtime (if supported),
in which case newly allocated pages are also added to the heap, merging with any
adjacent free segments if there are any.

When an application makes a call to a malloc-like function, the malloc function
will first index the lcore_config structure for the calling thread, and
determine the NUMA node of that thread.
The NUMA node is used to index the array of malloc_heap structures which is
passed as a parameter to the heap_alloc() function, along with the
requested size, type, alignment and boundary parameters.

The heap_alloc() function will scan the free_list of the heap, and attempt
to find a free block suitable for storing data of the requested size, with the
requested alignment and boundary constraints.

When a suitable free element has been identified, the pointer to be returned
to the user is calculated.
The cache-line of memory immediately preceding this pointer is filled with a
struct malloc_elem header.
Because of alignment and boundary constraints, there could be free space at
the start and/or end of the element, resulting in the following behavior:

	Check for trailing space.
If the trailing space is big enough, i.e. > 128 bytes, then the free element
is split.
If it is not, then we just ignore it (wasted space).

	Check for space at the start of the element.
If the space at the start is small, i.e. <=128 bytes, then a pad header is
used, and the remaining space is wasted.
If, however, the remaining space is greater, then the free element is split.

The advantage of allocating the memory from the end of the existing element is
that no adjustment of the free list needs to take place - the existing element
on the free list just has its size value adjusted, and the next/previous elements
have their “prev”/”next” pointers redirected to the newly created element.

In case when there is not enough memory in the heap to satisfy allocation
request, EAL will attempt to allocate more memory from the system (if supported)
and, following successful allocation, will retry reserving the memory again. In
a multiprocessing scenario, all primary and secondary processes will synchronize
their memory maps to ensure that any valid pointer to DPDK memory is guaranteed
to be valid at all times in all currently running processes.

Failure to synchronize memory maps in one of the processes will cause allocation
to fail, even though some of the processes may have allocated the memory
successfully. The memory is not added to the malloc heap unless primary process
has ensured that all other processes have mapped this memory successfully.

Any successful allocation event will trigger a callback, for which user
applications and other DPDK subsystems can register. Additionally, validation
callbacks will be triggered before allocation if the newly allocated memory will
exceed threshold set by the user, giving a chance to allow or deny allocation.

Note

Any allocation of new pages has to go through primary process. If the
primary process is not active, no memory will be allocated even if it was
theoretically possible to do so. This is because primary’s process map acts
as an authority on what should or should not be mapped, while each secondary
process has its own, local memory map. Secondary processes do not update the
shared memory map, they only copy its contents to their local memory map.

3.4.4.3. Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed
to the free function.
The size of the malloc_elem structure is subtracted from this pointer to get
the element header for the block.
If this header is of type PAD then the pad length is further subtracted from
the pointer to get the proper element header for the entire block.

From this element header, we get pointers to the heap from which the block was
allocated and to where it must be freed, as well as the pointer to the previous
and next elements. These next and previous elements are then checked to see if
they are also FREE and are immediately adjacent to the current one, and if
so, they are merged with the current element. This means that we can never have
two FREE memory blocks adjacent to one another, as they are always merged
into a single block.

If deallocating pages at runtime is supported, and the free element encloses
one or more pages, those pages can be deallocated and be removed from the heap.
If DPDK was started with command-line parameters for preallocating memory
(-m or --socket-mem), then those pages that were allocated at startup
will not be deallocated.

Any successful deallocation event will trigger a callback, for which user
applications and other DPDK subsystems can register.

4. Service Cores

DPDK has a concept known as service cores, which enables a dynamic way of
performing work on DPDK lcores. Service core support is built into the EAL, and
an API is provided to optionally allow applications to control how the service
cores are used at runtime.

The service cores concept is built up out of services (components of DPDK that
require CPU cycles to operate) and service cores (DPDK lcores, tasked with
running services). The power of the service core concept is that the mapping
between service cores and services can be configured to abstract away the
difference between platforms and environments.

For example, the Eventdev has hardware and software PMDs. Of these the software
PMD requires an lcore to perform the scheduling operations, while the hardware
PMD does not. With service cores, the application would not directly notice
that the scheduling is done in software.

For detailed information about the service core API, please refer to the docs.

4.1. Service Core Initialization

There are two methods to having service cores in a DPDK application, either by
using the service coremask, or by dynamically adding cores using the API.
The simpler of the two is to pass the -s coremask argument to EAL, which will
take any cores available in the main DPDK coremask, and if the bits are also set
in the service coremask the cores become service-cores instead of DPDK
application lcores.

4.2. Enabling Services on Cores

Each registered service can be individually mapped to a service core, or set of
service cores. Enabling a service on a particular core means that the lcore in
question will run the service. Disabling that core on the service stops the
lcore in question from running the service.

Using this method, it is possible to assign specific workloads to each
service core, and map N workloads to M number of service cores. Each service
lcore loops over the services that are enabled for that core, and invokes the
function to run the service.

4.3. Service Core Statistics

The service core library is capable of collecting runtime statistics like number
of calls to a specific service, and number of cycles used by the service. The
cycle count collection is dynamically configurable, allowing any application to
profile the services running on the system at any time.

5. Trace Library

5.1. Overview

Tracing is a technique used to understand what goes on in a running software
system. The software used for tracing is called a tracer, which is
conceptually similar to a tape recorder.
When recording, specific instrumentation points placed in the software source
code generate events that are saved on a giant tape: a trace file.
The trace file then later can be opened in trace viewers to visualize and
analyze the trace events with timestamps and multi-core views.
Such a mechanism will be useful for resolving a wide range of problems such as
multi-core synchronization issues, latency measurements, finding out the
post analysis information like CPU idle time, etc that would otherwise be
extremely challenging to get.

Tracing is often compared to logging. However, tracers and loggers are two
different tools, serving two different purposes.
Tracers are designed to record much lower-level events that occur much more
frequently than log messages, often in the range of thousands per second, with
very little execution overhead.
Logging is more appropriate for a very high-level analysis of less frequent
events: user accesses, exceptional conditions (errors and warnings, for
example), database transactions, instant messaging communications, and such.
Simply put, logging is one of the many use cases that can be satisfied with
tracing.

5.2. DPDK tracing library features

	A framework to add tracepoints in control and fast path APIs with minimum
impact on performance.
Typical trace overhead is ~20 cycles and instrumentation overhead is 1 cycle.

	Enable and disable the tracepoints at runtime.

	Save the trace buffer to the filesystem at any point in time.

	Support overwrite and discard trace mode operations.

	String-based tracepoint object lookup.

	Enable and disable a set of tracepoints based on regular expression and/or
globbing.

	Generate trace in Common Trace Format (CTF). CTF is an open-source
trace format and is compatible with LTTng.
For detailed information, refer to
Common Trace Format [https://diamon.org/ctf/].

5.3. How to add a tracepoint?

This section steps you through the details of adding a simple tracepoint.

5.3.1. Create the tracepoint header file

#include <rte_trace_point.h>

RTE_TRACE_POINT(
 app_trace_string,
 RTE_TRACE_POINT_ARGS(const char *str),
 rte_trace_point_emit_string(str);
)

The above macro creates app_trace_string tracepoint.
The user can choose any name for the tracepoint.
However, when adding a tracepoint in the DPDK library, the
rte_<library_name>_trace_[<domain>_]<name> naming convention must be
followed.
The examples are rte_eal_trace_generic_str, rte_mempool_trace_create.

The RTE_TRACE_POINT macro expands from above definition as the following
function template:

static __rte_always_inline void
app_trace_string(const char *str)
{
 /* Trace subsystem hooks */
 ...
 rte_trace_point_emit_string(str);
}

The consumer of this tracepoint can invoke
app_trace_string(const char *str) to emit the trace event to the trace
buffer.

5.3.2. Register the tracepoint

#include <rte_trace_point_register.h>

#include <my_tracepoint.h>

RTE_TRACE_POINT_DEFINE(app_trace_string);

RTE_INIT(app_trace_init)
{
 RTE_TRACE_POINT_REGISTER(app_trace_string, app.trace.string);
}

The above code snippet registers the app_trace_string tracepoint to
trace library. Here, the my_tracepoint.h is the header file
that the user created in the first step Create the tracepoint header file.

The second argument for the RTE_TRACE_POINT_REGISTER is the name for the
tracepoint. This string will be used for tracepoint lookup or regular
expression and/or glob based tracepoint operations.
There is no requirement for the tracepoint function and its name to be similar.
However, it is recommended to have a similar name for a better naming
convention.

The user must register the tracepoint before the rte_eal_init invocation.
The user can use the RTE_INIT construction scheme to achieve this.

Note

The rte_trace_point_register.h header must be included before any
inclusion of the rte_trace_point.h header.

Note

The RTE_TRACE_POINT_DEFINE defines the placeholder for the
rte_trace_point_t tracepoint object. The user must export a
__<trace_function_name> symbol in the library .map file for this
tracepoint to be used out of the library, in shared builds.
For example, __app_trace_string will be the exported symbol in the
above example.

5.4. Fast path tracepoint

In order to avoid performance impact in fast path code, the library introduced
RTE_TRACE_POINT_FP. When adding the tracepoint in fast path code,
the user must use RTE_TRACE_POINT_FP instead of RTE_TRACE_POINT.

RTE_TRACE_POINT_FP is compiled out by default and it can be enabled using
CONFIG_RTE_ENABLE_TRACE_FP configuration parameter.
The enable_trace_fp option shall be used for the same for meson build.

5.5. Event record mode

Event record mode is an attribute of trace buffers. Trace library exposes the
following modes:

	Overwrite
	When the trace buffer is full, new trace events overwrites the existing
captured events in the trace buffer.

	Discard
	When the trace buffer is full, new trace events will be discarded.

The mode can be configured either using EAL command line parameter
--trace-mode on application boot up or use rte_trace_mode_set() API to
configure at runtime.

5.6. Trace file location

On rte_trace_save() or rte_eal_cleanup() invocation, the library saves
the trace buffers to the filesystem. By default, the trace files are stored in
$HOME/dpdk-traces/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/.
It can be overridden by the --trace-dir=<directory path> EAL command line
option.

For more information, refer to EAL parameters for
trace EAL command line options.

5.7. View and analyze the recorded events

Once the trace directory is available, the user can view/inspect the recorded
events.

There are many tools you can use to read DPDK traces:

1. babeltrace is a command-line utility that converts trace formats; it
supports the format that DPDK trace library produces, CTF, as well as a
basic text output that can be grep’ed.
The babeltrace command is part of the Open Source Babeltrace project.

2. Trace Compass is a graphical user interface for viewing and analyzing
any type of logs or traces, including DPDK traces.

5.7.1. Use the babeltrace command-line tool

The simplest way to list all the recorded events of a trace is to pass its path
to babeltrace with no options:

babeltrace </path-to-trace-events/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/>

babeltrace finds all traces recursively within the given path and prints
all their events, merging them in chronological order.

You can pipe the output of the babeltrace into a tool like grep(1) for further
filtering. Below example grep the events for ethdev only:

babeltrace /tmp/my-dpdk-trace | grep ethdev

You can pipe the output of babeltrace into a tool like wc(1) to count the
recorded events. Below example count the number of ethdev events:

babeltrace /tmp/my-dpdk-trace | grep ethdev | wc --lines

5.7.2. Use the tracecompass GUI tool

Tracecompass is another tool to view/analyze the DPDK traces which gives
a graphical view of events. Like babeltrace, tracecompass also provides
an interface to search for a particular event.
To use tracecompass, following are the minimum required steps:

	Install tracecompass to the localhost. Variants are available for Linux,
Windows, and OS-X.

	Launch tracecompass which will open a graphical window with trace
management interfaces.

	Open a trace using File->Open Trace option and select metadata file which
is to be viewed/analyzed.

For more details, refer
Trace Compass [https://www.eclipse.org/tracecompass/].

5.8. Quick start

This section steps you through the details of generating trace and viewing it.

	Start the dpdk-test:

echo "quit" | ./build/app/test/dpdk-test --no-huge --trace=.*

	View the traces with babeltrace viewer:

babeltrace $HOME/dpdk-traces/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/

5.9. Implementation details

As DPDK trace library is designed to generate traces that uses Common Trace
Format (CTF). CTF specification consists of the following units to create
a trace.

	Stream Sequence of packets.

	Packet Header and one or more events.

	Event Header and payload.

For detailed information, refer to
Common Trace Format [https://diamon.org/ctf/].

The implementation details broadly divided into the following areas:

5.9.1. Trace metadata creation

Based on the CTF specification, one of a CTF trace’s streams is mandatory:
the metadata stream. It contains exactly what you would expect: data about the
trace itself. The metadata stream contains a textual description of the binary
layouts of all the other streams.

This description is written using the Trace Stream Description Language (TSDL),
a declarative language that exists only in the realm of CTF.
The purpose of the metadata stream is to make CTF readers know how to parse a
trace’s binary streams of events without CTF specifying any fixed layout.
The only stream layout known in advance is, in fact, the metadata stream’s one.

The internal trace_metadata_create() function generates the metadata.

5.9.2. Trace memory

The trace memory will be allocated through an internal function
__rte_trace_mem_per_thread_alloc(). The trace memory will be allocated
per thread to enable lock less trace-emit function.
The memory for the trace memory for DPDK lcores will be allocated on
rte_eal_init() if the trace is enabled through a EAL option.
For non DPDK threads, on the first trace emission, the memory will be
allocated.

5.9.3. Trace memory layout

Table 5.1 Trace memory layout.

	packet.header

	packet.context

	trace 0 header

	trace 0 payload

	trace 1 header

	trace 1 payload

	trace N header

	trace N payload

5.9.3.1. packet.header

Table 5.2 Packet header layout.

	uint32_t magic

	rte_uuid_t uuid

5.9.3.2. packet.context

Table 5.3 Packet context layout.

	uint32_t thread_id

	char thread_name[32]

5.9.3.3. trace.header

Table 5.4 Trace header layout.

	event_id [63:48]

	timestamp [47:0]

The trace header is 64 bits, it consists of 48 bits of timestamp and 16 bits
event ID.

The packet.header and packet.context will be written in the slow path
at the time of trace memory creation. The trace.header and trace payload
will be emitted when the tracepoint function is invoked.

6. RCU Library

Lockless data structures provide scalability and determinism.
They enable use cases where locking may not be allowed
(for example real-time applications).

In the following sections, the term “memory” refers to memory allocated
by typical APIs like malloc() or anything that is representative of
memory, for example an index of a free element array.

Since these data structures are lockless, the writers and readers
are accessing the data structures concurrently. Hence, while removing
an element from a data structure, the writers cannot return the memory
to the allocator, without knowing that the readers are not
referencing that element/memory anymore. Hence, it is required to
separate the operation of removing an element into two steps:

	Delete: in this step, the writer removes the reference to the element from
the data structure but does not return the associated memory to the
allocator. This will ensure that new readers will not get a reference to
the removed element. Removing the reference is an atomic operation.

	Free (Reclaim): in this step, the writer returns the memory to the
memory allocator only after knowing that all the readers have stopped
referencing the deleted element.

This library helps the writer determine when it is safe to free the
memory by making use of thread Quiescent State (QS).

6.1. What is Quiescent State

Quiescent State can be defined as “any point in the thread execution where the
thread does not hold a reference to shared memory”. It is the responsibility of
the application to determine its quiescent state.

Let us consider the following diagram:

[image: ../_images/rcu_general_info.svg]
Fig. 6.1 Phases in the Quiescent State model.

As shown in Fig. 6.1, reader thread 1 accesses data
structures D1 and D2. When it is accessing D1, if the writer has to remove an
element from D1, the writer cannot free the memory associated with that
element immediately. The writer can return the memory to the allocator only
after the reader stops referencing D1. In other words, reader thread RT1 has
to enter a quiescent state.

Similarly, since reader thread 2 is also accessing D1, the writer has to
wait till thread 2 enters quiescent state as well.

However, the writer does not need to wait for reader thread 3 to enter
quiescent state. Reader thread 3 was not accessing D1 when the delete
operation happened. So, reader thread 3 will not have a reference to the
deleted entry.

It can be noted that, the critical sections for D2 is a quiescent state
for D1. i.e. for a given data structure Dx, any point in the thread execution
that does not reference Dx is a quiescent state.

Since memory is not freed immediately, there might be a need for
provisioning of additional memory, depending on the application requirements.

6.2. Factors affecting the RCU mechanism

It is important to make sure that this library keeps the overhead of
identifying the end of grace period and subsequent freeing of memory,
to a minimum. The following paras explain how grace period and critical
section affect this overhead.

The writer has to poll the readers to identify the end of grace period.
Polling introduces memory accesses and wastes CPU cycles. The memory
is not available for reuse during the grace period. Longer grace periods
exasperate these conditions.

The length of the critical section and the number of reader threads
is proportional to the duration of the grace period. Keeping the critical
sections smaller will keep the grace period smaller. However, keeping the
critical sections smaller requires additional CPU cycles (due to additional
reporting) in the readers.

Hence, we need the characteristics of a small grace period and large critical
section. This library addresses these characteristics by allowing the writer
to do other work without having to block until the readers report their
quiescent state.

6.3. RCU in DPDK

For DPDK applications, the beginning and end of a while(1) loop (where no
references to shared data structures are kept) act as perfect quiescent
states. This will combine all the shared data structure accesses into a
single, large critical section which helps keep the overhead on the
reader side to a minimum.

DPDK supports a pipeline model of packet processing and service cores.
In these use cases, a given data structure may not be used by all the
workers in the application. The writer has to wait only for the workers that
use the data structure to report their quiescent state. To provide the required
flexibility, this library has a concept of a QS variable. If required, the
application can create one QS variable per data structure to help it track the
end of grace period for each data structure. This helps keep the length of grace
period to a minimum.

6.4. How to use this library

The application must allocate memory and initialize a QS variable.

Applications can call rte_rcu_qsbr_get_memsize() to calculate the size
of memory to allocate. This API takes a maximum number of reader threads,
using this variable, as a parameter.

Further, the application can initialize a QS variable using the API
rte_rcu_qsbr_init().

Each reader thread is assumed to have a unique thread ID. Currently, the
management of the thread ID (for example allocation/free) is left to the
application. The thread ID should be in the range of 0 to
maximum number of threads provided while creating the QS variable.
The application could also use lcore_id as the thread ID where applicable.

The rte_rcu_qsbr_thread_register() API will register a reader thread
to report its quiescent state. This can be called from a reader thread.
A control plane thread can also call this on behalf of a reader thread.
The reader thread must call rte_rcu_qsbr_thread_online() API to start
reporting its quiescent state.

Some of the use cases might require the reader threads to make blocking API
calls (for example while using eventdev APIs). The writer thread should not
wait for such reader threads to enter quiescent state. The reader thread must
call rte_rcu_qsbr_thread_offline() API, before calling blocking APIs. It
can call rte_rcu_qsbr_thread_online() API once the blocking API call
returns.

The writer thread can trigger the reader threads to report their quiescent
state by calling the API rte_rcu_qsbr_start(). It is possible for multiple
writer threads to query the quiescent state status simultaneously. Hence,
rte_rcu_qsbr_start() returns a token to each caller.

The writer thread must call rte_rcu_qsbr_check() API with the token to
get the current quiescent state status. Option to block till all the reader
threads enter the quiescent state is provided. If this API indicates that
all the reader threads have entered the quiescent state, the application
can free the deleted entry.

The APIs rte_rcu_qsbr_start() and rte_rcu_qsbr_check() are lock free.
Hence, they can be called concurrently from multiple writers even while
running as worker threads.

The separation of triggering the reporting from querying the status provides
the writer threads flexibility to do useful work instead of blocking for the
reader threads to enter the quiescent state or go offline. This reduces the
memory accesses due to continuous polling for the status. But, since the
resource is freed at a later time, the token and the reference to the deleted
resource need to be stored for later queries.

The rte_rcu_qsbr_synchronize() API combines the functionality of
rte_rcu_qsbr_start() and blocking rte_rcu_qsbr_check() into a single
API. This API triggers the reader threads to report their quiescent state and
polls till all the readers enter the quiescent state or go offline. This API
does not allow the writer to do useful work while waiting and introduces
additional memory accesses due to continuous polling. However, the application
does not have to store the token or the reference to the deleted resource. The
resource can be freed immediately after rte_rcu_qsbr_synchronize() API
returns.

The reader thread must call rte_rcu_qsbr_thread_offline() and
rte_rcu_qsbr_thread_unregister() APIs to remove itself from reporting its
quiescent state. The rte_rcu_qsbr_check() API will not wait for this reader
thread to report the quiescent state status anymore.

The reader threads should call rte_rcu_qsbr_quiescent() API to indicate that
they entered a quiescent state. This API checks if a writer has triggered a
quiescent state query and update the state accordingly.

The rte_rcu_qsbr_lock() and rte_rcu_qsbr_unlock() are empty functions.
However, when CONFIG_RTE_LIBRTE_RCU_DEBUG is enabled, these APIs aid
in debugging issues. One can mark the access to shared data structures on the
reader side using these APIs. The rte_rcu_qsbr_quiescent() will check if
all the locks are unlocked.

6.5. Resource reclamation framework for DPDK

Lock-free algorithms place additional burden of resource reclamation on
the application. When a writer deletes an entry from a data structure, the writer:

	Has to start the grace period

	Has to store a reference to the deleted resources in a FIFO

	Should check if the readers have completed a grace period and free the resources.

There are several APIs provided to help with this process. The writer
can create a FIFO to store the references to deleted resources using rte_rcu_qsbr_dq_create().
The resources can be enqueued to this FIFO using rte_rcu_qsbr_dq_enqueue().
If the FIFO is full, rte_rcu_qsbr_dq_enqueue will reclaim the resources before enqueuing. It will also reclaim resources on regular basis to keep the FIFO from growing too large. If the writer runs out of resources, the writer can call rte_rcu_qsbr_dq_reclaim API to reclaim resources. rte_rcu_qsbr_dq_delete is provided to reclaim any remaining resources and free the FIFO while shutting down.

However, if this resource reclamation process were to be integrated in lock-free data structure libraries, it
hides this complexity from the application and makes it easier for the application to adopt lock-free algorithms. The following paragraphs discuss how the reclamation process can be integrated in DPDK libraries.

In any DPDK application, the resource reclamation process using QSBR can be split into 4 parts:

	Initialization

	Quiescent State Reporting

	Reclaiming Resources

	Shutdown

The design proposed here assigns different parts of this process to client libraries and applications. The term ‘client library’ refers to lock-free data structure libraries such at rte_hash, rte_lpm etc. in DPDK or similar libraries outside of DPDK. The term ‘application’ refers to the packet processing application that makes use of DPDK such as L3 Forwarding example application, OVS, VPP etc..

The application has to handle ‘Initialization’ and ‘Quiescent State Reporting’. So,

	the application has to create the RCU variable and register the reader threads to report their quiescent state.

	the application has to register the same RCU variable with the client library.

	reader threads in the application have to report the quiescent state. This allows for the application to control the length of the critical section/how frequently the application wants to report the quiescent state.

The client library will handle ‘Reclaiming Resources’ part of the process. The
client libraries will make use of the writer thread context to execute the memory
reclamation algorithm. So,

	client library should provide an API to register a RCU variable that it will use. It should call rte_rcu_qsbr_dq_create() to create the FIFO to store the references to deleted entries.

	client library should use rte_rcu_qsbr_dq_enqueue to enqueue the deleted resources on the FIFO and start the grace period.

	if the library runs out of resources while adding entries, it should call rte_rcu_qsbr_dq_reclaim to reclaim the resources and try the resource allocation again.

The ‘Shutdown’ process needs to be shared between the application and the
client library.

	the application should make sure that the reader threads are not using the shared data structure, unregister the reader threads from the QSBR variable before calling the client library’s shutdown function.

	client library should call rte_rcu_qsbr_dq_delete to reclaim any remaining resources and free the FIFO.

Integrating the resource reclamation with client libraries removes the burden from
the application and makes it easy to use lock-free algorithms.

This design has several advantages over currently known methods.

	Application does not need a dedicated thread to reclaim resources. Memory
reclamation happens as part of the writer thread with little impact on
performance.

	The client library has better control over the resources. For example: the client
library can attempt to reclaim when it has run out of resources.

7. Ring Library

The ring allows the management of queues.
Instead of having a linked list of infinite size, the rte_ring has the following properties:

	FIFO

	Maximum size is fixed, the objects are stored in a table

	Objects can be pointers or elements of multiple of 4 byte size

	Lockless implementation

	Multi-consumer or single-consumer dequeue

	Multi-producer or single-producer enqueue

	Bulk dequeue - Dequeues the specified count of objects if successful; otherwise fails

	Bulk enqueue - Enqueues the specified count of objects if successful; otherwise fails

	Burst dequeue - Dequeue the maximum available objects if the specified count cannot be fulfilled

	Burst enqueue - Enqueue the maximum available objects if the specified count cannot be fulfilled

The advantages of this data structure over a linked list queue are as follows:

	Faster; only requires a single 32 bit Compare-And-Swap instruction instead of several pointer size Compare-And-Swap instructions.

	Simpler than a full lockless queue.

	Adapted to bulk enqueue/dequeue operations.
As objects are stored in a table, a dequeue of several objects will not produce as many cache misses as in a linked queue.
Also, a bulk dequeue of many objects does not cost more than a dequeue of a simple object.

The disadvantages:

	Size is fixed

	Having many rings costs more in terms of memory than a linked list queue. An empty ring contains at least N objects.

A simplified representation of a Ring is shown in with consumer and producer head and tail pointers to objects stored in the data structure.

[image: ../_images/ring1.svg]
Fig. 7.1 Ring Structure

7.1. References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at least in Intel drivers):

	bufring.h in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup]

	bufring.c in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup]

7.2. Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design [http://lwn.net/Articles/340400/].

7.3. Additional Features

7.3.1. Name

A ring is identified by a unique name.
It is not possible to create two rings with the same name (rte_ring_create() returns NULL if this is attempted).

7.4. Use Cases

Use cases for the Ring library include:

	Communication between applications in the DPDK

	Used by memory pool allocator

7.5. Anatomy of a Ring Buffer

This section explains how a ring buffer operates.
The ring structure is composed of two head and tail couples; one is used by producers and one is used by the consumers.
The figures of the following sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

Each figure represents a simplified state of the ring, which is a circular buffer.
The content of the function local variables is represented on the top of the figure,
and the content of ring structure is represented on the bottom of the figure.

7.5.1. Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified,
and there is only one producer.

The initial state is to have a prod_head and prod_tail pointing at the same location.

7.5.1.1. Enqueue First Step

First, ring->prod_head and ring->cons_tail are copied in local variables.
The prod_next local variable points to the next element of the table, or several elements after in case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

[image: ../_images/ring-enqueue1.svg]
Fig. 7.2 Enqueue first step

7.5.1.2. Enqueue Second Step

The second step is to modify ring->prod_head in ring structure to point to the same location as prod_next.

The added object is copied in the ring (obj4).

[image: ../_images/ring-enqueue2.svg]
Fig. 7.3 Enqueue second step

7.5.1.3. Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to the same location as ring->prod_head.
The enqueue operation is finished.

[image: ../_images/ring-enqueue3.svg]
Fig. 7.4 Enqueue last step

7.5.2. Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring.
In this example, only the consumer head and tail (cons_head and cons_tail) are modified and there is only one consumer.

The initial state is to have a cons_head and cons_tail pointing at the same location.

7.5.2.1. Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables.
The cons_next local variable points to the next element of the table, or several elements after in the case of bulk dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an error.

[image: ../_images/ring-dequeue1.svg]
Fig. 7.5 Dequeue last step

7.5.2.2. Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location as cons_next.

The dequeued object (obj1) is copied in the pointer given by the user.

[image: ../_images/ring-dequeue2.svg]
Fig. 7.6 Dequeue second step

7.5.2.3. Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring->cons_head.
The dequeue operation is finished.

[image: ../_images/ring-dequeue3.svg]
Fig. 7.7 Dequeue last step

7.5.3. Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod_head and prod_tail pointing at the same location.

7.5.3.1. Multiple Producers Enqueue First Step

On both cores, ring->prod_head and ring->cons_tail are copied in local variables.
The prod_next local variable points to the next element of the table,
or several elements after in the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

[image: ../_images/ring-mp-enqueue1.svg]
Fig. 7.8 Multiple producer enqueue first step

7.5.3.2. Multiple Producers Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location as prod_next.
This operation is done using a Compare And Swap (CAS) instruction, which does the following operations atomically:

	If ring->prod_head is different to local variable prod_head,
the CAS operation fails, and the code restarts at first step.

	Otherwise, ring->prod_head is set to local prod_next,
the CAS operation is successful, and processing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

[image: ../_images/ring-mp-enqueue2.svg]
Fig. 7.9 Multiple producer enqueue second step

7.5.3.3. Multiple Producers Enqueue Third Step

The CAS operation is retried on core 2 with success.

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

[image: ../_images/ring-mp-enqueue3.svg]
Fig. 7.10 Multiple producer enqueue third step

7.5.3.4. Multiple Producers Enqueue Fourth Step

Each core now wants to update ring->prod_tail.
A core can only update it if ring->prod_tail is equal to the prod_head local variable.
This is only true on core 1. The operation is finished on core 1.

[image: ../_images/ring-mp-enqueue4.svg]
Fig. 7.11 Multiple producer enqueue fourth step

7.5.3.5. Multiple Producers Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too.
The operation is also finished on core 2.

[image: ../_images/ring-mp-enqueue5.svg]
Fig. 7.12 Multiple producer enqueue last step

7.5.4. Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are represented by arrows.
In the actual implementation, these values are not between 0 and size(ring)-1 as would be assumed.
The indexes are between 0 and 2^32 -1, and we mask their value when we access the object table (the ring itself).
32-bit modulo also implies that operations on indexes (such as, add/subtract) will automatically do 2^32 modulo
if the result overflows the 32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

Note

To simplify the explanation, operations with modulo 16-bit are used instead of modulo 32-bit.
In addition, the four indexes are defined as unsigned 16-bit integers,
as opposed to unsigned 32-bit integers in the more realistic case.

[image: ../_images/ring-modulo1.svg]
Fig. 7.13 Modulo 32-bit indexes - Example 1

This ring contains 11000 entries.

[image: ../_images/ring-modulo2.svg]
Fig. 7.14 Modulo 32-bit indexes - Example 2

This ring contains 12536 entries.

Note

For ease of understanding, we use modulo 65536 operations in the above examples.
In real execution cases, this is redundant for low efficiency, but is done automatically when the result overflows.

The code always maintains a distance between producer and consumer between 0 and size(ring)-1.
Thanks to this property, we can do subtractions between 2 index values in a modulo-32bit base:
that’s why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1,
even if only the first term of subtraction has overflowed:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

7.6. Producer/consumer synchronization modes

rte_ring supports different synchronization modes for producers and consumers.
These modes can be specified at ring creation/init time via flags
parameter.
That should help users to configure ring in the most suitable way for his
specific usage scenarios.
Currently supported modes:

7.6.1. MP/MC (default one)

Multi-producer (/multi-consumer) mode. This is a default enqueue (/dequeue)
mode for the ring. In this mode multiple threads can enqueue (/dequeue)
objects to (/from) the ring. For ‘classic’ DPDK deployments (with one thread
per core) this is usually the most suitable and fastest synchronization mode.
As a well known limitation - it can perform quite pure on some overcommitted
scenarios.

7.6.2. SP/SC

Single-producer (/single-consumer) mode. In this mode only one thread at a time
is allowed to enqueue (/dequeue) objects to (/from) the ring.

7.6.3. MP_RTS/MC_RTS

Multi-producer (/multi-consumer) with Relaxed Tail Sync (RTS) mode.
The main difference from the original MP/MC algorithm is that
tail value is increased not by every thread that finished enqueue/dequeue,
but only by the last one.
That allows threads to avoid spinning on ring tail value,
leaving actual tail value change to the last thread at a given instance.
That technique helps to avoid the Lock-Waiter-Preemption (LWP) problem on tail
update and improves average enqueue/dequeue times on overcommitted systems.
To achieve that RTS requires 2 64-bit CAS for each enqueue(/dequeue) operation:
one for head update, second for tail update.
In comparison the original MP/MC algorithm requires one 32-bit CAS
for head update and waiting/spinning on tail value.

7.6.4. MP_HTS/MC_HTS

Multi-producer (/multi-consumer) with Head/Tail Sync (HTS) mode.
In that mode enqueue/dequeue operation is fully serialized:
at any given moment only one enqueue/dequeue operation can proceed.
This is achieved by allowing a thread to proceed with changing head.value
only when head.value == tail.value.
Both head and tail values are updated atomically (as one 64-bit value).
To achieve that 64-bit CAS is used by head update routine.
That technique also avoids the Lock-Waiter-Preemption (LWP) problem on tail
update and helps to improve ring enqueue/dequeue behavior in overcommitted
scenarios. Another advantage of fully serialized producer/consumer -
it provides the ability to implement MT safe peek API for rte_ring.

7.7. Ring Peek API

For ring with serialized producer/consumer (HTS sync mode) it is possible
to split public enqueue/dequeue API into two phases:

	enqueue/dequeue start

	enqueue/dequeue finish

That allows user to inspect objects in the ring without removing them
from it (aka MT safe peek) and reserve space for the objects in the ring
before actual enqueue.
Note that this API is available only for two sync modes:

	Single Producer/Single Consumer (SP/SC)

	Multi-producer/Multi-consumer with Head/Tail Sync (HTS)

It is a user responsibility to create/init ring with appropriate sync modes
selected. As an example of usage:

/* read 1 elem from the ring: */
uint32_t n = rte_ring_dequeue_bulk_start(ring, &obj, 1, NULL);
if (n != 0) {
 /* examine object */
 if (object_examine(obj) == KEEP)
 /* decided to keep it in the ring. */
 rte_ring_dequeue_finish(ring, 0);
 else
 /* decided to remove it from the ring. */
 rte_ring_dequeue_finish(ring, n);
}

Note that between _start_ and _finish_ none other thread can proceed
with enqueue(/dequeue) operation till _finish_ completes.

7.8. References

	bufring.h in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup] (version 8)

	bufring.c in FreeBSD [http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup] (version 8)

	Linux Lockless Ring Buffer Design [http://lwn.net/Articles/340400/]

8. Stack Library

DPDK’s stack library provides an API for configuration and use of a bounded
stack of pointers.

The stack library provides the following basic operations:

	Create a uniquely named stack of a user-specified size and using a
user-specified socket, with either standard (lock-based) or lock-free
behavior.

	Push and pop a burst of one or more stack objects (pointers). These function
are multi-threading safe.

	Free a previously created stack.

	Lookup a pointer to a stack by its name.

	Query a stack’s current depth and number of free entries.

8.1. Implementation

The library supports two types of stacks: standard (lock-based) and lock-free.
Both types use the same set of interfaces, but their implementations differ.

8.1.1. Lock-based Stack

The lock-based stack consists of a contiguous array of pointers, a current
index, and a spinlock. Accesses to the stack are made multi-thread safe by the
spinlock.

8.1.2. Lock-free Stack

The lock-free stack consists of a linked list of elements, each containing a
data pointer and a next pointer, and an atomic stack depth counter. The
lock-free property means that multiple threads can push and pop simultaneously,
and one thread being preempted/delayed in a push or pop operation will not
impede the forward progress of any other thread.

The lock-free push operation enqueues a linked list of pointers by pointing the
list’s tail to the current stack head, and using a CAS to swing the stack head
pointer to the head of the list. The operation retries if it is unsuccessful
(i.e. the list changed between reading the head and modifying it), else it
adjusts the stack length and returns.

The lock-free pop operation first reserves one or more list elements by
adjusting the stack length, to ensure the dequeue operation will succeed
without blocking. It then dequeues pointers by walking the list – starting
from the head – then swinging the head pointer (using a CAS as well). While
walking the list, the data pointers are recorded in an object table.

The linked list elements themselves are maintained in a lock-free LIFO, and are
allocated before stack pushes and freed after stack pops. Since the stack has a
fixed maximum depth, these elements do not need to be dynamically created.

The lock-free behavior is selected by passing the RTE_STACK_F_LF flag to
rte_stack_create().

8.1.2.1. Preventing the ABA Problem

To prevent the ABA problem, this algorithm stack uses a 128-bit
compare-and-swap instruction to atomically update both the stack top pointer
and a modification counter. The ABA problem can occur without a modification
counter if, for example:

	Thread A reads head pointer X and stores the pointed-to list element.

	Other threads modify the list such that the head pointer is once again X,
but its pointed-to data is different than what thread A read.

	Thread A changes the head pointer with a compare-and-swap and succeeds.

In this case thread A would not detect that the list had changed, and would
both pop stale data and incorrect change the head pointer. By adding a
modification counter that is updated on every push and pop as part of the
compare-and-swap, the algorithm can detect when the list changes even if the
head pointer remains the same.

9. Mempool Library

A memory pool is an allocator of a fixed-sized object.
In the DPDK, it is identified by name and uses a mempool handler to store free objects.
The default mempool handler is ring based.
It provides some other optional services such as a per-core object cache and
an alignment helper to ensure that objects are padded to spread them equally on all DRAM or DDR3 channels.

This library is used by the Mbuf Library.

9.1. Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added at the beginning and end of allocated blocks.
The allocated objects then contain overwrite protection fields to help debugging buffer overflows.

9.2. Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled),
statistics about get from/put in the pool are stored in the mempool structure.
Statistics are per-lcore to avoid concurrent access to statistics counters.

9.3. Memory Alignment Constraints on x86 architecture

Depending on hardware memory configuration on X86 architecture, performance can be greatly improved by adding a specific padding between objects.
The objective is to ensure that the beginning of each object starts on a different channel and rank in memory so that all channels are equally loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification.
Only the first 64 bytes are accessed, so performance can be increased by spreading the start addresses of objects among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMs that can be accessed for the full data bit-width of the DIMM.
The ranks cannot be accessed simultaneously since they share the same data path.
The physical layout of the DRAM chips on the DIMM itself does not necessarily relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the number of memory channels and ranks.

Note

The command line must always have the number of memory channels specified for the processor.

Examples of alignment for different DIMM architectures are shown in
Fig. 9.1 and Fig. 9.2.

[image: ../_images/memory-management.svg]
Fig. 9.1 Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases,
no padding is required between objects (except for objects whose size are n x 3 x 64 bytes blocks).

[image: ../_images/memory-management2.svg]
Fig. 9.2 Three Channels and Two Dual-ranked DIMM Example

When creating a new pool, the user can specify to use this feature or not.

9.4. Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool’s ring of free buffers may be high
since each access requires a compare-and-set (CAS) operation.
To avoid having too many access requests to the memory pool’s ring,
the memory pool allocator can maintain a per-core cache and do bulk requests to the memory pool’s ring,
via the cache with many fewer locks on the actual memory pool structure.
In this way, each core has full access to its own cache (with locks) of free objects and
only when the cache fills does the core need to shuffle some of the free objects back to the pools ring or
obtain more objects when the cache is empty.

While this may mean a number of buffers may sit idle on some core’s cache,
the speed at which a core can access its own cache for a specific memory pool without locks provides performance gains.

The cache is composed of a small, per-core table of pointers and its length (used as a stack).
This internal cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE).

Fig. 9.3 shows a cache in operation.

[image: ../_images/mempool.svg]
Fig. 9.3 A mempool in Memory with its Associated Ring

Alternatively to the internal default per-lcore local cache, an application can create and manage external caches through the rte_mempool_cache_create(), rte_mempool_cache_free() and rte_mempool_cache_flush() calls.
These user-owned caches can be explicitly passed to rte_mempool_generic_put() and rte_mempool_generic_get().
The rte_mempool_default_cache() call returns the default internal cache if any.
In contrast to the default caches, user-owned caches can be used by non-EAL threads too.

9.5. Mempool Handlers

This allows external memory subsystems, such as external hardware memory
management systems and software based memory allocators, to be used with DPDK.

There are two aspects to a mempool handler.

	Adding the code for your new mempool operations (ops). This is achieved by
adding a new mempool ops code, and using the MEMPOOL_REGISTER_OPS macro.

	Using the new API to call rte_mempool_create_empty() and
rte_mempool_set_ops_byname() to create a new mempool and specifying which
ops to use.

Several different mempool handlers may be used in the same application. A new
mempool can be created by using the rte_mempool_create_empty() function,
then using rte_mempool_set_ops_byname() to point the mempool to the
relevant mempool handler callback (ops) structure.

Legacy applications may continue to use the old rte_mempool_create() API
call, which uses a ring based mempool handler by default. These applications
will need to be modified to use a new mempool handler.

For applications that use rte_pktmbuf_create(), there is a config setting
(RTE_MBUF_DEFAULT_MEMPOOL_OPS) that allows the application to make use of
an alternative mempool handler.

Note

When running a DPDK application with shared libraries, mempool handler
shared objects specified with the ‘-d’ EAL command-line parameter are
dynamically loaded. When running a multi-process application with shared
libraries, the -d arguments for mempool handlers must be specified in the
same order for all processes to ensure correct operation.

9.6. Use Cases

All allocations that require a high level of performance should use a pool-based memory allocator.
Below are some examples:

	Mbuf Library

	Environment Abstraction Layer , for logging service

	Any application that needs to allocate fixed-sized objects in the data plane and that will be continuously utilized by the system.

10. Mbuf Library

The mbuf library provides the ability to allocate and free buffers (mbufs)
that may be used by the DPDK application to store message buffers.
The message buffers are stored in a mempool, using the Mempool Library.

A rte_mbuf struct generally carries network packet buffers, but it can actually
be any data (control data, events, …).
The rte_mbuf header structure is kept as small as possible and currently uses
just two cache lines, with the most frequently used fields being on the first
of the two cache lines.

10.1. Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were considered:

	Embed metadata within a single memory buffer the structure followed by a fixed size area for the packet data.

	Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole memory representation of a packet.
On the other hand, the second method is more flexible and allows
the complete separation of the allocation of metadata structures from the allocation of packet data buffers.

The first method was chosen for the DPDK.
The metadata contains control information such as message type, length,
offset to the start of the data and a pointer for additional mbuf structures allowing buffer chaining.

Message buffers that are used to carry network packets can handle buffer chaining
where multiple buffers are required to hold the complete packet.
This is the case for jumbo frames that are composed of many mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is
RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned.
Message buffers may be used to carry control information, packets, events,
and so on between different entities in the system.
Message buffers may also use their buffer pointers to point to other message buffer data sections or other structures.

Fig. 10.1 and Fig. 10.2 show some of these scenarios.

[image: ../_images/mbuf1.svg]
Fig. 10.1 An mbuf with One Segment

[image: ../_images/mbuf2.svg]
Fig. 10.2 An mbuf with Three Segments

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate network packets.

10.2. Buffers Stored in Memory Pools

The Buffer Manager uses the Mempool Library to allocate buffers.
Therefore, it ensures that the packet header is interleaved optimally across the channels and ranks for L3 processing.
An mbuf contains a field indicating the pool that it originated from.
When calling rte_pktmbuf_free(m), the mbuf returns to its original pool.

10.3. Constructors

Packet mbuf constructors are provided by the API.
The rte_pktmbuf_init() function initializes some fields in the mbuf structure that
are not modified by the user once created (mbuf type, origin pool, buffer start address, and so on).
This function is given as a callback function to the rte_mempool_create() function at pool creation time.

10.4. Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf should be taken.
For any newly-allocated mbuf, it contains one segment, with a length of 0.
The offset to data is initialized to have some bytes of headroom in the buffer (RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool.
The content of an mbuf is not modified when it is stored in a pool (as a free mbuf).
Fields initialized by the constructor do not need to be re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned to their original mempool.

10.5. Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:

	Get data length

	Get a pointer to the start of data

	Prepend data before data

	Append data after data

	Remove data at the beginning of the buffer (rte_pktmbuf_adj())

	Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Reference for details.

10.6. Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make processing easier.
For instance, the VLAN, the RSS hash result (see Poll Mode Driver)
and a flag indicating that the checksum was computed by hardware.

An mbuf also contains the input port (where it comes from), and the number of segment mbufs in the chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet
timestamp mechanism, the VLAN tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some
processing to the hardware if it supports it. For instance, the
PKT_TX_IP_CKSUM flag allows to offload the computation of the IPv4
checksum.

The following examples explain how to configure different TX offloads on
a vxlan-encapsulated tcp packet:
out_eth/out_ip/out_udp/vxlan/in_eth/in_ip/in_tcp/payload

	calculate checksum of out_ip:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.

	calculate checksum of out_ip and out_udp:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
set out_ip checksum to 0 in the packet
set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM
and DEV_TX_OFFLOAD_UDP_CKSUM.

	calculate checksum of in_ip:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set in_ip checksum to 0 in the packet

This is similar to case 1), but l2_len is different. It is supported
on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.
Note that it can only work if outer L4 checksum is 0.

	calculate checksum of in_ip and in_tcp:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is similar to case 2), but l2_len is different. It is supported
on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM and
DEV_TX_OFFLOAD_TCP_CKSUM.
Note that it can only work if outer L4 checksum is 0.

	segment inner TCP:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->l4_len = len(in_tcp)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |
 PKT_TX_TCP_SEG;
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header without including the IP
 payload length using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO.
Note that it can only work if outer L4 checksum is 0.

	calculate checksum of out_ip, in_ip, in_tcp:

mb->outer_l2_len = len(out_eth)
mb->outer_l3_len = len(out_ip)
mb->l2_len = len(out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM | \
 PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM;
set out_ip checksum to 0 in the packet
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM,
DEV_TX_OFFLOAD_UDP_CKSUM and DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

The list of flags and their precise meaning is described in the mbuf API
documentation (rte_mbuf.h). Also refer to the testpmd source code
(specifically the csumonly.c file) for details.

10.7. Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained.
An indirect buffer behaves like a direct buffer but for the fact that the buffer pointer and
data offset in it refer to data in another direct buffer.
This is useful in situations where packets need to be duplicated or fragmented,
since indirect buffers provide the means to reuse the same packet data across multiple buffers.

A buffer becomes indirect when it is “attached” to a direct buffer using the rte_pktmbuf_attach() function.
Each buffer has a reference counter field and whenever an indirect buffer is attached to the direct buffer,
the reference counter on the direct buffer is incremented.
Similarly, whenever the indirect buffer is detached, the reference counter on the direct buffer is decremented.
If the resulting reference counter is equal to 0, the direct buffer is freed since it is no longer in use.

There are a few things to remember when dealing with indirect buffers.
First of all, an indirect buffer is never attached to another indirect buffer.
Attempting to attach buffer A to indirect buffer B that is attached to C, makes rte_pktmbuf_attach() automatically attach A to C, effectively cloning B.
Secondly, for a buffer to become indirect, its reference counter must be equal to 1,
that is, it must not be already referenced by another indirect buffer.
Finally, it is not possible to reattach an indirect buffer to the direct buffer (unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended rte_pktmbuf_attach() and rte_pktmbuf_detach() functions,
it is suggested to use the higher-level rte_pktmbuf_clone() function,
which takes care of the correct initialization of an indirect buffer and can clone buffers with multiple segments.

Since indirect buffers are not supposed to actually hold any data,
the memory pool for indirect buffers should be configured to indicate the reduced memory consumption.
Examples of the initialization of a memory pool for indirect buffers (as well as use case examples for indirect buffers)
can be found in several of the sample applications, for example, the IPv4 Multicast sample application.

10.8. Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled),
the functions of the mbuf library perform sanity checks before any operation (such as, buffer corruption, bad type, and so on).

10.9. Use Cases

All networking application should use mbufs to transport network packets.

11. Poll Mode Driver

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user space,
to configure the devices and their respective queues.
In addition, a PMD accesses the RX and TX descriptors directly without any interrupts
(with the exception of Link Status Change interrupts) to quickly receive,
process and deliver packets in the user’s application.
This section describes the requirements of the PMDs,
their global design principles and proposes a high-level architecture and a generic external API for the Ethernet PMDs.

11.1. Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-completion and pipe-line:

	In the run-to-completion model, a specific port’s RX descriptor ring is polled for packets through an API.
Packets are then processed on the same core and placed on a port’s TX descriptor ring through an API for transmission.

	In the pipe-line model, one core polls one or more port’s RX descriptor ring through an API.
Packets are received and passed to another core via a ring.
The other core continues to process the packet which then may be placed on a port’s TX descriptor ring through an API for transmission.

In a synchronous run-to-completion model,
each logical core assigned to the DPDK executes a packet processing loop that includes the following steps:

	Retrieve input packets through the PMD receive API

	Process each received packet one at a time, up to its forwarding

	Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the retrieval of received packets and
other logical cores to the processing of previously received packets.
Received packets are exchanged between logical cores through rings.
The loop for packet retrieval includes the following steps:

	Retrieve input packets through the PMD receive API

	Provide received packets to processing lcores through packet queues

The loop for packet processing includes the following steps:

	Retrieve the received packet from the packet queue

	Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not use any asynchronous notification mechanisms.
Whenever needed and appropriate, asynchronous communication should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment.
To address this issue, PMDs are designed to work with per-core private resources as much as possible.
For example, a PMD maintains a separate transmit queue per-core, per-port, if the PMD is not DEV_TX_OFFLOAD_MT_LOCKFREE capable.
In the same way, every receive queue of a port is assigned to and polled by a single logical core (lcore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to assign to each logical core
a private buffer pool in local memory to minimize remote memory access.
The configuration of packet buffer pools should take into account the underlying physical memory architecture in terms of DIMMS,
channels and ranks.
The application must ensure that appropriate parameters are given at memory pool creation time.
See Mempool Library.

11.2. Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level.
Conversely, NIC PMD functions should not impede the benefits expected by upper-level global policies,
or worse prevent such policies from being applied.

For instance, both the receive and transmit functions of a PMD have a maximum number of packets/descriptors to poll.
This allows a run-to-completion processing stack to statically fix or
to dynamically adapt its overall behavior through different global loop policies, such as:

	Receive, process immediately and transmit packets one at a time in a piecemeal fashion.

	Receive as many packets as possible, then process all received packets, transmitting them immediately.

	Receive a given maximum number of packets, process the received packets, accumulate them and finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimization techniques must be considered and
balanced against available low-level hardware-based optimization features (CPU cache properties, bus speed, NIC PCI bandwidth, and so on).
The case of packet transmission is an example of this software/hardware tradeoff issue when optimizing burst-oriented network packet processing engines.
In the initial case, the PMD could export only an rte_eth_tx_one function to transmit one packet at a time on a given queue.
On top of that, one can easily build an rte_eth_tx_burst function that loops invoking the rte_eth_tx_one function to transmit several packets at a time.
However, an rte_eth_tx_burst function is effectively implemented by the PMD to minimize the driver-level transmit cost per packet through the following optimizations:

	Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one function.

	Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware features (prefetch data in cache, use of NIC head/tail registers)
to minimize the number of CPU cycles per packet, for example by avoiding unnecessary read memory accesses to ring transmit descriptors,
or by systematically using arrays of pointers that exactly fit cache line boundaries and sizes.

	Apply burst-oriented software optimization techniques to remove operations that would otherwise be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used by the PMD.
This applies in particular to buffer allocators used to populate NIC rings, which provide functions to allocate/free several buffers at a time.
For example, an mbuf_multiple_alloc function returning an array of pointers to rte_mbuf buffers which speeds up the receive poll function of the PMD when
replenishing multiple descriptors of the receive ring.

11.3. Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor’s logical cores and interfaces utilize its local memory.
Therefore, mbuf allocation associated with local PCIe* interfaces should be allocated from memory pools created in the local memory.
The buffers should, if possible, remain on the local processor to obtain the best performance results and RX and TX buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local memory instead of a remote processors memory.
This is also true for the pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this would require global locks and hinder performance.

If the PMD is DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can invoke rte_eth_tx_burst()
concurrently on the same tx queue without SW lock. This PMD feature found in some NICs and useful in the following use cases:

	Remove explicit spinlock in some applications where lcores are not mapped to Tx queues with 1:1 relation.

	In the eventdev use case, avoid dedicating a separate TX core for transmitting and thus
enables more scaling as all workers can send the packets.

See Hardware Offload for DEV_TX_OFFLOAD_MT_LOCKFREE capability probing details.

11.4. Device Identification, Ownership and Configuration

11.4.1. Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI
identifiers assigned by the PCI probing/enumeration function executed at DPDK initialization.
Based on their PCI identifier, NIC ports are assigned two other identifiers:

	A port index used to designate the NIC port in all functions exported by the PMD API.

	A port name used to designate the port in console messages, for administration or debugging purposes.
For ease of use, the port name includes the port index.

11.4.2. Port Ownership

The Ethernet devices ports can be owned by a single DPDK entity (application, library, PMD, process, etc).
The ownership mechanism is controlled by ethdev APIs and allows to set/remove/get a port owner by DPDK entities.
Allowing this should prevent any multiple management of Ethernet port by different entities.

Note

It is the DPDK entity responsibility to set the port owner before using it and to manage the port usage synchronization between different threads or processes.

11.4.3. Device Configuration

The configuration of each NIC port includes the following operations:

	Allocate PCI resources

	Reset the hardware (issue a Global Reset) to a well-known default state

	Set up the PHY and the link

	Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and functions to set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through specific configuration parameters.
This is the case for the Receive Side Scaling (RSS) and Data Center Bridging (DCB) features for example.

11.4.4. On-the-Fly Configuration

All device features that can be started or stopped “on the fly” (that is, without stopping the device) do not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the configuration of these features in specific functions outside of the drivers.

For this purpose,
the PMD API exports a function that provides all the information associated with a device that can be used to set up a given device feature outside of the driver.
This includes the PCI vendor identifier, the PCI device identifier, the mapping address of the PCI device registers, and the name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the API used to configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Gigabit Ethernet Controller and
the Intel® 82599 10 Gigabit Ethernet Controller controllers in the testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in the same way.
Ethernet* flow control (pause frame) can be configured on the individual port.
Refer to the testpmd source code for details.
Also, L4 (UDP/TCP/ SCTP) checksum offload by the NIC can be enabled for an individual packet as long as the packet mbuf is set up correctly. See Hardware Offload for details.

11.4.5. Configuration of Transmit Queues

Each transmit queue is independently configured with the following information:

	The number of descriptors of the transmit ring

	The socket identifier used to identify the appropriate DMA memory zone from which to allocate the transmit ring in NUMA architectures

	The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue

	The minimum transmit packets to free threshold (tx_free_thresh).
When the number of descriptors used to transmit packets exceeds this threshold, the network adaptor should be checked to see if it has written back descriptors.
A value of 0 can be passed during the TX queue configuration to indicate the default value should be used.
The default value for tx_free_thresh is 32.
This ensures that the PMD does not search for completed descriptors until at least 32 have been processed by the NIC for this queue.

	The minimum RS bit threshold. The minimum number of transmit descriptors to use before setting the Report Status (RS) bit in the transmit descriptor.
Note that this parameter may only be valid for Intel 10 GbE network adapters.
The RS bit is set on the last descriptor used to transmit a packet if the number of descriptors used since the last RS bit setting,
up to the first descriptor used to transmit the packet, exceeds the transmit RS bit threshold (tx_rs_thresh).
In short, this parameter controls which transmit descriptors are written back to host memory by the network adapter.
A value of 0 can be passed during the TX queue configuration to indicate that the default value should be used.
The default value for tx_rs_thresh is 32.
This ensures that at least 32 descriptors are used before the network adapter writes back the most recently used descriptor.
This saves upstream PCIe* bandwidth resulting from TX descriptor write-backs.
It is important to note that the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh is greater than 1.
Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:

	tx_rs_thresh must be greater than 0.

	tx_rs_thresh must be less than the size of the ring minus 2.

	tx_rs_thresh must be less than or equal to tx_free_thresh.

	tx_free_thresh must be greater than 0.

	tx_free_thresh must be less than the size of the ring minus 3.

	For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence the maximum threshold constraints.

Note

When configuring for DCB operation, at port initialization, both the number of transmit queues and the number of receive queues must be set to 128.

11.4.6. Free Tx mbuf on Demand

Many of the drivers do not release the mbuf back to the mempool, or local cache,
immediately after the packet has been transmitted.
Instead, they leave the mbuf in their Tx ring and
either perform a bulk release when the tx_rs_thresh has been crossed
or free the mbuf when a slot in the Tx ring is needed.

An application can request the driver to release used mbufs with the rte_eth_tx_done_cleanup() API.
This API requests the driver to release mbufs that are no longer in use,
independent of whether or not the tx_rs_thresh has been crossed.
There are two scenarios when an application may want the mbuf released immediately:

	When a given packet needs to be sent to multiple destination interfaces
(either for Layer 2 flooding or Layer 3 multi-cast).
One option is to make a copy of the packet or a copy of the header portion that needs to be manipulated.
A second option is to transmit the packet and then poll the rte_eth_tx_done_cleanup() API
until the reference count on the packet is decremented.
Then the same packet can be transmitted to the next destination interface.
The application is still responsible for managing any packet manipulations needed
between the different destination interfaces, but a packet copy can be avoided.
This API is independent of whether the packet was transmitted or dropped,
only that the mbuf is no longer in use by the interface.

	Some applications are designed to make multiple runs, like a packet generator.
For performance reasons and consistency between runs,
the application may want to reset back to an initial state
between each run, where all mbufs are returned to the mempool.
In this case, it can call the rte_eth_tx_done_cleanup() API
for each destination interface it has been using
to request it to release of all its used mbufs.

To determine if a driver supports this API, check for the Free Tx mbuf on demand feature
in the Network Interface Controller Drivers document.

11.4.7. Hardware Offload

Depending on driver capabilities advertised by
rte_eth_dev_info_get(), the PMD may support hardware offloading
feature like checksumming, TCP segmentation, VLAN insertion or
lockfree multithreaded TX burst on the same TX queue.

The support of these offload features implies the addition of dedicated
status bit(s) and value field(s) into the rte_mbuf data structure, along
with their appropriate handling by the receive/transmit functions
exported by each PMD. The list of flags and their precise meaning is
described in the mbuf API documentation and in the in Mbuf Library, section “Meta Information”.

11.4.7.1. Per-Port and Per-Queue Offloads

In the DPDK offload API, offloads are divided into per-port and per-queue offloads as follows:

	A per-queue offloading can be enabled on a queue and disabled on another queue at the same time.

	A pure per-port offload is the one supported by device but not per-queue type.

	A pure per-port offloading can’t be enabled on a queue and disabled on another queue at the same time.

	A pure per-port offloading must be enabled or disabled on all queues at the same time.

	Any offloading is per-queue or pure per-port type, but can’t be both types at same devices.

	Port capabilities = per-queue capabilities + pure per-port capabilities.

	Any supported offloading can be enabled on all queues.

The different offloads capabilities can be queried using rte_eth_dev_info_get().
The dev_info->[rt]x_queue_offload_capa returned from rte_eth_dev_info_get() includes all per-queue offloading capabilities.
The dev_info->[rt]x_offload_capa returned from rte_eth_dev_info_get() includes all pure per-port and per-queue offloading capabilities.
Supported offloads can be either per-port or per-queue.

Offloads are enabled using the existing DEV_TX_OFFLOAD_* or DEV_RX_OFFLOAD_* flags.
Any requested offloading by an application must be within the device capabilities.
Any offloading is disabled by default if it is not set in the parameter
dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().

If any offloading is enabled in rte_eth_dev_configure() by an application,
it is enabled on all queues no matter whether it is per-queue or
per-port type and no matter whether it is set or cleared in
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().

If a per-queue offloading hasn’t been enabled in rte_eth_dev_configure(),
it can be enabled or disabled in rte_eth_[rt]x_queue_setup() for individual queue.
A newly added offloads in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup() input by application
is the one which hasn’t been enabled in rte_eth_dev_configure() and is requested to be enabled
in rte_eth_[rt]x_queue_setup(). It must be per-queue type, otherwise trigger an error log.

11.5. Poll Mode Driver API

11.5.1. Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed
not to be invoked in parallel on different logical cores to work on the same target object.
For instance, a PMD receive function cannot be invoked in parallel on two logical cores to poll the same RX queue of the same port.
Of course, this function can be invoked in parallel by different logical cores on different RX queues.
It is the responsibility of the upper-level application to enforce this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly protected by dedicated inline lock-aware functions
built on top of their corresponding lock-free functions of the PMD API.

11.5.2. Generic Packet Representation

A packet is represented by an rte_mbuf structure, which is a generic metadata structure containing all necessary housekeeping information.
This includes fields and status bits corresponding to offload hardware features, such as checksum computation of IP headers or VLAN tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload features provided by network controllers.
For an input packet, most fields of the rte_mbuf structure are filled in by the PMD receive function with the information contained in the receive descriptor.
Conversely, for output packets, most fields of rte_mbuf structures are used by the PMD transmit function to initialize transmit descriptors.

The mbuf structure is fully described in the Mbuf Library chapter.

11.5.3. Ethernet Device API

The Ethernet device API exported by the Ethernet PMDs is described in the DPDK API Reference.

11.5.4. Ethernet Device Standard Device Arguments

Standard Ethernet device arguments allow for a set of commonly used arguments/
parameters which are applicable to all Ethernet devices to be available to for
specification of specific device and for passing common configuration
parameters to those ports.

	representor for a device which supports the creation of representor ports
this argument allows user to specify which switch ports to enable port
representors for.:

-w DBDF,representor=0
-w DBDF,representor=[0,4,6,9]
-w DBDF,representor=[0-31]

Note: PMDs are not required to support the standard device arguments and users
should consult the relevant PMD documentation to see support devargs.

11.5.5. Extended Statistics API

The extended statistics API allows a PMD to expose all statistics that are
available to it, including statistics that are unique to the device.
Each statistic has three properties name, id and value:

	name: A human readable string formatted by the scheme detailed below.

	id: An integer that represents only that statistic.

	value: A unsigned 64-bit integer that is the value of the statistic.

Note that extended statistic identifiers are
driver-specific, and hence might not be the same for different ports.
The API consists of various rte_eth_xstats_*() functions, and allows an
application to be flexible in how it retrieves statistics.

11.5.5.1. Scheme for Human Readable Names

A naming scheme exists for the strings exposed to clients of the API. This is
to allow scraping of the API for statistics of interest. The naming scheme uses
strings split by a single underscore _. The scheme is as follows:

	direction

	detail 1

	detail 2

	detail n

	unit

Examples of common statistics xstats strings, formatted to comply to the scheme
proposed above:

	rx_bytes

	rx_crc_errors

	tx_multicast_packets

The scheme, although quite simple, allows flexibility in presenting and reading
information from the statistic strings. The following example illustrates the
naming scheme:rx_packets. In this example, the string is split into two
components. The first component rx indicates that the statistic is
associated with the receive side of the NIC. The second component packets
indicates that the unit of measure is packets.

A more complicated example: tx_size_128_to_255_packets. In this example,
tx indicates transmission, size is the first detail, 128 etc are
more details, and packets indicates that this is a packet counter.

Some additions in the metadata scheme are as follows:

	If the first part does not match rx or tx, the statistic does not
have an affinity with either receive of transmit.

	If the first letter of the second part is q and this q is followed
by a number, this statistic is part of a specific queue.

An example where queue numbers are used is as follows: tx_q7_bytes which
indicates this statistic applies to queue number 7, and represents the number
of transmitted bytes on that queue.

11.5.5.2. API Design

The xstats API uses the name, id, and value to allow performant
lookup of specific statistics. Performant lookup means two things;

	No string comparisons with the name of the statistic in fast-path

	Allow requesting of only the statistics of interest

The API ensures these requirements are met by mapping the name of the
statistic to a unique id, which is used as a key for lookup in the fast-path.
The API allows applications to request an array of id values, so that the
PMD only performs the required calculations. Expected usage is that the
application scans the name of each statistic, and caches the id
if it has an interest in that statistic. On the fast-path, the integer can be used
to retrieve the actual value of the statistic that the id represents.

11.5.5.3. API Functions

The API is built out of a small number of functions, which can be used to
retrieve the number of statistics and the names, IDs and values of those
statistics.

	rte_eth_xstats_get_names_by_id(): returns the names of the statistics. When given a
NULL parameter the function returns the number of statistics that are available.

	rte_eth_xstats_get_id_by_name(): Searches for the statistic ID that matches
xstat_name. If found, the id integer is set.

	rte_eth_xstats_get_by_id(): Fills in an array of uint64_t values
with matching the provided ids array. If the ids array is NULL, it
returns all statistics that are available.

11.5.5.4. Application Usage

Imagine an application that wants to view the dropped packet count. If no
packets are dropped, the application does not read any other metrics for
performance reasons. If packets are dropped, the application has a particular
set of statistics that it requests. This “set” of statistics allows the app to
decide what next steps to perform. The following code-snippets show how the
xstats API can be used to achieve this goal.

First step is to get all statistics names and list them:

struct rte_eth_xstat_name *xstats_names;
uint64_t *values;
int len, i;

/* Get number of stats */
len = rte_eth_xstats_get_names_by_id(port_id, NULL, NULL, 0);
if (len < 0) {
 printf("Cannot get xstats count\n");
 goto err;
}

xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * len);
if (xstats_names == NULL) {
 printf("Cannot allocate memory for xstat names\n");
 goto err;
}

/* Retrieve xstats names, passing NULL for IDs to return all statistics */
if (len != rte_eth_xstats_get_names_by_id(port_id, xstats_names, NULL, len)) {
 printf("Cannot get xstat names\n");
 goto err;
}

values = malloc(sizeof(values) * len);
if (values == NULL) {
 printf("Cannot allocate memory for xstats\n");
 goto err;
}

/* Getting xstats values */
if (len != rte_eth_xstats_get_by_id(port_id, NULL, values, len)) {
 printf("Cannot get xstat values\n");
 goto err;
}

/* Print all xstats names and values */
for (i = 0; i < len; i++) {
 printf("%s: %"PRIu64"\n", xstats_names[i].name, values[i]);
}

The application has access to the names of all of the statistics that the PMD
exposes. The application can decide which statistics are of interest, cache the
ids of those statistics by looking up the name as follows:

uint64_t id;
uint64_t value;
const char *xstat_name = "rx_errors";

if(!rte_eth_xstats_get_id_by_name(port_id, xstat_name, &id)) {
 rte_eth_xstats_get_by_id(port_id, &id, &value, 1);
 printf("%s: %"PRIu64"\n", xstat_name, value);
}
else {
 printf("Cannot find xstats with a given name\n");
 goto err;
}

The API provides flexibility to the application so that it can look up multiple
statistics using an array containing multiple id numbers. This reduces the
function call overhead of retrieving statistics, and makes lookup of multiple
statistics simpler for the application.

#define APP_NUM_STATS 4
/* application cached these ids previously; see above */
uint64_t ids_array[APP_NUM_STATS] = {3,4,7,21};
uint64_t value_array[APP_NUM_STATS];

/* Getting multiple xstats values from array of IDs */
rte_eth_xstats_get_by_id(port_id, ids_array, value_array, APP_NUM_STATS);

uint32_t i;
for(i = 0; i < APP_NUM_STATS; i++) {
 printf("%d: %"PRIu64"\n", ids_array[i], value_array[i]);
}

This array lookup API for xstats allows the application create multiple
“groups” of statistics, and look up the values of those IDs using a single API
call. As an end result, the application is able to achieve its goal of
monitoring a single statistic (“rx_errors” in this case), and if that shows
packets being dropped, it can easily retrieve a “set” of statistics using the
IDs array parameter to rte_eth_xstats_get_by_id function.

11.5.6. NIC Reset API

int rte_eth_dev_reset(uint16_t port_id);

Sometimes a port has to be reset passively. For example when a PF is
reset, all its VFs should also be reset by the application to make them
consistent with the PF. A DPDK application also can call this function
to trigger a port reset. Normally, a DPDK application would invokes this
function when an RTE_ETH_EVENT_INTR_RESET event is detected.

It is the duty of the PMD to trigger RTE_ETH_EVENT_INTR_RESET events and
the application should register a callback function to handle these
events. When a PMD needs to trigger a reset, it can trigger an
RTE_ETH_EVENT_INTR_RESET event. On receiving an RTE_ETH_EVENT_INTR_RESET
event, applications can handle it as follows: Stop working queues, stop
calling Rx and Tx functions, and then call rte_eth_dev_reset(). For
thread safety all these operations should be called from the same thread.

For example when PF is reset, the PF sends a message to notify VFs of
this event and also trigger an interrupt to VFs. Then in the interrupt
service routine the VFs detects this notification message and calls
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL).
This means that a PF reset triggers an RTE_ETH_EVENT_INTR_RESET
event within VFs. The function _rte_eth_dev_callback_process() will
call the registered callback function. The callback function can trigger
the application to handle all operations the VF reset requires including
stopping Rx/Tx queues and calling rte_eth_dev_reset().

The rte_eth_dev_reset() itself is a generic function which only does
some hardware reset operations through calling dev_unint() and
dev_init(), and itself does not handle synchronization, which is handled
by application.

The PMD itself should not call rte_eth_dev_reset(). The PMD can trigger
the application to handle reset event. It is duty of application to
handle all synchronization before it calls rte_eth_dev_reset().

12. Generic flow API (rte_flow)

12.1. Overview

This API provides a generic means to configure hardware to match specific
ingress or egress traffic, alter its fate and query related counters
according to any number of user-defined rules.

It is named rte_flow after the prefix used for all its symbols, and is
defined in rte_flow.h.

	Matching can be performed on packet data (protocol headers, payload) and
properties (e.g. associated physical port, virtual device function ID).

	Possible operations include dropping traffic, diverting it to specific
queues, to virtual/physical device functions or ports, performing tunnel
offloads, adding marks and so on.

It is slightly higher-level than the legacy filtering framework which it
encompasses and supersedes (including all functions and filter types) in
order to expose a single interface with an unambiguous behavior that is
common to all poll-mode drivers (PMDs).

12.2. Flow rule

12.2.1. Description

A flow rule is the combination of attributes with a matching pattern and a
list of actions. Flow rules form the basis of this API.

Flow rules can have several distinct actions (such as counting,
encapsulating, decapsulating before redirecting packets to a particular
queue, etc.), instead of relying on several rules to achieve this and having
applications deal with hardware implementation details regarding their
order.

Support for different priority levels on a rule basis is provided, for
example in order to force a more specific rule to come before a more generic
one for packets matched by both. However hardware support for more than a
single priority level cannot be guaranteed. When supported, the number of
available priority levels is usually low, which is why they can also be
implemented in software by PMDs (e.g. missing priority levels may be
emulated by reordering rules).

In order to remain as hardware-agnostic as possible, by default all rules
are considered to have the same priority, which means that the order between
overlapping rules (when a packet is matched by several filters) is
undefined.

PMDs may refuse to create overlapping rules at a given priority level when
they can be detected (e.g. if a pattern matches an existing filter).

Thus predictable results for a given priority level can only be achieved
with non-overlapping rules, using perfect matching on all protocol layers.

Flow rules can also be grouped, the flow rule priority is specific to the
group they belong to. All flow rules in a given group are thus processed within
the context of that group. Groups are not linked by default, so the logical
hierarchy of groups must be explicitly defined by flow rules themselves in each
group using the JUMP action to define the next group to redirect too. Only flow
rules defined in the default group 0 are guarantee to be matched against, this
makes group 0 the origin of any group hierarchy defined by an application.

Support for multiple actions per rule may be implemented internally on top
of non-default hardware priorities, as a result both features may not be
simultaneously available to applications.

Considering that allowed pattern/actions combinations cannot be known in
advance and would result in an impractically large number of capabilities to
expose, a method is provided to validate a given rule from the current
device configuration state.

This enables applications to check if the rule types they need is supported
at initialization time, before starting their data path. This method can be
used anytime, its only requirement being that the resources needed by a rule
should exist (e.g. a target RX queue should be configured first).

Each defined rule is associated with an opaque handle managed by the PMD,
applications are responsible for keeping it. These can be used for queries
and rules management, such as retrieving counters or other data and
destroying them.

To avoid resource leaks on the PMD side, handles must be explicitly
destroyed by the application before releasing associated resources such as
queues and ports.

The following sections cover:

	Attributes (represented by struct rte_flow_attr): properties of a
flow rule such as its direction (ingress or egress) and priority.

	Pattern item (represented by struct rte_flow_item): part of a
matching pattern that either matches specific packet data or traffic
properties. It can also describe properties of the pattern itself, such as
inverted matching.

	Matching pattern: traffic properties to look for, a combination of any
number of items.

	Actions (represented by struct rte_flow_action): operations to
perform whenever a packet is matched by a pattern.

12.2.2. Attributes

12.2.2.1. Attribute: Group

Flow rules can be grouped by assigning them a common group number. Groups
allow a logical hierarchy of flow rule groups (tables) to be defined. These
groups can be supported virtually in the PMD or in the physical device.
Group 0 is the default group and this is the only group which flows are
guarantee to matched against, all subsequent groups can only be reached by
way of the JUMP action from a matched flow rule.

Although optional, applications are encouraged to group similar rules as
much as possible to fully take advantage of hardware capabilities
(e.g. optimized matching) and work around limitations (e.g. a single pattern
type possibly allowed in a given group), while being aware that the groups
hierarchies must be programmed explicitly.

Note that support for more than a single group is not guaranteed.

12.2.2.2. Attribute: Priority

A priority level can be assigned to a flow rule, lower values
denote higher priority, with 0 as the maximum.

Priority levels are arbitrary and up to the application, they do
not need to be contiguous nor start from 0, however the maximum number
varies between devices and may be affected by existing flow rules.

A flow which matches multiple rules in the same group will always matched by
the rule with the highest priority in that group.

If a packet is matched by several rules of a given group for a given
priority level, the outcome is undefined. It can take any path, may be
duplicated or even cause unrecoverable errors.

Note that support for more than a single priority level is not guaranteed.

12.2.2.3. Attribute: Traffic direction

Flow rule patterns apply to inbound and/or outbound traffic.

In the context of this API, ingress and egress respectively stand
for inbound and outbound based on the standpoint of the application
creating a flow rule.

There are no exceptions to this definition.

Several pattern items and actions are valid and can be used in both
directions. At least one direction must be specified.

Specifying both directions at once for a given rule is not recommended but
may be valid in a few cases (e.g. shared counters).

12.2.2.4. Attribute: Transfer

Instead of simply matching the properties of traffic as it would appear on a
given DPDK port ID, enabling this attribute transfers a flow rule to the
lowest possible level of any device endpoints found in the pattern.

When supported, this effectively enables an application to reroute traffic
not necessarily intended for it (e.g. coming from or addressed to different
physical ports, VFs or applications) at the device level.

It complements the behavior of some pattern items such as Item: PHY_PORT
and is meaningless without them.

When transferring flow rules, ingress and egress attributes
(Attribute: Traffic direction) keep their original meaning, as if
processing traffic emitted or received by the application.

12.2.3. Pattern item

Pattern items fall in two categories:

	Matching protocol headers and packet data, usually associated with a
specification structure. These must be stacked in the same order as the
protocol layers to match inside packets, starting from the lowest.

	Matching meta-data or affecting pattern processing, often without a
specification structure. Since they do not match packet contents, their
position in the list is usually not relevant.

Item specification structures are used to match specific values among
protocol fields (or item properties). Documentation describes for each item
whether they are associated with one and their type name if so.

Up to three structures of the same type can be set for a given item:

	spec: values to match (e.g. a given IPv4 address).

	last: upper bound for an inclusive range with corresponding fields in
spec.

	mask: bit-mask applied to both spec and last whose purpose is
to distinguish the values to take into account and/or partially mask them
out (e.g. in order to match an IPv4 address prefix).

Usage restrictions and expected behavior:

	Setting either mask or last without spec is an error.

	Field values in last which are either 0 or equal to the corresponding
values in spec are ignored; they do not generate a range. Nonzero
values lower than those in spec are not supported.

	Setting spec and optionally last without mask causes the PMD
to use the default mask defined for that item (defined as
rte_flow_item_{name}_mask constants).

	Not setting any of them (assuming item type allows it) is equivalent to
providing an empty (zeroed) mask for broad (nonspecific) matching.

	mask is a simple bit-mask applied before interpreting the contents of
spec and last, which may yield unexpected results if not used
carefully. For example, if for an IPv4 address field, spec provides
10.1.2.3, last provides 10.3.4.5 and mask provides
255.255.0.0, the effective range becomes 10.1.0.0 to 10.3.255.255.

Example of an item specification matching an Ethernet header:

Table 12.1 Ethernet item

	Field

	Subfield

	Value

	spec

	src

	00:00:01:02:03:04

	dst

	00:00:2a:66:00:01

	type

	0x22aa

	last

	unspecified

	mask

	src

	00:00:ff:ff:ff:00

	dst

	00:00:00:00:00:ff

	type

	0x0000

Non-masked bits stand for any value (shown as ? below), Ethernet headers
with the following properties are thus matched:

	src: ??:??:01:02:03:??

	dst: ??:??:??:??:??:01

	type: 0x????

12.2.4. Matching pattern

A pattern is formed by stacking items starting from the lowest protocol
layer to match. This stacking restriction does not apply to meta items which
can be placed anywhere in the stack without affecting the meaning of the
resulting pattern.

Patterns are terminated by END items.

Examples:

Table 12.2 TCPv4 as L4

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	TCP

	3

	END

Table 12.3 TCPv6 in VXLAN

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	UDP

	3

	VXLAN

	4

	Ethernet

	5

	IPv6

	6

	TCP

	7

	END

Table 12.4 TCPv4 as L4 with meta items

	Index

	Item

	0

	VOID

	1

	Ethernet

	2

	VOID

	3

	IPv4

	4

	TCP

	5

	VOID

	6

	VOID

	7

	END

The above example shows how meta items do not affect packet data matching
items, as long as those remain stacked properly. The resulting matching
pattern is identical to “TCPv4 as L4”.

Table 12.5 UDPv6 anywhere

	Index

	Item

	0

	IPv6

	1

	UDP

	2

	END

If supported by the PMD, omitting one or several protocol layers at the
bottom of the stack as in the above example (missing an Ethernet
specification) enables looking up anywhere in packets.

It is unspecified whether the payload of supported encapsulations
(e.g. VXLAN payload) is matched by such a pattern, which may apply to inner,
outer or both packets.

Table 12.6 Invalid, missing L3

	Index

	Item

	0

	Ethernet

	1

	UDP

	2

	END

The above pattern is invalid due to a missing L3 specification between L2
(Ethernet) and L4 (UDP). Doing so is only allowed at the bottom and at the
top of the stack.

12.2.5. Meta item types

They match meta-data or affect pattern processing instead of matching packet
data directly, most of them do not need a specification structure. This
particularity allows them to be specified anywhere in the stack without
causing any side effect.

12.2.5.1. Item: END

End marker for item lists. Prevents further processing of items, thereby
ending the pattern.

	Its numeric value is 0 for convenience.

	PMD support is mandatory.

	spec, last and mask are ignored.

Table 12.7 END

	Field

	Value

	spec

	ignored

	last

	ignored

	mask

	ignored

12.2.5.2. Item: VOID

Used as a placeholder for convenience. It is ignored and simply discarded by
PMDs.

	PMD support is mandatory.

	spec, last and mask are ignored.

Table 12.8 VOID

	Field

	Value

	spec

	ignored

	last

	ignored

	mask

	ignored

One usage example for this type is generating rules that share a common
prefix quickly without reallocating memory, only by updating item types:

Table 12.9 TCP, UDP or ICMP as L4

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	UDP

	VOID

	VOID

	3

	VOID

	TCP

	VOID

	4

	VOID

	VOID

	ICMP

	5

	END

12.2.5.3. Item: INVERT

Inverted matching, i.e. process packets that do not match the pattern.

	spec, last and mask are ignored.

Table 12.10 INVERT

	Field

	Value

	spec

	ignored

	last

	ignored

	mask

	ignored

Usage example, matching non-TCPv4 packets only:

Table 12.11 Anything but TCPv4

	Index

	Item

	0

	INVERT

	1

	Ethernet

	2

	IPv4

	3

	TCP

	4

	END

12.2.5.4. Item: PF

Matches traffic originating from (ingress) or going to (egress) the physical
function of the current device.

If supported, should work even if the physical function is not managed by
the application and thus not associated with a DPDK port ID.

	Can be combined with any number of Item: VF to match both PF and VF
traffic.

	spec, last and mask must not be set.

Table 12.12 PF

	Field

	Value

	spec

	unset

	last

	unset

	mask

	unset

12.2.5.5. Item: VF

Matches traffic originating from (ingress) or going to (egress) a given
virtual function of the current device.

If supported, should work even if the virtual function is not managed by the
application and thus not associated with a DPDK port ID.

Note this pattern item does not match VF representors traffic which, as
separate entities, should be addressed through their own DPDK port IDs.

	Can be specified multiple times to match traffic addressed to several VF
IDs.

	Can be combined with a PF item to match both PF and VF traffic.

	Default mask matches any VF ID.

Table 12.13 VF

	Field

	Subfield

	Value

	spec

	id

	destination VF ID

	last

	id

	upper range value

	mask

	id

	zeroed to match any VF ID

12.2.5.6. Item: PHY_PORT

Matches traffic originating from (ingress) or going to (egress) a physical
port of the underlying device.

The first PHY_PORT item overrides the physical port normally associated with
the specified DPDK input port (port_id). This item can be provided several
times to match additional physical ports.

Note that physical ports are not necessarily tied to DPDK input ports
(port_id) when those are not under DPDK control. Possible values are
specific to each device, they are not necessarily indexed from zero and may
not be contiguous.

As a device property, the list of allowed values as well as the value
associated with a port_id should be retrieved by other means.

	Default mask matches any port index.

Table 12.14 PHY_PORT

	Field

	Subfield

	Value

	spec

	index

	physical port index

	last

	index

	upper range value

	mask

	index

	zeroed to match any port index

12.2.5.7. Item: PORT_ID

Matches traffic originating from (ingress) or going to (egress) a given DPDK
port ID.

Normally only supported if the port ID in question is known by the
underlying PMD and related to the device the flow rule is created against.

This must not be confused with Item: PHY_PORT which refers to the
physical port of a device, whereas Item: PORT_ID refers to a struct
rte_eth_dev object on the application side (also known as “port
representor” depending on the kind of underlying device).

	Default mask matches the specified DPDK port ID.

Table 12.15 PORT_ID

	Field

	Subfield

	Value

	spec

	id

	DPDK port ID

	last

	id

	upper range value

	mask

	id

	zeroed to match any port ID

12.2.5.8. Item: MARK

Matches an arbitrary integer value which was set using the MARK action in
a previously matched rule.

This item can only specified once as a match criteria as the MARK action can
only be specified once in a flow action.

Note the value of MARK field is arbitrary and application defined.

Depending on the underlying implementation the MARK item may be supported on
the physical device, with virtual groups in the PMD or not at all.

	Default mask matches any integer value.

Table 12.16 MARK

	Field

	Subfield

	Value

	spec

	id | integer value

	last

	id | upper range value

	mask

	id

	zeroed to match any value

12.2.5.9. Item: TAG

Matches tag item set by other flows. Multiple tags are supported by specifying
index.

	Default mask matches the specified tag value and index.

Table 12.17 TAG

	Field

	Subfield | Value

	spec

	data

	32 bit flow tag value

	index

	index of flow tag

	last

	data

	upper range value

	index

	field is ignored

	mask

	data

	bit-mask applies to “spec” and “last”

	index

	field is ignored

12.2.5.10. Item: META

Matches 32 bit metadata item set.

On egress, metadata can be set either by mbuf metadata field with
PKT_TX_DYNF_METADATA flag or SET_META action. On ingress, SET_META
action sets metadata for a packet and the metadata will be reported via
metadata dynamic field of rte_mbuf with PKT_RX_DYNF_METADATA flag.

	Default mask matches the specified Rx metadata value.

Table 12.18 META

	Field

	Subfield

	Value

	spec

	data

	32 bit metadata value

	last

	data

	upper range value

	mask

	data

	bit-mask applies to “spec” and “last”

12.2.6. Data matching item types

Most of these are basically protocol header definitions with associated
bit-masks. They must be specified (stacked) from lowest to highest protocol
layer to form a matching pattern.

The following list is not exhaustive, new protocols will be added in the
future.

12.2.6.1. Item: ANY

Matches any protocol in place of the current layer, a single ANY may also
stand for several protocol layers.

This is usually specified as the first pattern item when looking for a
protocol anywhere in a packet.

	Default mask stands for any number of layers.

Table 12.19 ANY

	Field

	Subfield

	Value

	spec

	num

	number of layers covered

	last

	num

	upper range value

	mask

	num

	zeroed to cover any number of layers

Example for VXLAN TCP payload matching regardless of outer L3 (IPv4 or IPv6)
and L4 (UDP) both matched by the first ANY specification, and inner L3 (IPv4
or IPv6) matched by the second ANY specification:

Table 12.20 TCP in VXLAN with wildcards

	Index

	Item

	Field

	Subfield

	Value

	0

	Ethernet

	1

	ANY

	spec

	num

	2

	2

	VXLAN

	3

	Ethernet

	4

	ANY

	spec

	num

	1

	5

	TCP

	6

	END

12.2.6.2. Item: RAW

Matches a byte string of a given length at a given offset.

Offset is either absolute (using the start of the packet) or relative to the
end of the previous matched item in the stack, in which case negative values
are allowed.

If search is enabled, offset is used as the starting point. The search area
can be delimited by setting limit to a nonzero value, which is the maximum
number of bytes after offset where the pattern may start.

Matching a zero-length pattern is allowed, doing so resets the relative
offset for subsequent items.

	This type does not support ranges (last field).

	Default mask matches all fields exactly.

Table 12.21 RAW

	Field

	Subfield

	Value

	spec

	relative

	look for pattern after the previous item

	search

	search pattern from offset (see also limit)

	reserved

	reserved, must be set to zero

	offset

	absolute or relative offset for pattern

	limit

	search area limit for start of pattern

	length

	pattern length

	pattern

	byte string to look for

	last

	if specified, either all 0 or with the same values as spec

	mask

	bit-mask applied to spec values with usual behavior

Example pattern looking for several strings at various offsets of a UDP
payload, using combined RAW items:

Table 12.22 UDP payload matching

	Index

	Item

	Field

	Subfield

	Value

	0

	Ethernet

	1

	IPv4

	2

	UDP

	3

	RAW

	spec

	relative

	1

	search

	1

	offset

	10

	limit

	0

	length

	3

	pattern

	“foo”

	4

	RAW

	spec

	relative

	1

	search

	0

	offset

	20

	limit

	0

	length

	3

	pattern

	“bar”

	5

	RAW

	spec

	relative

	1

	search

	0

	offset

	-29

	limit

	0

	length

	3

	pattern

	“baz”

	6

	END

This translates to:

	Locate “foo” at least 10 bytes deep inside UDP payload.

	Locate “bar” after “foo” plus 20 bytes.

	Locate “baz” after “bar” minus 29 bytes.

Such a packet may be represented as follows (not to scale):

0 >= 10 B == 20 B
| |<--------->| |<--------->|
ETH	IPv4	UDP	...	baz	foo	bar
-----	------	-----	-----	-----	-----	-----------	-----	------
 | |
 |<--------------------------->|
 == 29 B

Note that matching subsequent pattern items would resume after “baz”, not
“bar” since matching is always performed after the previous item of the
stack.

12.2.6.3. Item: ETH

Matches an Ethernet header.

The type field either stands for “EtherType” or “TPID” when followed by
so-called layer 2.5 pattern items such as RTE_FLOW_ITEM_TYPE_VLAN. In
the latter case, type refers to that of the outer header, with the inner
EtherType/TPID provided by the subsequent pattern item. This is the same
order as on the wire.
If the type field contains a TPID value, then only tagged packets with the
specified TPID will match the pattern.
Otherwise, only untagged packets will match the pattern.
If the ETH item is the only item in the pattern, and the type field is
not specified, then both tagged and untagged packets will match the pattern.

	dst: destination MAC.

	src: source MAC.

	type: EtherType or TPID.

	Default mask matches destination and source addresses only.

12.2.6.4. Item: VLAN

Matches an 802.1Q/ad VLAN tag.

The corresponding standard outer EtherType (TPID) values are
RTE_ETHER_TYPE_VLAN or RTE_ETHER_TYPE_QINQ. It can be overridden by the
preceding pattern item.
If a VLAN item is present in the pattern, then only tagged packets will
match the pattern.

	tci: tag control information.

	inner_type: inner EtherType or TPID.

	Default mask matches the VID part of TCI only (lower 12 bits).

12.2.6.5. Item: IPV4

Matches an IPv4 header.

Note: IPv4 options are handled by dedicated pattern items.

	hdr: IPv4 header definition (rte_ip.h).

	Default mask matches source and destination addresses only.

12.2.6.6. Item: IPV6

Matches an IPv6 header.

Note: IPv6 options are handled by dedicated pattern items, see Item:
IPV6_EXT.

	hdr: IPv6 header definition (rte_ip.h).

	Default mask matches source and destination addresses only.

12.2.6.7. Item: ICMP

Matches an ICMP header.

	hdr: ICMP header definition (rte_icmp.h).

	Default mask matches ICMP type and code only.

12.2.6.8. Item: UDP

Matches a UDP header.

	hdr: UDP header definition (rte_udp.h).

	Default mask matches source and destination ports only.

12.2.6.9. Item: TCP

Matches a TCP header.

	hdr: TCP header definition (rte_tcp.h).

	Default mask matches source and destination ports only.

12.2.6.10. Item: SCTP

Matches a SCTP header.

	hdr: SCTP header definition (rte_sctp.h).

	Default mask matches source and destination ports only.

12.2.6.11. Item: VXLAN

Matches a VXLAN header (RFC 7348).

	flags: normally 0x08 (I flag).

	rsvd0: reserved, normally 0x000000.

	vni: VXLAN network identifier.

	rsvd1: reserved, normally 0x00.

	Default mask matches VNI only.

12.2.6.12. Item: E_TAG

Matches an IEEE 802.1BR E-Tag header.

The corresponding standard outer EtherType (TPID) value is
RTE_ETHER_TYPE_ETAG. It can be overridden by the preceding pattern item.

	epcp_edei_in_ecid_b: E-Tag control information (E-TCI), E-PCP (3b),
E-DEI (1b), ingress E-CID base (12b).

	rsvd_grp_ecid_b: reserved (2b), GRP (2b), E-CID base (12b).

	in_ecid_e: ingress E-CID ext.

	ecid_e: E-CID ext.

	inner_type: inner EtherType or TPID.

	Default mask simultaneously matches GRP and E-CID base.

12.2.6.13. Item: NVGRE

Matches a NVGRE header (RFC 7637).

	c_k_s_rsvd0_ver: checksum (1b), undefined (1b), key bit (1b),
sequence number (1b), reserved 0 (9b), version (3b). This field must have
value 0x2000 according to RFC 7637.

	protocol: protocol type (0x6558).

	tni: virtual subnet ID.

	flow_id: flow ID.

	Default mask matches TNI only.

12.2.6.14. Item: MPLS

Matches a MPLS header.

	label_tc_s_ttl: label, TC, Bottom of Stack and TTL.

	Default mask matches label only.

12.2.6.15. Item: GRE

Matches a GRE header.

	c_rsvd0_ver: checksum, reserved 0 and version.

	protocol: protocol type.

	Default mask matches protocol only.

12.2.6.16. Item: GRE_KEY

Matches a GRE key field.
This should be preceded by item GRE.

	Value to be matched is a big-endian 32 bit integer.

	When this item present it implicitly match K bit in default mask as “1”

12.2.6.17. Item: FUZZY

Fuzzy pattern match, expect faster than default.

This is for device that support fuzzy match option. Usually a fuzzy match is
fast but the cost is accuracy. i.e. Signature Match only match pattern’s hash
value, but it is possible two different patterns have the same hash value.

Matching accuracy level can be configured by threshold. Driver can divide the
range of threshold and map to different accuracy levels that device support.

Threshold 0 means perfect match (no fuzziness), while threshold 0xffffffff
means fuzziest match.

Table 12.23 FUZZY

	Field

	Subfield

	Value

	spec

	threshold

	0 as perfect match, 0xffffffff as fuzziest match

	last

	threshold

	upper range value

	mask

	threshold

	bit-mask apply to “spec” and “last”

Usage example, fuzzy match a TCPv4 packets:

Table 12.24 Fuzzy matching

	Index

	Item

	0

	FUZZY

	1

	Ethernet

	2

	IPv4

	3

	TCP

	4

	END

12.2.6.18. Item: GTP, GTPC, GTPU

Matches a GTPv1 header.

Note: GTP, GTPC and GTPU use the same structure. GTPC and GTPU item
are defined for a user-friendly API when creating GTP-C and GTP-U
flow rules.

	v_pt_rsv_flags: version (3b), protocol type (1b), reserved (1b),
extension header flag (1b), sequence number flag (1b), N-PDU number
flag (1b).

	msg_type: message type.

	msg_len: message length.

	teid: tunnel endpoint identifier.

	Default mask matches teid only.

12.2.6.19. Item: ESP

Matches an ESP header.

	hdr: ESP header definition (rte_esp.h).

	Default mask matches SPI only.

12.2.6.20. Item: GENEVE

Matches a GENEVE header.

	ver_opt_len_o_c_rsvd0: version (2b), length of the options fields (6b),
OAM packet (1b), critical options present (1b), reserved 0 (6b).

	protocol: protocol type.

	vni: virtual network identifier.

	rsvd1: reserved, normally 0x00.

	Default mask matches VNI only.

12.2.6.21. Item: VXLAN-GPE

Matches a VXLAN-GPE header (draft-ietf-nvo3-vxlan-gpe-05).

	flags: normally 0x0C (I and P flags).

	rsvd0: reserved, normally 0x0000.

	protocol: protocol type.

	vni: VXLAN network identifier.

	rsvd1: reserved, normally 0x00.

	Default mask matches VNI only.

12.2.6.22. Item: ARP_ETH_IPV4

Matches an ARP header for Ethernet/IPv4.

	hdr: hardware type, normally 1.

	pro: protocol type, normally 0x0800.

	hln: hardware address length, normally 6.

	pln: protocol address length, normally 4.

	op: opcode (1 for request, 2 for reply).

	sha: sender hardware address.

	spa: sender IPv4 address.

	tha: target hardware address.

	tpa: target IPv4 address.

	Default mask matches SHA, SPA, THA and TPA.

12.2.6.23. Item: IPV6_EXT

Matches the presence of any IPv6 extension header.

	next_hdr: next header.

	Default mask matches next_hdr.

Normally preceded by any of:

	Item: IPV6

	Item: IPV6_EXT

12.2.6.24. Item: ICMP6

Matches any ICMPv6 header.

	type: ICMPv6 type.

	code: ICMPv6 code.

	checksum: ICMPv6 checksum.

	Default mask matches type and code.

12.2.6.25. Item: ICMP6_ND_NS

Matches an ICMPv6 neighbor discovery solicitation.

	type: ICMPv6 type, normally 135.

	code: ICMPv6 code, normally 0.

	checksum: ICMPv6 checksum.

	reserved: reserved, normally 0.

	target_addr: target address.

	Default mask matches target address only.

12.2.6.26. Item: ICMP6_ND_NA

Matches an ICMPv6 neighbor discovery advertisement.

	type: ICMPv6 type, normally 136.

	code: ICMPv6 code, normally 0.

	checksum: ICMPv6 checksum.

	rso_reserved: route flag (1b), solicited flag (1b), override flag
(1b), reserved (29b).

	target_addr: target address.

	Default mask matches target address only.

12.2.6.27. Item: ICMP6_ND_OPT

Matches the presence of any ICMPv6 neighbor discovery option.

	type: ND option type.

	length: ND option length.

	Default mask matches type only.

Normally preceded by any of:

	Item: ICMP6_ND_NA

	Item: ICMP6_ND_NS

	Item: ICMP6_ND_OPT

12.2.6.28. Item: ICMP6_ND_OPT_SLA_ETH

Matches an ICMPv6 neighbor discovery source Ethernet link-layer address
option.

	type: ND option type, normally 1.

	length: ND option length, normally 1.

	sla: source Ethernet LLA.

	Default mask matches source link-layer address only.

Normally preceded by any of:

	Item: ICMP6_ND_NA

	Item: ICMP6_ND_OPT

12.2.6.29. Item: ICMP6_ND_OPT_TLA_ETH

Matches an ICMPv6 neighbor discovery target Ethernet link-layer address
option.

	type: ND option type, normally 2.

	length: ND option length, normally 1.

	tla: target Ethernet LLA.

	Default mask matches target link-layer address only.

Normally preceded by any of:

	Item: ICMP6_ND_NS

	Item: ICMP6_ND_OPT

12.2.6.30. Item: META

Matches an application specific 32 bit metadata item.

	Default mask matches the specified metadata value.

12.2.6.31. Item: GTP_PSC

Matches a GTP PDU extension header with type 0x85.

	pdu_type: PDU type.

	qfi: QoS flow identifier.

	Default mask matches QFI only.

12.2.6.32. Item: PPPOES, PPPOED

Matches a PPPoE header.

	version_type: version (4b), type (4b).

	code: message type.

	session_id: session identifier.

	length: payload length.

12.2.6.33. Item: PPPOE_PROTO_ID

Matches a PPPoE session protocol identifier.

	proto_id: PPP protocol identifier.

	Default mask matches proto_id only.

12.2.6.34. Item: NSH

Matches a network service header (RFC 8300).

	version: normally 0x0 (2 bits).

	oam_pkt: indicate oam packet (1 bit).

	reserved: reserved bit (1 bit).

	ttl: maximum SFF hopes (6 bits).

	length: total length in 4 bytes words (6 bits).

	reserved1: reserved1 bits (4 bits).

	mdtype: ndicates format of NSH header (4 bits).

	next_proto: indicates protocol type of encap data (8 bits).

	spi: service path identifier (3 bytes).

	sindex: service index (1 byte).

	Default mask matches mdtype, next_proto, spi, sindex.

12.2.6.35. Item: IGMP

Matches a Internet Group Management Protocol (RFC 2236).

	type: IGMP message type (Query/Report).

	max_resp_time: max time allowed before sending report.

	checksum: checksum, 1s complement of whole IGMP message.

	group_addr: group address, for Query value will be 0.

	Default mask matches group_addr.

12.2.6.36. Item: AH

Matches a IP Authentication Header (RFC 4302).

	next_hdr: next payload after AH.

	payload_len: total length of AH in 4B words.

	reserved: reserved bits.

	spi: security parameters index.

	seq_num: counter value increased by 1 on each packet sent.

	Default mask matches spi.

12.2.6.37. Item: HIGIG2

Matches a HIGIG2 header field. It is layer 2.5 protocol and used in
Broadcom switches.

	Default mask matches classification and vlan.

12.2.6.38. Item: L2TPV3OIP

Matches a L2TPv3 over IP header.

	session_id: L2TPv3 over IP session identifier.

	Default mask matches session_id only.

12.2.6.39. Item: PFCP

Matches a PFCP Header.

	s_field: S field.

	msg_type: message type.

	msg_len: message length.

	seid: session endpoint identifier.

	Default mask matches s_field and seid.

12.2.7. Actions

Each possible action is represented by a type.
An action can have an associated configuration object.
Several actions combined in a list can be assigned
to a flow rule and are performed in order.

They fall in three categories:

	Actions that modify the fate of matching traffic, for instance by dropping
or assigning it a specific destination.

	Actions that modify matching traffic contents or its properties. This
includes adding/removing encapsulation, encryption, compression and marks.

	Actions related to the flow rule itself, such as updating counters or
making it non-terminating.

Flow rules being terminating by default, not specifying any action of the
fate kind results in undefined behavior. This applies to both ingress and
egress.

PASSTHRU, when supported, makes a flow rule non-terminating.

Like matching patterns, action lists are terminated by END items.

Example of action that redirects packets to queue index 10:

Table 12.25 Queue action

	Field

	Value

	index

	10

Actions are performed in list order:

Table 12.26 Count then drop

	Index

	Action

	0

	COUNT

	1

	DROP

	2

	END

Table 12.27 Mark, count then redirect

	Index

	Action

	Field

	Value

	0

	MARK

	mark

	0x2a

	1

	COUNT

	shared

	0

	id

	0

	2

	QUEUE

	queue

	10

	3

	END

Table 12.28 Redirect to queue 5

	Index

	Action

	Field

	Value

	0

	DROP

	1

	QUEUE

	queue

	5

	2

	END

In the above example, while DROP and QUEUE must be performed in order, both
have to happen before reaching END. Only QUEUE has a visible effect.

Note that such a list may be thought as ambiguous and rejected on that
basis.

Table 12.29 Redirect to queues 5 and 3

	Index

	Action

	Field

	Value

	0

	QUEUE

	queue

	5

	1

	VOID

	2

	QUEUE

	queue

	3

	3

	END

As previously described, all actions must be taken into account. This
effectively duplicates traffic to both queues. The above example also shows
that VOID is ignored.

12.2.8. Action types

Common action types are described in this section. Like pattern item types,
this list is not exhaustive as new actions will be added in the future.

12.2.8.1. Action: END

End marker for action lists. Prevents further processing of actions, thereby
ending the list.

	Its numeric value is 0 for convenience.

	PMD support is mandatory.

	No configurable properties.

Table 12.30 END

	Field

	no properties

12.2.8.2. Action: VOID

Used as a placeholder for convenience. It is ignored and simply discarded by
PMDs.

	PMD support is mandatory.

	No configurable properties.

Table 12.31 VOID

	Field

	no properties

12.2.8.3. Action: PASSTHRU

Leaves traffic up for additional processing by subsequent flow rules; makes
a flow rule non-terminating.

	No configurable properties.

Table 12.32 PASSTHRU

	Field

	no properties

Example to copy a packet to a queue and continue processing by subsequent
flow rules:

Table 12.33 Copy to queue 8

	Index

	Action

	Field

	Value

	0

	PASSTHRU

	1

	QUEUE

	queue

	8

	2

	END

12.2.8.4. Action: JUMP

Redirects packets to a group on the current device.

In a hierarchy of groups, which can be used to represent physical or logical
flow group/tables on the device, this action redirects the matched flow to
the specified group on that device.

If a matched flow is redirected to a table which doesn’t contain a matching
rule for that flow then the behavior is undefined and the resulting behavior
is up to the specific device. Best practice when using groups would be define
a default flow rule for each group which a defines the default actions in that
group so a consistent behavior is defined.

Defining an action for matched flow in a group to jump to a group which is
higher in the group hierarchy may not be supported by physical devices,
depending on how groups are mapped to the physical devices. In the
definitions of jump actions, applications should be aware that it may be
possible to define flow rules which trigger an undefined behavior causing
flows to loop between groups.

Table 12.34 JUMP

	Field

	Value

	group

	Group to redirect packets to

12.2.8.5. Action: MARK

Attaches an integer value to packets and sets PKT_RX_FDIR and
PKT_RX_FDIR_ID mbuf flags.

This value is arbitrary and application-defined. Maximum allowed value
depends on the underlying implementation. It is returned in the
hash.fdir.hi mbuf field.

Table 12.35 MARK

	Field

	Value

	id

	integer value to return with packets

12.2.8.6. Action: FLAG

Flags packets. Similar to Action: MARK without a specific value; only
sets the PKT_RX_FDIR mbuf flag.

	No configurable properties.

Table 12.36 FLAG

	Field

	no properties

12.2.8.7. Action: QUEUE

Assigns packets to a given queue index.

Table 12.37 QUEUE

	Field

	Value

	index

	queue index to use

12.2.8.8. Action: DROP

Drop packets.

	No configurable properties.

Table 12.38 DROP

	Field

	no properties

12.2.8.9. Action: COUNT

Adds a counter action to a matched flow.

If more than one count action is specified in a single flow rule, then each
action must specify a unique id.

Counters can be retrieved and reset through rte_flow_query(), see
struct rte_flow_query_count.

The shared flag indicates whether the counter is unique to the flow rule the
action is specified with, or whether it is a shared counter.

For a count action with the shared flag set, then a global device
namespace is assumed for the counter id, so that any matched flow rules using
a count action with the same counter id on the same port will contribute to
that counter.

For ports within the same switch domain then the counter id namespace extends
to all ports within that switch domain.

Table 12.39 COUNT

	Field

	Value

	shared

	shared counter flag

	id

	counter id

Query structure to retrieve and reset flow rule counters:

Table 12.40 COUNT query

	Field

	I/O

	Value

	reset

	in

	reset counter after query

	hits_set

	out

	hits field is set

	bytes_set

	out

	bytes field is set

	hits

	out

	number of hits for this rule

	bytes

	out

	number of bytes through this rule

12.2.8.10. Action: RSS

Similar to QUEUE, except RSS is additionally performed on packets to spread
them among several queues according to the provided parameters.

Unlike global RSS settings used by other DPDK APIs, unsetting the types
field does not disable RSS in a flow rule. Doing so instead requests safe
unspecified “best-effort” settings from the underlying PMD, which depending
on the flow rule, may result in anything ranging from empty (single queue)
to all-inclusive RSS.

Note: RSS hash result is stored in the hash.rss mbuf field which
overlaps hash.fdir.lo. Since Action: MARK sets the hash.fdir.hi
field only, both can be requested simultaneously.

Also, regarding packet encapsulation level:

	0 requests the default behavior. Depending on the packet type, it can
mean outermost, innermost, anything in between or even no RSS.

It basically stands for the innermost encapsulation level RSS can be
performed on according to PMD and device capabilities.

	1 requests RSS to be performed on the outermost packet encapsulation
level.

	
	2 and subsequent values request RSS to be performed on the specified
	inner packet encapsulation level, from outermost to innermost (lower to
higher values).

Values other than 0 are not necessarily supported.

Requesting a specific RSS level on unrecognized traffic results in undefined
behavior. For predictable results, it is recommended to make the flow rule
pattern match packet headers up to the requested encapsulation level so that
only matching traffic goes through.

Table 12.41 RSS

	Field

	Value

	func

	RSS hash function to apply

	level

	encapsulation level for types

	types

	specific RSS hash types (see ETH_RSS_*)

	key_len

	hash key length in bytes

	queue_num

	number of entries in queue

	key

	hash key

	queue

	queue indices to use

12.2.8.11. Action: PF

Directs matching traffic to the physical function (PF) of the current
device.

See Item: PF.

	No configurable properties.

Table 12.42 PF

	Field

	no properties

12.2.8.12. Action: VF

Directs matching traffic to a given virtual function of the current device.

Packets matched by a VF pattern item can be redirected to their original VF
ID instead of the specified one. This parameter may not be available and is
not guaranteed to work properly if the VF part is matched by a prior flow
rule or if packets are not addressed to a VF in the first place.

See Item: VF.

Table 12.43 VF

	Field

	Value

	original

	use original VF ID if possible

	id

	VF ID

12.2.8.13. Action: PHY_PORT

Directs matching traffic to a given physical port index of the underlying
device.

See Item: PHY_PORT.

Table 12.44 PHY_PORT

	Field

	Value

	original

	use original port index if possible

	index

	physical port index

12.2.8.14. Action: PORT_ID

Directs matching traffic to a given DPDK port ID.

See Item: PORT_ID.

Table 12.45 PORT_ID

	Field

	Value

	original

	use original DPDK port ID if possible

	id

	DPDK port ID

12.2.8.15. Action: METER

Applies a stage of metering and policing.

The metering and policing (MTR) object has to be first created using the
rte_mtr_create() API function. The ID of the MTR object is specified as
action parameter. More than one flow can use the same MTR object through
the meter action. The MTR object can be further updated or queried using
the rte_mtr* API.

Table 12.46 METER

	Field

	Value

	mtr_id

	MTR object ID

12.2.8.16. Action: SECURITY

Perform the security action on flows matched by the pattern items
according to the configuration of the security session.

This action modifies the payload of matched flows. For INLINE_CRYPTO, the
security protocol headers and IV are fully provided by the application as
specified in the flow pattern. The payload of matching packets is
encrypted on egress, and decrypted and authenticated on ingress.
For INLINE_PROTOCOL, the security protocol is fully offloaded to HW,
providing full encapsulation and decapsulation of packets in security
protocols. The flow pattern specifies both the outer security header fields
and the inner packet fields. The security session specified in the action
must match the pattern parameters.

The security session specified in the action must be created on the same
port as the flow action that is being specified.

The ingress/egress flow attribute should match that specified in the
security session if the security session supports the definition of the
direction.

Multiple flows can be configured to use the same security session.

Table 12.47 SECURITY

	Field

	Value

	security_session

	security session to apply

The following is an example of configuring IPsec inline using the
INLINE_CRYPTO security session:

The encryption algorithm, keys and salt are part of the opaque
rte_security_session. The SA is identified according to the IP and ESP
fields in the pattern items.

Table 12.48 IPsec inline crypto flow pattern items.

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	ESP

	3

	END

Table 12.49 IPsec inline flow actions.

	Index

	Action

	0

	SECURITY

	1

	END

12.2.8.17. Action: OF_SET_MPLS_TTL

Implements OFPAT_SET_MPLS_TTL (“MPLS TTL”) as defined by the OpenFlow
Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.50 OF_SET_MPLS_TTL

	Field

	Value

	mpls_ttl

	MPLS TTL

12.2.8.18. Action: OF_DEC_MPLS_TTL

Implements OFPAT_DEC_MPLS_TTL (“decrement MPLS TTL”) as defined by the
OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.51 OF_DEC_MPLS_TTL

	Field

	no properties

12.2.8.19. Action: OF_SET_NW_TTL

Implements OFPAT_SET_NW_TTL (“IP TTL”) as defined by the OpenFlow
Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.52 OF_SET_NW_TTL

	Field

	Value

	nw_ttl

	IP TTL

12.2.8.20. Action: OF_DEC_NW_TTL

Implements OFPAT_DEC_NW_TTL (“decrement IP TTL”) as defined by the
OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.53 OF_DEC_NW_TTL

	Field

	no properties

12.2.8.21. Action: OF_COPY_TTL_OUT

Implements OFPAT_COPY_TTL_OUT (“copy TTL “outwards” – from
next-to-outermost to outermost”) as defined by the OpenFlow Switch
Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.54 OF_COPY_TTL_OUT

	Field

	no properties

12.2.8.22. Action: OF_COPY_TTL_IN

Implements OFPAT_COPY_TTL_IN (“copy TTL “inwards” – from outermost to
next-to-outermost”) as defined by the OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.55 OF_COPY_TTL_IN

	Field

	no properties

12.2.8.23. Action: OF_POP_VLAN

Implements OFPAT_POP_VLAN (“pop the outer VLAN tag”) as defined
by the OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.56 OF_POP_VLAN

	Field

	no properties

12.2.8.24. Action: OF_PUSH_VLAN

Implements OFPAT_PUSH_VLAN (“push a new VLAN tag”) as defined by the
OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.57 OF_PUSH_VLAN

	Field

	Value

	ethertype

	EtherType

12.2.8.25. Action: OF_SET_VLAN_VID

Implements OFPAT_SET_VLAN_VID (“set the 802.1q VLAN id”) as defined by
the OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.58 OF_SET_VLAN_VID

	Field

	Value

	vlan_vid

	VLAN id

12.2.8.26. Action: OF_SET_VLAN_PCP

Implements OFPAT_SET_LAN_PCP (“set the 802.1q priority”) as defined by
the OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.59 OF_SET_VLAN_PCP

	Field

	Value

	vlan_pcp

	VLAN priority

12.2.8.27. Action: OF_POP_MPLS

Implements OFPAT_POP_MPLS (“pop the outer MPLS tag”) as defined by the
OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.60 OF_POP_MPLS

	Field

	Value

	ethertype

	EtherType

12.2.8.28. Action: OF_PUSH_MPLS

Implements OFPAT_PUSH_MPLS (“push a new MPLS tag”) as defined by the
OpenFlow Switch Specification [https://www.opennetworking.org/software-defined-standards/specifications/].

Table 12.61 OF_PUSH_MPLS

	Field

	Value

	ethertype

	EtherType

12.2.8.29. Action: VXLAN_ENCAP

Performs a VXLAN encapsulation action by encapsulating the matched flow in the
VXLAN tunnel as defined in the``rte_flow_action_vxlan_encap`` flow items
definition.

This action modifies the payload of matched flows. The flow definition specified
in the rte_flow_action_tunnel_encap action structure must define a valid
VLXAN network overlay which conforms with RFC 7348 (Virtual eXtensible Local
Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks). The pattern must be terminated with the
RTE_FLOW_ITEM_TYPE_END item type.

Table 12.62 VXLAN_ENCAP

	Field

	Value

	definition

	Tunnel end-point overlay definition

Table 12.63 IPv4 VxLAN flow pattern example.

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	UDP

	3

	VXLAN

	4

	END

12.2.8.30. Action: VXLAN_DECAP

Performs a decapsulation action by stripping all headers of the VXLAN tunnel
network overlay from the matched flow.

The flow items pattern defined for the flow rule with which a VXLAN_DECAP
action is specified, must define a valid VXLAN tunnel as per RFC7348. If the
flow pattern does not specify a valid VXLAN tunnel then a
RTE_FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

12.2.8.31. Action: NVGRE_ENCAP

Performs a NVGRE encapsulation action by encapsulating the matched flow in the
NVGRE tunnel as defined in the``rte_flow_action_tunnel_encap`` flow item
definition.

This action modifies the payload of matched flows. The flow definition specified
in the rte_flow_action_tunnel_encap action structure must defined a valid
NVGRE network overlay which conforms with RFC 7637 (NVGRE: Network
Virtualization Using Generic Routing Encapsulation). The pattern must be
terminated with the RTE_FLOW_ITEM_TYPE_END item type.

Table 12.64 NVGRE_ENCAP

	Field

	Value

	definition

	NVGRE end-point overlay definition

Table 12.65 IPv4 NVGRE flow pattern example.

	Index

	Item

	0

	Ethernet

	1

	IPv4

	2

	NVGRE

	3

	END

12.2.8.32. Action: NVGRE_DECAP

Performs a decapsulation action by stripping all headers of the NVGRE tunnel
network overlay from the matched flow.

The flow items pattern defined for the flow rule with which a NVGRE_DECAP
action is specified, must define a valid NVGRE tunnel as per RFC7637. If the
flow pattern does not specify a valid NVGRE tunnel then a
RTE_FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

12.2.8.33. Action: RAW_ENCAP

Adds outer header whose template is provided in its data buffer,
as defined in the rte_flow_action_raw_encap definition.

This action modifies the payload of matched flows. The data supplied must
be a valid header, either holding layer 2 data in case of adding layer 2 after
decap layer 3 tunnel (for example MPLSoGRE) or complete tunnel definition
starting from layer 2 and moving to the tunnel item itself. When applied to
the original packet the resulting packet must be a valid packet.

Table 12.66 RAW_ENCAP

	Field

	Value

	data

	Encapsulation data

	preserve

	Bit-mask of data to preserve on output

	size

	Size of data and preserve

12.2.8.34. Action: RAW_DECAP

Remove outer header whose template is provided in its data buffer,
as defined in the rte_flow_action_raw_decap

This action modifies the payload of matched flows. The data supplied must
be a valid header, either holding layer 2 data in case of removing layer 2
before encapsulation of layer 3 tunnel (for example MPLSoGRE) or complete
tunnel definition starting from layer 2 and moving to the tunnel item itself.
When applied to the original packet the resulting packet must be a
valid packet.

Table 12.67 RAW_DECAP

	Field

	Value

	data

	Decapsulation data

	size

	Size of data

12.2.8.35. Action: SET_IPV4_SRC

Set a new IPv4 source address in the outermost IPv4 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV4 flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.68 SET_IPV4_SRC

	Field | Value

	ipv4_addr

	new IPv4 source address

12.2.8.36. Action: SET_IPV4_DST

Set a new IPv4 destination address in the outermost IPv4 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV4 flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.69 SET_IPV4_DST

	Field

	Value

	ipv4_addr

	new IPv4 destination address

12.2.8.37. Action: SET_IPV6_SRC

Set a new IPv6 source address in the outermost IPv6 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV6 flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.70 SET_IPV6_SRC

	Field

	Value

	ipv6_addr

	new IPv6 source address

12.2.8.38. Action: SET_IPV6_DST

Set a new IPv6 destination address in the outermost IPv6 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV6 flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.71 SET_IPV6_DST

	Field

	Value

	ipv6_addr

	new IPv6 destination address

12.2.8.39. Action: SET_TP_SRC

Set a new source port number in the outermost TCP/UDP header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_TCP or RTE_FLOW_ITEM_TYPE_UDP
flow pattern item. Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.72 SET_TP_SRC

	Field

	Value

	port | new TCP/UDP source port

12.2.8.40. Action: SET_TP_DST

Set a new destination port number in the outermost TCP/UDP header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_TCP or RTE_FLOW_ITEM_TYPE_UDP
flow pattern item. Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.73 SET_TP_DST

	Field

	Value

	port | new TCP/UDP destination port

12.2.8.41. Action: MAC_SWAP

Swap the source and destination MAC addresses in the outermost Ethernet
header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.74 MAC_SWAP

	Field

	no properties

12.2.8.42. Action: DEC_TTL

Decrease TTL value.

If there is no valid RTE_FLOW_ITEM_TYPE_IPV4 or RTE_FLOW_ITEM_TYPE_IPV6
in pattern, Some PMDs will reject rule because behavior will be undefined.

Table 12.75 DEC_TTL

	Field

	no properties

12.2.8.43. Action: SET_TTL

Assigns a new TTL value.

If there is no valid RTE_FLOW_ITEM_TYPE_IPV4 or RTE_FLOW_ITEM_TYPE_IPV6
in pattern, Some PMDs will reject rule because behavior will be undefined.

Table 12.76 SET_TTL

	Field

	Value

	ttl_value

	new TTL value

12.2.8.44. Action: SET_MAC_SRC

Set source MAC address.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.77 SET_MAC_SRC

	Field

	Value

	mac_addr

	MAC address

12.2.8.45. Action: SET_MAC_DST

Set destination MAC address.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.78 SET_MAC_DST

	Field

	Value

	mac_addr

	MAC address

12.2.8.46. Action: INC_TCP_SEQ

Increase sequence number in the outermost TCP header.
Value to increase TCP sequence number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

12.2.8.47. Action: DEC_TCP_SEQ

Decrease sequence number in the outermost TCP header.
Value to decrease TCP sequence number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

12.2.8.48. Action: INC_TCP_ACK

Increase acknowledgment number in the outermost TCP header.
Value to increase TCP acknowledgment number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

12.2.8.49. Action: DEC_TCP_ACK

Decrease acknowledgment number in the outermost TCP header.
Value to decrease TCP acknowledgment number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

12.2.8.50. Action: SET_TAG

Set Tag.

Tag is a transient data used during flow matching. This is not delivered to
application. Multiple tags are supported by specifying index.

Table 12.79 SET_TAG

	Field

	Value

	data

	32 bit tag value

	mask

	bit-mask applies to “data”

	index

	index of tag to set

12.2.8.51. Action: SET_META

Set metadata. Item META matches metadata.

Metadata set by mbuf metadata field with PKT_TX_DYNF_METADATA flag on egress
will be overridden by this action. On ingress, the metadata will be carried by
metadata dynamic field of rte_mbuf which can be accessed by
RTE_FLOW_DYNF_METADATA(). PKT_RX_DYNF_METADATA flag will be set along
with the data.

The mbuf dynamic field must be registered by calling
rte_flow_dynf_metadata_register() prior to use SET_META action.

Altering partial bits is supported with mask. For bits which have never been
set, unpredictable value will be seen depending on driver implementation. For
loopback/hairpin packet, metadata set on Rx/Tx may or may not be propagated to
the other path depending on HW capability.

Table 12.80 SET_META

	Field

	Value

	data

	32 bit metadata value

	mask

	bit-mask applies to “data”

12.2.8.52. Action: SET_IPV4_DSCP

Set IPv4 DSCP.

Modify DSCP in IPv4 header.

It must be used with RTE_FLOW_ITEM_TYPE_IPV4 in pattern.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.81 SET_IPV4_DSCP

	Field

	Value

	dscp

	DSCP in low 6 bits, rest ignore

12.2.8.53. Action: SET_IPV6_DSCP

Set IPv6 DSCP.

Modify DSCP in IPv6 header.

It must be used with RTE_FLOW_ITEM_TYPE_IPV6 in pattern.
Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.82 SET_IPV6_DSCP

	Field

	Value

	dscp

	DSCP in low 6 bits, rest ignore

12.2.8.54. Action: AGE

Set ageing timeout configuration to a flow.

Event RTE_ETH_EVENT_FLOW_AGED will be reported if
timeout passed without any matching on the flow.

Table 12.83 AGE

	Field

	Value

	timeout

	24 bits timeout value

	reserved

	8 bits reserved, must be zero

	context

	user input flow context

12.2.9. Negative types

All specified pattern items (enum rte_flow_item_type) and actions
(enum rte_flow_action_type) use positive identifiers.

The negative space is reserved for dynamic types generated by PMDs during
run-time. PMDs may encounter them as a result but must not accept negative
identifiers they are not aware of.

A method to generate them remains to be defined.

12.2.10. Planned types

Pattern item types will be added as new protocols are implemented.

Variable headers support through dedicated pattern items, for example in
order to match specific IPv4 options and IPv6 extension headers would be
stacked after IPv4/IPv6 items.

Other action types are planned but are not defined yet. These include the
ability to alter packet data in several ways, such as performing
encapsulation/decapsulation of tunnel headers.

12.3. Rules management

A rather simple API with few functions is provided to fully manage flow
rules.

Each created flow rule is associated with an opaque, PMD-specific handle
pointer. The application is responsible for keeping it until the rule is
destroyed.

Flows rules are represented by struct rte_flow objects.

12.3.1. Validation

Given that expressing a definite set of device capabilities is not
practical, a dedicated function is provided to check if a flow rule is
supported and can be created.

int
rte_flow_validate(uint16_t port_id,
 const struct rte_flow_attr *attr,
 const struct rte_flow_item pattern[],
 const struct rte_flow_action actions[],
 struct rte_flow_error *error);

The flow rule is validated for correctness and whether it could be accepted
by the device given sufficient resources. The rule is checked against the
current device mode and queue configuration. The flow rule may also
optionally be validated against existing flow rules and device resources.
This function has no effect on the target device.

The returned value is guaranteed to remain valid only as long as no
successful calls to rte_flow_create() or rte_flow_destroy() are made
in the meantime and no device parameter affecting flow rules in any way are
modified, due to possible collisions or resource limitations (although in
such cases EINVAL should not be returned).

Arguments:

	port_id: port identifier of Ethernet device.

	attr: flow rule attributes.

	pattern: pattern specification (list terminated by the END pattern
item).

	actions: associated actions (list terminated by the END action).

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

	0 if flow rule is valid and can be created. A negative errno value
otherwise (rte_errno is also set), the following errors are defined.

	-ENOSYS: underlying device does not support this functionality.

	-EINVAL: unknown or invalid rule specification.

	-ENOTSUP: valid but unsupported rule specification (e.g. partial
bit-masks are unsupported).

	EEXIST: collision with an existing rule. Only returned if device
supports flow rule collision checking and there was a flow rule
collision. Not receiving this return code is no guarantee that creating
the rule will not fail due to a collision.

	ENOMEM: not enough memory to execute the function, or if the device
supports resource validation, resource limitation on the device.

	-EBUSY: action cannot be performed due to busy device resources, may
succeed if the affected queues or even the entire port are in a stopped
state (see rte_eth_dev_rx_queue_stop() and rte_eth_dev_stop()).

12.3.2. Creation

Creating a flow rule is similar to validating one, except the rule is
actually created and a handle returned.

struct rte_flow *
rte_flow_create(uint16_t port_id,
 const struct rte_flow_attr *attr,
 const struct rte_flow_item pattern[],
 const struct rte_flow_action *actions[],
 struct rte_flow_error *error);

Arguments:

	port_id: port identifier of Ethernet device.

	attr: flow rule attributes.

	pattern: pattern specification (list terminated by the END pattern
item).

	actions: associated actions (list terminated by the END action).

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

A valid handle in case of success, NULL otherwise and rte_errno is set
to the positive version of one of the error codes defined for
rte_flow_validate().

12.3.3. Destruction

Flow rules destruction is not automatic, and a queue or a port should not be
released if any are still attached to them. Applications must take care of
performing this step before releasing resources.

int
rte_flow_destroy(uint16_t port_id,
 struct rte_flow *flow,
 struct rte_flow_error *error);

Failure to destroy a flow rule handle may occur when other flow rules depend
on it, and destroying it would result in an inconsistent state.

This function is only guaranteed to succeed if handles are destroyed in
reverse order of their creation.

Arguments:

	port_id: port identifier of Ethernet device.

	flow: flow rule handle to destroy.

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

	0 on success, a negative errno value otherwise and rte_errno is set.

12.3.4. Flush

Convenience function to destroy all flow rule handles associated with a
port. They are released as with successive calls to rte_flow_destroy().

int
rte_flow_flush(uint16_t port_id,
 struct rte_flow_error *error);

In the unlikely event of failure, handles are still considered destroyed and
no longer valid but the port must be assumed to be in an inconsistent state.

Arguments:

	port_id: port identifier of Ethernet device.

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

	0 on success, a negative errno value otherwise and rte_errno is set.

12.3.5. Query

Query an existing flow rule.

This function allows retrieving flow-specific data such as counters. Data
is gathered by special actions which must be present in the flow rule
definition.

int
rte_flow_query(uint16_t port_id,
 struct rte_flow *flow,
 const struct rte_flow_action *action,
 void *data,
 struct rte_flow_error *error);

Arguments:

	port_id: port identifier of Ethernet device.

	flow: flow rule handle to query.

	action: action to query, this must match prototype from flow rule.

	data: pointer to storage for the associated query data type.

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

	0 on success, a negative errno value otherwise and rte_errno is set.

12.4. Flow isolated mode

The general expectation for ingress traffic is that flow rules process it
first; the remaining unmatched or pass-through traffic usually ends up in a
queue (with or without RSS, locally or in some sub-device instance)
depending on the global configuration settings of a port.

While fine from a compatibility standpoint, this approach makes drivers more
complex as they have to check for possible side effects outside of this API
when creating or destroying flow rules. It results in a more limited set of
available rule types due to the way device resources are assigned (e.g. no
support for the RSS action even on capable hardware).

Given that nonspecific traffic can be handled by flow rules as well,
isolated mode is a means for applications to tell a driver that ingress on
the underlying port must be injected from the defined flow rules only; that
no default traffic is expected outside those rules.

This has the following benefits:

	Applications get finer-grained control over the kind of traffic they want
to receive (no traffic by default).

	More importantly they control at what point nonspecific traffic is handled
relative to other flow rules, by adjusting priority levels.

	Drivers can assign more hardware resources to flow rules and expand the
set of supported rule types.

Because toggling isolated mode may cause profound changes to the ingress
processing path of a driver, it may not be possible to leave it once
entered. Likewise, existing flow rules or global configuration settings may
prevent a driver from entering isolated mode.

Applications relying on this mode are therefore encouraged to toggle it as
soon as possible after device initialization, ideally before the first call
to rte_eth_dev_configure() to avoid possible failures due to conflicting
settings.

Once effective, the following functionality has no effect on the underlying
port and may return errors such as ENOTSUP (“not supported”):

	Toggling promiscuous mode.

	Toggling allmulticast mode.

	Configuring MAC addresses.

	Configuring multicast addresses.

	Configuring VLAN filters.

	Configuring Rx filters through the legacy API (e.g. FDIR).

	Configuring global RSS settings.

int
rte_flow_isolate(uint16_t port_id, int set, struct rte_flow_error *error);

Arguments:

	port_id: port identifier of Ethernet device.

	set: nonzero to enter isolated mode, attempt to leave it otherwise.

	error: perform verbose error reporting if not NULL. PMDs initialize
this structure in case of error only.

Return values:

	0 on success, a negative errno value otherwise and rte_errno is set.

12.5. Verbose error reporting

The defined errno values may not be accurate enough for users or
application developers who want to investigate issues related to flow rules
management. A dedicated error object is defined for this purpose:

enum rte_flow_error_type {
 RTE_FLOW_ERROR_TYPE_NONE, /**< No error. */
 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /**< Cause unspecified. */
 RTE_FLOW_ERROR_TYPE_HANDLE, /**< Flow rule (handle). */
 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /**< Group field. */
 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /**< Priority field. */
 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /**< Ingress field. */
 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /**< Egress field. */
 RTE_FLOW_ERROR_TYPE_ATTR, /**< Attributes structure. */
 RTE_FLOW_ERROR_TYPE_ITEM_NUM, /**< Pattern length. */
 RTE_FLOW_ERROR_TYPE_ITEM, /**< Specific pattern item. */
 RTE_FLOW_ERROR_TYPE_ACTION_NUM, /**< Number of actions. */
 RTE_FLOW_ERROR_TYPE_ACTION, /**< Specific action. */
};

struct rte_flow_error {
 enum rte_flow_error_type type; /**< Cause field and error types. */
 const void *cause; /**< Object responsible for the error. */
 const char *message; /**< Human-readable error message. */
};

Error type RTE_FLOW_ERROR_TYPE_NONE stands for no error, in which case
remaining fields can be ignored. Other error types describe the type of the
object pointed by cause.

If non-NULL, cause points to the object responsible for the error. For a
flow rule, this may be a pattern item or an individual action.

If non-NULL, message provides a human-readable error message.

This object is normally allocated by applications and set by PMDs in case of
error, the message points to a constant string which does not need to be
freed by the application, however its pointer can be considered valid only
as long as its associated DPDK port remains configured. Closing the
underlying device or unloading the PMD invalidates it.

12.6. Helpers

12.6.1. Error initializer

static inline int
rte_flow_error_set(struct rte_flow_error *error,
 int code,
 enum rte_flow_error_type type,
 const void *cause,
 const char *message);

This function initializes error (if non-NULL) with the provided
parameters and sets rte_errno to code. A negative error code is
then returned.

12.6.2. Object conversion

int
rte_flow_conv(enum rte_flow_conv_op op,
 void *dst,
 size_t size,
 const void *src,
 struct rte_flow_error *error);

Convert src to dst according to operation op. Possible
operations include:

	Attributes, pattern item or action duplication.

	Duplication of an entire pattern or list of actions.

	Duplication of a complete flow rule description.

	Pattern item or action name retrieval.

12.7. Caveats

	DPDK does not keep track of flow rules definitions or flow rule objects
automatically. Applications may keep track of the former and must keep
track of the latter. PMDs may also do it for internal needs, however this
must not be relied on by applications.

	Flow rules are not maintained between successive port initializations. An
application exiting without releasing them and restarting must re-create
them from scratch.

	API operations are synchronous and blocking (EAGAIN cannot be
returned).

	There is no provision for re-entrancy/multi-thread safety, although nothing
should prevent different devices from being configured at the same
time. PMDs may protect their control path functions accordingly.

	Stopping the data path (TX/RX) should not be necessary when managing flow
rules. If this cannot be achieved naturally or with workarounds (such as
temporarily replacing the burst function pointers), an appropriate error
code must be returned (EBUSY).

	PMDs, not applications, are responsible for maintaining flow rules
configuration when stopping and restarting a port or performing other
actions which may affect them. They can only be destroyed explicitly by
applications.

For devices exposing multiple ports sharing global settings affected by flow
rules:

	All ports under DPDK control must behave consistently, PMDs are
responsible for making sure that existing flow rules on a port are not
affected by other ports.

	Ports not under DPDK control (unaffected or handled by other applications)
are user’s responsibility. They may affect existing flow rules and cause
undefined behavior. PMDs aware of this may prevent flow rules creation
altogether in such cases.

12.8. PMD interface

The PMD interface is defined in rte_flow_driver.h. It is not subject to
API/ABI versioning constraints as it is not exposed to applications and may
evolve independently.

It is currently implemented on top of the legacy filtering framework through
filter type RTE_ETH_FILTER_GENERIC that accepts the single operation
RTE_ETH_FILTER_GET to return PMD-specific rte_flow callbacks wrapped
inside struct rte_flow_ops.

This overhead is temporarily necessary in order to keep compatibility with
the legacy filtering framework, which should eventually disappear.

	PMD callbacks implement exactly the interface described in Rules
management, except for the port ID argument which has already been
converted to a pointer to the underlying struct rte_eth_dev.

	Public API functions do not process flow rules definitions at all before
calling PMD functions (no basic error checking, no validation
whatsoever). They only make sure these callbacks are non-NULL or return
the ENOSYS (function not supported) error.

This interface additionally defines the following helper function:

	rte_flow_ops_get(): get generic flow operations structure from a
port.

More will be added over time.

12.9. Device compatibility

No known implementation supports all the described features.

Unsupported features or combinations are not expected to be fully emulated
in software by PMDs for performance reasons. Partially supported features
may be completed in software as long as hardware performs most of the work
(such as queue redirection and packet recognition).

However PMDs are expected to do their best to satisfy application requests
by working around hardware limitations as long as doing so does not affect
the behavior of existing flow rules.

The following sections provide a few examples of such cases and describe how
PMDs should handle them, they are based on limitations built into the
previous APIs.

12.9.1. Global bit-masks

Each flow rule comes with its own, per-layer bit-masks, while hardware may
support only a single, device-wide bit-mask for a given layer type, so that
two IPv4 rules cannot use different bit-masks.

The expected behavior in this case is that PMDs automatically configure
global bit-masks according to the needs of the first flow rule created.

Subsequent rules are allowed only if their bit-masks match those, the
EEXIST error code should be returned otherwise.

12.9.2. Unsupported layer types

Many protocols can be simulated by crafting patterns with the Item: RAW
type.

PMDs can rely on this capability to simulate support for protocols with
headers not directly recognized by hardware.

12.9.3. ANY pattern item

This pattern item stands for anything, which can be difficult to translate
to something hardware would understand, particularly if followed by more
specific types.

Consider the following pattern:

Table 12.84 Pattern with ANY as L3

	Index

	Item

	0

	ETHER

	1

	ANY

	num

	1

	2

	TCP

	3

	END

Knowing that TCP does not make sense with something other than IPv4 and IPv6
as L3, such a pattern may be translated to two flow rules instead:

Table 12.85 ANY replaced with IPV4

	Index

	Item

	0

	ETHER

	1

	IPV4 (zeroed mask)

	2

	TCP

	3

	END

Table 12.86 ANY replaced with IPV6

	Index

	Item

	0

	ETHER

	1

	IPV6 (zeroed mask)

	2

	TCP

	3

	END

Note that as soon as a ANY rule covers several layers, this approach may
yield a large number of hidden flow rules. It is thus suggested to only
support the most common scenarios (anything as L2 and/or L3).

12.9.4. Unsupported actions

	When combined with Action: QUEUE, packet counting (Action: COUNT)
and tagging (Action: MARK or Action: FLAG) may be implemented in
software as long as the target queue is used by a single rule.

	When a single target queue is provided, Action: RSS can also be
implemented through Action: QUEUE.

12.9.5. Flow rules priority

While it would naturally make sense, flow rules cannot be assumed to be
processed by hardware in the same order as their creation for several
reasons:

	They may be managed internally as a tree or a hash table instead of a
list.

	Removing a flow rule before adding another one can either put the new rule
at the end of the list or reuse a freed entry.

	Duplication may occur when packets are matched by several rules.

For overlapping rules (particularly in order to use Action: PASSTHRU)
predictable behavior is only guaranteed by using different priority levels.

Priority levels are not necessarily implemented in hardware, or may be
severely limited (e.g. a single priority bit).

For these reasons, priority levels may be implemented purely in software by
PMDs.

	For devices expecting flow rules to be added in the correct order, PMDs
may destroy and re-create existing rules after adding a new one with
a higher priority.

	A configurable number of dummy or empty rules can be created at
initialization time to save high priority slots for later.

	In order to save priority levels, PMDs may evaluate whether rules are
likely to collide and adjust their priority accordingly.

12.10. Future evolutions

	A device profile selection function which could be used to force a
permanent profile instead of relying on its automatic configuration based
on existing flow rules.

	A method to optimize rte_flow rules with specific pattern items and
action types generated on the fly by PMDs. DPDK should assign negative
numbers to these in order to not collide with the existing types. See
Negative types.

	Adding specific egress pattern items and actions as described in
Attribute: Traffic direction.

	Optional software fallback when PMDs are unable to handle requested flow
rules so applications do not have to implement their own.

13. Switch Representation within DPDK Applications

	Introduction

	Port Representors

	Basic SR-IOV

	Controlled SR-IOV

	Initialization

	VF Representors

	Traffic Steering

	Flow API (rte_flow)

	Extensions

	Traffic Direction

	Transferring Traffic

	Without Port Representors

	With Port Representors

	Pattern Items And Actions

	PORT Pattern Item

	PORT Action

	PORT_ID Pattern Item

	PORT_ID Action

	PF Pattern Item

	PF Action

	VF Pattern Item

	VF Action

	*_ENCAP actions

	*_DECAP actions

	Actions Order and Repetition

	Switching Examples

	Associating VF 1 with Physical Port 0

	Sharing Broadcasts

	Encapsulating VF 2 Traffic in VXLAN

13.1. Introduction

Network adapters with multiple physical ports and/or SR-IOV capabilities
usually support the offload of traffic steering rules between their virtual
functions (VFs), physical functions (PFs) and ports.

Like for standard Ethernet switches, this involves a combination of
automatic MAC learning and manual configuration. For most purposes it is
managed by the host system and fully transparent to users and applications.

On the other hand, applications typically found on hypervisors that process
layer 2 (L2) traffic (such as OVS) need to steer traffic themselves
according on their own criteria.

Without a standard software interface to manage traffic steering rules
between VFs, PFs and the various physical ports of a given device,
applications cannot take advantage of these offloads; software processing is
mandatory even for traffic which ends up re-injected into the device it
originates from.

This document describes how such steering rules can be configured through
the DPDK flow API (rte_flow), with emphasis on the SR-IOV use case
(PF/VF steering) using a single physical port for clarity, however the same
logic applies to any number of ports without necessarily involving SR-IOV.

13.2. Port Representors

In many cases, traffic steering rules cannot be determined in advance;
applications usually have to process a bit of traffic in software before
thinking about offloading specific flows to hardware.

Applications therefore need the ability to receive and inject traffic to
various device endpoints (other VFs, PFs or physical ports) before
connecting them together. Device drivers must provide means to hook the
“other end” of these endpoints and to refer them when configuring flow
rules.

This role is left to so-called “port representors” (also known as “VF
representors” in the specific context of VFs), which are to DPDK what the
Ethernet switch device driver model (switchdev) 1 is to Linux, and
which can be thought as a software “patch panel” front-end for applications.

	DPDK port representors are implemented as additional virtual Ethernet
device (ethdev) instances, spawned on an as needed basis through
configuration parameters passed to the driver of the underlying
device using devargs.

-w pci:dbdf,representor=0
-w pci:dbdf,representor=[0-3]
-w pci:dbdf,representor=[0,5-11]

	As virtual devices, they may be more limited than their physical
counterparts, for instance by exposing only a subset of device
configuration callbacks and/or by not necessarily having Rx/Tx capability.

	Among other things, they can be used to assign MAC addresses to the
resource they represent.

	Applications can tell port representors apart from other physical of virtual
port by checking the dev_flags field within their device information
structure for the RTE_ETH_DEV_REPRESENTOR bit-field.

struct rte_eth_dev_info {
 ...
 uint32_t dev_flags; /**< Device flags */
 ...
};

	The device or group relationship of ports can be discovered using the
switch domain_id field within the devices switch information structure. By
default the switch domain_id of a port will be
RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID to indicate that the port doesn’t
support the concept of a switch domain, but ports which do support the concept
will be allocated a unique switch domain_id, ports within the same switch
domain will share the same domain_id. The switch port_id is used to
specify the port_id in terms of the switch, so in the case of SR-IOV devices
the switch port_id would represent the virtual function identifier of the
port.

/**
 * Ethernet device associated switch information
 */
struct rte_eth_switch_info {
 const char *name; /**< switch name */
 uint16_t domain_id; /**< switch domain id */
 uint16_t port_id; /**< switch port id */
};

	1

	Ethernet switch device driver model (switchdev) [https://www.kernel.org/doc/Documentation/networking/switchdev.txt]

13.3. Basic SR-IOV

“Basic” in the sense that it is not managed by applications, which
nonetheless expect traffic to flow between the various endpoints and the
outside as if everything was linked by an Ethernet hub.

The following diagram pictures a setup involving a device with one PF, two
VFs and one shared physical port

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+----------' `----------+--' `--+----------'
 | | |
.-----+-----. | |
| port_id 3 | | |
`-----+-----' | |
 | | |
 .-+--. .---+--. .--+---.
 | PF | | VF 1 | | VF 2 |
 `-+--' `---+--' `--+---'
 | | |
 `---------. .-----------------------' |
 | | .-------------------------'
 | | |
 .--+-----+-----+--.
 | interconnection |
 `--------+--------'
 |
 .----+-----.
 | physical |
 | port 0 |
 `----------'

	A DPDK application running on the hypervisor owns the PF device, which is
arbitrarily assigned port index 3.

	Both VFs are assigned to VMs and used by unknown applications; they may be
DPDK-based or anything else.

	Interconnection is not necessarily done through a true Ethernet switch and
may not even exist as a separate entity. The role of this block is to show
that something brings PF, VFs and physical ports together and enables
communication between them, with a number of built-in restrictions.

Subsequent sections in this document describe means for DPDK applications
running on the hypervisor to freely assign specific flows between PF, VFs
and physical ports based on traffic properties, by managing this
interconnection.

13.4. Controlled SR-IOV

13.4.1. Initialization

When a DPDK application gets assigned a PF device and is deliberately not
started in basic SR-IOV mode, any traffic coming from physical ports is
received by PF according to default rules, while VFs remain isolated.

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+----------' `----------+--' `--+----------'
 | | |
.-----+-----. | |
| port_id 3 | | |
`-----+-----' | |
 | | |
 .-+--. .---+--. .--+---.
 | PF | | VF 1 | | VF 2 |
 `-+--' `------' `------'
 |
 `-----.
 |
 .--+----------------------.
 | managed interconnection |
 `------------+------------'
 |
 .----+-----.
 | physical |
 | port 0 |
 `----------'

In this mode, interconnection must be configured by the application to
enable VF communication, for instance by explicitly directing traffic with a
given destination MAC address to VF 1 and allowing that with the same source
MAC address to come out of it.

For this to work, hypervisor applications need a way to refer to either VF 1
or VF 2 in addition to the PF. This is addressed by VF representors.

13.4.2. VF Representors

VF representors are virtual but standard DPDK network devices (albeit with
limited capabilities) created by PMDs when managing a PF device.

Since they represent VF instances used by other applications, configuring
them (e.g. assigning a MAC address or setting up promiscuous mode) affects
interconnection accordingly. If supported, they may also be used as two-way
communication ports with VFs (assuming switchdev topology)

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+---+---+--' `----------+--' `--+----------'
 | | | | |
 | | `-------------------. | |
 | `---------. | | |
 | | | | |
.-----+-----. .-----+-----. .-----+-----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |
 | | | | |
 .-+--. .-----+-----. .-----+-----. .---+--. .--+---.
 | PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
 `-+--' `-----+-----' `-----+-----' `---+--' `--+---'
 | | | | |
 | | .---------' | |
 `-----. | | .-----------------' |
 | | | | .---------------------'
 | | | | |
 .--+-------+---+---+---+--.
 | managed interconnection |
 `------------+------------'
 |
 .----+-----.
 | physical |
 | port 0 |
 `----------'

	VF representors are assigned arbitrary port indices 4 and 5 in the
hypervisor application and are respectively associated with VF 1 and VF 2.

	They can’t be dissociated; even if VF 1 and VF 2 were not connected,
representors could still be used for configuration.

	In this context, port index 3 can be thought as a representor for physical
port 0.

As previously described, the “interconnection” block represents a logical
concept. Interconnection occurs when hardware configuration enables traffic
flows from one place to another (e.g. physical port 0 to VF 1) according to
some criteria.

This is discussed in more detail in traffic steering.

13.4.3. Traffic Steering

In the following diagram, each meaningful traffic origin or endpoint as seen
by the hypervisor application is tagged with a unique letter from A to F.

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+---+---+--' `----------+--' `--+----------'
 | | | | |
 | | `-------------------. | |
 | `---------. | | |
 | | | | |
.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |
 | | | | |
 .-+--. .-----+-----. .-----+-----. .---+--. .--+---.
 | PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
 `-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'
 | | | | |
 | | .---------' | |
 `-----. | | .-----------------' |
 | | | | .---------------------'
 | | | | |
 .--+-------+---+---+---+--.
 | managed interconnection |
 `------------+------------'
 |
 .---(F)----.
 | physical |
 | port 0 |
 `----------'

	A: PF device.

	B: port representor for VF 1.

	C: port representor for VF 2.

	D: VF 1 proper.

	E: VF 2 proper.

	F: physical port.

Although uncommon, some devices do not enforce a one to one mapping between
PF and physical ports. For instance, by default all ports of mlx4
adapters are available to all their PF/VF instances, in which case
additional ports appear next to F in the above diagram.

Assuming no interconnection is provided by default in this mode, setting up
a basic SR-IOV configuration involving physical port 0 could be broken
down as:

PF:

	A to F: let everything through.

	F to A: PF MAC as destination.

VF 1:

	A to D, E to D and F to D: VF 1 MAC as destination.

	D to A: VF 1 MAC as source and PF MAC as destination.

	D to E: VF 1 MAC as source and VF 2 MAC as destination.

	D to F: VF 1 MAC as source.

VF 2:

	A to E, D to E and F to E: VF 2 MAC as destination.

	E to A: VF 2 MAC as source and PF MAC as destination.

	E to D: VF 2 MAC as source and VF 1 MAC as destination.

	E to F: VF 2 MAC as source.

Devices may additionally support advanced matching criteria such as
IPv4/IPv6 addresses or TCP/UDP ports.

The combination of matching criteria with target endpoints fits well with
rte_flow 6, which expresses flow rules as combinations of patterns
and actions.

Enhancing rte_flow with the ability to make flow rules match and target
these endpoints provides a standard interface to manage their
interconnection without introducing new concepts and whole new API to
implement them. This is described in flow API (rte_flow).

	6

	Generic flow API (rte_flow)

13.5. Flow API (rte_flow)

13.5.1. Extensions

Compared to creating a brand new dedicated interface, rte_flow was
deemed flexible enough to manage representor traffic only with minor
extensions:

	Using physical ports, PF, VF or port representors as targets.

	Affecting traffic that is not necessarily addressed to the DPDK port ID a
flow rule is associated with (e.g. forcing VF traffic redirection to PF).

For advanced uses:

	Rule-based packet counters.

	The ability to combine several identical actions for traffic duplication
(e.g. VF representor in addition to a physical port).

	Dedicated actions for traffic encapsulation / decapsulation before
reaching an endpoint.

13.5.2. Traffic Direction

From an application standpoint, “ingress” and “egress” flow rule attributes
apply to the DPDK port ID they are associated with. They select a traffic
direction for matching patterns, but have no impact on actions.

When matching traffic coming from or going to a different place than the
immediate port ID a flow rule is associated with, these attributes keep
their meaning while applying to the chosen origin, as highlighted by the
following diagram

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+---+---+--' `----------+--' `--+----------'
 | | | | | | | |
 | | `-------------------. | |
 | `---------. | | |
 | ^ | ^ | ^ | |
 | | ingress | | ingress | | ingress | |
 | | egress | | egress | | egress | |
 | v | v | v | |
.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |
 | | | | |
 .-+--. .-----+-----. .-----+-----. .---+--. .--+---.
 | PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
 `-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'
 | | | ^ | | ^
 | | | egress | | | | egress
 | | | ingress | | | | ingress
 | | .---------' v | | v
 `-----. | | .-----------------' |
 | | | | .---------------------'
 | | | | |
 .--+-------+---+---+---+--.
 | managed interconnection |
 `------------+------------'
 ^ |
 ingress | |
 egress | |
 v |
 .---(F)----.
 | physical |
 | port 0 |
 `----------'

Ingress and egress are defined as relative to the application creating the
flow rule.

For instance, matching traffic sent by VM 2 would be done through an ingress
flow rule on VF 2 (E). Likewise for incoming traffic on physical port
(F). This also applies to C and A respectively.

13.5.3. Transferring Traffic

13.5.3.1. Without Port Representors

Traffic direction describes how an application could match traffic coming
from or going to a specific place reachable from a DPDK port ID. This makes
sense when the traffic in question is normally seen (i.e. sent or received)
by the application creating the flow rule (e.g. as in “redirect all traffic
coming from VF 1 to local queue 6”).

However this does not force such traffic to take a specific route. Creating
a flow rule on A matching traffic coming from D is only meaningful
if it can be received by A in the first place, otherwise doing so simply
has no effect.

A new flow rule attribute named “transfer” is necessary for that. Combining
it with “ingress” or “egress” and a specific origin requests a flow rule to
be applied at the lowest level

 ingress only : ingress + transfer
 :
.-------------. .-------------. : .-------------. .-------------.
| hypervisor | | VM 1 | : | hypervisor | | VM 1 |
| application | | application | : | application | | application |
`------+------' `--+----------' : `------+------' `--+----------'
 | | | traffic : | | | traffic
 .----(A)----. | v : .----(A)----. | v
 | port_id 3 | | : | port_id 3 | |
 `-----+-----' | : `-----+-----' |
 | | : | ^ |
 | | : | | traffic |
 .-+--. .---+--. : .-+--. .---+--.
 | PF | | VF 1 | : | PF | | VF 1 |
 `-+--' `--(D)-' : `-+--' `--(D)-'
 | | | traffic : | ^ | | traffic
 | | v : | | traffic | v
 .--+-----------+--. : .--+-----------+--.
 | interconnection | : | interconnection |
 `--------+--------' : `--------+--------'
 | | traffic : |
 | v : |
 .---(F)----. : .---(F)----.
 | physical | : | physical |
 | port 0 | : | port 0 |
 `----------' : `----------'

With “ingress” only, traffic is matched on A thus still goes to physical
port F by default

testpmd> flow create 3 ingress pattern vf id is 1 / end
 actions queue index 6 / end

With “ingress + transfer”, traffic is matched on D and is therefore
successfully assigned to queue 6 on A

testpmd> flow create 3 ingress transfer pattern vf id is 1 / end
 actions queue index 6 / end

13.5.3.2. With Port Representors

When port representors exist, implicit flow rules with the “transfer”
attribute (described in without port representors) are be assumed to
exist between them and their represented resources. These may be immutable.

In this case, traffic is received by default through the representor and
neither the “transfer” attribute nor traffic origin in flow rule patterns
are necessary. They simply have to be created on the representor port
directly and may target a different representor as described in PORT_ID
action.

Implicit traffic flow with port representor

 .-------------. .-------------.
 | hypervisor | | VM 1 |
 | application | | application |
 `--+-------+--' `----------+--'
 | | ^ | | traffic
 | | | traffic | v
 | `-----. |
 | | |
.----(A)----. .----(B)----. |
| port_id 3 | | port_id 4 | |
`-----+-----' `-----+-----' |
 | | |
 .-+--. .-----+-----. .---+--.
 | PF | | VF 1 rep. | | VF 1 |
 `-+--' `-----+-----' `--(D)-'
 | | |
 .--|-------------|-----------|--.
	`-----------'		
	<-- traffic		
 `--|----------------------------'
 |
 .---(F)----.
 | physical |
 | port 0 |
 `----------'

13.5.4. Pattern Items And Actions

13.5.4.1. PORT Pattern Item

Matches traffic originating from (ingress) or going to (egress) a physical
port of the underlying device.

Using this pattern item without specifying a port index matches the physical
port associated with the current DPDK port ID by default. As described in
traffic steering, specifying it should be rarely needed.

	Matches F in traffic steering.

13.5.4.2. PORT Action

Directs matching traffic to a given physical port index.

	Targets F in traffic steering.

13.5.4.3. PORT_ID Pattern Item

Matches traffic originating from (ingress) or going to (egress) a given DPDK
port ID.

Normally only supported if the port ID in question is known by the
underlying PMD and related to the device the flow rule is created against.

This must not be confused with the PORT pattern item which refers to the
physical port of a device. PORT_ID refers to a struct rte_eth_dev
object on the application side (also known as “port representor” depending
on the kind of underlying device).

	Matches A, B or C in traffic steering.

13.5.4.4. PORT_ID Action

Directs matching traffic to a given DPDK port ID.

Same restrictions as PORT_ID pattern item.

	Targets A, B or C in traffic steering.

13.5.4.5. PF Pattern Item

Matches traffic originating from (ingress) or going to (egress) the physical
function of the current device.

If supported, should work even if the physical function is not managed by
the application and thus not associated with a DPDK port ID. Its behavior is
otherwise similar to PORT_ID pattern item using PF port ID.

	Matches A in traffic steering.

13.5.4.6. PF Action

Directs matching traffic to the physical function of the current device.

Same restrictions as PF pattern item.

	Targets A in traffic steering.

13.5.4.7. VF Pattern Item

Matches traffic originating from (ingress) or going to (egress) a given
virtual function of the current device.

If supported, should work even if the virtual function is not managed by
the application and thus not associated with a DPDK port ID. Its behavior is
otherwise similar to PORT_ID pattern item using VF port ID.

Note this pattern item does not match VF representors traffic which, as
separate entities, should be addressed through their own port IDs.

	Matches D or E in traffic steering.

13.5.4.8. VF Action

Directs matching traffic to a given virtual function of the current device.

Same restrictions as VF pattern item.

	Targets D or E in traffic steering.

13.5.4.9. *_ENCAP actions

These actions are named according to the protocol they encapsulate traffic
with (e.g. VXLAN_ENCAP) and using specific parameters (e.g. VNI for
VXLAN).

While they modify traffic and can be used multiple times (order matters),
unlike PORT_ID action and friends, they have no impact on steering.

As described in actions order and repetition this means they are useless
if used alone in an action list, the resulting traffic gets dropped unless
combined with either PASSTHRU or other endpoint-targeting actions.

13.5.4.10. *_DECAP actions

They perform the reverse of *_ENCAP actions by popping protocol headers
from traffic instead of pushing them. They can be used multiple times as
well.

Note that using these actions on non-matching traffic results in undefined
behavior. It is recommended to match the protocol headers to decapsulate on
the pattern side of a flow rule in order to use these actions or otherwise
make sure only matching traffic goes through.

13.5.5. Actions Order and Repetition

Flow rules are currently restricted to at most a single action of each
supported type, performed in an unpredictable order (or all at once). To
repeat actions in a predictable fashion, applications have to make rules
pass-through and use priority levels.

It’s now clear that PMD support for chaining multiple non-terminating flow
rules of varying priority levels is prohibitively difficult to implement
compared to simply allowing multiple identical actions performed in a
defined order by a single flow rule.

	This change is required to support protocol encapsulation offloads and the
ability to perform them multiple times (e.g. VLAN then VXLAN).

	It makes the DUP action redundant since multiple QUEUE actions can
be combined for duplication.

	The (non-)terminating property of actions must be discarded. Instead, flow
rules themselves must be considered terminating by default (i.e. dropping
traffic if there is no specific target) unless a PASSTHRU action is
also specified.

13.6. Switching Examples

This section provides practical examples based on the established testpmd
flow command syntax 2, in the context described in traffic steering

 .-------------. .-------------. .-------------.
 | hypervisor | | VM 1 | | VM 2 |
 | application | | application | | application |
 `--+---+---+--' `----------+--' `--+----------'
 | | | | |
 | | `-------------------. | |
 | `---------. | | |
 | | | | |
.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |
 | | | | |
 .-+--. .-----+-----. .-----+-----. .---+--. .--+---.
 | PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
 `-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'
 | | | | |
 | | .---------' | |
 `-----. | | .-----------------' |
 | | | | .---------------------'
 | | | | |
 .--|-------|---|---|---|--.
 | | | `---|---' |
 | | `-------' |
 | `---------. |
 `------------|------------'
 |
 .---(F)----.
 | physical |
 | port 0 |
 `----------'

By default, PF (A) can communicate with the physical port it is
associated with (F), while VF 1 (D) and VF 2 (E) are isolated
and restricted to communicate with the hypervisor application through their
respective representors (B and C) if supported.

Examples in subsequent sections apply to hypervisor applications only and
are based on port representors A, B and C.

	2

	Flow syntax

13.6.1. Associating VF 1 with Physical Port 0

Assign all port traffic (F) to VF 1 (D) indiscriminately through
their representors

flow create 3 ingress pattern / end actions port_id id 4 / end
flow create 4 ingress pattern / end actions port_id id 3 / end

More practical example with MAC address restrictions

flow create 3 ingress
 pattern eth dst is {VF 1 MAC} / end
 actions port_id id 4 / end

flow create 4 ingress
 pattern eth src is {VF 1 MAC} / end
 actions port_id id 3 / end

13.6.2. Sharing Broadcasts

From outside to PF and VFs

flow create 3 ingress
 pattern eth dst is ff:ff:ff:ff:ff:ff / end
 actions port_id id 3 / port_id id 4 / port_id id 5 / end

Note port_id id 3 is necessary otherwise only VFs would receive matching
traffic.

From PF to outside and VFs

flow create 3 egress
 pattern eth dst is ff:ff:ff:ff:ff:ff / end
 actions port / port_id id 4 / port_id id 5 / end

From VFs to outside and PF

flow create 4 ingress
 pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 1 MAC} / end
 actions port_id id 3 / port_id id 5 / end

flow create 5 ingress
 pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 2 MAC} / end
 actions port_id id 4 / port_id id 4 / end

Similar 33:33:* rules based on known MAC addresses should be added for
IPv6 traffic.

13.6.3. Encapsulating VF 2 Traffic in VXLAN

Assuming pass-through flow rules are supported

flow create 5 ingress
 pattern eth / end
 actions vxlan_encap vni 42 / passthru / end

flow create 5 egress
 pattern vxlan vni is 42 / end
 actions vxlan_decap / passthru / end

Here passthru is needed since as described in actions order and
repetition, flow rules are otherwise terminating; if supported, a rule
without a target endpoint will drop traffic.

Without pass-through support, ingress encapsulation on the destination
endpoint might not be supported and action list must provide one

flow create 5 ingress
 pattern eth src is {VF 2 MAC} / end
 actions vxlan_encap vni 42 / port_id id 3 / end

flow create 3 ingress
 pattern vxlan vni is 42 / end
 actions vxlan_decap / port_id id 5 / end

14. Traffic Metering and Policing API

14.1. Overview

This is the generic API for the Quality of Service (QoS) Traffic Metering and
Policing (MTR) of Ethernet devices. This API is agnostic of the underlying HW,
SW or mixed HW-SW implementation.

The main features are:

	Part of DPDK rte_ethdev API

	Capability query API

	Metering algorithms: RFC 2697 Single Rate Three Color Marker (srTCM), RFC 2698
and RFC 4115 Two Rate Three Color Marker (trTCM)

	Policer actions (per meter output color): recolor, drop

	Statistics (per policer output color)

14.2. Configuration steps

The metering and policing stage typically sits on top of flow classification,
which is why the MTR objects are enabled through a special “meter” action.

The MTR objects are created and updated in their own name space (rte_mtr)
within the librte_ethdev library. Whether an MTR object is private to a
flow or potentially shared by several flows has to be specified at its
creation time.

Once successfully created, an MTR object is hooked into the RX processing path
of the Ethernet device by linking it to one or several flows through the
dedicated “meter” flow action. One or several “meter” actions can be registered
for the same flow. An MTR object can only be destroyed if there are no flows
using it.

14.3. Run-time processing

Traffic metering determines the color for the current packet (green, yellow,
red) based on the previous history for this flow as maintained by the MTR
object. The policer can do nothing, override the color the packet or drop the
packet. Statistics counters are maintained for MTR object, as configured.

The processing done for each input packet hitting an MTR object is:

	Traffic metering: The packet is assigned a color (the meter output color)
based on the previous traffic history reflected in the current state of the
MTR object, according to the specific traffic metering algorithm. The
traffic metering algorithm can typically work in color aware mode, in which
case the input packet already has an initial color (the input color), or in
color blind mode, which is equivalent to considering all input packets
initially colored as green.

	Policing: There is a separate policer action configured for each meter
output color, which can:

	Drop the packet.

	Keep the same packet color: the policer output color matches the meter
output color (essentially a no-op action).

	Recolor the packet: the policer output color is set to a different color
than the meter output color. The policer output color is the output color
of the packet, which is set in the packet meta-data (i.e. struct
rte_mbuf::sched::color).

	Statistics: The set of counters maintained for each MTR object is
configurable and subject to the implementation support. This set includes
the number of packets and bytes dropped or passed for each output color.

15. Traffic Management API

15.1. Overview

This is the generic API for the Quality of Service (QoS) Traffic Management of
Ethernet devices, which includes the following main features: hierarchical
scheduling, traffic shaping, congestion management, packet marking. This API
is agnostic of the underlying HW, SW or mixed HW-SW implementation.

Main features:

	Part of DPDK rte_ethdev API

	Capability query API per port, per hierarchy level and per hierarchy node

	Scheduling algorithms: Strict Priority (SP), Weighed Fair Queuing (WFQ)

	Traffic shaping: single/dual rate, private (per node) and
shared (by multiple nodes) shapers

	Congestion management for hierarchy leaf nodes: algorithms of tail drop, head
drop, WRED, private (per node) and shared (by multiple nodes) WRED contexts

	Packet marking: IEEE 802.1q (VLAN DEI), IETF RFC 3168 (IPv4/IPv6 ECN for TCP
and SCTP), IETF RFC 2597 (IPv4 / IPv6 DSCP)

15.2. Capability API

The aim of these APIs is to advertise the capability information (i.e critical
parameter values) that the TM implementation (HW/SW) is able to support for the
application. The APIs supports the information disclosure at the TM level, at
any hierarchical level of the TM and at any node level of the specific
hierarchical level. Such information helps towards rapid understanding of
whether a specific implementation does meet the needs to the user application.

At the TM level, users can get high level idea with the help of various
parameters such as maximum number of nodes, maximum number of hierarchical
levels, maximum number of shapers, maximum number of private shapers, type of
scheduling algorithm (Strict Priority, Weighted Fair Queuing , etc.), etc.,
supported by the implementation.

Likewise, users can query the capability of the TM at the hierarchical level to
have more granular knowledge about the specific level. The various parameters
such as maximum number of nodes at the level, maximum number of leaf/non-leaf
nodes at the level, type of the shaper(dual rate, single rate) supported at
the level if node is non-leaf type etc., are exposed as a result of
hierarchical level capability query.

Finally, the node level capability API offers knowledge about the capability
supported by the node at any specific level. The information whether the
support is available for private shaper, dual rate shaper, maximum and minimum
shaper rate, etc. is exposed by node level capability API.

15.3. Scheduling Algorithms

The fundamental scheduling algorithms that are supported are Strict Priority
(SP) and Weighted Fair Queuing (WFQ). The SP and WFQ algorithms are supported
at the level of each node of the scheduling hierarchy, regardless of the node
level/position in the tree. The SP algorithm is used to schedule between
sibling nodes with different priority, while WFQ is used to schedule between
groups of siblings that have the same priority.

Algorithms such as Weighed Round Robin (WRR), byte-level WRR, Deficit WRR
(DWRR), etc are considered approximations of the ideal WFQ and are therefore
assimilated to WFQ, although an associated implementation-dependent accuracy,
performance and resource usage trade-off might exist.

15.4. Traffic Shaping

The TM API provides support for single rate and dual rate shapers (rate
limiters) for the hierarchy nodes, subject to the specific implementation
support being available.

Each hierarchy node has zero or one private shaper (only one node using it)
and/or zero, one or several shared shapers (multiple nodes use the same shaper
instance). A private shaper is used to perform traffic shaping for a single
node, while a shared shaper is used to perform traffic shaping for a group of
nodes.

The configuration of private and shared shapers is done through the definition
of shaper profiles. Any shaper profile (single rate or dual rate shaper) can be
used by one or several shaper instances (either private or shared).

Single rate shapers use a single token bucket. Therefore, single rate shaper is
configured by setting the rate of the committed bucket to zero, which
effectively disables this bucket. The peak bucket is used to limit the rate
and the burst size for the single rate shaper. Dual rate shapers use both the
committed and the peak token buckets. The rate of the peak bucket has to be
bigger than zero, as well as greater than or equal to the rate of the committed
bucket.

15.5. Congestion Management

Congestion management is used to control the admission of packets into a packet
queue or group of packet queues on congestion. The congestion management
algorithms that are supported are: Tail Drop, Head Drop and Weighted Random
Early Detection (WRED). They are made available for every leaf node in the
hierarchy, subject to the specific implementation supporting them.
On request of writing a new packet into the current queue while the queue is
full, the Tail Drop algorithm drops the new packet while leaving the queue
unmodified, as opposed to the Head Drop* algorithm, which drops the packet
at the head of the queue (the oldest packet waiting in the queue) and admits
the new packet at the tail of the queue.

The Random Early Detection (RED) algorithm works by proactively dropping more
and more input packets as the queue occupancy builds up. When the queue is full
or almost full, RED effectively works as Tail Drop. The Weighted RED (WRED)
algorithm uses a separate set of RED thresholds for each packet color and uses
separate set of RED thresholds for each packet color.

Each hierarchy leaf node with WRED enabled as its congestion management mode
has zero or one private WRED context (only one leaf node using it) and/or zero,
one or several shared WRED contexts (multiple leaf nodes use the same WRED
context). A private WRED context is used to perform congestion management for
a single leaf node, while a shared WRED context is used to perform congestion
management for a group of leaf nodes.

The configuration of WRED private and shared contexts is done through the
definition of WRED profiles. Any WRED profile can be used by one or several
WRED contexts (either private or shared).

15.6. Packet Marking

The TM APIs have been provided to support various types of packet marking such
as VLAN DEI packet marking (IEEE 802.1Q), IPv4/IPv6 ECN marking of TCP and SCTP
packets (IETF RFC 3168) and IPv4/IPv6 DSCP packet marking (IETF RFC 2597).
All VLAN frames of a given color get their DEI bit set if marking is enabled
for this color. In case, when marking for a given color is not enabled, the
DEI bit is left as is (either set or not).

All IPv4/IPv6 packets of a given color with ECN set to 2’b01 or 2’b10 carrying
TCP or SCTP have their ECN set to 2’b11 if the marking feature is enabled for
the current color, otherwise the ECN field is left as is.

All IPv4/IPv6 packets have their color marked into DSCP bits 3 and 4 as
follows: green mapped to Low Drop Precedence (2’b01), yellow to Medium (2’b10)
and red to High (2’b11). Marking needs to be explicitly enabled for each color;
when not enabled for a given color, the DSCP field of all packets with that
color is left as is.

15.7. Steps to Setup the Hierarchy

The TM hierarchical tree consists of leaf nodes and non-leaf nodes. Each leaf
node sits on top of a scheduling queue of the current Ethernet port. Therefore,
the leaf nodes have predefined IDs in the range of 0… (N-1), where N is the
number of scheduling queues of the current Ethernet port. The non-leaf nodes
have their IDs generated by the application outside of the above range, which
is reserved for leaf nodes.

Each non-leaf node has multiple inputs (its children nodes) and single output
(which is input to its parent node). It arbitrates its inputs using Strict
Priority (SP) and Weighted Fair Queuing (WFQ) algorithms to schedule input
packets to its output while observing its shaping (rate limiting) constraints.

The children nodes with different priorities are scheduled using the SP
algorithm based on their priority, with 0 as the highest priority. Children
with the same priority are scheduled using the WFQ algorithm according to their
weights. The WFQ weight of a given child node is relative to the sum of the
weights of all its sibling nodes that have the same priority, with 1 as the
lowest weight. For each SP priority, the WFQ weight mode can be set as either
byte-based or packet-based.

15.7.1. Initial Hierarchy Specification

The hierarchy is specified by incrementally adding nodes to build up the
scheduling tree. The first node that is added to the hierarchy becomes the root
node and all the nodes that are subsequently added have to be added as
descendants of the root node. The parent of the root node has to be specified
as RTE_TM_NODE_ID_NULL and there can only be one node with this parent ID
(i.e. the root node). The unique ID that is assigned to each node when the node
is created is further used to update the node configuration or to connect
children nodes to it.

During this phase, some limited checks on the hierarchy specification can be
conducted, usually limited in scope to the current node, its parent node and
its sibling nodes. At this time, since the hierarchy is not fully defined,
there is typically no real action performed by the underlying implementation.

15.7.2. Hierarchy Commit

The hierarchy commit API is called during the port initialization phase (before
the Ethernet port is started) to freeze the start-up hierarchy. This function
typically performs the following steps:

	It validates the start-up hierarchy that was previously defined for the
current port through successive node add API invocations.

	Assuming successful validation, it performs all the necessary implementation
specific operations to install the specified hierarchy on the current port,
with immediate effect once the port is started.

This function fails when the currently configured hierarchy is not supported by
the Ethernet port, in which case the user can abort or try out another
hierarchy configuration (e.g. a hierarchy with less leaf nodes), which can be
built from scratch or by modifying the existing hierarchy configuration. Note
that this function can still fail due to other causes (e.g. not enough memory
available in the system, etc.), even though the specified hierarchy is
supported in principle by the current port.

15.7.3. Run-Time Hierarchy Updates

The TM API provides support for on-the-fly changes to the scheduling hierarchy,
thus operations such as node add/delete, node suspend/resume, parent node
update, etc., can be invoked after the Ethernet port has been started, subject
to the specific implementation supporting them. The set of dynamic updates
supported by the implementation is advertised through the port capability set.

16. Wireless Baseband Device Library

The Wireless Baseband library provides a common programming framework that
abstracts HW accelerators based on FPGA and/or Fixed Function Accelerators that
assist with 3GPP Physical Layer processing. Furthermore, it decouples the
application from the compute-intensive wireless functions by abstracting their
optimized libraries to appear as virtual bbdev devices.

The functional scope of the BBDEV library are those functions in relation to
the 3GPP Layer 1 signal processing (channel coding, modulation, …).

The framework currently only supports Turbo Code FEC function.

16.1. Design Principles

The Wireless Baseband library follows the same ideology of DPDK’s Ethernet
Device and Crypto Device frameworks. Wireless Baseband provides a generic
acceleration abstraction framework which supports both physical (hardware) and
virtual (software) wireless acceleration functions.

16.2. Device Management

16.2.1. Device Creation

Physical bbdev devices are discovered during the PCI probe/enumeration of the
EAL function which is executed at DPDK initialization, based on
their PCI device identifier, each unique PCI BDF (bus/bridge, device,
function).

Virtual devices can be created by two mechanisms, either using the EAL command
line options or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'baseband_turbo_sw,max_nb_queues=8,socket_id=0'

Or using the rte_vdev_init API within the application code.

rte_vdev_init("baseband_turbo_sw", "max_nb_queues=2,socket_id=0")

All virtual bbdev devices support the following initialization parameters:

	max_nb_queues - maximum number of queues supported by the device.

	socket_id - socket on which to allocate the device resources on.

16.2.2. Device Identification

Each device, whether virtual or physical is uniquely designated by two
identifiers:

	A unique device index used to designate the bbdev device in all functions
exported by the bbdev API.

	A device name used to designate the bbdev device in console messages, for
administration or debugging purposes. For ease of use, the port name includes
the port index.

16.2.3. Device Configuration

From the application point of view, each instance of a bbdev device consists of
one or more queues identified by queue IDs. While different devices may have
different capabilities (e.g. support different operation types), all queues on
a device support identical configuration possibilities. A queue is configured
for only one type of operation and is configured at initialization time.
When an operation is enqueued to a specific queue ID, the result is dequeued
from the same queue ID.

Configuration of a device has two different levels: configuration that applies
to the whole device, and configuration that applies to a single queue.

Device configuration is applied with
rte_bbdev_setup_queues(dev_id,num_queues,socket_id)
and queue configuration is applied with
rte_bbdev_queue_configure(dev_id,queue_id,conf). Note that, although all
queues on a device support same capabilities, they can be configured differently
and will then behave differently.
Devices supporting interrupts can enable them by using
rte_bbdev_intr_enable(dev_id).

The configuration of each bbdev device includes the following operations:

	Allocation of resources, including hardware resources if a physical device.

	Resetting the device into a well-known default state.

	Initialization of statistics counters.

The rte_bbdev_setup_queues API is used to setup queues for a bbdev device.

int rte_bbdev_setup_queues(uint16_t dev_id, uint16_t num_queues,
 int socket_id);

	num_queues argument identifies the total number of queues to setup for
this device.

	socket_id specifies which socket will be used to allocate the memory.

The rte_bbdev_intr_enable API is used to enable interrupts for a bbdev
device, if supported by the driver. Should be called before starting the device.

int rte_bbdev_intr_enable(uint16_t dev_id);

16.2.4. Queues Configuration

Each bbdev devices queue is individually configured through the
rte_bbdev_queue_configure() API.
Each queue resources may be allocated on a specified socket.

struct rte_bbdev_queue_conf {
 int socket;
 uint32_t queue_size;
 uint8_t priority;
 bool deferred_start;
 enum rte_bbdev_op_type op_type;
};

16.2.5. Device & Queues Management

After initialization, devices are in a stopped state, so must be started by the
application. If an application is finished using a device it can close the
device. Once closed, it cannot be restarted.

int rte_bbdev_start(uint16_t dev_id)
int rte_bbdev_stop(uint16_t dev_id)
int rte_bbdev_close(uint16_t dev_id)
int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)

By default, all queues are started when the device is started, but they can be
stopped individually.

int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)

16.2.6. Logical Cores, Memory and Queues Relationships

The bbdev poll mode device driver library supports NUMA architecture, in which
a processor’s logical cores and interfaces utilize it’s local memory. Therefore
with baseband operations, the mbuf being operated on should be allocated from memory
pools created in the local memory. The buffers should, if possible, remain on
the local processor to obtain the best performance results and buffer
descriptors should be populated with mbufs allocated from a mempool allocated
from local memory.

The run-to-completion model also performs better, especially in the case of
virtual bbdev devices, if the baseband operation and data buffers are in local
memory instead of a remote processor’s memory. This is also true for the
pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share the same queue for enqueuing
operations or dequeuing operations on the same bbdev device since this would
require global locks and hinder performance. It is however possible to use a
different logical core to dequeue an operation on a queue pair from the logical
core which it was enqueued on. This means that a baseband burst enqueue/dequeue
APIs are a logical place to transition from one logical core to another in a
packet processing pipeline.

16.3. Device Operation Capabilities

Capabilities (in terms of operations supported, max number of queues, etc.)
identify what a bbdev is capable of performing that differs from one device to
another. For the full scope of the bbdev capability see the definition of the
structure in the DPDK API Reference.

struct rte_bbdev_op_cap;

A device reports its capabilities when registering itself in the bbdev framework.
With the aid of this capabilities mechanism, an application can query devices to
discover which operations within the 3GPP physical layer they are capable of
performing. Below is an example of the capabilities for a PMD it supports in
relation to Turbo Encoding and Decoding operations.

static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
 {
 .type = RTE_BBDEV_OP_TURBO_DEC,
 .cap.turbo_dec = {
 .capability_flags =
 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
 RTE_BBDEV_TURBO_CRC_TYPE_24B |
 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
 RTE_BBDEV_TURBO_EARLY_TERMINATION,
 .max_llr_modulus = 16,
 .num_buffers_src = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 .num_buffers_hard_out =
 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 .num_buffers_soft_out = 0,
 }
 },
 {
 .type = RTE_BBDEV_OP_TURBO_ENC,
 .cap.turbo_enc = {
 .capability_flags =
 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
 RTE_BBDEV_TURBO_RATE_MATCH |
 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
 .num_buffers_src = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 .num_buffers_dst = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 }
 },
 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};

16.3.1. Capabilities Discovery

Discovering the features and capabilities of a bbdev device poll mode driver
is achieved through the rte_bbdev_info_get() function.

int rte_bbdev_info_get(uint16_t dev_id, struct rte_bbdev_info *dev_info)

This allows the user to query a specific bbdev PMD and get all the device
capabilities. The rte_bbdev_info structure provides two levels of
information:

	Device relevant information, like: name and related rte_bus.

	Driver specific information, as defined by the struct rte_bbdev_driver_info
structure, this is where capabilities reside along with other specifics like:
maximum queue sizes and priority level.

struct rte_bbdev_info {
 int socket_id;
 const char *dev_name;
 const struct rte_device *device;
 uint16_t num_queues;
 bool started;
 struct rte_bbdev_driver_info drv;
};

16.4. Operation Processing

Scheduling of baseband operations on DPDK’s application data path is
performed using a burst oriented asynchronous API set. A queue on a bbdev
device accepts a burst of baseband operations using enqueue burst API. On physical
bbdev devices the enqueue burst API will place the operations to be processed
on the device’s hardware input queue, for virtual devices the processing of the
baseband operations is usually completed during the enqueue call to the bbdev
device. The dequeue burst API will retrieve any processed operations available
from the queue on the bbdev device, from physical devices this is usually
directly from the device’s processed queue, and for virtual device’s from a
rte_ring where processed operations are placed after being processed on the
enqueue call.

16.4.1. Enqueue / Dequeue Burst APIs

The burst enqueue API uses a bbdev device identifier and a queue
identifier to specify the bbdev device queue to schedule the processing on.
The num_ops parameter is the number of operations to process which are
supplied in the ops array of rte_bbdev_*_op structures.
The enqueue function returns the number of operations it actually enqueued for
processing, a return value equal to num_ops means that all packets have been
enqueued.

uint16_t rte_bbdev_enqueue_enc_ops(uint16_t dev_id, uint16_t queue_id,
 struct rte_bbdev_enc_op **ops, uint16_t num_ops)

uint16_t rte_bbdev_enqueue_dec_ops(uint16_t dev_id, uint16_t queue_id,
 struct rte_bbdev_dec_op **ops, uint16_t num_ops)

The dequeue API uses the same format as the enqueue API of processed but
the num_ops and ops parameters are now used to specify the max processed
operations the user wishes to retrieve and the location in which to store them.
The API call returns the actual number of processed operations returned, this
can never be larger than num_ops.

uint16_t rte_bbdev_dequeue_enc_ops(uint16_t dev_id, uint16_t queue_id,
 struct rte_bbdev_enc_op **ops, uint16_t num_ops)

uint16_t rte_bbdev_dequeue_dec_ops(uint16_t dev_id, uint16_t queue_id,
 struct rte_bbdev_dec_op **ops, uint16_t num_ops)

16.4.2. Operation Representation

An encode bbdev operation is represented by rte_bbdev_enc_op structure,
and by rte_bbdev_dec_op for decode. These structures act as metadata
containers for all necessary information required for the bbdev operation to be
processed on a particular bbdev device poll mode driver.

struct rte_bbdev_enc_op {
 int status;
 struct rte_mempool *mempool;
 void *opaque_data;
 union {
 struct rte_bbdev_op_turbo_enc turbo_enc;
 struct rte_bbdev_op_ldpc_enc ldpc_enc;
 }
};

struct rte_bbdev_dec_op {
 int status;
 struct rte_mempool *mempool;
 void *opaque_data;
 union {
 struct rte_bbdev_op_turbo_dec turbo_enc;
 struct rte_bbdev_op_ldpc_dec ldpc_enc;
 }
};

The operation structure by itself defines the operation type. It includes an
operation status, a reference to the operation specific data, which can vary in
size and content depending on the operation being provisioned. It also contains
the source mempool for the operation, if it is allocated from a mempool.

If bbdev operations are allocated from a bbdev operation mempool, see next
section, there is also the ability to allocate private memory with the
operation for applications purposes.

Application software is responsible for specifying all the operation specific
fields in the rte_bbdev_*_op structure which are then used by the bbdev PMD
to process the requested operation.

16.4.3. Operation Management and Allocation

The bbdev library provides an API set for managing bbdev operations which
utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
that the bbdev operation is interleaved optimally across the channels and
ranks for optimal processing.

struct rte_mempool *
rte_bbdev_op_pool_create(const char *name, enum rte_bbdev_op_type type,
 unsigned int num_elements, unsigned int cache_size,
 int socket_id)

rte_bbdev_*_op_alloc_bulk() and rte_bbdev_*_op_free_bulk() are used to
allocate bbdev operations of a specific type from a given bbdev operation mempool.

int rte_bbdev_enc_op_alloc_bulk(struct rte_mempool *mempool,
 struct rte_bbdev_enc_op **ops, uint16_t num_ops)

int rte_bbdev_dec_op_alloc_bulk(struct rte_mempool *mempool,
 struct rte_bbdev_dec_op **ops, uint16_t num_ops)

rte_bbdev_*_op_free_bulk() is called by the application to return an
operation to its allocating pool.

void rte_bbdev_dec_op_free_bulk(struct rte_bbdev_dec_op **ops,
 unsigned int num_ops)
void rte_bbdev_enc_op_free_bulk(struct rte_bbdev_enc_op **ops,
 unsigned int num_ops)

16.4.4. BBDEV Inbound/Outbound Memory

The bbdev operation structure contains all the mutable data relating to
performing Turbo and LDPC coding on a referenced mbuf data buffer. It is used for either
encode or decode operations.

Table 16.1 Operation I/O

	FEC

	In

	Out

	Turbo Encode

	input

	output

	Turbo Decode

	input

	hard output

	
	
	soft output (optional)

	LDPC Encode

	input

	output

	LDPC Decode

	input

	hard output

	
	HQ combine (optional)

	HQ combine (optional)

	
	
	soft output (optional)

It is expected that the application provides input and output mbuf pointers
allocated and ready to use.

The baseband framework supports FEC coding on Code Blocks (CB) and
Transport Blocks (TB).

For the output buffer(s), the application is required to provide an allocated
and free mbuf, to which the resulting output will be written.

The support of split “scattered” buffers is a driver-specific feature, so it is
reported individually by the supporting driver as a capability.

Input and output data buffers are identified by rte_bbdev_op_data structure,
as follows:

struct rte_bbdev_op_data {
 struct rte_mbuf *data;
 uint32_t offset;
 uint32_t length;
};

This structure has three elements:

	data: This is the mbuf data structure representing the data for BBDEV
operation.

This mbuf pointer can point to one Code Block (CB) data buffer or multiple CBs
contiguously located next to each other. A Transport Block (TB) represents a
whole piece of data that is divided into one or more CBs. Maximum number of
CBs can be contained in one TB is defined by
RTE_BBDEV_(TURBO/LDPC)MAX_CODE_BLOCKS.

An mbuf data structure cannot represent more than one TB. The smallest piece
of data that can be contained in one mbuf is one CB.
An mbuf can include one contiguous CB, subset of contiguous CBs that are
belonging to one TB, or all contiguous CBs that belong to one TB.

If a BBDEV PMD supports the extended capability “Scatter-Gather”, then it is
capable of collecting (gathering) non-contiguous (scattered) data from
multiple locations in the memory.
This capability is reported by the capability flags:

	RTE_BBDEV_TURBO_ENC_SCATTER_GATHER, RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,

	RTE_BBDEV_LDPC_ENC_SCATTER_GATHER, RTE_BBDEV_LDPC_DEC_SCATTER_GATHER.

Chained mbuf data structures are only accepted if a BBDEV PMD supports this
feature. A chained mbuf can represent one non-contiguous CB or multiple non-contiguous
CBs. The first mbuf segment in the given chained mbuf represents the first piece
of the CB. Offset is only applicable to the first segment. length is the
total length of the CB.

BBDEV driver is responsible for identifying where the split is and enqueue
the split data to its internal queues.

If BBDEV PMD does not support this feature, it will assume inbound mbuf data
contains one segment.

The output mbuf data though is always one segment, even if the input was a
chained mbuf.

	offset: This is the starting point of the BBDEV (encode/decode) operation,
in bytes.

BBDEV starts to read data past this offset.
In case of chained mbuf, this offset applies only to the first mbuf segment.

	length: This is the total data length to be processed in one operation,
in bytes.

In case the mbuf data is representing one CB, this is the length of the CB
undergoing the operation.
If it is for multiple CBs, this is the total length of those CBs undergoing
the operation.
If it is for one TB, this is the total length of the TB under operation.
In case of chained mbuf, this data length includes the lengths of the
“scattered” data segments undergoing the operation.

16.4.5. BBDEV Turbo Encode Operation

struct rte_bbdev_op_turbo_enc {
 struct rte_bbdev_op_data input;
 struct rte_bbdev_op_data output;

 uint32_t op_flags;
 uint8_t rv_index;
 uint8_t code_block_mode;
 union {
 struct rte_bbdev_op_enc_cb_params cb_params;
 struct rte_bbdev_op_enc_tb_params tb_params;
 };
};

The Turbo encode structure includes the input and output mbuf
data pointers. The provided mbuf pointer of input needs to be big
enough to stretch for extra CRC trailers.

Table 16.2 struct rte_bbdev_op_turbo_enc parameters

	Parameter

	Description

	input

	input CB or TB data

	output

	rate matched CB or TB output buffer

	op_flags

	bitmask of all active operation capabilities

	rv_index

	redundancy version index [0..3]

	code_block_mode

	code block or transport block mode

	cb_params

	code block specific parameters (code block mode only)

	tb_params

	transport block specific parameters (transport block mode only)

The encode interface works on both the code block (CB) and the transport block
(TB). An operation executes in “CB-mode” when the CB is standalone. While
“TB-mode” executes when an operation performs on one or multiple CBs that
belong to a TB. Therefore, a given data can be standalone CB, full-size TB or
partial TB. Partial TB means that only a subset of CBs belonging to a bigger TB
are being enqueued.

NOTE: It is assumed that all enqueued ops in one rte_bbdev_enqueue_enc_ops()
call belong to one mode, either CB-mode or TB-mode.

In case that the TB is smaller than Z (6144 bits), then effectively the TB = CB.
CRC24A is appended to the tail of the CB. The application is responsible for
calculating and appending CRC24A before calling BBDEV in case that the
underlying driver does not support CRC24A generation.

In CB-mode, CRC24A/B is an optional operation.
The CB parameter k is the size of the CB (this maps to K as described
in 3GPP TS 36.212 section 5.1.2), this size is inclusive of CRC24A/B.
The length is inclusive of CRC24A/B and equals to k in this case.

Not all BBDEV PMDs are capable of CRC24A/B calculation. Flags
RTE_BBDEV_TURBO_CRC_24A_ATTACH and RTE_BBDEV_TURBO_CRC_24B_ATTACH
informs the application with relevant capability. These flags can be set in the
op_flags parameter to indicate to BBDEV to calculate and append CRC24A/B
to CB before going forward with Turbo encoding.

Output format of the CB encode will have the encoded CB in e size output
(this maps to E described in 3GPP TS 36.212 section 5.1.4.1.2). The output mbuf
buffer size needs to be big enough to hold the encoded buffer of size e.

In TB-mode, CRC24A is assumed to be pre-calculated and appended to the inbound
TB mbuf data buffer.
The output mbuf data structure is expected to be allocated by the application
with enough room for the output data.

The difference between the partial and full-size TB is that we need to know the
index of the first CB in this group and the number of CBs contained within.
The first CB index is given by r but the number of the remaining CBs is
calculated automatically by BBDEV before passing down to the driver.

The number of remaining CBs should not be confused with c. c is the
total number of CBs that composes the whole TB (this maps to C as
described in 3GPP TS 36.212 section 5.1.2).

The length is total size of the CBs inclusive of any CRC24A and CRC24B in
case they were appended by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEV,
this case is considered as a special case of partial TB where its number of CBs
is 1. Therefore, it requires to get processed in TB-mode.

The figure below visualizes the encoding of CBs using BBDEV interface in
TB-mode. CB-mode is a reduced version, where only one CB exists:

[image: ../_images/turbo_tb_encode.svg]
Fig. 16.2 Turbo encoding of Code Blocks in mbuf structure

16.4.6. BBDEV Turbo Decode Operation

struct rte_bbdev_op_turbo_dec {
 struct rte_bbdev_op_data input;
 struct rte_bbdev_op_data hard_output;
 struct rte_bbdev_op_data soft_output;

 uint32_t op_flags;
 uint8_t rv_index;
 uint8_t iter_min:4;
 uint8_t iter_max:4;
 uint8_t iter_count;
 uint8_t ext_scale;
 uint8_t num_maps;
 uint8_t code_block_mode;
 union {
 struct rte_bbdev_op_dec_cb_params cb_params;
 struct rte_bbdev_op_dec_tb_params tb_params;
 };
};

The Turbo decode structure includes the input, hard_output and
optionally the soft_output mbuf data pointers.

Table 16.3 struct rte_bbdev_op_turbo_dec parameters

	Parameter

	Description

	input

	virtual circular buffer, wk, size 3*Kpi for each CB

	hard output

	hard decisions buffer, decoded output, size K for each CB

	soft output

	soft LLR output buffer (optional)

	op_flags

	bitmask of all active operation capabilities

	rv_index

	redundancy version index [0..3]

	iter_max

	maximum number of iterations to perofrm in decode all CBs

	iter_min

	minimum number of iterations to perform in decoding all CBs

	iter_count

	number of iterations to performed in decoding all CBs

	ext_scale

	scale factor on extrinsic info (5 bits)

	num_maps

	number of MAP engines to use in decode

	code_block_mode

	code block or transport block mode

	cb_params

	code block specific parameters (code block mode only)

	tb_params

	transport block specific parameters (transport block mode only)

Similarly, the decode interface works on both the code block (CB) and the
transport block (TB). An operation executes in “CB-mode” when the CB is
standalone. While “TB-mode” executes when an operation performs on one or
multiple CBs that belong to a TB. Therefore, a given data can be standalone CB,
full-size TB or partial TB. Partial TB means that only a subset of CBs belonging
to a bigger TB are being enqueued.

NOTE: It is assumed that all enqueued ops in one rte_bbdev_enqueue_dec_ops()
call belong to one mode, either CB-mode or TB-mode.

The CB parameter k is the size of the decoded CB (this maps to K as described in
3GPP TS 36.212 section 5.1.2), this size is inclusive of CRC24A/B.
The length is inclusive of CRC24A/B and equals to k in this case.

The input encoded CB data is the Virtual Circular Buffer data stream, wk, with
the null padding included as described in 3GPP TS 36.212 section 5.1.4.1.2 and
shown in 3GPP TS 36.212 section 5.1.4.1 Figure 5.1.4-1.
The size of the virtual circular buffer is 3*Kpi, where Kpi is the 32 byte
aligned value of K, as specified in 3GPP TS 36.212 section 5.1.4.1.1.

Each byte in the input circular buffer is the LLR value of each bit of the
original CB.

hard_output is a mandatory capability that all BBDEV PMDs support. This is
the decoded CBs of K sizes (CRC24A/B is the last 24-bit in each decoded CB).
Soft output is an optional capability for BBDEV PMDs. Setting flag
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP in op_flags directs BBDEV to retain
CRC24B at the end of each CB. This might be useful for the application in debug
mode.
An LLR rate matched output is computed in the soft_output buffer structure
for the given CB parameter e size (this maps to E described in
3GPP TS 36.212 section 5.1.4.1.2). The output mbuf buffer size needs to be big
enough to hold the encoded buffer of size e.

The first CB Virtual Circular Buffer (VCB) index is given by r but the
number of the remaining CB VCBs is calculated automatically by BBDEV before
passing down to the driver.

The number of remaining CB VCBs should not be confused with c. c is the
total number of CBs that composes the whole TB (this maps to C as
described in 3GPP TS 36.212 section 5.1.2).

The length is total size of the CBs inclusive of any CRC24A and CRC24B in
case they were appended by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEV,
this case is considered as a special case of partial TB where its number of CBs
is 1. Therefore, it requires to get processed in TB-mode.

The output mbuf data structure is expected to be allocated by the application
with enough room for the output data.

The figure below visualizes the decoding of CBs using BBDEV interface in
TB-mode. CB-mode is a reduced version, where only one CB exists:

[image: ../_images/turbo_tb_decode.svg]
Fig. 16.3 Turbo decoding of Code Blocks in mbuf structure

16.4.7. BBDEV LDPC Encode Operation

The operation flags that can be set for each LDPC encode operation are
given below.

NOTE: The actual operation flags that may be used with a specific
BBDEV PMD are dependent on the driver capabilities as reported via
rte_bbdev_info_get(), and may be a subset of those below.

	Description of LDPC encode capability flags

	
	RTE_BBDEV_LDPC_INTERLEAVER_BYPASS
	Set to bypass bit-level interleaver on output stream

	
	RTE_BBDEV_LDPC_RATE_MATCH
	Set to enabling the RATE_MATCHING processing

	
	RTE_BBDEV_LDPC_CRC_24A_ATTACH
	Set to attach transport block CRC-24A

	
	RTE_BBDEV_LDPC_CRC_24B_ATTACH
	Set to attach code block CRC-24B

	
	RTE_BBDEV_LDPC_CRC_16_ATTACH
	Set to attach code block CRC-16

	
	RTE_BBDEV_LDPC_ENC_INTERRUPTS
	Set if a device supports encoder dequeue interrupts

	
	RTE_BBDEV_LDPC_ENC_SCATTER_GATHER
	Set if a device supports scatter-gather functionality

	
	RTE_BBDEV_LDPC_ENC_CONCATENATION
	Set if a device supports concatenation of non byte aligned output

The structure passed for each LDPC encode operation is given below,
with the operation flags forming a bitmask in the op_flags field.

struct rte_bbdev_op_ldpc_enc {

 struct rte_bbdev_op_data input;
 struct rte_bbdev_op_data output;

 uint32_t op_flags;
 uint8_t rv_index;
 uint8_t basegraph;
 uint16_t z_c;
 uint16_t n_cb;
 uint8_t q_m;
 uint16_t n_filler;
 uint8_t code_block_mode;
 union {
 struct rte_bbdev_op_enc_ldpc_cb_params cb_params;
 struct rte_bbdev_op_enc_ldpc_tb_params tb_params;
 };
};

The LDPC encode parameters are set out in the table below.

	Parameter

	Description

	input

	input CB or TB data

	output

	rate matched CB or TB output buffer

	op_flags

	bitmask of all active operation capabilities

	rv_index

	redundancy version index [0..3]

	basegraph

	Basegraph 1 or 2

	z_c

	Zc, LDPC lifting size

	n_cb

	Ncb, length of the circular buffer in bits.

	q_m

	Qm, modulation order {2,4,6,8,10}

	n_filler

	number of filler bits

	code_block_mode

	code block or transport block mode

	op_flags

	bitmask of all active operation capabilities

	cb_params

	code block specific parameters (code block mode only)

	
	e

	E, length of the rate matched output sequence in bits

	tb_params

	transport block specific parameters (transport block mode only)

	
	c

	number of CBs in the TB or partial TB

	
	r

	index of the first CB in the inbound mbuf data

	
	c_ab

	number of CBs that use Ea before switching to Eb

	
	ea

	Ea, length of the RM output sequence in bits, r < cab

	
	eb

	Eb, length of the RM output sequence in bits, r >= cab

The mbuf input input is mandatory for all BBDEV PMDs and is the
incoming code block or transport block data.

The mbuf output output is mandatory and is the encoded CB(s). In
CB-mode ut contains the encoded CB of size e (E in 3GPP TS 38.212
section 6.2.5). In TB-mode it contains multiple contiguous encoded CBs
of size ea or eb.
The output buffer is allocated by the application with enough room
for the output data.

The encode interface works on both a code block (CB) and a transport
block (TB) basis.

NOTE: All enqueued ops in one rte_bbdev_enqueue_enc_ops()
call belong to one mode, either CB-mode or TB-mode.

The valid modes of operation are:

	CB-mode: one CB (attach CRC24B if required)

	CB-mode: one CB making up one TB (attach CRC24A if required)

	TB-mode: one or more CB of a partial TB (attach CRC24B(s) if required)

	TB-mode: one or more CB of a complete TB (attach CRC24AB(s) if required)

In CB-mode if RTE_BBDEV_LDPC_CRC_24A_ATTACH is set then CRC24A
is appended to the CB. If RTE_BBDEV_LDPC_CRC_24A_ATTACH is not
set the application is responsible for calculating and appending CRC24A
before calling BBDEV. The input data mbuf length is inclusive of
CRC24A/B where present and is equal to the code block size K.

In TB-mode, CRC24A is assumed to be pre-calculated and appended to the
inbound TB data buffer, unless the RTE_BBDEV_LDPC_CRC_24A_ATTACH
flag is set when it is the responsibility of BBDEV. The input data
mbuf length is total size of the CBs inclusive of any CRC24A and
CRC24B in the case they were appended by the application.

Not all BBDEV PMDs may be capable of CRC24A/B calculation. Flags
RTE_BBDEV_LDPC_CRC_24A_ATTACH and RTE_BBDEV_LDPC_CRC_24B_ATTACH
inform the application of the relevant capability. These flags can be set
in the op_flags parameter to indicate BBDEV to calculate and append
CRC24A to CB before going forward with LDPC encoding.

The difference between the partial and full-size TB is that BBDEV needs
the index of the first CB in this group and the number of CBs in the group.
The first CB index is given by r but the number of the CBs is
calculated by BBDEV before signalling to the driver.

The number of CBs in the group should not be confused with c, the
total number of CBs in the full TB (C as per 3GPP TS 38.212 section 5.2.2)

Figure Fig. 16.2 above
showing the Turbo encoding of CBs using BBDEV interface in TB-mode
is also valid for LDPC encode.

16.4.8. BBDEV LDPC Decode Operation

The operation flags that can be set for each LDPC decode operation are
given below.

NOTE: The actual operation flags that may be used with a specific
BBDEV PMD are dependent on the driver capabilities as reported via
rte_bbdev_info_get(), and may be a subset of those below.

	Description of LDPC decode capability flags

	
	RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK
	Set for transport block CRC-24A checking

	
	RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK
	Set for code block CRC-24B checking

	
	RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP
	Set to drop the last CRC bits decoding output

	
	RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS
	Set for bit-level de-interleaver bypass on input stream

	
	RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE
	Set for HARQ combined input stream enable

	
	RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE
	Set for HARQ combined output stream enable

	
	RTE_BBDEV_LDPC_DECODE_BYPASS
	Set for LDPC decoder bypass

RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE must be set

	
	RTE_BBDEV_LDPC_DECODE_SOFT_OUT
	Set for soft-output stream enable

	
	RTE_BBDEV_LDPC_SOFT_OUT_RM_BYPASS
	Set for Rate-Matching bypass on soft-out stream

	
	RTE_BBDEV_LDPC_SOFT_OUT_DEINTERLEAVER_BYPASS
	Set for bit-level de-interleaver bypass on soft-output stream

	
	RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE
	Set for iteration stopping on successful decode condition enable

Where a successful decode is a successful syndrome check

	
	RTE_BBDEV_LDPC_DEC_INTERRUPTS
	Set if a device supports decoder dequeue interrupts

	
	RTE_BBDEV_LDPC_DEC_SCATTER_GATHER
	Set if a device supports scatter-gather functionality

	
	RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
	Set if a device supports input/output HARQ compression

	
	RTE_BBDEV_LDPC_LLR_COMPRESSION
	Set if a device supports input LLR compression

	
	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE
	Set if a device supports HARQ input to device’s internal memory

	
	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
	Set if a device supports HARQ output to device’s internal memory

	
	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
	Set if a device supports loopback access to HARQ internal memory

The structure passed for each LDPC decode operation is given below,
with the operation flags forming a bitmask in the op_flags field.

struct rte_bbdev_op_ldpc_dec {

 struct rte_bbdev_op_data input;
 struct rte_bbdev_op_data hard_output;
 struct rte_bbdev_op_data soft_output;
 struct rte_bbdev_op_data harq_combined_input;
 struct rte_bbdev_op_data harq_combined_output;

 uint32_t op_flags;
 uint8_t rv_index;
 uint8_t basegraph;
 uint16_t z_c;
 uint16_t n_cb;
 uint8_t q_m;
 uint16_t n_filler;
 uint8_t iter_max;
 uint8_t iter_count;
 uint8_t code_block_mode;
 union {
 struct rte_bbdev_op_dec_ldpc_cb_params cb_params;
 struct rte_bbdev_op_dec_ldpc_tb_params tb_params;
 };
};

The LDPC decode parameters are set out in the table below.

	Parameter

	Description

	input

	input CB or TB data

	hard_output

	hard decisions buffer, decoded output

	soft_output

	soft LLR output buffer (optional)

	harq_comb_input

	HARQ combined input buffer (optional)

	harq_comb_output

	HARQ combined output buffer (optional)

	op_flags

	bitmask of all active operation capabilities

	rv_index

	redundancy version index [0..3]

	basegraph

	Basegraph 1 or 2

	z_c

	Zc, LDPC lifting size

	n_cb

	Ncb, length of the circular buffer in bits.

	q_m

	Qm, modulation order {1,2,4,6,8} from pi/2-BPSK to 256QAM

	n_filler

	number of filler bits

	iter_max

	maximum number of iterations to perform in decode all CBs

	iter_count

	number of iterations performed in decoding all CBs

	code_block_mode

	code block or transport block mode

	op_flags

	bitmask of all active operation capabilities

	cb_params

	code block specific parameters (code block mode only)

	
	e

	E, length of the rate matched output sequence in bits

	tb_params

	transport block specific parameters (transport block mode only)

	
	c

	number of CBs in the TB or partial TB

	
	r

	index of the first CB in the inbound mbuf data

	
	c_ab

	number of CBs that use Ea before switching to Eb

	
	ea

	Ea, length of the RM output sequence in bits, r < cab

	
	eb

	Eb, length of the RM output sequence in bits r >= cab

The mbuf input input encoded CB data is mandatory for all BBDEV PMDs
and is the Virtual Circular Buffer data stream with null padding.
Each byte in the input circular buffer is the LLR value of each bit of
the original CB.

The mbuf output hard_output is mandatory and is the decoded CBs size
K (CRC24A/B is the last 24-bit in each decoded CB).

The mbuf output soft_output is optional and is an LLR rate matched
output of size e (this is E as per 3GPP TS 38.212 section 6.2.5).

The mbuf input harq_combine_input is optional and is a buffer with
the input to the HARQ combination function of the device. If the
capability RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE is set
then the HARQ is stored in memory internal to the device and not visible
to BBDEV.

The mbuf output harq_combine_output is optional and is a buffer for
the output of the HARQ combination function of the device. If the
capability RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE is set
then the HARQ is stored in memory internal to the device and not visible
to BBDEV.

The output mbuf data structures are expected to be allocated by the
application with enough room for the output data.

As with the LDPC encode, the decode interface works on both a code block
(CB) and a transport block (TB) basis.

NOTE: All enqueued ops in one rte_bbdev_enqueue_dec_ops()
call belong to one mode, either CB-mode or TB-mode.

The valid modes of operation are:

	CB-mode: one CB (check CRC24B if required)

	CB-mode: one CB making up one TB (check CRC24A if required)

	TB-mode: one or more CB making up a partial TB (check CRC24B(s) if required)

	TB-mode: one or more CB making up a complete TB (check CRC24B(s) if required)

The mbuf length is inclusive of CRC24A/B where present and is equal
the code block size K.

The first CB Virtual Circular Buffer (VCB) index is given by r but the
number of the remaining CB VCBs is calculated automatically by BBDEV
and passed down to the driver.

The number of remaining CB VCBs should not be confused with c, the
total number of CBs in the full TB (C as per 3GPP TS 38.212 section 5.2.2)

The length is total size of the CBs inclusive of any CRC24A and CRC24B in
case they were appended by the application.

Figure Fig. 16.3 above
showing the Turbo decoding of CBs using BBDEV interface in TB-mode
is also valid for LDPC decode.

16.5. Sample code

The baseband device sample application gives an introduction on how to use the
bbdev framework, by giving a sample code performing a loop-back operation with a
baseband processor capable of transceiving data packets.

The following sample C-like pseudo-code shows the basic steps to encode several
buffers using (sw_turbo) bbdev PMD.

/* EAL Init */
ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

/* Get number of available bbdev devices */
nb_bbdevs = rte_bbdev_count();
if (nb_bbdevs == 0)
 rte_exit(EXIT_FAILURE, "No bbdevs detected!\n");

/* Create bbdev op pools */
bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC] =
 rte_bbdev_op_pool_create("bbdev_op_pool_enc",
 RTE_BBDEV_OP_TURBO_ENC, NB_MBUF, 128, rte_socket_id());

/* Get information for this device */
rte_bbdev_info_get(dev_id, &info);

/* Setup BBDEV device queues */
ret = rte_bbdev_setup_queues(dev_id, qs_nb, info.socket_id);
if (ret < 0)
 rte_exit(EXIT_FAILURE,
 "ERROR(%d): BBDEV %u not configured properly\n",
 ret, dev_id);

/* setup device queues */
qconf.socket = info.socket_id;
qconf.queue_size = info.drv.queue_size_lim;
qconf.op_type = RTE_BBDEV_OP_TURBO_ENC;

for (q_id = 0; q_id < qs_nb; q_id++) {
 /* Configure all queues belonging to this bbdev device */
 ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf);
 if (ret < 0)
 rte_exit(EXIT_FAILURE,
 "ERROR(%d): BBDEV %u queue %u not configured properly\n",
 ret, dev_id, q_id);
}

/* Start bbdev device */
ret = rte_bbdev_start(dev_id);

/* Create the mbuf mempool for pkts */
mbuf_pool = rte_pktmbuf_pool_create("bbdev_mbuf_pool",
 NB_MBUF, MEMPOOL_CACHE_SIZE, 0,
 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
 rte_exit(EXIT_FAILURE,
 "Unable to create '%s' pool\n", pool_name);

while (!global_exit_flag) {

 /* Allocate burst of op structures in preparation for enqueue */
 if (rte_bbdev_enc_op_alloc_bulk(bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC],
 ops_burst, op_num) != 0)
 continue;

 /* Allocate input mbuf pkts */
 ret = rte_pktmbuf_alloc_bulk(mbuf_pool, input_pkts_burst, MAX_PKT_BURST);
 if (ret < 0)
 continue;

 /* Allocate output mbuf pkts */
 ret = rte_pktmbuf_alloc_bulk(mbuf_pool, output_pkts_burst, MAX_PKT_BURST);
 if (ret < 0)
 continue;

 for (j = 0; j < op_num; j++) {
 /* Append the size of the ethernet header */
 rte_pktmbuf_append(input_pkts_burst[j],
 sizeof(struct rte_ether_hdr));

 /* set op */

 ops_burst[j]->turbo_enc.input.offset =
 sizeof(struct rte_ether_hdr);

 ops_burst[j]->turbo_enc->input.length =
 rte_pktmbuf_pkt_len(bbdev_pkts[j]);

 ops_burst[j]->turbo_enc->input.data =
 input_pkts_burst[j];

 ops_burst[j]->turbo_enc->output.offset =
 sizeof(struct rte_ether_hdr);

 ops_burst[j]->turbo_enc->output.data =
 output_pkts_burst[j];
 }

 /* Enqueue packets on BBDEV device */
 op_num = rte_bbdev_enqueue_enc_ops(qconf->bbdev_id,
 qconf->bbdev_qs[q], ops_burst,
 MAX_PKT_BURST);

 /* Dequeue packets from BBDEV device*/
 op_num = rte_bbdev_dequeue_enc_ops(qconf->bbdev_id,
 qconf->bbdev_qs[q], ops_burst,
 MAX_PKT_BURST);
}

16.5.1. BBDEV Device API

The bbdev Library API is described in the DPDK API Reference document.

17. Cryptography Device Library

The cryptodev library provides a Crypto device framework for management and
provisioning of hardware and software Crypto poll mode drivers, defining generic
APIs which support a number of different Crypto operations. The framework
currently only supports cipher, authentication, chained cipher/authentication
and AEAD symmetric and asymmetric Crypto operations.

17.1. Design Principles

The cryptodev library follows the same basic principles as those used in DPDK’s
Ethernet Device framework. The Crypto framework provides a generic Crypto device
framework which supports both physical (hardware) and virtual (software) Crypto
devices as well as a generic Crypto API which allows Crypto devices to be
managed and configured and supports Crypto operations to be provisioned on
Crypto poll mode driver.

17.2. Device Management

17.2.1. Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the
EAL function which is executed at DPDK initialization, based on
their PCI device identifier, each unique PCI BDF (bus/bridge, device,
function). Specific physical Crypto devices, like other physical devices in DPDK
can be white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command
line options or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'crypto_aesni_mb0,max_nb_queue_pairs=2,socket_id=0'

Note

	If DPDK application requires multiple software crypto PMD devices then required
number of --vdev with appropriate libraries are to be added.

	An Application with crypto PMD instances sharing the same library requires unique ID.

Example: --vdev 'crypto_aesni_mb0' --vdev 'crypto_aesni_mb1'

Or using the rte_vdev_init API within the application code.

rte_vdev_init("crypto_aesni_mb",
 "max_nb_queue_pairs=2,socket_id=0")

All virtual Crypto devices support the following initialization parameters:

	max_nb_queue_pairs - maximum number of queue pairs supported by the device.

	socket_id - socket on which to allocate the device resources on.

17.2.2. Device Identification

Each device, whether virtual or physical is uniquely designated by two
identifiers:

	A unique device index used to designate the Crypto device in all functions
exported by the cryptodev API.

	A device name used to designate the Crypto device in console messages, for
administration or debugging purposes. For ease of use, the port name includes
the port index.

17.2.3. Device Configuration

The configuration of each Crypto device includes the following operations:

	Allocation of resources, including hardware resources if a physical device.

	Resetting the device into a well-known default state.

	Initialization of statistics counters.

The rte_cryptodev_configure API is used to configure a Crypto device.

int rte_cryptodev_configure(uint8_t dev_id,
 struct rte_cryptodev_config *config)

The rte_cryptodev_config structure is used to pass the configuration
parameters for socket selection and number of queue pairs.

struct rte_cryptodev_config {
 int socket_id;
 /**< Socket to allocate resources on */
 uint16_t nb_queue_pairs;
 /**< Number of queue pairs to configure on device */
};

17.2.4. Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the
rte_cryptodev_queue_pair_setup API.
Each queue pairs resources may be allocated on a specified socket.

 int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
 const struct rte_cryptodev_qp_conf *qp_conf,
 int socket_id)

struct rte_cryptodev_qp_conf {
 uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
 struct rte_mempool *mp_session;
 /**< The mempool for creating session in sessionless mode */
 struct rte_mempool *mp_session_private;
 /**< The mempool for creating sess private data in sessionless mode */
 };

The fields mp_session and mp_session_private are used for creating
temporary session to process the crypto operations in the session-less mode.
They can be the same other different mempools. Please note not all Cryptodev
PMDs supports session-less mode.

17.2.5. Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when
a processor’s logical cores and interfaces utilize its local memory. Therefore
Crypto operations, and in the case of symmetric Crypto operations, the session
and the mbuf being operated on, should be allocated from memory pools created
in the local memory. The buffers should, if possible, remain on the local
processor to obtain the best performance results and buffer descriptors should
be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of
virtual Crypto devices, if the Crypto operation and session and data buffer is
in local memory instead of a remote processor’s memory. This is also true for
the pipe-line model provided all logical cores used are located on the same
processor.

Multiple logical cores should never share the same queue pair for enqueuing
operations or dequeuing operations on the same Crypto device since this would
require global locks and hinder performance. It is however possible to use a
different logical core to dequeue an operation on a queue pair from the logical
core which it was enqueued on. This means that a crypto burst enqueue/dequeue
APIs are a logical place to transition from one logical core to another in a
packet processing pipeline.

17.3. Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device
features and algorithm capabilities. Global devices features identify device
wide level features which are applicable to the whole device such as
the device having hardware acceleration or supporting symmetric and/or asymmetric
Crypto operations.

The capabilities mechanism defines the individual algorithms/functions which
the device supports, such as a specific symmetric Crypto cipher,
authentication operation or Authenticated Encryption with Associated Data
(AEAD) operation.

17.3.1. Device Features

Currently the following Crypto device features are defined:

	Symmetric Crypto operations

	Asymmetric Crypto operations

	Chaining of symmetric Crypto operations

	SSE accelerated SIMD vector operations

	AVX accelerated SIMD vector operations

	AVX2 accelerated SIMD vector operations

	AESNI accelerated instructions

	Hardware off-load processing

17.3.2. Device Operation Capabilities

Crypto capabilities which identify particular algorithm which the Crypto PMD
supports are defined by the operation type, the operation transform, the
transform identifier and then the particulars of the transform. For the full
scope of the Crypto capability see the definition of the structure in the
DPDK API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities
for the operations it supports. Below is an example of the capabilities for a
PMD which supports the authentication algorithm SHA1_HMAC and the cipher
algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
 { /* SHA1 HMAC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
 .auth = {
 .algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
 .block_size = 64,
 .key_size = {
 .min = 64,
 .max = 64,
 .increment = 0
 },
 .digest_size = {
 .min = 12,
 .max = 12,
 .increment = 0
 },
 .aad_size = { 0 },
 .iv_size = { 0 }
 }
 }
 },
 { /* AES CBC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
 .cipher = {
 .algo = RTE_CRYPTO_CIPHER_AES_CBC,
 .block_size = 16,
 .key_size = {
 .min = 16,
 .max = 32,
 .increment = 8
 },
 .iv_size = {
 .min = 16,
 .max = 16,
 .increment = 0
 }
 }
 }
 }
}

17.3.3. Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver
is achieved through the rte_cryptodev_info_get function.

void rte_cryptodev_info_get(uint8_t dev_id,
 struct rte_cryptodev_info *dev_info);

This allows the user to query a specific Crypto PMD and get all the device
features and capabilities. The rte_cryptodev_info structure contains all the
relevant information for the device.

struct rte_cryptodev_info {
 const char *driver_name;
 uint8_t driver_id;
 struct rte_device *device;

 uint64_t feature_flags;

 const struct rte_cryptodev_capabilities *capabilities;

 unsigned max_nb_queue_pairs;

 struct {
 unsigned max_nb_sessions;
 } sym;
};

17.4. Operation Processing

Scheduling of Crypto operations on DPDK’s application data path is
performed using a burst oriented asynchronous API set. A queue pair on a Crypto
device accepts a burst of Crypto operations using enqueue burst API. On physical
Crypto devices the enqueue burst API will place the operations to be processed
on the devices hardware input queue, for virtual devices the processing of the
Crypto operations is usually completed during the enqueue call to the Crypto
device. The dequeue burst API will retrieve any processed operations available
from the queue pair on the Crypto device, from physical devices this is usually
directly from the devices processed queue, and for virtual device’s from a
rte_ring where processed operations are placed after being processed on the
enqueue call.

17.4.1. Private data

For session-based operations, the set and get API provides a mechanism for an
application to store and retrieve the private user data information stored along
with the crypto session.

For example, suppose an application is submitting a crypto operation with a session
associated and wants to indicate private user data information which is required to be
used after completion of the crypto operation. In this case, the application can use
the set API to set the user data and retrieve it using get API.

int rte_cryptodev_sym_session_set_user_data(
 struct rte_cryptodev_sym_session *sess, void *data, uint16_t size);

void * rte_cryptodev_sym_session_get_user_data(
 struct rte_cryptodev_sym_session *sess);

Please note the size passed to set API cannot be bigger than the predefined
user_data_sz when creating the session header mempool, otherwise the
function will return error. Also when user_data_sz was defined as 0 when
creating the session header mempool, the get API will always return NULL.

For session-less mode, the private user data information can be placed along with the
struct rte_crypto_op. The rte_crypto_op::private_data_offset indicates the
start of private data information. The offset is counted from the start of the
rte_crypto_op including other crypto information such as the IVs (since there can
be an IV also for authentication).

17.4.2. Enqueue / Dequeue Burst APIs

The burst enqueue API uses a Crypto device identifier and a queue pair
identifier to specify the Crypto device queue pair to schedule the processing on.
The nb_ops parameter is the number of operations to process which are
supplied in the ops array of rte_crypto_op structures.
The enqueue function returns the number of operations it actually enqueued for
processing, a return value equal to nb_ops means that all packets have been
enqueued.

uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
 struct rte_crypto_op **ops, uint16_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but
the nb_ops and ops parameters are now used to specify the max processed
operations the user wishes to retrieve and the location in which to store them.
The API call returns the actual number of processed operations returned, this
can never be larger than nb_ops.

uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
 struct rte_crypto_op **ops, uint16_t nb_ops)

17.4.3. Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a
generic metadata container for all necessary information required for the
Crypto operation to be processed on a particular Crypto device poll mode driver.

[image: ../_images/crypto_op.svg]
The operation structure includes the operation type, the operation status
and the session type (session-based/less), a reference to the operation
specific data, which can vary in size and content depending on the operation
being provisioned. It also contains the source mempool for the operation,
if it allocated from a mempool.

If Crypto operations are allocated from a Crypto operation mempool, see next
section, there is also the ability to allocate private memory with the
operation for applications purposes.

Application software is responsible for specifying all the operation specific
fields in the rte_crypto_op structure which are then used by the Crypto PMD
to process the requested operation.

17.4.4. Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which
utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
that the crypto operation is interleaved optimally across the channels and
ranks for optimal processing.
A rte_crypto_op contains a field indicating the pool that it originated from.
When calling rte_crypto_op_free(op), the operation returns to its original pool.

extern struct rte_mempool *
rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,
 unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
 int socket_id);

During pool creation rte_crypto_op_init() is called as a constructor to
initialize each Crypto operation which subsequently calls
__rte_crypto_op_reset() to configure any operation type specific fields based
on the type parameter.

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc() are used to allocate
Crypto operations of a specific type from a given Crypto operation mempool.
__rte_crypto_op_reset() is called on each operation before being returned to
allocate to a user so the operation is always in a good known state before use
by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
 enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
 enum rte_crypto_op_type type,
 struct rte_crypto_op **ops, uint16_t nb_ops)

rte_crypto_op_free() is called by the application to return an operation to
its allocating pool.

void rte_crypto_op_free(struct rte_crypto_op *op)

17.5. Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric
Crypto operations; cipher, authentication, including chaining of these
operations, as well as also supporting AEAD operations.

17.5.1. Session and Session Management

Sessions are used in symmetric cryptographic processing to store the immutable
data defined in a cryptographic transform which is used in the operation
processing of a packet flow. Sessions are used to manage information such as
expand cipher keys and HMAC IPADs and OPADs, which need to be calculated for a
particular Crypto operation, but are immutable on a packet to packet basis for
a flow. Crypto sessions cache this immutable data in a optimal way for the
underlying PMD and this allows further acceleration of the offload of
Crypto workloads.

[image: ../_images/cryptodev_sym_sess.svg]
The Crypto device framework provides APIs to create session mempool and allocate
and initialize sessions for crypto devices, where sessions are mempool objects.
The application has to use rte_cryptodev_sym_session_pool_create() to
create the session header mempool that creates a mempool with proper element
size automatically and stores necessary information for safely accessing the
session in the mempool’s private data field.

To create a mempool for storing session private data, the application has two
options. The first is to create another mempool with elt size equal to or
bigger than the maximum session private data size of all crypto devices that
will share the same session header. The creation of the mempool shall use the
traditional rte_mempool_create() with the correct elt_size. The other
option is to change the elt_size parameter in
rte_cryptodev_sym_session_pool_create() to the correct value. The first
option is more complex to implement but may result in better memory usage as
a session header normally takes smaller memory footprint as the session private
data.

Once the session mempools have been created, rte_cryptodev_sym_session_create()
is used to allocate an uninitialized session from the given mempool.
The session then must be initialized using rte_cryptodev_sym_session_init()
for each of the required crypto devices. A symmetric transform chain
is used to specify the operation and its parameters. See the section below for
details on transforms.

When a session is no longer used, user must call rte_cryptodev_sym_session_clear()
for each of the crypto devices that are using the session, to free all driver
private session data. Once this is done, session should be freed using
rte_cryptodev_sym_session_free which returns them to their mempool.

17.5.2. Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used
to specify the details of the Crypto operation. For chaining of symmetric
operations such as cipher encrypt and authentication generate, the next pointer
allows transform to be chained together. Crypto devices which support chaining
must publish the chaining of symmetric Crypto operations feature flag. Allocation of the
xform structure is in the application domain. To allow future API extensions in a
backwardly compatible manner, e.g. addition of a new parameter, the application should
zero the full xform struct before populating it.

Currently there are three transforms types cipher, authentication and AEAD.
Also it is important to note that the order in which the
transforms are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
 struct rte_crypto_sym_xform *next;
 /**< next xform in chain */
 enum rte_crypto_sym_xform_type type;
 /**< xform type */
 union {
 struct rte_crypto_auth_xform auth;
 /**< Authentication / hash xform */
 struct rte_crypto_cipher_xform cipher;
 /**< Cipher xform */
 struct rte_crypto_aead_xform aead;
 /**< AEAD xform */
 };
};

The API does not place a limit on the number of transforms that can be chained
together but this will be limited by the underlying Crypto device poll mode
driver which is processing the operation.

[image: ../_images/crypto_xform_chain.svg]

17.5.3. Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating
to performing symmetric cryptographic processing on a referenced mbuf data
buffer. It is used for either cipher, authentication, AEAD and chained
operations.

As a minimum the symmetric operation must have a source data buffer (m_src),
a valid session (or transform chain if in session-less mode) and the minimum
authentication/ cipher/ AEAD parameters required depending on the type of operation
specified in the session or the transform
chain.

struct rte_crypto_sym_op {
 struct rte_mbuf *m_src;
 struct rte_mbuf *m_dst;

 union {
 struct rte_cryptodev_sym_session *session;
 /**< Handle for the initialised session context */
 struct rte_crypto_sym_xform *xform;
 /**< Session-less API Crypto operation parameters */
 };

 union {
 struct {
 struct {
 uint32_t offset;
 uint32_t length;
 } data; /**< Data offsets and length for AEAD */

 struct {
 uint8_t *data;
 rte_iova_t phys_addr;
 } digest; /**< Digest parameters */

 struct {
 uint8_t *data;
 rte_iova_t phys_addr;
 } aad;
 /**< Additional authentication parameters */
 } aead;

 struct {
 struct {
 struct {
 uint32_t offset;
 uint32_t length;
 } data; /**< Data offsets and length for ciphering */
 } cipher;

 struct {
 struct {
 uint32_t offset;
 uint32_t length;
 } data;
 /**< Data offsets and length for authentication */

 struct {
 uint8_t *data;
 rte_iova_t phys_addr;
 } digest; /**< Digest parameters */
 } auth;
 };
 };
};

17.6. Synchronous mode

Some cryptodevs support synchronous mode alongside with a standard asynchronous
mode. In that case operations are performed directly when calling
rte_cryptodev_sym_cpu_crypto_process method instead of enqueuing and
dequeuing an operation before. This mode of operation allows cryptodevs which
utilize CPU cryptographic acceleration to have significant performance boost
comparing to standard asynchronous approach. Cryptodevs supporting synchronous
mode have RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO feature flag set.

To perform a synchronous operation a call to
rte_cryptodev_sym_cpu_crypto_process has to be made with vectorized
operation descriptor (struct rte_crypto_sym_vec) containing:

	num - number of operations to perform,

	pointer to an array of size num containing a scatter-gather list
descriptors of performed operations (struct rte_crypto_sgl). Each instance
of struct rte_crypto_sgl consists of a number of segments and a pointer to
an array of segment descriptors struct rte_crypto_vec;

	pointers to arrays of size num containing IV, AAD and digest information,

	pointer to an array of size num where status information will be stored
for each operation.

Function returns a number of successfully completed operations and sets
appropriate status number for each operation in the status array provided as
a call argument. Status different than zero must be treated as error.

For more details, e.g. how to convert an mbuf to an SGL, please refer to an
example usage in the IPsec library implementation.

17.7. Sample code

There are various sample applications that show how to use the cryptodev library,
such as the L2fwd with Crypto sample application (L2fwd-crypto) and
the IPsec Security Gateway application (ipsec-secgw).

While these applications demonstrate how an application can be created to perform
generic crypto operation, the required complexity hides the basic steps of
how to use the cryptodev APIs.

The following sample code shows the basic steps to encrypt several buffers
with AES-CBC (although performing other crypto operations is similar),
using one of the crypto PMDs available in DPDK.

/*
 * Simple example to encrypt several buffers with AES-CBC using
 * the Cryptodev APIs.
 */

#define MAX_SESSIONS 1024
#define NUM_MBUFS 1024
#define POOL_CACHE_SIZE 128
#define BURST_SIZE 32
#define BUFFER_SIZE 1024
#define AES_CBC_IV_LENGTH 16
#define AES_CBC_KEY_LENGTH 16
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
 sizeof(struct rte_crypto_sym_op))

struct rte_mempool *mbuf_pool, *crypto_op_pool;
struct rte_mempool *session_pool, *session_priv_pool;
unsigned int session_size;
int ret;

/* Initialize EAL. */
ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

uint8_t socket_id = rte_socket_id();

/* Create the mbuf pool. */
mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool",
 NUM_MBUFS,
 POOL_CACHE_SIZE,
 0,
 RTE_MBUF_DEFAULT_BUF_SIZE,
 socket_id);
if (mbuf_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");

/*
 * The IV is always placed after the crypto operation,
 * so some private data is required to be reserved.
 */
unsigned int crypto_op_private_data = AES_CBC_IV_LENGTH;

/* Create crypto operation pool. */
crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 NUM_MBUFS,
 POOL_CACHE_SIZE,
 crypto_op_private_data,
 socket_id);
if (crypto_op_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");

/* Create the virtual crypto device. */
char args[128];
const char *crypto_name = "crypto_aesni_mb0";
snprintf(args, sizeof(args), "socket_id=%d", socket_id);
ret = rte_vdev_init(crypto_name, args);
if (ret != 0)
 rte_exit(EXIT_FAILURE, "Cannot create virtual device");

uint8_t cdev_id = rte_cryptodev_get_dev_id(crypto_name);

/* Get private session data size. */
session_size = rte_cryptodev_sym_get_private_session_size(cdev_id);

#ifdef USE_TWO_MEMPOOLS
/* Create session mempool for the session header. */
session_pool = rte_cryptodev_sym_session_pool_create("session_pool",
 MAX_SESSIONS,
 0,
 POOL_CACHE_SIZE,
 0,
 socket_id);

/*
 * Create session private data mempool for the
 * private session data for the crypto device.
 */
session_priv_pool = rte_mempool_create("session_pool",
 MAX_SESSIONS,
 session_size,
 POOL_CACHE_SIZE,
 0, NULL, NULL, NULL,
 NULL, socket_id,
 0);

#else
/* Use of the same mempool for session header and private data */
 session_pool = rte_cryptodev_sym_session_pool_create("session_pool",
 MAX_SESSIONS * 2,
 session_size,
 POOL_CACHE_SIZE,
 0,
 socket_id);

 session_priv_pool = session_pool;

#endif

/* Configure the crypto device. */
struct rte_cryptodev_config conf = {
 .nb_queue_pairs = 1,
 .socket_id = socket_id
};

struct rte_cryptodev_qp_conf qp_conf = {
 .nb_descriptors = 2048,
 .mp_session = session_pool,
 .mp_session_private = session_priv_pool
};

if (rte_cryptodev_configure(cdev_id, &conf) < 0)
 rte_exit(EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);

if (rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, socket_id) < 0)
 rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_cryptodev_start(cdev_id) < 0)
 rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* Create the crypto transform. */
uint8_t cipher_key[16] = {0};
struct rte_crypto_sym_xform cipher_xform = {
 .next = NULL,
 .type = RTE_CRYPTO_SYM_XFORM_CIPHER,
 .cipher = {
 .op = RTE_CRYPTO_CIPHER_OP_ENCRYPT,
 .algo = RTE_CRYPTO_CIPHER_AES_CBC,
 .key = {
 .data = cipher_key,
 .length = AES_CBC_KEY_LENGTH
 },
 .iv = {
 .offset = IV_OFFSET,
 .length = AES_CBC_IV_LENGTH
 }
 }
};

/* Create crypto session and initialize it for the crypto device. */
struct rte_cryptodev_sym_session *session;
session = rte_cryptodev_sym_session_create(session_pool);
if (session == NULL)
 rte_exit(EXIT_FAILURE, "Session could not be created\n");

if (rte_cryptodev_sym_session_init(cdev_id, session,
 &cipher_xform, session_priv_pool) < 0)
 rte_exit(EXIT_FAILURE, "Session could not be initialized "
 "for the crypto device\n");

/* Get a burst of crypto operations. */
struct rte_crypto_op *crypto_ops[BURST_SIZE];
if (rte_crypto_op_bulk_alloc(crypto_op_pool,
 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 crypto_ops, BURST_SIZE) == 0)
 rte_exit(EXIT_FAILURE, "Not enough crypto operations available\n");

/* Get a burst of mbufs. */
struct rte_mbuf *mbufs[BURST_SIZE];
if (rte_pktmbuf_alloc_bulk(mbuf_pool, mbufs, BURST_SIZE) < 0)
 rte_exit(EXIT_FAILURE, "Not enough mbufs available");

/* Initialize the mbufs and append them to the crypto operations. */
unsigned int i;
for (i = 0; i < BURST_SIZE; i++) {
 if (rte_pktmbuf_append(mbufs[i], BUFFER_SIZE) == NULL)
 rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");
 crypto_ops[i]->sym->m_src = mbufs[i];
}

/* Set up the crypto operations. */
for (i = 0; i < BURST_SIZE; i++) {
 struct rte_crypto_op *op = crypto_ops[i];
 /* Modify bytes of the IV at the end of the crypto operation */
 uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
 IV_OFFSET);

 generate_random_bytes(iv_ptr, AES_CBC_IV_LENGTH);

 op->sym->cipher.data.offset = 0;
 op->sym->cipher.data.length = BUFFER_SIZE;

 /* Attach the crypto session to the operation */
 rte_crypto_op_attach_sym_session(op, session);
}

/* Enqueue the crypto operations in the crypto device. */
uint16_t num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, 0,
 crypto_ops, BURST_SIZE);

/*
 * Dequeue the crypto operations until all the operations
 * are processed in the crypto device.
 */
uint16_t num_dequeued_ops, total_num_dequeued_ops = 0;
do {
 struct rte_crypto_op *dequeued_ops[BURST_SIZE];
 num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, 0,
 dequeued_ops, BURST_SIZE);
 total_num_dequeued_ops += num_dequeued_ops;

 /* Check if operation was processed successfully */
 for (i = 0; i < num_dequeued_ops; i++) {
 if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
 rte_exit(EXIT_FAILURE,
 "Some operations were not processed correctly");
 }

 rte_mempool_put_bulk(crypto_op_pool, (void **)dequeued_ops,
 num_dequeued_ops);
} while (total_num_dequeued_ops < num_enqueued_ops);

17.8. Asymmetric Cryptography

The cryptodev library currently provides support for the following asymmetric
Crypto operations; RSA, Modular exponentiation and inversion, Diffie-Hellman
public and/or private key generation and shared secret compute, DSA Signature
generation and verification.

17.8.1. Session and Session Management

Sessions are used in asymmetric cryptographic processing to store the immutable
data defined in asymmetric cryptographic transform which is further used in the
operation processing. Sessions typically stores information, such as, public
and private key information or domain params or prime modulus data i.e. immutable
across data sets. Crypto sessions cache this immutable data in a optimal way for the
underlying PMD and this allows further acceleration of the offload of Crypto workloads.

Like symmetric, the Crypto device framework provides APIs to allocate and initialize
asymmetric sessions for crypto devices, where sessions are mempool objects.
It is the application’s responsibility to create and manage the session mempools.
Application using both symmetric and asymmetric sessions should allocate and maintain
different sessions pools for each type.

An application can use rte_cryptodev_get_asym_session_private_size() to
get the private size of asymmetric session on a given crypto device. This
function would allow an application to calculate the max device asymmetric
session size of all crypto devices to create a single session mempool.
If instead an application creates multiple asymmetric session mempools,
the Crypto device framework also provides rte_cryptodev_asym_get_header_session_size() to get
the size of an uninitialized session.

Once the session mempools have been created, rte_cryptodev_asym_session_create()
is used to allocate an uninitialized asymmetric session from the given mempool.
The session then must be initialized using rte_cryptodev_asym_session_init()
for each of the required crypto devices. An asymmetric transform chain
is used to specify the operation and its parameters. See the section below for
details on transforms.

When a session is no longer used, user must call rte_cryptodev_asym_session_clear()
for each of the crypto devices that are using the session, to free all driver
private asymmetric session data. Once this is done, session should be freed using
rte_cryptodev_asym_session_free() which returns them to their mempool.

17.8.2. Asymmetric Sessionless Support

Asymmetric crypto framework supports session-less operations as well.

Fields that should be set by user are:

Member xform of struct rte_crypto_asym_op should point to the user created rte_crypto_asym_xform.
Note that rte_crypto_asym_xform should be immutable for the lifetime of associated crypto_op.

Member sess_type of rte_crypto_op should also be set to RTE_CRYPTO_OP_SESSIONLESS.

17.8.3. Transforms and Transform Chaining

Asymmetric Crypto transforms (rte_crypto_asym_xform) are the mechanism used
to specify the details of the asymmetric Crypto operation. Next pointer within
xform allows transform to be chained together. Also it is important to note that
the order in which the transforms are passed indicates the order of the chaining. Allocation
of the xform structure is in the application domain. To allow future API extensions in a
backwardly compatible manner, e.g. addition of a new parameter, the application should
zero the full xform struct before populating it.

Not all asymmetric crypto xforms are supported for chaining. Currently supported
asymmetric crypto chaining is Diffie-Hellman private key generation followed by
public generation. Also, currently API does not support chaining of symmetric and
asymmetric crypto xforms.

Each xform defines specific asymmetric crypto algo. Currently supported are:
* RSA
* Modular operations (Exponentiation and Inverse)
* Diffie-Hellman
* DSA
* None - special case where PMD may support a passthrough mode. More for diagnostic purpose

See DPDK API Reference for details on each rte_crypto_xxx_xform struct

17.8.4. Asymmetric Operations

The asymmetric Crypto operation structure contains all the mutable data relating
to asymmetric cryptographic processing on an input data buffer. It uses either
RSA, Modular, Diffie-Hellman or DSA operations depending upon session it is attached
to.

Every operation must carry a valid session handle which further carries information
on xform or xform-chain to be performed on op. Every xform type defines its own set
of operational params in their respective rte_crypto_xxx_op_param struct. Depending
on xform information within session, PMD picks up and process respective op_param
struct.
Unlike symmetric, asymmetric operations do not use mbufs for input/output.
They operate on data buffer of type rte_crypto_param.

See DPDK API Reference for details on each rte_crypto_xxx_op_param struct

17.9. Asymmetric crypto Sample code

There’s a unit test application test_cryptodev_asym.c inside unit test framework that
show how to setup and process asymmetric operations using cryptodev library.

The following sample code shows the basic steps to compute modular exponentiation
using 1024-bit modulus length using openssl PMD available in DPDK (performing other
crypto operations is similar except change to respective op and xform setup).

/*
 * Simple example to compute modular exponentiation with 1024-bit key
 *
 */
#define MAX_ASYM_SESSIONS 10
#define NUM_ASYM_BUFS 10

struct rte_mempool *crypto_op_pool, *asym_session_pool;
unsigned int asym_session_size;
int ret;

/* Initialize EAL. */
ret = rte_eal_init(argc, argv);
if (ret < 0)
 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

uint8_t socket_id = rte_socket_id();

/* Create crypto operation pool. */
crypto_op_pool = rte_crypto_op_pool_create(
 "crypto_op_pool",
 RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
 NUM_ASYM_BUFS, 0, 0,
 socket_id);
if (crypto_op_pool == NULL)
 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");

/* Create the virtual crypto device. */
char args[128];
const char *crypto_name = "crypto_openssl";
snprintf(args, sizeof(args), "socket_id=%d", socket_id);
ret = rte_vdev_init(crypto_name, args);
if (ret != 0)
 rte_exit(EXIT_FAILURE, "Cannot create virtual device");

uint8_t cdev_id = rte_cryptodev_get_dev_id(crypto_name);

/* Get private asym session data size. */
asym_session_size = rte_cryptodev_get_asym_private_session_size(cdev_id);

/*
 * Create session mempool, with two objects per session,
 * one for the session header and another one for the
 * private asym session data for the crypto device.
 */
asym_session_pool = rte_mempool_create("asym_session_pool",
 MAX_ASYM_SESSIONS * 2,
 asym_session_size,
 0,
 0, NULL, NULL, NULL,
 NULL, socket_id,
 0);

/* Configure the crypto device. */
struct rte_cryptodev_config conf = {
 .nb_queue_pairs = 1,
 .socket_id = socket_id
};
struct rte_cryptodev_qp_conf qp_conf = {
 .nb_descriptors = 2048
};

if (rte_cryptodev_configure(cdev_id, &conf) < 0)
 rte_exit(EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);

if (rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
 socket_id, asym_session_pool) < 0)
 rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_cryptodev_start(cdev_id) < 0)
 rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* Setup crypto xform to do modular exponentiation with 1024 bit
 * length modulus
 */
struct rte_crypto_asym_xform modex_xform = {
 .next = NULL,
 .xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX,
 .modex = {
 .modulus = {
 .data =
 (uint8_t *)
 ("\xb3\xa1\xaf\xb7\x13\x08\x00\x0a\x35\xdc\x2b\x20\x8d"
 "\xa1\xb5\xce\x47\x8a\xc3\x80\xf4\x7d\x4a\xa2\x62\xfd\x61\x7f"
 "\xb5\xa8\xde\x0a\x17\x97\xa0\xbf\xdf\x56\x5a\x3d\x51\x56\x4f"
 "\x70\x70\x3f\x63\x6a\x44\x5b\xad\x84\x0d\x3f\x27\x6e\x3b\x34"
 "\x91\x60\x14\xb9\xaa\x72\xfd\xa3\x64\xd2\x03\xa7\x53\x87\x9e"
 "\x88\x0b\xc1\x14\x93\x1a\x62\xff\xb1\x5d\x74\xcd\x59\x63\x18"
 "\x11\x3d\x4f\xba\x75\xd4\x33\x4e\x23\x6b\x7b\x57\x44\xe1\xd3"
 "\x03\x13\xa6\xf0\x8b\x60\xb0\x9e\xee\x75\x08\x9d\x71\x63\x13"
 "\xcb\xa6\x81\x92\x14\x03\x22\x2d\xde\x55"),
 .length = 128
 },
 .exponent = {
 .data = (uint8_t *)("\x01\x00\x01"),
 .length = 3
 }
 }
};
/* Create asym crypto session and initialize it for the crypto device. */
struct rte_cryptodev_asym_session *asym_session;
asym_session = rte_cryptodev_asym_session_create(asym_session_pool);
if (asym_session == NULL)
 rte_exit(EXIT_FAILURE, "Session could not be created\n");

if (rte_cryptodev_asym_session_init(cdev_id, asym_session,
 &modex_xform, asym_session_pool) < 0)
 rte_exit(EXIT_FAILURE, "Session could not be initialized "
 "for the crypto device\n");

/* Get a burst of crypto operations. */
struct rte_crypto_op *crypto_ops[1];
if (rte_crypto_op_bulk_alloc(crypto_op_pool,
 RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
 crypto_ops, 1) == 0)
 rte_exit(EXIT_FAILURE, "Not enough crypto operations available\n");

/* Set up the crypto operations. */
struct rte_crypto_asym_op *asym_op = crypto_ops[0]->asym;

 /* calculate mod exp of value 0xf8 */
static unsigned char base[] = {0xF8};
asym_op->modex.base.data = base;
asym_op->modex.base.length = sizeof(base);
 asym_op->modex.base.iova = base;

/* Attach the asym crypto session to the operation */
rte_crypto_op_attach_asym_session(op, asym_session);

/* Enqueue the crypto operations in the crypto device. */
uint16_t num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, 0,
 crypto_ops, 1);

/*
 * Dequeue the crypto operations until all the operations
 * are processed in the crypto device.
 */
uint16_t num_dequeued_ops, total_num_dequeued_ops = 0;
do {
 struct rte_crypto_op *dequeued_ops[1];
 num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, 0,
 dequeued_ops, 1);
 total_num_dequeued_ops += num_dequeued_ops;

 /* Check if operation was processed successfully */
 if (dequeued_ops[0]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
 rte_exit(EXIT_FAILURE,
 "Some operations were not processed correctly");

} while (total_num_dequeued_ops < num_enqueued_ops);

17.9.1. Asymmetric Crypto Device API

The cryptodev Library API is described in the
DPDK API Reference [https://doc.dpdk.org/api/]

18. Compression Device Library

The compression framework provides a generic set of APIs to perform compression services
as well as to query and configure compression devices both physical(hardware) and virtual(software)
to perform those services. The framework currently only supports lossless compression schemes:
Deflate and LZS.

18.1. Device Management

18.1.1. Device Creation

Physical compression devices are discovered during the bus probe of the EAL function
which is executed at DPDK initialization, based on their unique device identifier.
For e.g. PCI devices can be identified using PCI BDF (bus/bridge, device, function).
Specific physical compression devices, like other physical devices in DPDK can be
white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command
line options or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev '<pmd name>,socket_id=0'

Note

	If DPDK application requires multiple software compression PMD devices then required
number of --vdev with appropriate libraries are to be added.

	An Application with multiple compression device instances exposed by the same PMD must
specify a unique name for each device.

Example: --vdev 'pmd0' --vdev 'pmd1'

Or, by using the rte_vdev_init API within the application code.

rte_vdev_init("<pmd_name>","socket_id=0")

All virtual compression devices support the following initialization parameters:

	socket_id - socket on which to allocate the device resources on.

18.1.2. Device Identification

Each device, whether virtual or physical is uniquely designated by two
identifiers:

	A unique device index used to designate the compression device in all functions
exported by the compressdev API.

	A device name used to designate the compression device in console messages, for
administration or debugging purposes.

18.1.3. Device Configuration

The configuration of each compression device includes the following operations:

	Allocation of resources, including hardware resources if a physical device.

	Resetting the device into a well-known default state.

	Initialization of statistics counters.

The rte_compressdev_configure API is used to configure a compression device.

The rte_compressdev_config structure is used to pass the configuration
parameters.

See DPDK API Reference for details.

18.1.4. Configuration of Queue Pairs

Each compression device queue pair is individually configured through the
rte_compressdev_queue_pair_setup API.

The max_inflight_ops is used to pass maximum number of
rte_comp_op that could be present in a queue at-a-time.
PMD then can allocate resources accordingly on a specified socket.

See DPDK API Reference for details.

18.1.5. Logical Cores, Memory and Queues Pair Relationships

Library supports NUMA similarly as described in Cryptodev library section.

A queue pair cannot be shared and should be exclusively used by a single processing
context for enqueuing operations or dequeuing operations on the same compression device
since sharing would require global locks and hinder performance. It is however possible
to use a different logical core to dequeue an operation on a queue pair from the logical
core on which it was enqueued. This means that a compression burst enqueue/dequeue
APIs are a logical place to transition from one logical core to another in a
data processing pipeline.

18.2. Device Features and Capabilities

Compression devices define their functionality through two mechanisms, global device
features and algorithm features. Global devices features identify device
wide level features which are applicable to the whole device such as supported hardware
acceleration and CPU features. List of compression device features can be seen in the
RTE_COMPDEV_FF_XXX macros.

The algorithm features lists individual algo feature which device supports per-algorithm,
such as a stateful compression/decompression, checksums operation etc. List of algorithm
features can be seen in the RTE_COMP_FF_XXX macros.

18.2.1. Capabilities

Each PMD has a list of capabilities, including algorithms listed in
enum rte_comp_algorithm and its associated feature flag and
sliding window range in log base 2 value. Sliding window tells
the minimum and maximum size of lookup window that algorithm uses
to find duplicates.

See DPDK API Reference for details.

Each Compression poll mode driver defines its array of capabilities
for each algorithm it supports. See PMD implementation for capability
initialization.

18.2.2. Capabilities Discovery

PMD capability and features are discovered via rte_compressdev_info_get function.

The rte_compressdev_info structure contains all the relevant information for the device.

See DPDK API Reference for details.

18.3. Compression Operation

DPDK compression supports two types of compression methodologies:

	Stateless, data associated to a compression operation is compressed without any reference
to another compression operation.

	Stateful, data in each compression operation is compressed with reference to previous compression
operations in the same data stream i.e. history of data is maintained between the operations.

For more explanation, please refer RFC https://www.ietf.org/rfc/rfc1951.txt

18.3.1. Operation Representation

Compression operation is described via struct rte_comp_op, which contains both input and
output data. The operation structure includes the operation type (stateless or stateful),
the operation status and the priv_xform/stream handle, source, destination and checksum buffer
pointers. It also contains the source mempool from which the operation is allocated.
PMD updates consumed field with amount of data read from source buffer and produced
field with amount of data of written into destination buffer along with status of
operation. See section Produced, Consumed And Operation Status for more details.

Compression operations mempool also has an ability to allocate private memory with the
operation for application’s purposes. Application software is responsible for specifying
all the operation specific fields in the rte_comp_op structure which are then used
by the compression PMD to process the requested operation.

18.3.2. Operation Management and Allocation

The compressdev library provides an API set for managing compression operations which
utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
that the compression operation is interleaved optimally across the channels and
ranks for optimal processing.

A rte_comp_op contains a field indicating the pool it originated from.

rte_comp_op_alloc() and rte_comp_op_bulk_alloc() are used to allocate
compression operations from a given compression operation mempool.
The operation gets reset before being returned to a user so that operation
is always in a good known state before use by the application.

rte_comp_op_free() is called by the application to return an operation to
its allocating pool.

See DPDK API Reference for details.

18.3.3. Passing source data as mbuf-chain

If input data is scattered across several different buffers, then
Application can either parse through all such buffers and make one
mbuf-chain and enqueue it for processing or, alternatively, it can
make multiple sequential enqueue_burst() calls for each of them
processing them statefully. See Compression API Stateful Operation
for stateful processing of ops.

18.3.4. Operation Status

Each operation carries a status information updated by PMD after it is processed.
Following are currently supported:

	
	RTE_COMP_OP_STATUS_SUCCESS,
	Operation is successfully completed

	
	RTE_COMP_OP_STATUS_NOT_PROCESSED,
	Operation has not yet been processed by the device

	
	RTE_COMP_OP_STATUS_INVALID_ARGS,
	Operation failed due to invalid arguments in request

	
	RTE_COMP_OP_STATUS_ERROR,
	Operation failed because of internal error

	
	RTE_COMP_OP_STATUS_INVALID_STATE,
	Operation is invoked in invalid state

	
	RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED,
	Output buffer ran out of space during processing. Error case,
PMD cannot continue from here.

	
	RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
	Output buffer ran out of space before operation completed, but this
is not an error case. Output data up to op.produced can be used and
next op in the stream should continue on from op.consumed+1.

18.3.5. Operation status after enqueue / dequeue

Some of the above values may arise in the op after an
rte_compressdev_enqueue_burst(). If number ops enqueued < number ops requested then
the app should check the op.status of nb_enqd+1. If status is RTE_COMP_OP_STATUS_NOT_PROCESSED,
it likely indicates a full-queue case for a hardware device and a retry after dequeuing some ops is likely
to be successful. If the op holds any other status, e.g. RTE_COMP_OP_STATUS_INVALID_ARGS, a retry with
the same op is unlikely to be successful.

18.3.6. Produced, Consumed And Operation Status

	
	If status is RTE_COMP_OP_STATUS_SUCCESS,
	consumed = amount of data read from input buffer, and
produced = amount of data written in destination buffer

	
	If status is RTE_COMP_OP_STATUS_ERROR,
	consumed = produced = undefined

	
	If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED,
	consumed = 0 and
produced = usually 0, but in decompression cases a PMD may return > 0
i.e. amount of data successfully produced until out of space condition
hit. Application can consume output data in this case, if required.

	
	If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
	consumed = amount of data read, and
produced = amount of data successfully produced until
out of space condition hit. PMD has ability to recover
from here, so application can submit next op from
consumed+1 and a destination buffer with available space.

18.4. Transforms

Compression transforms (rte_comp_xform) are the mechanism
to specify the details of the compression operation such as algorithm,
window size and checksum.

18.5. Compression API Hash support

Compression API allows application to enable digest calculation
alongside compression and decompression of data. A PMD reflects its
support for hash algorithms via capability algo feature flags.
If supported, PMD calculates digest always on plaintext i.e.
before compression and after decompression.

Currently supported list of hash algos are SHA-1 and SHA2 family
SHA256.

See DPDK API Reference for details.

If required, application should set valid hash algo in compress
or decompress xforms during rte_compressdev_stream_create()
or rte_compressdev_private_xform_create() and pass a valid
output buffer in rte_comp_op hash field struct to store the
resulting digest. Buffer passed should be contiguous and large
enough to store digest which is 20 bytes for SHA-1 and
32 bytes for SHA2-256.

18.6. Compression API Stateless operation

An op is processed stateless if it has
- op_type set to RTE_COMP_OP_STATELESS
- flush value set to RTE_COMP_FLUSH_FULL or RTE_COMP_FLUSH_FINAL
(required only on compression side),
- All required input in source buffer

When all of the above conditions are met, PMD initiates stateless processing
and releases acquired resources after processing of current operation is
complete. Application can enqueue multiple stateless ops in a single burst
and must attach priv_xform handle to such ops.

18.6.1. priv_xform in Stateless operation

priv_xform is PMD internally managed private data that it maintains to do stateless processing.
priv_xforms are initialized provided a generic xform structure by an application via making call
to rte_compressdev_private_xform_create, at an output PMD returns an opaque priv_xform reference.
If PMD support SHAREABLE priv_xform indicated via algorithm feature flag, then application can
attach same priv_xform with many stateless ops at-a-time. If not, then application needs to
create as many priv_xforms as it expects to have stateless operations in-flight.

[image: ../_images/stateless-op.svg]
Fig. 18.4 Stateless Ops using Non-Shareable priv_xform

[image: ../_images/stateless-op-shared.svg]
Fig. 18.5 Stateless Ops using Shareable priv_xform

Application should call rte_compressdev_private_xform_create() and attach to stateless op before
enqueuing them for processing and free via rte_compressdev_private_xform_free() during termination.

An example pseudocode to setup and process NUM_OPS stateless ops with each of length OP_LEN
using priv_xform would look like:

/*
 * pseudocode for stateless compression
 */

uint8_t cdev_id = rte_compressdev_get_dev_id(<pmd name>);

/* configure the device. */
if (rte_compressdev_configure(cdev_id, &conf) < 0)
 rte_exit(EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);

if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_INFLIGHT_OPS,
 socket_id()) < 0)
 rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start(cdev_id) < 0)
 rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* setup compress transform */
struct rte_comp_xform compress_xform = {
 .type = RTE_COMP_COMPRESS,
 .compress = {
 .algo = RTE_COMP_ALGO_DEFLATE,
 .deflate = {
 .huffman = RTE_COMP_HUFFMAN_DEFAULT
 },
 .level = RTE_COMP_LEVEL_PMD_DEFAULT,
 .chksum = RTE_COMP_CHECKSUM_NONE,
 .window_size = DEFAULT_WINDOW_SIZE,
 .hash_algo = RTE_COMP_HASH_ALGO_NONE
 }
};

/* create priv_xform and initialize it for the compression device. */
rte_compressdev_info dev_info;
void *priv_xform = NULL;
int shareable = 1;
rte_compressdev_info_get(cdev_id, &dev_info);
if (dev_info.capabilities->comp_feature_flags & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
 rte_compressdev_private_xform_create(cdev_id, &compress_xform, &priv_xform);
} else {
 shareable = 0;
}

/* create operation pool via call to rte_comp_op_pool_create and alloc ops */
struct rte_comp_op *comp_ops[NUM_OPS];
rte_comp_op_bulk_alloc(op_pool, comp_ops, NUM_OPS);

/* prepare ops for compression operations */
for (i = 0; i < NUM_OPS; i++) {
 struct rte_comp_op *op = comp_ops[i];
 if (!shareable)
 rte_compressdev_private_xform_create(cdev_id, &compress_xform, &op->priv_xform)
 else
 op->private_xform = priv_xform;
 op->op_type = RTE_COMP_OP_STATELESS;
 op->flush_flag = RTE_COMP_FLUSH_FINAL;

 op->src.offset = 0;
 op->dst.offset = 0;
 op->src.length = OP_LEN;
 op->input_chksum = 0;
 setup op->m_src and op->m_dst;
}
num_enqd = rte_compressdev_enqueue_burst(cdev_id, 0, comp_ops, NUM_OPS);
/* wait for this to complete before enqueuing next*/
do {
 num_deque = rte_compressdev_dequeue_burst(cdev_id, 0 , &processed_ops, NUM_OPS);
} while (num_dqud < num_enqd);

18.6.2. Stateless and OUT_OF_SPACE

OUT_OF_SPACE is a condition when output buffer runs out of space and where PMD
still has more data to produce. If PMD runs into such condition, then PMD returns
RTE_COMP_OP_OUT_OF_SPACE_TERMINATED error. In such case, PMD resets itself and can set
consumed=0 and produced=amount of output it could produce before hitting out_of_space.
Application would need to resubmit the whole input with a larger output buffer, if it
wants the operation to be completed.

18.6.3. Hash in Stateless

If hash is enabled, digest buffer will contain valid data after op is successfully
processed i.e. dequeued with status = RTE_COMP_OP_STATUS_SUCCESS.

18.6.4. Checksum in Stateless

If checksum is enabled, checksum will only be available after op is successfully
processed i.e. dequeued with status = RTE_COMP_OP_STATUS_SUCCESS.

18.7. Compression API Stateful operation

Compression API provide RTE_COMP_FF_STATEFUL_COMPRESSION and
RTE_COMP_FF_STATEFUL_DECOMPRESSION feature flag for PMD to reflect
its support for Stateful operations.

A Stateful operation in DPDK compression means application invokes enqueue
burst() multiple times to process related chunk of data because
application broke data into several ops.

In such case
- ops are setup with op_type RTE_COMP_OP_STATEFUL,
- all ops except last set to flush value = RTE_COMP_FLUSH_NONE/SYNC
and last set to flush value RTE_COMP_FLUSH_FULL/FINAL.

In case of either one or all of the above conditions, PMD initiates
stateful processing and releases acquired resources after processing
operation with flush value = RTE_COMP_FLUSH_FULL/FINAL is complete.
Unlike stateless, application can enqueue only one stateful op from
a particular stream at a time and must attach stream handle
to each op.

18.7.1. Stream in Stateful operation

stream in DPDK compression is a logical entity which identifies related set of ops, say, a one large
file broken into multiple chunks then file is represented by a stream and each chunk of that file is
represented by compression op rte_comp_op. Whenever application wants a stateful processing of such
data, then it must get a stream handle via making call to rte_compressdev_stream_create()
with xform, at an output the target PMD will return an opaque stream handle to application which
it must attach to all of the ops carrying data of that stream. In stateful processing, every op
requires previous op data for compression/decompression. A PMD allocates and set up resources such
as history, states, etc. within a stream, which are maintained during the processing of the related ops.

Unlike priv_xforms, stream is always a NON_SHAREABLE entity. One stream handle must be attached to only
one set of related ops and cannot be reused until all of them are processed with status Success or failure.

[image: ../_images/stateful-op.svg]
Fig. 18.6 Stateful Ops

Application should call rte_compressdev_stream_create() and attach to op before
enqueuing them for processing and free via rte_compressdev_stream_free() during
termination. All ops that are to be processed statefully should carry same stream.

See DPDK API Reference document for details.

An example pseudocode to set up and process a stream having NUM_CHUNKS with each chunk size of CHUNK_LEN would look like:

/*
 * pseudocode for stateful compression
 */

uint8_t cdev_id = rte_compressdev_get_dev_id(<pmd name>);

/* configure the device. */
if (rte_compressdev_configure(cdev_id, &conf) < 0)
 rte_exit(EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);

if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_INFLIGHT_OPS,
 socket_id()) < 0)
 rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start(cdev_id) < 0)
 rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* setup compress transform. */
struct rte_comp_xform compress_xform = {
 .type = RTE_COMP_COMPRESS,
 .compress = {
 .algo = RTE_COMP_ALGO_DEFLATE,
 .deflate = {
 .huffman = RTE_COMP_HUFFMAN_DEFAULT
 },
 .level = RTE_COMP_LEVEL_PMD_DEFAULT,
 .chksum = RTE_COMP_CHECKSUM_NONE,
 .window_size = DEFAULT_WINDOW_SIZE,
 .hash_algo = RTE_COMP_HASH_ALGO_NONE
 }
};

/* create stream */
void *stream;
rte_compressdev_stream_create(cdev_id, &compress_xform, &stream);

/* create an op pool and allocate ops */
rte_comp_op_bulk_alloc(op_pool, comp_ops, NUM_CHUNKS);

/* Prepare source and destination mbufs for compression operations */
unsigned int i;
for (i = 0; i < NUM_CHUNKS; i++) {
 if (rte_pktmbuf_append(mbufs[i], CHUNK_LEN) == NULL)
 rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");
 comp_ops[i]->m_src = mbufs[i];
 if (rte_pktmbuf_append(dst_mbufs[i], CHUNK_LEN) == NULL)
 rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");
 comp_ops[i]->m_dst = dst_mbufs[i];
}

/* Set up the compress operations. */
for (i = 0; i < NUM_CHUNKS; i++) {
 struct rte_comp_op *op = comp_ops[i];
 op->stream = stream;
 op->m_src = src_buf[i];
 op->m_dst = dst_buf[i];
 op->op_type = RTE_COMP_OP_STATEFUL;
 if (i == NUM_CHUNKS-1) {
 /* set to final, if last chunk*/
 op->flush_flag = RTE_COMP_FLUSH_FINAL;
 } else {
 /* set to NONE, for all intermediary ops */
 op->flush_flag = RTE_COMP_FLUSH_NONE;
 }
 op->src.offset = 0;
 op->dst.offset = 0;
 op->src.length = CHUNK_LEN;
 op->input_chksum = 0;
 num_enqd = rte_compressdev_enqueue_burst(cdev_id, 0, &op[i], 1);
 /* wait for this to complete before enqueuing next*/
 do {
 num_deqd = rte_compressdev_dequeue_burst(cdev_id, 0 , &processed_ops, 1);
 } while (num_deqd < num_enqd);
 /* analyze the amount of consumed and produced data before pushing next op*/
}

18.7.2. Stateful and OUT_OF_SPACE

If PMD supports stateful operation, then OUT_OF_SPACE status is not an actual
error for the PMD. In such case, PMD returns with status
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE with consumed = number of input bytes
read and produced = length of complete output buffer.
Application should enqueue next op with source starting at consumed+1 and an
output buffer with available space.

18.7.3. Hash in Stateful

If enabled, digest buffer will contain valid digest after last op in stream
(having flush = RTE_COMP_FLUSH_FINAL) is successfully processed i.e. dequeued
with status = RTE_COMP_OP_STATUS_SUCCESS.

18.7.4. Checksum in Stateful

If enabled, checksum will only be available after last op in stream
(having flush = RTE_COMP_FLUSH_FINAL) is successfully processed i.e. dequeued
with status = RTE_COMP_OP_STATUS_SUCCESS.

18.8. Burst in compression API

Scheduling of compression operations on DPDK’s application data path is
performed using a burst oriented asynchronous API set. A queue pair on a compression
device accepts a burst of compression operations using enqueue burst API. On physical
devices the enqueue burst API will place the operations to be processed
on the device’s hardware input queue, for virtual devices the processing of the
operations is usually completed during the enqueue call to the compression
device. The dequeue burst API will retrieve any processed operations available
from the queue pair on the compression device, from physical devices this is usually
directly from the devices processed queue, and for virtual device’s from a
rte_ring where processed operations are placed after being processed on the
enqueue call.

A burst in DPDK compression can be a combination of stateless and stateful operations with a condition
that for stateful ops only one op at-a-time should be enqueued from a particular stream i.e. no-two ops
should belong to same stream in a single burst. However a burst may contain multiple stateful ops as long
as each op is attached to a different stream i.e. a burst can look like:

	enqueue_burst

	op1.no_flush

	op2.no_flush

	op3.flush_final

	op4.no_flush

	op5.no_flush

Where, op1 .. op5 all belong to different independent data units. op1, op2, op4, op5 must be stateful
as stateless ops can only use flush full or final and op3 can be of type stateless or stateful.
Every op with type set to RTE_COMP_OP_STATELESS must be attached to priv_xform and
Every op with type set to RTE_COMP_OP_STATEFUL must be attached to stream.

Since each operation in a burst is independent and thus can be completed
out-of-order, applications which need ordering, should setup per-op user data
area with reordering information so that it can determine enqueue order at
dequeue.

Also if multiple threads calls enqueue_burst() on same queue pair then it’s
application onus to use proper locking mechanism to ensure exclusive enqueuing
of operations.

18.8.1. Enqueue / Dequeue Burst APIs

The burst enqueue API uses a compression device identifier and a queue pair
identifier to specify the compression device queue pair to schedule the processing on.
The nb_ops parameter is the number of operations to process which are
supplied in the ops array of rte_comp_op structures.
The enqueue function returns the number of operations it actually enqueued for
processing, a return value equal to nb_ops means that all packets have been
enqueued.

The dequeue API uses the same format as the enqueue API but
the nb_ops and ops parameters are now used to specify the max processed
operations the user wishes to retrieve and the location in which to store them.
The API call returns the actual number of processed operations returned, this
can never be larger than nb_ops.

18.9. Sample code

There are unit test applications that show how to use the compressdev library inside
app/test/test_compressdev.c

18.9.1. Compression Device API

The compressdev Library API is described in the DPDK API Reference document.

19. Security Library

The security library provides a framework for management and provisioning
of security protocol operations offloaded to hardware based devices. The
library defines generic APIs to create and free security sessions which can
support full protocol offload as well as inline crypto operation with
NIC or crypto devices. The framework currently only supports the IPsec and PDCP
protocol and associated operations, other protocols will be added in future.

19.1. Design Principles

The security library provides an additional offload capability to an existing
crypto device and/or ethernet device.

 +---------------+
 | rte_security |
 +---------------+
 \ /
+-----------+ +--------------+
| NIC PMD | | CRYPTO PMD |
+-----------+ +--------------+

Note

Currently, the security library does not support the case of multi-process.
It will be updated in the future releases.

The supported offload types are explained in the sections below.

19.1.1. Inline Crypto

RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
The crypto processing for security protocol (e.g. IPsec) is processed
inline during receive and transmission on NIC port. The flow based
security action should be configured on the port.

Ingress Data path - The packet is decrypted in RX path and relevant
crypto status is set in Rx descriptors. After the successful inline
crypto processing the packet is presented to host as a regular Rx packet
however all security protocol related headers are still attached to the
packet. e.g. In case of IPsec, the IPsec tunnel headers (if any),
ESP/AH headers will remain in the packet but the received packet
contains the decrypted data where the encrypted data was when the packet
arrived. The driver Rx path check the descriptors and based on the
crypto status sets additional flags in the rte_mbuf.ol_flags field.

Note

The underlying device may not support crypto processing for all ingress packet
matching to a particular flow (e.g. fragmented packets), such packets will
be passed as encrypted packets. It is the responsibility of application to
process such encrypted packets using other crypto driver instance.

Egress Data path - The software prepares the egress packet by adding
relevant security protocol headers. Only the data will not be
encrypted by the software. The driver will accordingly configure the
tx descriptors. The hardware device will encrypt the data before sending the
packet out.

Note

The underlying device may support post encryption TSO.

 Egress Data Path
 |
+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | |
| +------|------+ |
| +------V------+ |
| | Tunnel | | <------ Add tunnel header to packet
| +------|------+ |
| +------V------+ |
| | ESP | | <------ Add ESP header without trailer to packet
| | | | <------ Mark packet to be offloaded, add trailer
| +------|------+ | meta-data to mbuf
+--------V--------+
 |
+--------V--------+
| L2 Stack |
+--------|--------+
 |
+--------V--------+
| |
| NIC PMD | <------ Set hw context for inline crypto offload
| |
+--------|--------+
 |
+--------|--------+
| HW ACCELERATED | <------ Packet Encryption and
| NIC | Authentication happens inline
| |
+-----------------+

19.1.2. Inline protocol offload

RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
The crypto and protocol processing for security protocol (e.g. IPsec)
is processed inline during receive and transmission. The flow based
security action should be configured on the port.

Ingress Data path - The packet is decrypted in the RX path and relevant
crypto status is set in the Rx descriptors. After the successful inline
crypto processing the packet is presented to the host as a regular Rx packet
but all security protocol related headers are optionally removed from the
packet. e.g. in the case of IPsec, the IPsec tunnel headers (if any),
ESP/AH headers will be removed from the packet and the received packet
will contains the decrypted packet only. The driver Rx path checks the
descriptors and based on the crypto status sets additional flags in
rte_mbuf.ol_flags field. The driver would also set device-specific
metadata in rte_mbuf.udata64 field. This will allow the application
to identify the security processing done on the packet.

Note

The underlying device in this case is stateful. It is expected that
the device shall support crypto processing for all kind of packets matching
to a given flow, this includes fragmented packets (post reassembly).
E.g. in case of IPsec the device may internally manage anti-replay etc.
It will provide a configuration option for anti-replay behavior i.e. to drop
the packets or pass them to driver with error flags set in the descriptor.

Egress Data path - The software will send the plain packet without any
security protocol headers added to the packet. The driver will configure
the security index and other requirement in tx descriptors.
The hardware device will do security processing on the packet that includes
adding the relevant protocol headers and encrypting the data before sending
the packet out. The software should make sure that the buffer
has required head room and tail room for any protocol header addition. The
software may also do early fragmentation if the resultant packet is expected
to cross the MTU size.

Note

The underlying device will manage state information required for egress
processing. E.g. in case of IPsec, the seq number will be added to the
packet, however the device shall provide indication when the sequence number
is about to overflow. The underlying device may support post encryption TSO.

 Egress Data Path
 |
+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | |
| +------|------+ |
| +------V------+ |
| | Desc | | <------ Mark packet to be offloaded
| +------|------+ |
+--------V--------+
 |
+--------V--------+
| L2 Stack |
+--------|--------+
 |
+--------V--------+
| |
| NIC PMD | <------ Set hw context for inline crypto offload
| |
+--------|--------+
 |
+--------|--------+
| HW ACCELERATED | <------ Add tunnel, ESP header etc header to
| NIC | packet. Packet Encryption and
| | Authentication happens inline.
+-----------------+

19.1.3. Lookaside protocol offload

RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
This extends librte_cryptodev to support the programming of IPsec
Security Association (SA) as part of a crypto session creation including
the definition. In addition to standard crypto processing, as defined by
the cryptodev, the security protocol processing is also offloaded to the
crypto device.

Decryption: The packet is sent to the crypto device for security
protocol processing. The device will decrypt the packet and it will also
optionally remove additional security headers from the packet.
E.g. in case of IPsec, IPsec tunnel headers (if any), ESP/AH headers
will be removed from the packet and the decrypted packet may contain
plain data only.

Note

In case of IPsec the device may internally manage anti-replay etc.
It will provide a configuration option for anti-replay behavior i.e. to drop
the packets or pass them to driver with error flags set in descriptor.

Encryption: The software will submit the packet to cryptodev as usual
for encryption, the hardware device in this case will also add the relevant
security protocol header along with encrypting the packet. The software
should make sure that the buffer has required head room and tail room
for any protocol header addition.

Note

In the case of IPsec, the seq number will be added to the packet,
It shall provide an indication when the sequence number is about to
overflow.

 Egress Data Path
 |
+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | | <------ SA maps to cryptodev session
| +------|------+ |
| +------|------+ |
| | \--------------------\
| | Crypto | | | <- Crypto processing through
| | /----------------\ | inline crypto PMD
| +------|------+ | | |
+--------V--------+ | |
 | | |
+--------V--------+ | | create <-- SA is added to hw
| L2 Stack | | | inline using existing create
+--------|--------+ | | session sym session APIs
 | | | |
+--------V--------+ +---|---|----V---+
| | | \---/ | | <--- Add tunnel, ESP header etc
| NIC PMD | | INLINE | | header to packet.Packet
| | | CRYPTO PMD | | Encryption/Decryption and
+--------|--------+ +----------------+ Authentication happens
 | inline.
+--------|--------+
| NIC |
+--------|--------+
 V

19.1.4. PDCP Flow Diagram

Based on 3GPP TS 36.323 Evolved Universal Terrestrial Radio Access (E-UTRA);
Packet Data Convergence Protocol (PDCP) specification

Transmitting PDCP Entity Receiving PDCP Entity
 | ^
 | +-----------|-----------+
 V | In order delivery and |
+---------|----------+ | Duplicate detection |
| Sequence Numbering | | (Data Plane only) |
+---------|----------+ +-----------|-----------+
 | |
+---------|----------+ +-----------|----------+
| Header Compression*| | Header Decompression*|
| (Data-Plane only) | | (Data Plane only) |
+---------|----------+ +-----------|----------+
 | |
+---------|-----------+ +-----------|----------+
| Integrity Protection| |Integrity Verification|
| (Control Plane only)| | (Control Plane only) |
+---------|-----------+ +-----------|----------+
+---------|-----------+ +----------|----------+
| Ciphering | | Deciphering |
+---------|-----------+ +----------|----------+
+---------|-----------+ +----------|----------+
| Add PDCP header | | Remove PDCP Header |
+---------|-----------+ +----------|----------+
 | |
 +----------------->>----------------+

Note

	Header Compression and decompression are not supported currently.

Just like IPsec, in case of PDCP also header addition/deletion, cipher/
de-cipher, integrity protection/verification is done based on the action
type chosen.

19.2. Device Features and Capabilities

19.2.1. Device Capabilities For Security Operations

The device (crypto or ethernet) capabilities which support security operations,
are defined by the security action type, security protocol, protocol
capabilities and corresponding crypto capabilities for security. For the full
scope of the Security capability see definition of rte_security_capability
structure in the DPDK API Reference.

struct rte_security_capability;

Each driver (crypto or ethernet) defines its own private array of capabilities
for the operations it supports. Below is an example of the capabilities for a
PMD which supports the IPsec and PDCP protocol.

static const struct rte_security_capability pmd_security_capabilities[] = {
 { /* IPsec Lookaside Protocol offload ESP Tunnel Egress */
 .action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
 .protocol = RTE_SECURITY_PROTOCOL_IPSEC,
 .ipsec = {
 .proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
 .mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
 .direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
 .options = { 0 }
 },
 .crypto_capabilities = pmd_capabilities
 },
 { /* IPsec Lookaside Protocol offload ESP Tunnel Ingress */
 .action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
 .protocol = RTE_SECURITY_PROTOCOL_IPSEC,
 .ipsec = {
 .proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
 .mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
 .direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
 .options = { 0 }
 },
 .crypto_capabilities = pmd_capabilities
 },
 { /* PDCP Lookaside Protocol offload Data Plane */
 .action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
 .protocol = RTE_SECURITY_PROTOCOL_PDCP,
 .pdcp = {
 .domain = RTE_SECURITY_PDCP_MODE_DATA,
 .capa_flags = 0
 },
 .crypto_capabilities = pmd_capabilities
 },
 { /* PDCP Lookaside Protocol offload Control */
 .action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
 .protocol = RTE_SECURITY_PROTOCOL_PDCP,
 .pdcp = {
 .domain = RTE_SECURITY_PDCP_MODE_CONTROL,
 .capa_flags = 0
 },
 .crypto_capabilities = pmd_capabilities
 },
 {
 .action = RTE_SECURITY_ACTION_TYPE_NONE
 }
};
static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
 { /* SHA1 HMAC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
 .auth = {
 .algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
 .block_size = 64,
 .key_size = {
 .min = 64,
 .max = 64,
 .increment = 0
 },
 .digest_size = {
 .min = 12,
 .max = 12,
 .increment = 0
 },
 .aad_size = { 0 },
 .iv_size = { 0 }
 }
 }
 },
 { /* AES CBC */
 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
 .sym = {
 .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
 .cipher = {
 .algo = RTE_CRYPTO_CIPHER_AES_CBC,
 .block_size = 16,
 .key_size = {
 .min = 16,
 .max = 32,
 .increment = 8
 },
 .iv_size = {
 .min = 16,
 .max = 16,
 .increment = 0
 }
 }
 }
 }
}

19.2.2. Capabilities Discovery

Discovering the features and capabilities of a driver (crypto/ethernet)
is achieved through the rte_security_capabilities_get() function.

const struct rte_security_capability *rte_security_capabilities_get(uint16_t id);

This allows the user to query a specific driver and get all device
security capabilities. It returns an array of rte_security_capability structures
which contains all the capabilities for that device.

19.2.3. Security Session Create/Free

Security Sessions are created to store the immutable fields of a particular Security
Association for a particular protocol which is defined by a security session
configuration structure which is used in the operation processing of a packet flow.
Sessions are used to manage protocol specific information as well as crypto parameters.
Security sessions cache this immutable data in a optimal way for the underlying PMD
and this allows further acceleration of the offload of Crypto workloads.

The Security framework provides APIs to create and free sessions for crypto/ethernet
devices, where sessions are mempool objects. It is the application’s responsibility
to create and manage the session mempools. The mempool object size should be able to
accommodate the driver’s private data of security session.

Once the session mempools have been created, rte_security_session_create()
is used to allocate and initialize a session for the required crypto/ethernet device.

Session APIs need a parameter rte_security_ctx to identify the crypto/ethernet
security ops. This parameter can be retrieved using the APIs
rte_cryptodev_get_sec_ctx() (for crypto device) or rte_eth_dev_get_sec_ctx
(for ethernet port).

Sessions already created can be updated with rte_security_session_update().

When a session is no longer used, the user must call rte_security_session_destroy()
to free the driver private session data and return the memory back to the mempool.

For look aside protocol offload to hardware crypto device, the rte_crypto_op
created by the application is attached to the security session by the API
rte_security_attach_session().

For Inline Crypto and Inline protocol offload, device specific defined metadata is
updated in the mbuf using rte_security_set_pkt_metadata() if
DEV_TX_OFFLOAD_SEC_NEED_MDATA is set.

For inline protocol offloaded ingress traffic, the application can register a
pointer, userdata , in the security session. When the packet is received,
rte_security_get_userdata() would return the userdata registered for the
security session which processed the packet.

Note

In case of inline processed packets, rte_mbuf.udata64 field would be
used by the driver to relay information on the security processing
associated with the packet. In ingress, the driver would set this in Rx
path while in egress, rte_security_set_pkt_metadata() would perform a
similar operation. The application is expected not to modify the field
when it has relevant info. For ingress, this device-specific 64 bit value
is required to derive other information (like userdata), required for
identifying the security processing done on the packet.

19.2.4. Security session configuration

Security Session configuration structure is defined as rte_security_session_conf

struct rte_security_session_conf {
 enum rte_security_session_action_type action_type;
 /**< Type of action to be performed on the session */
 enum rte_security_session_protocol protocol;
 /**< Security protocol to be configured */
 union {
 struct rte_security_ipsec_xform ipsec;
 struct rte_security_macsec_xform macsec;
 struct rte_security_pdcp_xform pdcp;
 };
 /**< Configuration parameters for security session */
 struct rte_crypto_sym_xform *crypto_xform;
 /**< Security Session Crypto Transformations */
 void *userdata;
 /**< Application specific userdata to be saved with session */
};

The configuration structure reuses the rte_crypto_sym_xform struct for crypto related
configuration. The rte_security_session_action_type struct is used to specify whether the
session is configured for Lookaside Protocol offload or Inline Crypto or Inline Protocol
Offload.

enum rte_security_session_action_type {
 RTE_SECURITY_ACTION_TYPE_NONE,
 /**< No security actions */
 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
 /**< Crypto processing for security protocol is processed inline
 * during transmission
 */
 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL,
 /**< All security protocol processing is performed inline during
 * transmission
 */
 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
 /**< All security protocol processing including crypto is performed
 * on a lookaside accelerator
 */
 RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
 /**< Similar to ACTION_TYPE_NONE but crypto processing for security
 * protocol is processed synchronously by a CPU.
 */
};

The rte_security_session_protocol is defined as

enum rte_security_session_protocol {
 RTE_SECURITY_PROTOCOL_IPSEC = 1,
 /**< IPsec Protocol */
 RTE_SECURITY_PROTOCOL_MACSEC,
 /**< MACSec Protocol */
 RTE_SECURITY_PROTOCOL_PDCP,
 /**< PDCP Protocol */
};

Currently the library defines configuration parameters for IPsec and PDCP only.
For other protocols like MACSec, structures and enums are defined as place holders
which will be updated in the future.

IPsec related configuration parameters are defined in rte_security_ipsec_xform

struct rte_security_ipsec_xform {
 uint32_t spi;
 /**< SA security parameter index */
 uint32_t salt;
 /**< SA salt */
 struct rte_security_ipsec_sa_options options;
 /**< various SA options */
 enum rte_security_ipsec_sa_direction direction;
 /**< IPsec SA Direction - Egress/Ingress */
 enum rte_security_ipsec_sa_protocol proto;
 /**< IPsec SA Protocol - AH/ESP */
 enum rte_security_ipsec_sa_mode mode;
 /**< IPsec SA Mode - transport/tunnel */
 struct rte_security_ipsec_tunnel_param tunnel;
 /**< Tunnel parameters, NULL for transport mode */
};

PDCP related configuration parameters are defined in rte_security_pdcp_xform

struct rte_security_pdcp_xform {
 int8_t bearer; /**< PDCP bearer ID */
 /** Enable in order delivery, this field shall be set only if
 * driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP.
 */
 uint8_t en_ordering;
 /** Notify driver/HW to detect and remove duplicate packets.
 * This field should be set only when driver/hw is capable.
 * See RTE_SECURITY_PDCP_DUP_DETECT_CAP.
 */
 uint8_t remove_duplicates;
 /** PDCP mode of operation: Control or data */
 enum rte_security_pdcp_domain domain;
 /** PDCP Frame Direction 0:UL 1:DL */
 enum rte_security_pdcp_direction pkt_dir;
 /** Sequence number size, 5/7/12/15/18 */
 enum rte_security_pdcp_sn_size sn_size;
 /** Starting Hyper Frame Number to be used together with the SN
 * from the PDCP frames
 */
 uint32_t hfn;
 /** HFN Threshold for key renegotiation */
 uint32_t hfn_threshold;
};

19.2.5. Security API

The rte_security Library API is described in the DPDK API Reference document.

19.2.6. Flow based Security Session

In the case of NIC based offloads, the security session specified in the
‘rte_flow_action_security’ must be created on the same port as the
flow action that is being specified.

The ingress/egress flow attribute should match that specified in the security
session if the security session supports the definition of the direction.

Multiple flows can be configured to use the same security session. For
example if the security session specifies an egress IPsec SA, then multiple
flows can be specified to that SA. In the case of an ingress IPsec SA then
it is only valid to have a single flow to map to that security session.

 Configuration Path
 |
+--------|--------+
| Add/Remove |
| IPsec SA | <------ Build security flow action of
| | | ipsec transform
|--------|--------|
 |
+--------V--------+
| Flow API |
+--------|--------+
 |
+--------V--------+
| |
| NIC PMD | <------ Add/Remove SA to/from hw context
| |
+--------|--------+
 |
+--------|--------+
| HW ACCELERATED |
| NIC |
| |
+--------|--------+

	Add/Delete SA flow:
To add a new inline SA construct a rte_flow_item for Ethernet + IP + ESP
using the SA selectors and the rte_crypto_ipsec_xform as the rte_flow_action.
Note that any rte_flow_items may be empty, which means it is not checked.

In its most basic form, IPsec flow specification is as follows:
 +-------+ +----------+ +--------+ +-----+
 | Eth | -> | IP4/6 | -> | ESP | -> | END |
 +-------+ +----------+ +--------+ +-----+

However, the API can represent, IPsec crypto offload with any encapsulation:
 +-------+ +--------+ +-----+
 | Eth | -> ... -> | ESP | -> | END |
 +-------+ +--------+ +-----+

20. Rawdevice Library

20.1. Introduction

In terms of device flavor (type) support, DPDK currently has ethernet
(lib_ether), cryptodev (libcryptodev), eventdev (libeventdev) and vdev
(virtual device) support.

For a new type of device, for example an accelerator, there are not many
options except:
1. create another lib/librte_MySpecialDev, driver/MySpecialDrv and use it
through Bus/PMD model.
2. Or, create a vdev and implement necessary custom APIs which are directly
exposed from driver layer. However this may still require changes in bus code
in DPDK.

The DPDK Rawdev library is an abstraction that provides the DPDK framework a
way to manage such devices in a generic manner without expecting changes to
library or EAL for each device type. This library provides a generic set of
operations and APIs for framework and Applications to use, respectively, for
interfacing with such type of devices.

20.2. Design

Key factors guiding design of the Rawdevice library:

	Following are some generic operations which can be treated as applicable
to a large subset of device types. None of the operations are mandatory to
be implemented by a driver. Application should also be designed for proper
handling for unsupported APIs.

	Device Start/Stop - In some cases, ‘reset’ might also be required which
has different semantics than a start-stop-start cycle.

	Configuration - Device, Queue or any other sub-system configuration

	I/O - Sending a series of buffers which can enclose any arbitrary data

	Statistics - Fetch arbitrary device statistics

	Firmware Management - Firmware load/unload/status

	Application API should be able to pass along arbitrary state information
to/from device driver. This can be achieved by maintaining context
information through opaque data or pointers.

Figure below outlines the layout of the rawdevice library and device vis-a-vis
other well known device types like eth and crypto:

 +---+
 | Application(s) |
 +------------------------------.----------------------------+
 |
 |
 +------------------------------'----------------------------+
 | DPDK Framework (APIs) |
 +--------------|----|-----------------|---------------------+
 / \ \
 (crypto ops) (eth ops) (rawdev ops) +----+
 / \ \ |DrvA|
 +-----'---+ +----`----+ +---'-----+ +----+
 | crypto | | ethdev | | raw |
 +--/------+ +---/-----+ +----/----+ +----+
 /\ __/\ / |DrvB|
 / \ / \ / ../ \ +----+
 +====+ +====+ +====+ +====+ +==/=+ ```Bus Probe
 |DevA| |DevB| |DevC| |DevD| |DevF|
 +====+ +====+ +====+ +====+ +====+
 | | | | |
 ``|``````|````````|``````|`````````````````|````````Bus Scan
 (PCI) | (PCI) (PCI) (PCI)
 (BusA)

* It is assumed above that DrvB is a PCI type driver which registers itself
 with PCI Bus
* Thereafter, when the PCI scan is done, during probe DrvB would match the
 rawdev DevF ID and take control of device
* Applications can then continue using the device through rawdev API
 interfaces

20.2.1. Device Identification

Physical rawdev devices are discovered during the Bus scan executed at DPDK
initialization, based on their identification and probing with corresponding
driver. Thus, a generic device needs to have an identifier and a driver
capable of identifying it through this identifier.

Virtual devices can be created by two mechanisms, either using the EAL command
line options or from within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'rawdev_dev1'

Or using the rte_vdev_init API within the application code.

rte_vdev_init("rawdev_dev1", NULL)

21. Link Bonding Poll Mode Driver Library

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware,
DPDK also includes a pure-software library that
allows physical PMDs to be bonded together to create a single logical PMD.

[image: ../_images/bond-overview.svg]
Fig. 21.1 Bonded PMDs

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of
rte_eth_dev ports of the same speed and duplex to provide similar
capabilities to that found in Linux bonding driver to allow the aggregation
of multiple (slave) NICs into a single logical interface between a server
and a switch. The new bonded PMD will then process these interfaces based on
the mode of operation specified to provide support for features such as
redundant links, fault tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the
creation of bonded devices as well as the configuration and management of the
bonded device and its slave devices.

Note

The Link Bonding PMD Library is enabled by default in the build
configuration files, the library can be disabled by setting
CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the DPDK.

21.1. Link Bonding Modes Overview

Currently the Link Bonding PMD library supports following modes of operation:

	Round-Robin (Mode 0):

[image: ../_images/bond-mode-0.svg]
Fig. 21.2 Round-Robin (Mode 0)

This mode provides load balancing and fault tolerance by transmission of
packets in sequential order from the first available slave device through
the last. Packets are bulk dequeued from devices then serviced in a
round-robin manner. This mode does not guarantee in order reception of
packets and down stream should be able to handle out of order packets.

	Active Backup (Mode 1):

[image: ../_images/bond-mode-1.svg]
Fig. 21.3 Active Backup (Mode 1)

In this mode only one slave in the bond is active at any time, a different
slave becomes active if, and only if, the primary active slave fails,
thereby providing fault tolerance to slave failure. The single logical
bonded interface’s MAC address is externally visible on only one NIC (port)
to avoid confusing the network switch.

	Balance XOR (Mode 2):

[image: ../_images/bond-mode-2.svg]
Fig. 21.4 Balance XOR (Mode 2)

This mode provides transmit load balancing (based on the selected
transmission policy) and fault tolerance. The default policy (layer2) uses
a simple calculation based on the packet flow source and destination MAC
addresses as well as the number of active slaves available to the bonded
device to classify the packet to a specific slave to transmit on. Alternate
transmission policies supported are layer 2+3, this takes the IP source and
destination addresses into the calculation of the transmit slave port and
the final supported policy is layer 3+4, this uses IP source and
destination addresses as well as the TCP/UDP source and destination port.

Note

The coloring differences of the packets are used to identify different flow
classification calculated by the selected transmit policy

	Broadcast (Mode 3):

[image: ../_images/bond-mode-3.svg]
Fig. 21.5 Broadcast (Mode 3)

This mode provides fault tolerance by transmission of packets on all slave
ports.

	Link Aggregation 802.3AD (Mode 4):

[image: ../_images/bond-mode-4.svg]
Fig. 21.6 Link Aggregation 802.3AD (Mode 4)

This mode provides dynamic link aggregation according to the 802.3ad
specification. It negotiates and monitors aggregation groups that share the
same speed and duplex settings using the selected balance transmit policy
for balancing outgoing traffic.

DPDK implementation of this mode provide some additional requirements of
the application.

	It needs to call rte_eth_tx_burst and rte_eth_rx_burst with
intervals period of less than 100ms.

	Calls to rte_eth_tx_burst must have a buffer size of at least 2xN,
where N is the number of slaves. This is a space required for LACP
frames. Additionally LACP packets are included in the statistics, but
they are not returned to the application.

	Transmit Load Balancing (Mode 5):

[image: ../_images/bond-mode-5.svg]
Fig. 21.7 Transmit Load Balancing (Mode 5)

This mode provides an adaptive transmit load balancing. It dynamically
changes the transmitting slave, according to the computed load. Statistics
are collected in 100ms intervals and scheduled every 10ms.

21.2. Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API
exported by the Ethernet PMDs described in the DPDK API Reference.

The Link Bonding Library supports the creation of bonded devices at application
startup time during EAL initialization using the --vdev option as well as
programmatically via the C API rte_eth_bond_create function.

Bonded devices support the dynamical addition and removal of slave devices using
the rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs.

After a slave device is added to a bonded device slave is stopped using
rte_eth_dev_stop and then reconfigured using rte_eth_dev_configure
the RX and TX queues are also reconfigured using rte_eth_tx_queue_setup /
rte_eth_rx_queue_setup with the parameters use to configure the bonding
device. If RSS is enabled for bonding device, this mode is also enabled on new
slave and configured as well.
Any flow which was configured to the bond device also is configured to the added
slave.

Setting up multi-queue mode for bonding device to RSS, makes it fully
RSS-capable, so all slaves are synchronized with its configuration. This mode is
intended to provide RSS configuration on slaves transparent for client
application implementation.

Bonding device stores its own version of RSS settings i.e. RETA, RSS hash
function and RSS key, used to set up its slaves. That let to define the meaning
of RSS configuration of bonding device as desired configuration of whole bonding
(as one unit), without pointing any of slave inside. It is required to ensure
consistency and made it more error-proof.

RSS hash function set for bonding device, is a maximal set of RSS hash functions
supported by all bonded slaves. RETA size is a GCD of all its RETA’s sizes, so
it can be easily used as a pattern providing expected behavior, even if slave
RETAs’ sizes are different. If RSS Key is not set for bonded device, it’s not
changed on the slaves and default key for device is used.

As RSS configurations, there is flow consistency in the bonded slaves for the
next rte flow operations:

	Validate:
	
	Validate flow for each slave, failure at least for one slave causes to
bond validation failure.

	Create:
	
	Create the flow in all slaves.

	Save all the slaves created flows objects in bonding internal flow
structure.

	Failure in flow creation for existed slave rejects the flow.

	Failure in flow creation for new slaves in slave adding time rejects
the slave.

	Destroy:
	
	Destroy the flow in all slaves and release the bond internal flow
memory.

	Flush:
	
	Destroy all the bonding PMD flows in all the slaves.

Note

Don’t call slaves flush directly, It destroys all the slave flows which
may include external flows or the bond internal LACP flow.

	Query:
	
	Summarize flow counters from all the slaves, relevant only for
RTE_FLOW_ACTION_TYPE_COUNT.

	Isolate:
	
	Call to flow isolate for all slaves.

	Failure in flow isolation for existed slave rejects the isolate mode.

	Failure in flow isolation for new slaves in slave adding time rejects
the slave.

All settings are managed through the bonding port API and always are propagated
in one direction (from bonding to slaves).

21.2.1. Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback,
using the rte_eth_dev_callback_register API, this will be called when the
status of the bonding device changes. For example in the case of a bonding
device which has 3 slaves, the link status will change to up when one slave
becomes active or change to down when all slaves become inactive. There is no
callback notification when a single slave changes state and the previous
conditions are not met. If a user wishes to monitor individual slaves then they
must register callbacks with that slave directly.

The link bonding library also supports devices which do not implement link
status change interrupts, this is achieved by polling the devices link status at
a defined period which is set using the rte_eth_bond_link_monitoring_set
API, the default polling interval is 10ms. When a device is added as a slave to
a bonding device it is determined using the RTE_PCI_DRV_INTR_LSC flag
whether the device supports interrupts or whether the link status should be
monitored by polling it.

21.2.2. Requirements / Limitations

The current implementation only supports devices that support the same speed
and duplex to be added as a slaves to the same bonded device. The bonded device
inherits these attributes from the first active slave added to the bonded
device and then all further slaves added to the bonded device must support
these parameters.

A bonding device must have a minimum of one slave before the bonding device
itself can be started.

To use a bonding device dynamic RSS configuration feature effectively, it is
also required, that all slaves should be RSS-capable and support, at least one
common hash function available for each of them. Changing RSS key is only
possible, when all slave devices support the same key size.

To prevent inconsistency on how slaves process packets, once a device is added
to a bonding device, RSS and rte flow configurations should be managed through
the bonding device API, and not directly on the slave.

Like all other PMD, all functions exported by a PMD are lock-free functions
that are assumed not to be invoked in parallel on different logical cores to
work on the same target object.

It should also be noted that the PMD receive function should not be invoked
directly on a slave devices after they have been to a bonded device since
packets read directly from the slave device will no longer be available to the
bonded device to read.

21.2.3. Configuration

Link bonding devices are created using the rte_eth_bond_create API
which requires a unique device name, the bonding mode,
and the socket Id to allocate the bonding device’s resources on.
The other configurable parameters for a bonded device are its slave devices,
its primary slave, a user defined MAC address and transmission policy to use if
the device is in balance XOR mode.

21.2.3.1. Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices
of the same speed and duplex. Ethernet devices can be added as a slave to a
maximum of one bonded device. Slave devices are reconfigured with the
configuration of the bonded device on being added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its
original value of removal of a slave from it.

21.2.3.2. Primary Slave

The primary slave is used to define the default port to use when a bonded
device is in active backup mode. A different port will only be used if, and
only if, the current primary port goes down. If the user does not specify a
primary port it will default to being the first port added to the bonded device.

21.2.3.3. MAC Address

The bonded device can be configured with a user specified MAC address, this
address will be inherited by the some/all slave devices depending on the
operating mode. If the device is in active backup mode then only the primary
device will have the user specified MAC, all other slaves will retain their
original MAC address. In mode 0, 2, 3, 4 all slaves devices are configure with
the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will
default to using the primary slaves MAC address.

21.2.3.4. Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in
Balance XOR mode. Layer 2, Layer 2+3, Layer 3+4.

	Layer 2: Ethernet MAC address based balancing is the default
transmission policy for Balance XOR bonding mode. It uses a simple XOR
calculation on the source MAC address and destination MAC address of the
packet and then calculate the modulus of this value to calculate the slave
device to transmit the packet on.

	Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a
combination of source/destination MAC addresses and the source/destination
IP addresses of the data packet to decide which slave port the packet will
be transmitted on.

	Layer 3 + 4: IP Address & UDP Port based balancing uses a combination
of source/destination IP Address and the source/destination UDP ports of
the packet of the data packet to decide which slave port the packet will be
transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6
and UDP protocols for load balancing.

21.3. Using Link Bonding Devices

The librte_pmd_bond library supports two modes of device creation, the libraries
export full C API or using the EAL command line to statically configure link
bonding devices at application startup. Using the EAL option it is possible to
use link bonding functionality transparently without specific knowledge of the
libraries API, this can be used, for example, to add bonding functionality,
such as active backup, to an existing application which has no knowledge of
the link bonding C API.

21.3.1. Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create
and manage link bonding device from within any application. Link bonding
devices are created using the rte_eth_bond_create API which requires a
unique device name, the link bonding mode to initial the device in and finally
the socket Id which to allocate the devices resources onto. After successful
creation of a bonding device it must be configured using the generic Ethernet
device configure API rte_eth_dev_configure and then the RX and TX queues
which will be used must be setup using rte_eth_tx_queue_setup /
rte_eth_rx_queue_setup.

Slave devices can be dynamically added and removed from a link bonding device
using the rte_eth_bond_slave_add / rte_eth_bond_slave_remove
APIs but at least one slave device must be added to the link bonding device
before it can be started using rte_eth_dev_start.

The link status of a bonded device is dictated by that of its slaves, if all
slave device link status are down or if all slaves are removed from the link
bonding device then the link status of the bonding device will go down.

It is also possible to configure / query the configuration of the control
parameters of a bonded device using the provided APIs
rte_eth_bond_mode_set/ get, rte_eth_bond_primary_set/get,
rte_eth_bond_mac_set/reset and rte_eth_bond_xmit_policy_set/get.

21.3.2. Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the
--vdev EAL command line option. The device name must start with the
net_bonding prefix followed by numbers or letters. The name must be unique for
each device. Each device can have multiple options arranged in a comma
separated list. Multiple devices definitions can be arranged by calling the
--vdev option multiple times.

Device names and bonding options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,bond_opt0=..,bond opt1=..'--vdev 'net_bonding1,bond _opt0=..,bond_opt1=..'

21.3.2.1. Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as
long as the following two rules are respected:

	A unique device name, in the format of net_bondingX is provided,
where X can be any combination of numbers and/or letters,
and the name is no greater than 32 characters long.

	A least one slave device is provided with for each bonded device definition.

	The operation mode of the bonded device being created is provided.

The different options are:

	mode: Integer value defining the bonding mode of the device.
Currently supports modes 0,1,2,3,4,5 (round-robin, active backup, balance,
broadcast, link aggregation, transmit load balancing).

mode=2

	slave: Defines the PMD device which will be added as slave to the bonded
device. This option can be selected multiple times, for each device to be
added as a slave. Physical devices should be specified using their PCI
address, in the format domain:bus:devid.function

slave=0000:0a:00.0,slave=0000:0a:00.1

	primary: Optional parameter which defines the primary slave port,
is used in active backup mode to select the primary slave for data TX/RX if
it is available. The primary port also is used to select the MAC address to
use when it is not defined by the user. This defaults to the first slave
added to the device if it is specified. The primary device must be a slave
of the bonded device.

primary=0000:0a:00.0

	socket_id: Optional parameter used to select which socket on a NUMA device
the bonded devices resources will be allocated on.

socket_id=0

	mac: Optional parameter to select a MAC address for link bonding device,
this overrides the value of the primary slave device.

mac=00:1e:67:1d:fd:1d

	xmit_policy: Optional parameter which defines the transmission policy when
the bonded device is in balance mode. If not user specified this defaults
to l2 (layer 2) forwarding, the other transmission policies available are
l23 (layer 2+3) and l34 (layer 3+4)

xmit_policy=l23

	lsc_poll_period_ms: Optional parameter which defines the polling interval
in milli-seconds at which devices which don’t support lsc interrupts are
checked for a change in the devices link status

lsc_poll_period_ms=100

	up_delay: Optional parameter which adds a delay in milli-seconds to the
propagation of a devices link status changing to up, by default this
parameter is zero.

up_delay=10

	down_delay: Optional parameter which adds a delay in milli-seconds to the
propagation of a devices link status changing to down, by default this
parameter is zero.

down_delay=50

21.3.2.2. Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=0,slave=0000:0a:00.01,slave=0000:04:00.00' -- --port-topology=chained

Create a bonded device in round robin mode with two slaves specified by their PCI address and an overriding MAC address:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=0,slave=0000:0a:00.01,slave=0000:04:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained

Create a bonded device in active backup mode with two slaves specified, and a primary slave specified by their PCI addresses:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=1,slave=0000:0a:00.01,slave=0000:04:00.00,primary=0000:0a:00.01' -- --port-topology=chained

Create a bonded device in balance mode with two slaves specified by their PCI addresses, and a transmission policy of layer 3 + 4 forwarding:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=2,slave=0000:0a:00.01,slave=0000:04:00.00,xmit_policy=l34' -- --port-topology=chained

22. Timer Library

The Timer library provides a timer service to DPDK execution units to enable execution of callback functions asynchronously.
Features of the library are:

	Timers can be periodic (multi-shot) or single (one-shot).

	Timers can be loaded from one core and executed on another. It has to be specified in the call to rte_timer_reset().

	Timers provide high precision (depends on the call frequency to rte_timer_manage() that checks timer expiration for the local core).

	If not required in the application, timers can be disabled at compilation time by not calling the rte_timer_manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event Timer (HPET)
or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The API is based on BSD callout() with a few differences.
Refer to the callout manual [http://www.daemon-systems.org/man/callout.9.html].

22.1. Implementation Details

Timers are tracked on a per-lcore basis,
with all pending timers for a core being maintained in order of timer expiry in a skiplist data structure.
The skiplist used has ten levels and each entry in the table appears in each level with probability ¼^level.
This means that all entries are present in level 0, 1 in every 4 entries is present at level 1,
one in every 16 at level 2 and so on up to level 9.
This means that adding and removing entries from the timer list for a core can be done in log(n) time,
up to 4^10 entries, that is, approximately 1,000,000 timers per lcore.

A timer structure contains a special field called status,
which is a union of a timer state (stopped, pending, running, config) and an owner (lcore id).
Depending on the timer state, we know if a timer is present in a list or not:

	STOPPED: no owner, not in a list

	CONFIG: owned by a core, must not be modified by another core, maybe in a list or not, depending on previous state

	PENDING: owned by a core, present in a list

	RUNNING: owned by a core, must not be modified by another core, present in a list

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed.
When modifying the state of a timer,
a Compare And Swap instruction should be used to guarantee that the status (state+owner) is modified atomically.

Inside the rte_timer_manage() function,
the skiplist is used as a regular list by iterating along the level 0 list, which contains all timer entries,
until an entry which has not yet expired has been encountered.
To improve performance in the case where there are entries in the timer list but none of those timers have yet expired,
the expiry time of the first list entry is maintained within the per-core timer list structure itself.
On 64-bit platforms, this value can be checked without the need to take a lock on the overall structure.
(Since expiry times are maintained as 64-bit values,
a check on the value cannot be done on 32-bit platforms without using either a compare-and-swap (CAS) instruction or using a lock,
so this additional check is skipped in favor of checking as normal once the lock has been taken.)
On both 64-bit and 32-bit platforms,
a call to rte_timer_manage() returns without taking a lock in the case where the timer list for the calling core is empty.

22.2. Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines (ARP, bridging, and so on).

22.3. References

	callout manual [http://www.daemon-systems.org/man/callout.9.html]
- The callout facility that provides timers with a mechanism to execute a function at a given time.

	HPET [http://en.wikipedia.org/wiki/HPET]
- Information about the High Precision Event Timer (HPET).

23. Hash Library

The DPDK provides a Hash Library for creating hash table for fast lookup.
The hash table is a data structure optimized for searching through a set of entries that are each identified by a unique key.
For increased performance the DPDK Hash requires that all the keys have the same number of bytes which is set at the hash creation time.

23.1. Hash API Overview

The main configuration parameters for the hash table are:

	Total number of hash entries in the table

	Size of the key in bytes

	An extra flag to describe additional settings, for example the multithreading mode of operation and extendable bucket functionality (as will be described later)

The hash table also allows the configuration of some low-level implementation related parameters such as:

	Hash function to translate the key into a hash value

The main methods exported by the Hash Library are:

	Add entry with key: The key is provided as input. If the new entry is successfully added to the hash table for the specified key,
or there is already an entry in the hash table for the specified key, then the position of the entry is returned.
If the operation was not successful, for example due to lack of free entries in the hash table, then a negative value is returned.

	Delete entry with key: The key is provided as input. If an entry with the specified key is found in the hash,
then the entry is removed from the hash table and the position where the entry was found in the hash table is returned.
If no entry with the specified key exists in the hash table, then a negative value is returned

	Lookup for entry with key: The key is provided as input. If an entry with the specified key is found in the hash table (i.e., lookup hit),
then the position of the entry is returned, otherwise (i.e., lookup miss) a negative value is returned.

Apart from the basic methods explained above, the Hash Library API provides a few more advanced methods to query and update the hash table:

	Add / lookup / delete entry with key and precomputed hash: Both the key and its precomputed hash are provided as input. This allows
the user to perform these operations faster, as the hash value is already computed.

	Add / lookup entry with key and data: A data is provided as input for add. Add allows the user to store
not only the key, but also the data which may be either a 8-byte integer or a pointer to external data (if data size is more than 8 bytes).

	Combination of the two options above: User can provide key, precomputed hash, and data.

	Ability to not free the position of the entry in the hash table upon calling delete. This is useful for multi-threaded scenarios where
readers continue to use the position even after the entry is deleted.

Also, the API contains a method to allow the user to look up entries in batches, achieving higher performance
than looking up individual entries, as the function prefetches next entries at the time it is operating
with the current ones, which reduces significantly the performance overhead of the necessary memory accesses.

The actual data associated with each key can be either managed by the user using a separate table that
mirrors the hash in terms of number of entries and position of each entry,
as shown in the Flow Classification use case described in the following sections,
or stored in the hash table itself.

The example hash tables in the L2/L3 Forwarding sample applications define which port to forward a packet to based on a packet flow identified by the five-tuple lookup.
However, this table could also be used for more sophisticated features and provide many other functions and actions that could be performed on the packets and flows.

23.2. Multi-process support

The hash library can be used in a multi-process environment.
The only function that can only be used in single-process mode is rte_hash_set_cmp_func(), which sets up
a custom compare function, which is assigned to a function pointer (therefore, it is not supported in
multi-process mode).

23.3. Multi-thread support

The hash library supports multithreading, and the user specifies the needed mode of operation at the creation time of the hash table
by appropriately setting the flag. In all modes of operation lookups are thread-safe meaning lookups can be called from multiple
threads concurrently.

For concurrent writes, and concurrent reads and writes the following flag values define the corresponding modes of operation:

	If the multi-writer flag (RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) is set, multiple threads writing to the table is allowed.
Key add, delete, and table reset are protected from other writer threads. With only this flag set, readers are not protected from ongoing writes.

	If the read/write concurrency (RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) is set, multithread read/write operation is safe
(i.e., application does not need to stop the readers from accessing the hash table until writers finish their updates. Readers and writers can operate on the table concurrently).
The library uses a reader-writer lock to provide the concurrency.

	In addition to these two flag values, if the transactional memory flag (RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT) is also set,
the reader-writer lock will use hardware transactional memory (e.g., Intel® TSX) if supported to guarantee thread safety.
If the platform supports Intel® TSX, it is advised to set the transactional memory flag, as this will speed up concurrent table operations.
Otherwise concurrent operations will be slower because of the overhead associated with the software locking mechanisms.

	If lock free read/write concurrency (RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) is set, read/write concurrency is provided without using reader-writer lock.
For platforms (e.g., current ARM based platforms) that do not support transactional memory, it is advised to set this flag to achieve greater scalability in performance.
If this flag is set, the (RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL) flag is set by default.

	If the ‘do not free on delete’ (RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL) flag is set, the position of the entry in the hash table is not freed upon calling delete(). This flag is enabled
by default when the lock free read/write concurrency flag is set. The application should free the position after all the readers have stopped referencing the position.
Where required, the application can make use of RCU mechanisms to determine when the readers have stopped referencing the position.

23.4. Extendable Bucket Functionality support

An extra flag is used to enable this functionality (flag is not set by default). When the (RTE_HASH_EXTRA_FLAGS_EXT_TABLE) is set and
in the very unlikely case due to excessive hash collisions that a key has failed to be inserted, the hash table bucket is extended with a linked
list to insert these failed keys. This feature is important for the workloads (e.g. telco workloads) that need to insert up to 100% of the
hash table size and can’t tolerate any key insertion failure (even if very few).
Please note that with the ‘lock free read/write concurrency’ flag enabled, users need to call ‘rte_hash_free_key_with_position’ API in order to free the empty buckets and
deleted keys, to maintain the 100% capacity guarantee.

23.5. Implementation Details (non Extendable Bucket Case)

The hash table has two main tables:

	First table is an array of buckets each of which consists of multiple entries,
Each entry contains the signature
of a given key (explained below), and an index to the second table.

	The second table is an array of all the keys stored in the hash table and its data associated to each key.

The hash library uses the Cuckoo Hash algorithm to resolve collisions.
For any input key, there are two possible buckets (primary and secondary/alternative location)
to store that key in the hash table, therefore only the entries within those two buckets need to be examined
when the key is looked up.
The Hash Library uses a hash function (configurable) to translate the input key into a 4-byte hash value.
The bucket index and a 2-byte signature is derived from the hash value using partial-key hashing [partial-key].

Once the buckets are identified, the scope of the key add,
delete, and lookup operations is reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).

To speed up the search logic within the bucket, each hash entry stores the 2-byte key signature together with the full key for each hash table entry.
For large key sizes, comparing the input key against a key from the bucket can take significantly more time than
comparing the 2-byte signature of the input key against the signature of a key from the bucket.
Therefore, the signature comparison is done first and the full key comparison is done only when the signatures matches.
The full key comparison is still necessary, as two input keys from the same bucket can still potentially have the same 2-byte signature,
although this event is relatively rare for hash functions providing good uniform distributions for the set of input keys.

Example of lookup:

First of all, the primary bucket is identified and entry is likely to be stored there.
If signature was stored there, we compare its key against the one provided and return the position
where it was stored and/or the data associated to that key if there is a match.
If signature is not in the primary bucket, the secondary bucket is looked up, where same procedure
is carried out. If there is no match there either, key is not in the table and a negative value will be returned.

Example of addition:

Like lookup, the primary and secondary buckets are identified. If there is an empty entry in
the primary bucket, a signature is stored in that entry, key and data (if any) are added to
the second table and the index in the second table is stored in the entry of the first table.
If there is no space in the primary bucket, one of the entries on that bucket is pushed to its alternative location,
and the key to be added is inserted in its position.
To know where the alternative bucket of the evicted entry is, a mechanism called partial-key hashing [partial-key] is used.
If there is room in the alternative bucket, the evicted entry
is stored in it. If not, same process is repeated (one of the entries gets pushed) until an empty entry is found.
Notice that despite all the entry movement in the first table, the second table is not touched, which would impact
greatly in performance.

In the very unlikely event that an empty entry cannot be found after certain number of displacements,
key is considered not able to be added (unless extendable bucket flag is set, and in that case the bucket is extended to insert the key, as will be explained later).
With random keys, this method allows the user to get more than 90% table utilization, without
having to drop any stored entry (e.g. using a LRU replacement policy) or allocate more memory (extendable buckets or rehashing).

Example of deletion:

Similar to lookup, the key is searched in its primary and secondary buckets. If the key is found, the
entry is marked as empty. If the hash table was configured with ‘no free on delete’ or ‘lock free read/write concurrency’,
the position of the key is not freed. It is the responsibility of the user to free the position after
readers are not referencing the position anymore.

23.6. Implementation Details (with Extendable Bucket)

When the RTE_HASH_EXTRA_FLAGS_EXT_TABLE flag is set, the hash table implementation still uses the same Cuckoo Hash algorithm to store the keys into
the first and second tables. However, in the very unlikely event that a key can’t be inserted after certain number of the Cuckoo displacements is
reached, the secondary bucket of this key is extended
with a linked list of extra buckets and the key is stored in this linked list.

In case of lookup for a certain key, as before, the primary bucket is searched for a match and then the secondary bucket is looked up.
If there is no match there either, the extendable buckets (linked list of extra buckets) are searched one by one for a possible match and if there is no match
the key is considered not to be in the table.

The deletion is the same as the case when the RTE_HASH_EXTRA_FLAGS_EXT_TABLE flag is not set. With one exception, if a key is deleted from any bucket
and an empty location is created, the last entry from the extendable buckets associated with this bucket is displaced into
this empty location to possibly shorten the linked list.

23.7. Entry distribution in hash table

As mentioned above, Cuckoo hash implementation pushes elements out of their bucket,
if there is a new entry to be added which primary location coincides with their current bucket,
being pushed to their alternative location.
Therefore, as user adds more entries to the hash table, distribution of the hash values
in the buckets will change, being most of them in their primary location and a few in
their secondary location, which the later will increase, as table gets busier.
This information is quite useful, as performance may be lower as more entries
are evicted to their secondary location.

See the tables below showing example entry distribution as table utilization increases.

Table 23.1 Entry distribution measured with an example table with 1024 random entries using jhash algorithm

	% Table used

	% In Primary location

	% In Secondary location

	25

	100

	0

	50

	96.1

	3.9

	75

	88.2

	11.8

	80

	86.3

	13.7

	85

	83.1

	16.9

	90

	77.3

	22.7

	95.8

	64.5

	35.5

Table 23.2 Entry distribution measured with an example table with 1 million random entries using jhash algorithm

	% Table used

	% In Primary location

	% In Secondary location

	50

	96

	4

	75

	86.9

	13.1

	80

	83.9

	16.1

	85

	80.1

	19.9

	90

	74.8

	25.2

	94.5

	67.4

	32.6

Note

Last values on the tables above are the average maximum table
utilization with random keys and using Jenkins hash function.

23.8. Use Case: Flow Classification

Flow classification is used to map each input packet to the connection/flow it belongs to.
This operation is necessary as the processing of each input packet is usually done in the context of their connection,
so the same set of operations is applied to all the packets from the same flow.

Applications using flow classification typically have a flow table to manage, with each separate flow having an entry associated with it in this table.
The size of the flow table entry is application specific, with typical values of 4, 16, 32 or 64 bytes.

Each application using flow classification typically has a mechanism defined to uniquely identify a flow based on
a number of fields read from the input packet that make up the flow key.
One example is to use the DiffServ 5-tuple made up of the following fields of the IP and transport layer packet headers:
Source IP Address, Destination IP Address, Protocol, Source Port, Destination Port.

The DPDK hash provides a generic method to implement an application specific flow classification mechanism.
Given a flow table implemented as an array, the application should create a hash object with the same number of entries as the flow table and
with the hash key size set to the number of bytes in the selected flow key.

The flow table operations on the application side are described below:

	Add flow: Add the flow key to hash.
If the returned position is valid, use it to access the flow entry in the flow table for adding a new flow or
updating the information associated with an existing flow.
Otherwise, the flow addition failed, for example due to lack of free entries for storing new flows.

	Delete flow: Delete the flow key from the hash. If the returned position is valid,
use it to access the flow entry in the flow table to invalidate the information associated with the flow.

	Free flow: Free flow key position. If ‘no free on delete’ or ‘lock-free read/write concurrency’ flags are set,
wait till the readers are not referencing the position returned during add/delete flow and then free the position.
RCU mechanisms can be used to find out when the readers are not referencing the position anymore.

	Lookup flow: Lookup for the flow key in the hash.
If the returned position is valid (flow lookup hit), use the returned position to access the flow entry in the flow table.
Otherwise (flow lookup miss) there is no flow registered for the current packet.

23.9. References

	Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition), 1998, Addison-Wesley Professional

	[partial-key] Bin Fan, David G. Andersen, and Michael Kaminsky, MemC3: compact and concurrent MemCache with dumber caching and smarter hashing, 2013, NSDI

24. Elastic Flow Distributor Library

24.1. Introduction

In Data Centers today, clustering and scheduling of distributed workloads
is a very common task. Many workloads require a deterministic
partitioning of a flat key space among a cluster of machines. When a
packet enters the cluster, the ingress node will direct the packet to
its handling node. For example, data-centers with disaggregated storage
use storage metadata tables to forward I/O requests to the correct back end
storage cluster, stateful packet inspection will use match incoming
flows to signatures in flow tables to send incoming packets to their
intended deep packet inspection (DPI) devices, and so on.

EFD is a distributor library that uses perfect hashing to determine a
target/value for a given incoming flow key. It has the following
advantages: first, because it uses perfect hashing it does not store the
key itself and hence lookup performance is not dependent on the key
size. Second, the target/value can be any arbitrary value hence the
system designer and/or operator can better optimize service rates and
inter-cluster network traffic locating. Third, since the storage
requirement is much smaller than a hash-based flow table (i.e. better
fit for CPU cache), EFD can scale to millions of flow keys. Finally,
with the current optimized library implementation, performance is fully
scalable with any number of CPU cores.

24.2. Flow Based Distribution

24.2.1. Computation Based Schemes

Flow distribution and/or load balancing can be simply done using a
stateless computation, for instance using round-robin or a simple
computation based on the flow key as an input. For example, a hash
function can be used to direct a certain flow to a target based on
the flow key (e.g. h(key) mod n) where h(key) is the hash value of the
flow key and n is the number of possible targets.

[image: ../_images/efd_i1.svg]
Fig. 24.3 Load Balancing Using Front End Node

In this scheme (Fig. 24.3), the front end server/distributor/load balancer
extracts the flow key from the input packet and applies a computation to determine where
this flow should be directed. Intuitively, this scheme is very simple
and requires no state to be kept at the front end node, and hence,
storage requirements are minimum.

[image: ../_images/efd_i2.svg]
Fig. 24.4 Consistent Hashing

A widely used flow distributor that belongs to the same category of
computation-based schemes is consistent hashing, shown in Fig. 24.4.
Target destinations (shown in red) are hashed into the same space as the flow
keys (shown in blue), and keys are mapped to the nearest target in a clockwise
fashion. Dynamically adding and removing targets with consistent hashing
requires only K/n keys to be remapped on average, where K is the number of
keys, and n is the number of targets. In contrast, in a traditional hash-based
scheme, a change in the number of targets causes nearly all keys to be
remapped.

Although computation-based schemes are simple and need very little
storage requirement, they suffer from the drawback that the system
designer/operator can’t fully control the target to assign a specific
key, as this is dictated by the hash function.
Deterministically co-locating of keys together (for example, to minimize
inter-server traffic or to optimize for network traffic conditions,
target load, etc.) is simply not possible.

24.2.2. Flow-Table Based Schemes

When using a Flow-Table based scheme to handle flow distribution/load
balancing, in contrast with computation-based schemes, the system designer
has the flexibility of assigning a given flow to any given
target. The flow table (e.g. DPDK RTE Hash Library) will simply store
both the flow key and the target value.

[image: ../_images/efd_i3.svg]
Fig. 24.5 Table Based Flow Distribution

As shown in Fig. 24.5, when doing a lookup, the flow-table
is indexed with the hash of the flow key and the keys (more than one is possible,
because of hash collision) stored in this index and corresponding values
are retrieved. The retrieved key(s) is matched with the input flow key
and if there is a match the value (target id) is returned.

The drawback of using a hash table for flow distribution/load balancing
is the storage requirement, since the flow table need to store keys,
signatures and target values. This doesn’t allow this scheme to scale to
millions of flow keys. Large tables will usually not fit in
the CPU cache, and hence, the lookup performance is degraded because of
the latency to access the main memory.

24.2.3. EFD Based Scheme

EFD combines the advantages of both flow-table based and computation-based
schemes. It doesn’t require the large storage necessary for
flow-table based schemes (because EFD doesn’t store the key as explained
below), and it supports any arbitrary value for any given key.

[image: ../_images/efd_i4.svg]
Fig. 24.6 Searching for Perfect Hash Function

The basic idea of EFD is when a given key is to be inserted, a family of
hash functions is searched until the correct hash function that maps the
input key to the correct value is found, as shown in Fig. 24.6.
However, rather than explicitly storing all keys and their associated values,
EFD stores only indices of hash functions that map keys to values, and
thereby consumes much less space than conventional flow-based tables.
The lookup operation is very simple, similar to a computational-based
scheme: given an input key the lookup operation is reduced to hashing
that key with the correct hash function.

[image: ../_images/efd_i5.svg]
Fig. 24.7 Divide and Conquer for Millions of Keys

Intuitively, finding a hash function that maps each of a large number
(millions) of input keys to the correct output value is effectively
impossible, as a result EFD, as shown in Fig. 24.7,
breaks the problem into smaller pieces (divide and conquer).
EFD divides the entire input key set into many small groups.
Each group consists of approximately 20-28 keys (a configurable parameter
for the library), then, for each small group, a brute force search to find
a hash function that produces the correct outputs for each key in the group.

It should be mentioned that, since the online lookup table for EFD
doesn’t store the key itself, the size of the EFD table is independent
of the key size and hence EFD lookup performance which is almost
constant irrespective of the length of the key which is a highly
desirable feature especially for longer keys.

In summary, EFD is a set separation data structure that supports millions of
keys. It is used to distribute a given key to an intended target. By itself
EFD is not a FIB data structure with an exact match the input flow key.

24.3. Example of EFD Library Usage

EFD can be used along the data path of many network functions and middleboxes.
As previously mentioned, it can used as an index table for
<key,value> pairs, meta-data for objects, a flow-level load balancer, etc.
Fig. 24.8 shows an example of using EFD as a flow-level load
balancer, where flows are received at a front end server before being forwarded
to the target back end server for processing. The system designer would
deterministically co-locate flows together in order to minimize cross-server
interaction.
(For example, flows requesting certain webpage objects are co-located
together, to minimize forwarding of common objects across servers).

[image: ../_images/efd_i6.svg]
Fig. 24.8 EFD as a Flow-Level Load Balancer

As shown in Fig. 24.8, the front end server will have an EFD table that
stores for each group what is the perfect hash index that satisfies the
correct output. Because the table size is small and fits in cache (since
keys are not stored), it sustains a large number of flows (N*X, where N
is the maximum number of flows served by each back end server of the X
possible targets).

With an input flow key, the group id is computed (for example, using
last few bits of CRC hash) and then the EFD table is indexed with the
group id to retrieve the corresponding hash index to use. Once the index
is retrieved the key is hashed using this hash function and the result
will be the intended correct target where this flow is supposed to be
processed.

It should be noted that as a result of EFD not matching the exact key but
rather distributing the flows to a target back end node based on the
perfect hash index, a key that has not been inserted before
will be distributed to a valid target. Hence, a local table which stores
the flows served at each node is used and is
exact matched with the input key to rule out new never seen before
flows.

24.4. Library API Overview

The EFD library API is created with a very similar semantics of a
hash-index or a flow table. The application creates an EFD table for a
given maximum number of flows, a function is called to insert a flow key
with a specific target value, and another function is used to retrieve
target values for a given individual flow key or a bulk of keys.

24.4.1. EFD Table Create

The function rte_efd_create() is used to create and return a pointer
to an EFD table that is sized to hold up to num_flows key.
The online version of the EFD table (the one that does
not store the keys and is used for lookups) will be allocated and
created in the last level cache (LLC) of the socket defined by the
online_socket_bitmask, while the offline EFD table (the one that
stores the keys and is used for key inserts and for computing the
perfect hashing) is allocated and created in the LLC of the socket
defined by offline_socket_bitmask. It should be noted, that for
highest performance the socket id should match that where the thread is
running, i.e. the online EFD lookup table should be created on the same
socket as where the lookup thread is running.

24.4.2. EFD Insert and Update

The EFD function to insert a key or update a key to a new value is
rte_efd_update(). This function will update an existing key to
a new value (target) if the key has already been inserted
before, or will insert the <key,value> pair if this key has not been inserted
before. It will return 0 upon success. It will return
EFD_UPDATE_WARN_GROUP_FULL (1) if the operation is insert, and the
last available space in the key’s group was just used. It will return
EFD_UPDATE_FAILED (2) when the insertion or update has failed (either it
failed to find a suitable perfect hash or the group was full). The function
will return EFD_UPDATE_NO_CHANGE (3) if there is no change to the EFD
table (i.e, same value already exists).

Note

This function is not multi-thread safe and should only be called
from one thread.

24.4.3. EFD Lookup

To lookup a certain key in an EFD table, the function rte_efd_lookup()
is used to return the value associated with single key.
As previously mentioned, if the key has been inserted, the correct value
inserted is returned, if the key has not been inserted before,
a ‘random’ value (based on hashing of the key) is returned.
For better performance and to decrease the overhead of
function calls per key, it is always recommended to use a bulk lookup
function (simultaneous lookup of multiple keys) instead of a single key
lookup function. rte_efd_lookup_bulk() is the bulk lookup function,
that looks up num_keys simultaneously stored in the key_list and the
corresponding return values will be returned in the value_list.

Note

This function is multi-thread safe, but there should not be other threads
writing in the EFD table, unless locks are used.

24.4.4. EFD Delete

To delete a certain key in an EFD table, the function
rte_efd_delete() can be used. The function returns zero upon success
when the key has been found and deleted. Socket_id is the parameter to
use to lookup the existing value, which is ideally the caller’s socket id.
The previous value associated with this key will be returned
in the prev_value argument.

Note

This function is not multi-thread safe and should only be called
from one thread.

24.5. Library Internals

This section provides the brief high-level idea and an overview
of the library internals to accompany the RFC. The intent of this
section is to explain to readers the high-level implementation of
insert, lookup and group rebalancing in the EFD library.

24.5.1. Insert Function Internals

As previously mentioned the EFD divides the whole set of keys into
groups of a manageable size (e.g. 28 keys) and then searches for the
perfect hash that satisfies the intended target value for each key. EFD
stores two version of the <key,value> table:

	Offline Version (in memory): Only used for the insertion/update
operation, which is less frequent than the lookup operation. In the
offline version the exact keys for each group is stored. When a new
key is added, the hash function is updated that will satisfy the
value for the new key together with the all old keys already inserted
in this group.

	Online Version (in cache): Used for the frequent lookup operation. In
the online version, as previously mentioned, the keys are not stored
but rather only the hash index for each group.

[image: ../_images/efd_i7.svg]
Fig. 24.9 Group Assignment

Fig. 24.9 depicts the group assignment for 7 flow keys as an example.
Given a flow key, a hash function (in our implementation CRC hash) is
used to get the group id. As shown in the figure, the groups can be
unbalanced. (We highlight group rebalancing further below).

[image: ../_images/efd_i8.svg]
Fig. 24.10 Perfect Hash Search - Assigned Keys & Target Value

Focusing on one group that has four keys, Fig. 24.10 depicts the search
algorithm to find the perfect hash function. Assuming that the target
value bit for the keys is as shown in the figure, then the online EFD
table will store a 16 bit hash index and 16 bit lookup table per group
per value bit.

[image: ../_images/efd_i9.svg]
Fig. 24.11 Perfect Hash Search - Satisfy Target Values

For a given keyX, a hash function (h(keyX, seed1) + index * h(keyX, seed2))
is used to point to certain bit index in the 16bit lookup_table value,
as shown in Fig. 24.11.
The insert function will brute force search for all possible values for the
hash index until a non conflicting lookup_table is found.

[image: ../_images/efd_i10.svg]
Fig. 24.12 Finding Hash Index for Conflict Free lookup_table

For example, since both key3 and key7 have a target bit value of 1, it
is okay if the hash function of both keys point to the same bit in the
lookup table. A conflict will occur if a hash index is used that maps
both Key4 and Key7 to the same index in the lookup_table,
as shown in Fig. 24.12, since their target value bit are not the same.
Once a hash index is found that produces a lookup_table with no
contradictions, this index is stored for this group. This procedure is
repeated for each bit of target value.

24.5.2. Lookup Function Internals

The design principle of EFD is that lookups are much more frequent than
inserts, and hence, EFD’s design optimizes for the lookups which are
faster and much simpler than the slower insert procedure (inserts are
slow, because of perfect hash search as previously discussed).

[image: ../_images/efd_i11.svg]
Fig. 24.13 EFD Lookup Operation

Fig. 24.13 depicts the lookup operation for EFD. Given an input key,
the group id is computed (using CRC hash) and then the hash index for this
group is retrieved from the EFD table. Using the retrieved hash index,
the hash function h(key, seed1) + index *h(key, seed2) is used which will
result in an index in the lookup_table, the bit corresponding to this
index will be the target value bit. This procedure is repeated for each
bit of the target value.

24.5.3. Group Rebalancing Function Internals

When discussing EFD inserts and lookups, the discussion is simplified by
assuming that a group id is simply a result of hash function. However,
since hashing in general is not perfect and will not always produce a
uniform output, this simplified assumption will lead to unbalanced
groups, i.e., some group will have more keys than other groups.
Typically, and to minimize insert time with an increasing number of keys,
it is preferable that all groups will have a balanced number of keys, so
the brute force search for the perfect hash terminates with a valid hash
index. In order to achieve this target, groups are rebalanced during
runtime inserts, and keys are moved around from a busy group to a less
crowded group as the more keys are inserted.

[image: ../_images/efd_i12.svg]
Fig. 24.14 Runtime Group Rebalancing

Fig. 24.14 depicts the high level idea of group rebalancing, given an
input key the hash result is split into two parts a chunk id and 8-bit
bin id. A chunk contains 64 different groups and 256 bins (i.e. for any
given bin it can map to 4 distinct groups). When a key is inserted, the
bin id is computed, for example in Fig. 24.14 bin_id=2,
and since each bin can be mapped to one of four different groups (2 bit storage),
the four possible mappings are evaluated and the one that will result in a
balanced key distribution across these four is selected the mapping result
is stored in these two bits.

24.6. References

1- EFD is based on collaborative research work between Intel and
Carnegie Mellon University (CMU), interested readers can refer to the paper
“Scaling Up Clustered Network Appliances with ScaleBricks” Dong Zhou et al.
at SIGCOMM 2015 (http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p241.pdf)
for more information.

25. Membership Library

25.1. Introduction

The DPDK Membership Library provides an API for DPDK applications to insert a
new member, delete an existing member, or query the existence of a member in a
given set, or a group of sets. For the case of a group of sets, the library
will return not only whether the element has been inserted before in one of
the sets but also which set it belongs to. The Membership Library is an
extension and generalization of a traditional filter structure (for example
Bloom Filter [Member-bloom]) that has multiple usages in a wide variety of
workloads and applications. In general, the Membership Library is a data
structure that provides a “set-summary” on whether a member belongs to a set,
and as discussed in detail later, there are two advantages of using such a
set-summary rather than operating on a “full-blown” complete list of elements:
first, it has a much smaller storage requirement than storing the whole list of
elements themselves, and secondly checking an element membership (or other
operations) in this set-summary is much faster than checking it for the
original full-blown complete list of elements.

We use the term “Set-Summary” in this guide to refer to the space-efficient,
probabilistic membership data structure that is provided by the library. A
membership test for an element will return the set this element belongs to or
that the element is “not-found” with very high probability of accuracy. Set-summary
is a fundamental data aggregation component that can be used in many network
(and other) applications. It is a crucial structure to address performance and
scalability issues of diverse network applications including overlay networks,
data-centric networks, flow table summaries, network statistics and
traffic monitoring. A set-summary is useful for applications who need to
include a list of elements while a complete list requires too much space
and/or too much processing cost. In these situations, the set-summary works as
a lossy hash-based representation of a set of members. It can dramatically
reduce space requirement and significantly improve the performance of set
membership queries at the cost of introducing a very small membership test error
probability.

[image: ../_images/member_i1.svg]
Fig. 25.1 Example Usages of Membership Library

There are various usages for a Membership Library in a very
large set of applications and workloads. Interested readers can refer to
[Member-survey] for a survey of possible networking usages. The above figure
provide a small set of examples of using the Membership Library:

	Sub-figure (a)
depicts a distributed web cache architecture where a collection of proxies
attempt to share their web caches (cached from a set of back-end web servers) to
provide faster responses to clients, and the proxies use the Membership
Library to share summaries of what web pages/objects they are caching. With the
Membership Library, a proxy receiving an http request will inquire the
set-summary to find its location and quickly determine whether to retrieve the
requested web page from a nearby proxy or from a back-end web server.

	Sub-figure (b) depicts another example for using the Membership Library to
prevent routing loops which is typically done using slow TTL countdown and
dropping packets when TTL expires. As shown in Sub-figure (b), an embedded
set-summary in the packet header itself can be used to summarize the set of
nodes a packet has gone through, and each node upon receiving a packet can check
whether its id is a member of the set of visited nodes, and if it is, then a
routing loop is detected.

	Sub-Figure (c) presents another usage of the Membership
Library to load-balance flows to worker threads with in-order guarantee where a
set-summary is used to query if a packet belongs to an existing flow or a new
flow. Packets belonging to a new flow are forwarded to the current least loaded
worker thread, while those belonging to an existing flow are forwarded to the
pre-assigned thread to guarantee in-order processing.

	Sub-figure (d) highlights
yet another usage example in the database domain where a set-summary is used to
determine joins between sets instead of creating a join by comparing each
element of a set against the other elements in a different set, a join is done
on the summaries since they can efficiently encode members of a given set.

Membership Library is a configurable library that is optimized to cover set
membership functionality for both a single set and multi-set scenarios. Two set-summary
schemes are presented including (a) vector of Bloom Filters and (b) Hash-Table based
set-summary schemes with and without false negative probability.
This guide first briefly describes these different types of set-summaries, usage examples for each,
and then it highlights the Membership Library API.

25.2. Vector of Bloom Filters

Bloom Filter (BF) [Member-bloom] is a well-known space-efficient
probabilistic data structure that answers set membership queries (test whether
an element is a member of a set) with some probability of false positives and
zero false negatives; a query for an element returns either it is “possibly in
a set” (with very high probability) or “definitely not in a set”.

The BF is a method for representing a set of n elements (for example flow keys
in network applications domain) to support membership queries. The idea of BF is
to allocate a bit-vector v with m bits, which are initially all set to 0. Then
it chooses k independent hash functions h1, h2, … hk with hash values range from
0 to m-1 to perform hashing calculations on each element to be inserted. Every time when an
element X being inserted into the set, the bits at positions h1(X), h2(X), …
hk(X) in v are set to 1 (any particular bit might be set to 1 multiple times
for multiple different inserted elements). Given a query for any element Y, the
bits at positions h1(Y), h2(Y), … hk(Y) are checked. If any of them is 0,
then Y is definitely not in the set. Otherwise there is a high probability that
Y is a member of the set with certain false positive probability. As shown in
the next equation, the false positive probability can be made arbitrarily small
by changing the number of hash functions (k) and the vector length (m).

[image: ../_images/member_i2.svg]
Fig. 25.2 Bloom Filter False Positive Probability

Without BF, an accurate membership testing could involve a costly hash table
lookup and full element comparison. The advantage of using a BF is to simplify
the membership test into a series of hash calculations and memory accesses for a
small bit-vector, which can be easily optimized. Hence the lookup throughput
(set membership test) can be significantly faster than a normal hash table
lookup with element comparison.

[image: ../_images/member_i3.svg]
Fig. 25.3 Detecting Routing Loops Using BF

BF is used for applications that need only one set, and the
membership of elements is checked against the BF. The example discussed
in the above figure is one example of potential applications that uses only one
set to capture the node IDs that have been visited so far by the packet. Each
node will then check this embedded BF in the packet header for its own id, and
if the BF indicates that the current node is definitely not in the set then a
loop-free route is guaranteed.

[image: ../_images/member_i4.svg]
Fig. 25.4 Vector Bloom Filter (vBF) Overview

To support membership test for both multiple sets and a single set,
the library implements a Vector Bloom Filter (vBF) scheme.
vBF basically composes multiple bloom filters into a vector of bloom filers.
The membership test is conducted on all of the
bloom filters concurrently to determine which set(s) it belongs to or none of
them. The basic idea of vBF is shown in the above figure where an element is
used to address multiple bloom filters concurrently and the bloom filter
index(es) with a hit is returned.

[image: ../_images/member_i5.svg]
Fig. 25.5 vBF for Flow Scheduling to Worker Thread

As previously mentioned, there are many usages of such structures. vBF is used
for applications that need to check membership against multiple sets
simultaneously. The example shown in the above figure uses a set to capture
all flows being assigned for processing at a given worker thread. Upon receiving
a packet the vBF is used to quickly figure out if this packet belongs to a new flow
so as to be forwarded to the current least loaded worker thread, or otherwise it
should be queued for an existing thread to guarantee in-order processing (i.e.
the property of vBF to indicate right away that a given flow is a new one or
not is critical to minimize response time latency).

It should be noted that vBF can be implemented using a set of single bloom
filters with sequential lookup of each BF. However, being able to concurrently
search all set-summaries is a big throughput advantage. In the library, certain
parallelism is realized by the implementation of checking all bloom filters
together.

25.3. Hash-Table based Set-Summaries

Hash-table based set-summary (HTSS) is another scheme in the membership library.
Cuckoo filter [Member-cfilter] is an example of HTSS.
HTSS supports multi-set membership testing like
vBF does. However, while vBF is better for a small number of targets, HTSS is more suitable
and can easily outperform vBF when the number of sets is
large, since HTSS uses a single hash table for membership testing while vBF
requires testing a series of Bloom Filters each corresponding to one set.
As a result, generally speaking vBF is more adequate for the case of a small limited number of sets
while HTSS should be used with a larger number of sets.

[image: ../_images/member_i6.svg]
Fig. 25.6 Using HTSS for Attack Signature Matching

As shown in the above figure, attack signature matching where each set
represents a certain signature length (for correctness of this example, an
attack signature should not be a subset of another one) in the payload is a good
example for using HTSS with 0% false negative (i.e., when an element returns not
found, it has a 100% certainty that it is not a member of any set). The packet
inspection application benefits from knowing right away that the current payload
does not match any attack signatures in the database to establish its
legitimacy, otherwise a deep inspection of the packet is needed.

HTSS employs a similar but simpler data structure to a traditional hash table,
and the major difference is that HTSS stores only the signatures but not the
full keys/elements which can significantly reduce the footprint of the table.
Along with the signature, HTSS also stores a value to indicate the target set.
When looking up an element, the element is hashed and the HTSS is addressed
to retrieve the signature stored. If the signature matches then the value is
retrieved corresponding to the index of the target set which the element belongs
to. Because signatures can collide, HTSS can still has false positive
probability. Furthermore, if elements are allowed to be
overwritten or evicted when the hash table becomes full, it will also have a
false negative probability. We discuss this case in the next section.

25.3.1. Set-Summaries with False Negative Probability

As previously mentioned, traditional set-summaries (e.g. Bloom Filters) do not
have a false negative probability, i.e., it is 100% certain when an element
returns “not to be present” for a given set. However, the Membership Library
also supports a set-summary probabilistic data structure based on HTSS which
allows for false negative probability.

In HTSS, when the hash table becomes full, keys/elements will fail to be added
into the table and the hash table has to be resized to accommodate for these new
elements, which can be expensive. However, if we allow new elements to overwrite
or evict existing elements (as a cache typically does), then the resulting
set-summary will begin to have false negative probability. This is because the
element that was evicted from the set-summary may still be present in the target
set. For subsequent inquiries the set-summary will falsely report the element
not being in the set, hence having a false negative probability.

The major usage of HTSS with false negative is to use it as a cache for
distributing elements to different target sets. By allowing HTSS to evict old
elements, the set-summary can keep track of the most recent elements
(i.e. active) as a cache typically does. Old inactive elements (infrequently
used elements) will automatically and eventually get evicted from the
set-summary. It is worth noting that the set-summary still has false positive
probability, which means the application either can tolerate certain false positive
or it has fall-back path when false positive happens.

[image: ../_images/member_i7.svg]
Fig. 25.7 Using HTSS with False Negatives for Wild Card Classification

HTSS with false negative (i.e. a cache) also has its wide set of applications.
For example wild card flow classification (e.g. ACL rules) highlighted in the
above figure is an example of such application. In that case each target set
represents a sub-table with rules defined by a certain flow mask. The flow masks
are non-overlapping, and for flows matching more than one rule only the highest
priority one is inserted in the corresponding sub-table (interested readers can
refer to the Open vSwitch (OvS) design of Mega Flow Cache (MFC) [Member-OvS]
for further details). Typically the rules will have a large number of distinct
unique masks and hence, a large number of target sets each corresponding to one
mask. Because the active set of flows varies widely based on the network
traffic, HTSS with false negative will act as a cache for <flowid, target ACL
sub-table> pair for the current active set of flows. When a miss occurs (as
shown in red in the above figure) the sub-tables will be searched sequentially
one by one for a possible match, and when found the flow key and target
sub-table will be inserted into the set-summary (i.e. cache insertion) so
subsequent packets from the same flow don’t incur the overhead of the
sequential search of sub-tables.

25.4. Library API Overview

The design goal of the Membership Library API is to be as generic as possible to
support all the different types of set-summaries we discussed in previous
sections and beyond. Fundamentally, the APIs need to include creation,
insertion, deletion, and lookup.

25.4.1. Set-summary Create

The rte_member_create() function is used to create a set-summary structure, the input parameter
is a struct to pass in parameters that needed to initialize the set-summary, while the function returns the
pointer to the created set-summary or NULL if the creation failed.

The general input arguments used when creating the set-summary should include name
which is the name of the created set-summary, type which is one of the types
supported by the library (e.g. RTE_MEMBER_TYPE_HT for HTSS or RTE_MEMBER_TYPE_VBF for vBF), and key_len
which is the length of the element/key. There are other parameters
are only used for certain type of set-summary, or which have a slightly different meaning for different types of set-summary.
For example, num_keys parameter means the maximum number of entries for Hash table based set-summary.
However, for bloom filter, this value means the expected number of keys that could be
inserted into the bloom filter(s). The value is used to calculate the size of each
bloom filter.

We also pass two seeds: prim_hash_seed and
sec_hash_seed for the primary and secondary hash functions to calculate two independent hash values.
socket_id parameter is the NUMA socket ID for the memory used to create the
set-summary. For HTSS, another parameter is_cache is used to indicate
if this set-summary is a cache (i.e. with false negative probability) or not.
For vBF, extra parameters are needed. For example, num_set is the number of
sets needed to initialize the vector bloom filters. This number is equal to the
number of bloom filters will be created.
false_pos_rate is the false positive rate. num_keys and false_pos_rate will be used to determine
the number of hash functions and the bloom filter size.

25.4.2. Set-summary Element Insertion

The rte_member_add() function is used to insert an element/key into a set-summary structure. If it fails an
error is returned. For success the returned value is dependent on the
set-summary mode to provide extra information for the users. For vBF
mode, a return value of 0 means a successful insert. For HTSS mode without false negative, the insert
could fail with -ENOSPC if the table is full. With false negative (i.e. cache mode),
for insert that does not cause any eviction (i.e. no overwriting happens to an
existing entry) the return value is 0. For insertion that causes eviction, the return
value is 1 to indicate such situation, but it is not an error.

The input arguments for the function should include the key which is a pointer to the element/key that needs to
be added to the set-summary, and set_id which is the set id associated
with the key that needs to be added.

25.4.3. Set-summary Element Lookup

The rte_member_lookup() function looks up a single key/element in the set-summary structure. It
returns as soon as the first match is found. The return value is 1 if a
match is found and 0 otherwise. The arguments for the function include key which is a pointer to the
element/key that needs to be looked up, and set_id which is used to return the
first target set id where the key has matched, if any.

The rte_member_lookup_bulk() function is used to look up a bulk of keys/elements in the
set-summary structure for their first match. Each key lookup returns as soon as the first match is found. The
return value is the number of keys that find a match. The arguments of the function include keys
which is a pointer to a bulk of keys that are to be looked up,
num_keys is the number
of keys that will be looked up, and set_ids are the return target set
ids for the first match found for each of the input keys. set_ids is an array
needs to be sized according to the num_keys. If there is no match, the set id
for that key will be set to RTE_MEMBER_NO_MATCH.

The rte_member_lookup_multi() function looks up a single key/element in the
set-summary structure for multiple matches. It
returns ALL the matches (possibly more than one) found for this key when it
is matched against all target sets (it is worth noting that for cache mode HTSS,
the current implementation matches at most one target set). The return value is
the number of matches
that was found for this key (for cache mode HTSS the return value
should be at most 1). The arguments for the function include key which is a pointer to the
element/key that needs to be looked up, max_match_per_key which is to indicate the maximum number of matches
the user expects to find for each key, and set_id which is used to return all
target set ids where the key has matched, if any. The set_id array should be sized
according to max_match_per_key. For vBF, the maximum number of matches per key is equal
to the number of sets. For HTSS, the maximum number of matches per key is equal to two time
entry count per bucket. max_match_per_key should be equal or smaller than the maximum number of
possible matches.

The rte_membership_lookup_multi_bulk() function looks up a bulk of keys/elements in the
set-summary structure for multiple matches, each key lookup returns ALL the matches (possibly more
than one) found for this key when it is matched against all target sets (cache mode HTSS
matches at most one target set). The
return value is the number of keys that find one or more matches in the
set-summary structure. The arguments of the
function include keys which is
a pointer to a bulk of keys that are to be looked up, num_keys is the number
of keys that will be looked up, max_match_per_key is the possible
maximum number of matches for each key, match_count which is the returned number
of matches for each key, and set_ids are the returned target set
ids for all matches found for each keys. set_ids is 2-D array
containing a 1-D array for each key (the size of 1-D array per key should be set by the user according to max_match_per_key).
max_match_per_key should be equal or smaller than the maximum number of
possible matches, similar to rte_member_lookup_multi.

25.4.4. Set-summary Element Delete

The rte_membership_delete() function deletes an element/key from a set-summary structure, if it fails
an error is returned. The input arguments should include key which is a pointer to the
element/key that needs to be deleted from the set-summary, and set_id
which is the set id associated with the key to delete. It is worth noting that current
implementation of vBF does not support deletion 1. An error code -EINVAL will be returned.

	1

	Traditional bloom filter does not support proactive deletion. Supporting proactive deletion require additional implementation and performance overhead.

25.5. References

[Member-bloom] B H Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Communications of the ACM, 1970.

[Member-survey] A Broder and M Mitzenmacher, “Network Applications of Bloom Filters: A Survey,” in Internet Mathematics, 2005.

[Member-cfilter] B Fan, D G Andersen and M Kaminsky, “Cuckoo Filter: Practically Better Than Bloom,” in Conference on emerging Networking Experiments and Technologies, 2014.

[Member-OvS] B Pfaff, “The Design and Implementation of Open vSwitch,” in NSDI, 2015.

26. LPM Library

The DPDK LPM library component implements the Longest Prefix Match (LPM) table search method for 32-bit keys
that is typically used to find the best route match in IP forwarding applications.

26.1. LPM API Overview

The main configuration parameter for LPM component instances is the maximum number of rules to support.
An LPM prefix is represented by a pair of parameters (32- bit key, depth), with depth in the range of 1 to 32.
An LPM rule is represented by an LPM prefix and some user data associated with the prefix.
The prefix serves as the unique identifier of the LPM rule.
In this implementation, the user data is 1-byte long and is called next hop,
in correlation with its main use of storing the ID of the next hop in a routing table entry.

The main methods exported by the LPM component are:

	Add LPM rule: The LPM rule is provided as input.
If there is no rule with the same prefix present in the table, then the new rule is added to the LPM table.
If a rule with the same prefix is already present in the table, the next hop of the rule is updated.
An error is returned when there is no available rule space left.

	Delete LPM rule: The prefix of the LPM rule is provided as input.
If a rule with the specified prefix is present in the LPM table, then it is removed.

	Lookup LPM key: The 32-bit key is provided as input.
The algorithm selects the rule that represents the best match for the given key and returns the next hop of that rule.
In the case that there are multiple rules present in the LPM table that have the same 32-bit key,
the algorithm picks the rule with the highest depth as the best match rule,
which means that the rule has the highest number of most significant bits matching between the input key and the rule key.

26.2. Implementation Details

The current implementation uses a variation of the DIR-24-8 algorithm that trades memory usage for improved LPM lookup speed.
The algorithm allows the lookup operation to be performed with typically a single memory read access.
In the statistically rare case when the best match rule is having a depth bigger than 24,
the lookup operation requires two memory read accesses.
Therefore, the performance of the LPM lookup operation is greatly influenced by
whether the specific memory location is present in the processor cache or not.

The main data structure is built using the following elements:

	A table with 2^24 entries.

	A number of tables (RTE_LPM_TBL8_NUM_GROUPS) with 2^8 entries.

The first table, called tbl24, is indexed using the first 24 bits of the IP address to be looked up,
while the second table(s), called tbl8, is indexed using the last 8 bits of the IP address.
This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24
we might need to continue the lookup process in the second level.

Since every entry of the tbl24 can potentially point to a tbl8, ideally, we would have 2^24 tbl8s,
which would be the same as having a single table with 2^32 entries.
This is not feasible due to resource restrictions.
Instead, this approach takes advantage of the fact that rules longer than 24 bits are very rare.
By splitting the process in two different tables/levels and limiting the number of tbl8s,
we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access, most of the times).

[image: ../_images/tbl24_tbl8.png]

Fig. 26.2 Table split into different levels

An entry in tbl24 contains the following fields:

	next hop / index to the tbl8

	valid flag

	external entry flag

	depth of the rule (length)

The first field can either contain a number indicating the tbl8 in which the lookup process should continue
or the next hop itself if the longest prefix match has already been found.
The two flags are used to determine whether the entry is valid or not and
whether the search process have finished or not respectively.
The depth or length of the rule is the number of bits of the rule that is stored in a specific entry.

An entry in a tbl8 contains the following fields:

	next hop

	valid

	valid group

	depth

Next hop and depth contain the same information as in the tbl24.
The two flags show whether the entry and the table are valid respectively.

The other main data structure is a table containing the main information about the rules (IP and next hop).
This is a higher level table, used for different things:

	Check whether a rule already exists or not, prior to addition or deletion,
without having to actually perform a lookup.

	When deleting, to check whether there is a rule containing the one that is to be deleted.
This is important, since the main data structure will have to be updated accordingly.

26.2.1. Addition

When adding a rule, there are different possibilities.
If the rule’s depth is exactly 24 bits, then:

	Use the rule (IP address) as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 0
(meaning the lookup process ends at this point, since this is the longest prefix that matches).

If the rule’s depth is exactly 32 bits, then:

	Use the first 24 bits of the rule as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8,
set the index to the tbl8 to this value,
the valid flag to 1 (meaning this entry is in use), and the external entry flag to 1
(meaning the lookup process must continue since the rule hasn’t been explored completely).

If the rule’s depth is any other value, prefix expansion must be performed.
This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits.
This means that there are 2^(24 - 20) = 16 different combinations of the first 24 bits of an IP address that
would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in either one or two memory accesses,
depending on whether we need to move to the next table or not.
Prefix expansion is one of the keys of this algorithm,
since it improves the speed dramatically by adding redundancy.

26.2.2. Lookup

The lookup process is much simpler and quicker. In this case:

	Use the first 24 bits of the IP address as an index to the tbl24.
If the entry is not in use, then it means we don’t have a rule matching this IP.
If it is valid and the external entry flag is set to 0, then the next hop is returned.

	If it is valid and the external entry flag is set to 1,
then we use the tbl8 index to find out the tbl8 to be checked,
and the last 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address.
If it is valid then the next hop is returned.

26.2.3. Limitations in the Number of Rules

There are different things that limit the number of rules that can be added.
The first one is the maximum number of rules, which is a parameter passed through the API.
Once this number is reached,
it is not possible to add any more rules to the routing table unless one or more are removed.

The second reason is an intrinsic limitation of the algorithm.
As explained before, to avoid high memory consumption, the number of tbl8s is limited in compilation time
(this value is by default 256).
If we exhaust tbl8s, we won’t be able to add any more rules.
How many of them are necessary for a specific routing table is hard to determine in advance.

A tbl8 is consumed whenever we have a new rule with depth bigger than 24,
and the first 24 bits of this rule are not the same as the first 24 bits of a rule previously added.
If they are, then the new rule will share the same tbl8 than the previous one,
since the only difference between the two rules is within the last byte.

With the default value of 256, we can have up to 256 rules longer than 24 bits that differ on their first three bytes.
Since routes longer than 24 bits are unlikely, this shouldn’t be a problem in most setups.
Even if it is, however, the number of tbl8s can be modified.

26.2.4. Use Case: IPv4 Forwarding

The LPM algorithm is used to implement Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IPv4 forwarding.

26.2.5. References

	RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy,
http://www.ietf.org/rfc/rfc1519

	Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis, Stanford University,
2000 (http://klamath.stanford.edu/~pankaj/thesis/thesis_1sided.pdf)

27. LPM6 Library

The LPM6 (LPM for IPv6) library component implements the Longest Prefix Match (LPM) table search method for 128-bit keys
that is typically used to find the best match route in IPv6 forwarding applications.

27.1. LPM6 API Overview

The main configuration parameters for the LPM6 library are:

	Maximum number of rules: This defines the size of the table that holds the rules,
and therefore the maximum number of rules that can be added.

	Number of tbl8s: A tbl8 is a node of the trie that the LPM6 algorithm is based on.

This parameter is related to the number of rules you can have,
but there is no way to accurately predict the number needed to hold a specific number of rules,
since it strongly depends on the depth and IP address of every rule.
One tbl8 consumes 1 kb of memory. As a recommendation, 65536 tbl8s should be sufficient to store
several thousand IPv6 rules, but the number can vary depending on the case.

An LPM prefix is represented by a pair of parameters (128-bit key, depth), with depth in the range of 1 to 128.
An LPM rule is represented by an LPM prefix and some user data associated with the prefix.
The prefix serves as the unique identifier for the LPM rule.
In this implementation, the user data is 21-bits long and is called “next hop”,
which corresponds to its main use of storing the ID of the next hop in a routing table entry.

The main methods exported for the LPM component are:

	Add LPM rule: The LPM rule is provided as input.
If there is no rule with the same prefix present in the table, then the new rule is added to the LPM table.
If a rule with the same prefix is already present in the table, the next hop of the rule is updated.
An error is returned when there is no available space left.

	Delete LPM rule: The prefix of the LPM rule is provided as input.
If a rule with the specified prefix is present in the LPM table, then it is removed.

	Lookup LPM key: The 128-bit key is provided as input.
The algorithm selects the rule that represents the best match for the given key and returns the next hop of that rule.
In the case that there are multiple rules present in the LPM table that have the same 128-bit value,
the algorithm picks the rule with the highest depth as the best match rule,
which means the rule has the highest number of most significant bits matching between the input key and the rule key.

27.1.1. Implementation Details

This is a modification of the algorithm used for IPv4 (see Implementation Details).
In this case, instead of using two levels, one with a tbl24 and a second with a tbl8, 14 levels are used.

The implementation can be seen as a multi-bit trie where the stride
or number of bits inspected on each level varies from level to level.
Specifically, 24 bits are inspected on the root node, and the remaining 104 bits are inspected in groups of 8 bits.
This effectively means that the trie has 14 levels at the most, depending on the rules that are added to the table.

The algorithm allows the lookup operation to be performed with a number of memory accesses
that directly depends on the length of the rule and
whether there are other rules with bigger depths and the same key in the data structure.
It can vary from 1 to 14 memory accesses, with 5 being the average value for the lengths
that are most commonly used in IPv6.

The main data structure is built using the following elements:

	A table with 224 entries

	A number of tables, configurable by the user through the API, with 28 entries

The first table, called tbl24, is indexed using the first 24 bits of the IP address be looked up,
while the rest of the tables, called tbl8s,
are indexed using the rest of the bytes of the IP address, in chunks of 8 bits.
This means that depending on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24
or the subsequent tbl8s we might need to continue the lookup process in deeper levels of the tree.

Similar to the limitation presented in the algorithm for IPv4,
to store every possible IPv6 rule, we would need a table with 2^128 entries.
This is not feasible due to resource restrictions.

By splitting the process in different tables/levels and limiting the number of tbl8s,
we can greatly reduce memory consumption while maintaining a very good lookup speed (one memory access per level).

[image: ../_images/tbl24_tbl8_tbl8.png]

Fig. 27.1 Table split into different levels

An entry in a table contains the following fields:

	next hop / index to the tbl8

	depth of the rule (length)

	valid flag

	valid group flag

	external entry flag

The first field can either contain a number indicating the tbl8 in which the lookup process should continue
or the next hop itself if the longest prefix match has already been found.
The depth or length of the rule is the number of bits of the rule that is stored in a specific entry.
The flags are used to determine whether the entry/table is valid or not
and whether the search process have finished or not respectively.

Both types of tables share the same structure.

The other main data structure is a table containing the main information about the rules (IP, next hop and depth).
This is a higher level table, used for different things:

	Check whether a rule already exists or not, prior to addition or deletion,
without having to actually perform a lookup.

When deleting, to check whether there is a rule containing the one that is to be deleted.
This is important, since the main data structure will have to be updated accordingly.

27.1.2. Addition

When adding a rule, there are different possibilities.
If the rule’s depth is exactly 24 bits, then:

	Use the rule (IP address) as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 0 (meaning the lookup process ends at this point,
since this is the longest prefix that matches).

If the rule’s depth is bigger than 24 bits but a multiple of 8, then:

	Use the first 24 bits of the rule as an index to the tbl24.

	If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8,
set the index to the tbl8 to this value,
the valid flag to 1 (meaning this entry is in use),
and the external entry flag to 1
(meaning the lookup process must continue since the rule hasn’t been explored completely).

	Use the following 8 bits of the rule as an index to the next tbl8.

	Repeat the process until the tbl8 at the right level (depending on the depth) has been reached
and fill it with the next hop, setting the next entry flag to 0.

If the rule’s depth is any other value, prefix expansion must be performed.
This means the rule is copied to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits.
This means that there are 2^(24-20) = 16 different combinations of the first 24 bits of an IP address that would cause a match.
Hence, in this case, we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists,
it is found in, at the most, 14 memory accesses,
depending on how many times we need to move to the next table.
Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by adding redundancy.

Prefix expansion can be performed at any level.
So, for example, is the depth is 34 bits, it will be performed in the third level (second tbl8-based level).

27.1.3. Lookup

The lookup process is much simpler and quicker. In this case:

	Use the first 24 bits of the IP address as an index to the tbl24.
If the entry is not in use, then it means we don’t have a rule matching this IP.
If it is valid and the external entry flag is set to 0, then the next hop is returned.

	If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8 to be checked,
and the next 8 bits of the IP address as an index to this table.
Similarly, if the entry is not in use, then we don’t have a rule matching this IP address.
If it is valid then check the external entry flag for a new tbl8 to be inspected.

	Repeat the process until either we find an invalid entry (lookup miss) or a valid entry with the external entry flag set to 0.
Return the next hop in the latter case.

27.1.4. Limitations in the Number of Rules

There are different things that limit the number of rules that can be added.
The first one is the maximum number of rules, which is a parameter passed through the API.
Once this number is reached, it is not possible to add any more rules to the routing table unless one or more are removed.

The second limitation is in the number of tbl8s available.
If we exhaust tbl8s, we won’t be able to add any more rules.
How to know how many of them are necessary for a specific routing table is hard to determine in advance.

In this algorithm, the maximum number of tbl8s a single rule can consume is 13,
which is the number of levels minus one, since the first three bytes are resolved in the tbl24. However:

	Typically, on IPv6, routes are not longer than 48 bits, which means rules usually take up to 3 tbl8s.

As explained in the LPM for IPv4 algorithm, it is possible and very likely that several rules will share one or more tbl8s,
depending on what their first bytes are.
If they share the same first 24 bits, for instance, the tbl8 at the second level will be shared.
This might happen again in deeper levels, so, effectively,
two 48 bit-long rules may use the same three tbl8s if the only difference is in their last byte.

The number of tbl8s is a parameter exposed to the user through the API in this version of the algorithm,
due to its impact in memory consumption and the number or rules that can be added to the LPM table.
One tbl8 consumes 1 kilobyte of memory.

27.2. Use Case: IPv6 Forwarding

The LPM algorithm is used to implement the Classless Inter-Domain Routing (CIDR) strategy used by routers implementing IP forwarding.

28. Flow Classification Library

DPDK provides a Flow Classification library that provides the ability
to classify an input packet by matching it against a set of Flow rules.

The initial implementation supports counting of IPv4 5-tuple packets which match
a particular Flow rule only.

Please refer to the
Generic flow API (rte_flow)
for more information.

The Flow Classification library uses the librte_table API for managing Flow
rules and matching packets against the Flow rules.
The library is table agnostic and can use the following tables:
Access Control List, Hash and Longest Prefix Match(LPM).
The Access Control List table is used in the initial implementation.

Please refer to the
Packet Framework
for more information.on librte_table.

DPDK provides an Access Control List library that provides the ability to
classify an input packet based on a set of classification rules.

Please refer to the
Packet Classification and Access Control
library for more information on librte_acl.

There is also a Flow Classify sample application which demonstrates the use of
the Flow Classification Library API’s.

Please refer to the
Flow Classify Sample Application
for more information on the flow_classify sample application.

28.1. Overview

The library has the following API’s

/**
 * Flow classifier create
 *
 * @param params
 * Parameters for flow classifier creation
 * @return
 * Handle to flow classifier instance on success or NULL otherwise
 */
struct rte_flow_classifier *
rte_flow_classifier_create(struct rte_flow_classifier_params *params);

/**
 * Flow classifier free
 *
 * @param cls
 * Handle to flow classifier instance
 * @return
 * 0 on success, error code otherwise
 */
int
rte_flow_classifier_free(struct rte_flow_classifier *cls);

/**
 * Flow classify table create
 *
 * @param cls
 * Handle to flow classifier instance
 * @param params
 * Parameters for flow_classify table creation
 * @return
 * 0 on success, error code otherwise
 */
int
rte_flow_classify_table_create(struct rte_flow_classifier *cls,
 struct rte_flow_classify_table_params *params);

/**
 * Validate the flow classify rule
 *
 * @param[in] cls
 * Handle to flow classifier instance
 * @param[in] attr
 * Flow rule attributes
 * @param[in] pattern
 * Pattern specification (list terminated by the END pattern item).
 * @param[in] actions
 * Associated actions (list terminated by the END pattern item).
 * @param[out] error
 * Perform verbose error reporting if not NULL. Structure
 * initialised in case of error only.
 * @return
 * 0 on success, error code otherwise
 */
int
rte_flow_classify_validate(struct rte_flow_classifier *cls,
 const struct rte_flow_attr *attr,
 const struct rte_flow_item pattern[],
 const struct rte_flow_action actions[],
 struct rte_flow_error *error);

/**
 * Add a flow classify rule to the flow_classifier table.
 *
 * @param[in] cls
 * Flow classifier handle
 * @param[in] attr
 * Flow rule attributes
 * @param[in] pattern
 * Pattern specification (list terminated by the END pattern item).
 * @param[in] actions
 * Associated actions (list terminated by the END pattern item).
 * @param[out] key_found
 * returns 1 if rule present already, 0 otherwise.
 * @param[out] error
 * Perform verbose error reporting if not NULL. Structure
 * initialised in case of error only.
 * @return
 * A valid handle in case of success, NULL otherwise.
 */
struct rte_flow_classify_rule *
rte_flow_classify_table_entry_add(struct rte_flow_classifier *cls,
 const struct rte_flow_attr *attr,
 const struct rte_flow_item pattern[],
 const struct rte_flow_action actions[],
 int *key_found;
 struct rte_flow_error *error);

/**
 * Delete a flow classify rule from the flow_classifier table.
 *
 * @param[in] cls
 * Flow classifier handle
 * @param[in] rule
 * Flow classify rule
 * @return
 * 0 on success, error code otherwise.
 */
int
rte_flow_classify_table_entry_delete(struct rte_flow_classifier *cls,
 struct rte_flow_classify_rule *rule);

/**
 * Query flow classifier for given rule.
 *
 * @param[in] cls
 * Flow classifier handle
 * @param[in] pkts
 * Pointer to packets to process
 * @param[in] nb_pkts
 * Number of packets to process
 * @param[in] rule
 * Flow classify rule
 * @param[in] stats
 * Flow classify stats
 *
 * @return
 * 0 on success, error code otherwise.
 */
int
rte_flow_classifier_query(struct rte_flow_classifier *cls,
 struct rte_mbuf **pkts,
 const uint16_t nb_pkts,
 struct rte_flow_classify_rule *rule,
 struct rte_flow_classify_stats *stats);

28.1.1. Classifier creation

The application creates the Classifier using the
rte_flow_classifier_create API.
The rte_flow_classify_params structure must be initialised by the
application before calling the API.

struct rte_flow_classifier_params {
 /** flow classifier name */
 const char *name;

 /** CPU socket ID where memory for the flow classifier and its */
 /** elements (tables) should be allocated */
 int socket_id;
};

The Classifier has the following internal structures:

struct rte_cls_table {
 /* Input parameters */
 struct rte_table_ops ops;
 uint32_t entry_size;
 enum rte_flow_classify_table_type type;

 /* Handle to the low-level table object */
 void *h_table;
};

#define RTE_FLOW_CLASSIFIER_MAX_NAME_SZ 256

struct rte_flow_classifier {
 /* Input parameters */
 char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
 int socket_id;

 /* Internal */
 /* ntuple_filter */
 struct rte_eth_ntuple_filter ntuple_filter;

 /* classifier tables */
 struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
 uint32_t table_mask;
 uint32_t num_tables;

 uint16_t nb_pkts;
 struct rte_flow_classify_table_entry
 *entries[RTE_PORT_IN_BURST_SIZE_MAX];
} __rte_cache_aligned;

28.1.2. Adding a table to the Classifier

The application adds a table to the Classifier using the
rte_flow_classify_table_create API.
The rte_flow_classify_table_params structure must be initialised by the
application before calling the API.

struct rte_flow_classify_table_params {
 /** Table operations (specific to each table type) */
 struct rte_table_ops *ops;

 /** Opaque param to be passed to the table create operation */
 void *arg_create;

 /** Classifier table type */
 enum rte_flow_classify_table_type type;
 };

To create an ACL table the rte_table_acl_params structure must be
initialised and assigned to arg_create in the
rte_flow_classify_table_params structure.

struct rte_table_acl_params {
 /** Name */
 const char *name;

 /** Maximum number of ACL rules in the table */
 uint32_t n_rules;

 /** Number of fields in the ACL rule specification */
 uint32_t n_rule_fields;

 /** Format specification of the fields of the ACL rule */
 struct rte_acl_field_def field_format[RTE_ACL_MAX_FIELDS];
};

The fields for the ACL rule must also be initialised by the application.

An ACL table can be added to the Classifier for each ACL rule, for example
another table could be added for the IPv6 5-tuple rule.

28.1.3. Flow Parsing

The library currently supports three IPv4 5-tuple flow patterns, for UDP, TCP
and SCTP.

/* Pattern for IPv4 5-tuple UDP filter */
static enum rte_flow_item_type pattern_ntuple_1[] = {
 RTE_FLOW_ITEM_TYPE_ETH,
 RTE_FLOW_ITEM_TYPE_IPV4,
 RTE_FLOW_ITEM_TYPE_UDP,
 RTE_FLOW_ITEM_TYPE_END,
};

/* Pattern for IPv4 5-tuple TCP filter */
static enum rte_flow_item_type pattern_ntuple_2[] = {
 RTE_FLOW_ITEM_TYPE_ETH,
 RTE_FLOW_ITEM_TYPE_IPV4,
 RTE_FLOW_ITEM_TYPE_TCP,
 RTE_FLOW_ITEM_TYPE_END,
};

/* Pattern for IPv4 5-tuple SCTP filter */
static enum rte_flow_item_type pattern_ntuple_3[] = {
 RTE_FLOW_ITEM_TYPE_ETH,
 RTE_FLOW_ITEM_TYPE_IPV4,
 RTE_FLOW_ITEM_TYPE_SCTP,
 RTE_FLOW_ITEM_TYPE_END,
};

The API function rte_flow_classify_validate parses the
IPv4 5-tuple pattern, attributes and actions and returns the 5-tuple data in the
rte_eth_ntuple_filter structure.

static int
rte_flow_classify_validate(struct rte_flow_classifier *cls,
 const struct rte_flow_attr *attr,
 const struct rte_flow_item pattern[],
 const struct rte_flow_action actions[],
 struct rte_flow_error *error)

28.1.4. Adding Flow Rules

The rte_flow_classify_table_entry_add API creates an
rte_flow_classify object which contains the flow_classify id and type, the
action, a union of add and delete keys and a union of rules.
It uses the rte_flow_classify_validate API function for parsing the
flow parameters.
The 5-tuple ACL key data is obtained from the rte_eth_ntuple_filter
structure populated by the classify_parse_ntuple_filter function which
parses the Flow rule.

struct acl_keys {
 struct rte_table_acl_rule_add_params key_add; /* add key */
 struct rte_table_acl_rule_delete_params key_del; /* delete key */
};

struct classify_rules {
 enum rte_flow_classify_rule_type type;
 union {
 struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;
 } u;
};

struct rte_flow_classify {
 uint32_t id; /* unique ID of classify object */
 enum rte_flow_classify_table_type tbl_type; /* rule table */
 struct classify_rules rules; /* union of rules */
 union {
 struct acl_keys key;
 } u;
 int key_found; /* rule key found in table */
 struct rte_flow_classify_table_entry entry; /* rule meta data */
 void *entry_ptr; /* handle to the table entry for rule meta data */
};

It then calls the table.ops.f_add API to add the rule to the ACL
table.

28.1.5. Deleting Flow Rules

The rte_flow_classify_table_entry_delete API calls the
table.ops.f_delete API to delete a rule from the ACL table.

28.1.6. Packet Matching

The rte_flow_classifier_query API is used to find packets which match a
given flow Flow rule in the table.
This API calls the flow_classify_run internal function which calls the
table.ops.f_lookup API to see if any packets in a burst match any
of the Flow rules in the table.
The meta data for the highest priority rule matched for each packet is returned
in the entries array in the rte_flow_classify object.
The internal function action_apply implements the Count action which is
used to return data which matches a particular Flow rule.

The rte_flow_classifier_query API uses the following structures to return data
to the application.

/** IPv4 5-tuple data */
struct rte_flow_classify_ipv4_5tuple {
 uint32_t dst_ip; /**< Destination IP address in big endian. */
 uint32_t dst_ip_mask; /**< Mask of destination IP address. */
 uint32_t src_ip; /**< Source IP address in big endian. */
 uint32_t src_ip_mask; /**< Mask of destination IP address. */
 uint16_t dst_port; /**< Destination port in big endian. */
 uint16_t dst_port_mask; /**< Mask of destination port. */
 uint16_t src_port; /**< Source Port in big endian. */
 uint16_t src_port_mask; /**< Mask of source port. */
 uint8_t proto; /**< L4 protocol. */
 uint8_t proto_mask; /**< Mask of L4 protocol. */
};

/**
 * Flow stats
 *
 * For the count action, stats can be returned by the query API.
 *
 * Storage for stats is provided by the application.
 *
 *
 */
struct rte_flow_classify_stats {
 void *stats;
};

struct rte_flow_classify_5tuple_stats {
 /** count of packets that match IPv4 5tuple pattern */
 uint64_t counter1;
 /** IPv4 5tuple data */
 struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;
};

29. Packet Distributor Library

The DPDK Packet Distributor library is a library designed to be used for dynamic load balancing of traffic
while supporting single packet at a time operation.
When using this library, the logical cores in use are to be considered in two roles: firstly a distributor lcore,
which is responsible for load balancing or distributing packets,
and a set of worker lcores which are responsible for receiving the packets from the distributor and operating on them.
The model of operation is shown in the diagram below.

[image: ../_images/packet_distributor1.png]

Fig. 29.1 Packet Distributor mode of operation

There are two modes of operation of the API in the distributor library,
one which sends one packet at a time to workers using 32-bits for flow_id,
and an optimized mode which sends bursts of up to 8 packets at a time to workers, using 15 bits of flow_id.
The mode is selected by the type field in the rte_distributor_create() function.

29.1. Distributor Core Operation

The distributor core does the majority of the processing for ensuring that packets are fairly shared among workers.
The operation of the distributor is as follows:

	Packets are passed to the distributor component by having the distributor lcore thread call the “rte_distributor_process()” API

	The worker lcores all share a single cache line with the distributor core in order to pass messages and packets to and from the worker.
The process API call will poll all the worker cache lines to see what workers are requesting packets.

	As workers request packets, the distributor takes packets from the set of packets passed in and distributes them to the workers.
As it does so, it examines the “tag” – stored in the RSS hash field in the mbuf – for each packet
and records what tags are being processed by each worker.

	If the next packet in the input set has a tag which is already being processed by a worker,
then that packet will be queued up for processing by that worker
and given to it in preference to other packets when that work next makes a request for work.
This ensures that no two packets with the same tag are processed in parallel,
and that all packets with the same tag are processed in input order.

	Once all input packets passed to the process API have either been distributed to workers
or been queued up for a worker which is processing a given tag,
then the process API returns to the caller.

Other functions which are available to the distributor lcore are:

	rte_distributor_returned_pkts()

	rte_distributor_flush()

	rte_distributor_clear_returns()

Of these the most important API call is “rte_distributor_returned_pkts()”
which should only be called on the lcore which also calls the process API.
It returns to the caller all packets which have finished processing by all worker cores.
Within this set of returned packets, all packets sharing the same tag will be returned in their original order.

NOTE:
If worker lcores buffer up packets internally for transmission in bulk afterwards,
the packets sharing a tag will likely get out of order.
Once a worker lcore requests a new packet, the distributor assumes that it has completely finished with the previous packet and
therefore that additional packets with the same tag can safely be distributed to other workers –
who may then flush their buffered packets sooner and cause packets to get out of order.

NOTE:
No packet ordering guarantees are made about packets which do not share a common packet tag.

Using the process and returned_pkts API, the following application workflow can be used,
while allowing packet order within a packet flow – identified by a tag – to be maintained.

[image: ../_images/packet_distributor2.png]

Fig. 29.2 Application workflow

The flush and clear_returns API calls, mentioned previously,
are likely of less use that the process and returned_pkts APIS, and are principally provided to aid in unit testing of the library.
Descriptions of these functions and their use can be found in the DPDK API Reference document.

29.2. Worker Operation

Worker cores are the cores which do the actual manipulation of the packets distributed by the packet distributor.
Each worker calls “rte_distributor_get_pkt()” API to request a new packet when it has finished processing the previous one.
[The previous packet should be returned to the distributor component by passing it as the final parameter to this API call.]

Since it may be desirable to vary the number of worker cores, depending on the traffic load
i.e. to save power at times of lighter load,
it is possible to have a worker stop processing packets by calling “rte_distributor_return_pkt()” to indicate that
it has finished the current packet and does not want a new one.

30. Reorder Library

The Reorder Library provides a mechanism for reordering mbufs based on their
sequence number.

30.1. Operation

The reorder library is essentially a buffer that reorders mbufs.
The user inserts out of order mbufs into the reorder buffer and pulls in-order
mbufs from it.

At a given time, the reorder buffer contains mbufs whose sequence number are
inside the sequence window. The sequence window is determined by the minimum
sequence number and the number of entries that the buffer was configured to hold.
For example, given a reorder buffer with 200 entries and a minimum sequence
number of 350, the sequence window has low and high limits of 350 and 550
respectively.

When inserting mbufs, the reorder library differentiates between valid, early
and late mbufs depending on the sequence number of the inserted mbuf:

	valid: the sequence number is inside the window.

	late: the sequence number is outside the window and less than the low limit.

	early: the sequence number is outside the window and greater than the high
limit.

The reorder buffer directly returns late mbufs and tries to accommodate early
mbufs.

30.2. Implementation Details

The reorder library is implemented as a pair of buffers, which referred to as
the Order buffer and the Ready buffer.

On an insert call, valid mbufs are inserted directly into the Order buffer and
late mbufs are returned to the user with an error.

In the case of early mbufs, the reorder buffer will try to move the window
(incrementing the minimum sequence number) so that the mbuf becomes a valid one.
To that end, mbufs in the Order buffer are moved into the Ready buffer.
Any mbufs that have not arrived yet are ignored and therefore will become
late mbufs.
This means that as long as there is room in the Ready buffer, the window will
be moved to accommodate early mbufs that would otherwise be outside the
reordering window.

For example, assuming that we have a buffer of 200 entries with a 350 minimum
sequence number, and we need to insert an early mbuf with 565 sequence number.
That means that we would need to move the windows at least 15 positions to
accommodate the mbuf.
The reorder buffer would try to move mbufs from at least the next 15 slots in
the Order buffer to the Ready buffer, as long as there is room in the Ready buffer.
Any gaps in the Order buffer at that point are skipped, and those packet will
be reported as late packets when they arrive. The process of moving packets
to the Ready buffer continues beyond the minimum required until a gap,
i.e. missing mbuf, in the Order buffer is encountered.

When draining mbufs, the reorder buffer would return mbufs in the Ready
buffer first and then from the Order buffer until a gap is found (mbufs that
have not arrived yet).

30.3. Use Case: Packet Distributor

An application using the DPDK packet distributor could make use of the reorder
library to transmit packets in the same order they were received.

A basic packet distributor use case would consist of a distributor with
multiple workers cores.
The processing of packets by the workers is not guaranteed to be in order,
hence a reorder buffer can be used to order as many packets as possible.

In such a scenario, the distributor assigns a sequence number to mbufs before
delivering them to the workers.
As the workers finish processing the packets, the distributor inserts those
mbufs into the reorder buffer and finally transmit drained mbufs.

NOTE: Currently the reorder buffer is not thread safe so the same thread is
responsible for inserting and draining mbufs.

31. IP Fragmentation and Reassembly Library

The IP Fragmentation and Reassembly Library implements IPv4 and IPv6 packet fragmentation and reassembly.

31.1. Packet fragmentation

Packet fragmentation routines divide input packet into number of fragments.
Both rte_ipv4_fragment_packet() and rte_ipv6_fragment_packet() functions assume that input mbuf data
points to the start of the IP header of the packet (i.e. L2 header is already stripped out).
To avoid copying of the actual packet’s data zero-copy technique is used (rte_pktmbuf_attach).
For each fragment two new mbufs are created:

	Direct mbuf – mbuf that will contain L3 header of the new fragment.

	Indirect mbuf – mbuf that is attached to the mbuf with the original packet.
It’s data field points to the start of the original packets data plus fragment offset.

Then L3 header is copied from the original mbuf into the ‘direct’ mbuf and updated to reflect new fragmented status.
Note that for IPv4, header checksum is not recalculated and is set to zero.

Finally ‘direct’ and ‘indirect’ mbufs for each fragment are linked together via mbuf’s next filed to compose a packet for the new fragment.

The caller has an ability to explicitly specify which mempools should be used to allocate ‘direct’ and ‘indirect’ mbufs from.

For more information about direct and indirect mbufs, refer to Direct and Indirect Buffers.

31.2. Packet reassembly

31.2.1. IP Fragment Table

Fragment table maintains information about already received fragments of the packet.

Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.

Note that all update/lookup operations on Fragment Table are not thread safe.
So if different execution contexts (threads/processes) will access the same table simultaneously,
then some external syncing mechanism have to be provided.

Each table entry can hold information about packets consisting of up to RTE_LIBRTE_IP_FRAG_MAX (by default: 4) fragments.

Code example, that demonstrates creation of a new Fragment table:

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag_table_create(max_flow_num, bucket_entries, max_flow_num, frag_cycles, socket_id);

Internally Fragment table is a simple hash table.
The basic idea is to use two hash functions and <bucket_entries> * associativity.
This provides 2 * <bucket_entries> possible locations in the hash table for each key.
When the collision occurs and all 2 * <bucket_entries> are occupied,
instead of reinserting existing keys into alternative locations, ip_frag_tbl_add() just returns a failure.

Also, entries that resides in the table longer then <max_cycles> are considered as invalid,
and could be removed/replaced by the new ones.

Note that reassembly demands a lot of mbuf’s to be allocated.
At any given time up to (2 * bucket_entries * RTE_LIBRTE_IP_FRAG_MAX * <maximum number of mbufs per packet>)
can be stored inside Fragment Table waiting for remaining fragments.

31.2.2. Packet Reassembly

Fragmented packets processing and reassembly is done by the rte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet.
Functions. They either return a pointer to valid mbuf that contains reassembled packet,
or NULL (if the packet can’t be reassembled for some reason).

These functions are responsible for:

	Search the Fragment Table for entry with packet’s <IPv4 Source Address, IPv4 Destination Address, Packet ID>.

	If the entry is found, then check if that entry already timed-out.
If yes, then free all previously received fragments, and remove information about them from the entry.

	If no entry with such key is found, then try to create a new one by one of two ways:

	Use as empty entry.

	Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in it.

	Update the entry with new fragment information and check if a packet can be reassembled
(the packet’s entry contains all fragments).

	If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled mbuf to the caller.

	If no, then return a NULL to the caller.

If at any stage of packet processing an error is encountered
(e.g: can’t insert new entry into the Fragment Table, or invalid/timed-out fragment),
then the function will free all associated with the packet fragments,
mark the table entry as invalid and return NULL to the caller.

31.2.3. Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT config macro controls statistics collection for the Fragment Table.
This macro is not enabled by default.

The RTE_LIBRTE_IP_FRAG_DEBUG controls debug logging of IP fragments processing and reassembling.
This macro is disabled by default.
Note that while logging contains a lot of detailed information,
it slows down packet processing and might cause the loss of a lot of packets.

32. Generic Receive Offload Library

Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overheads. By reassembling
small packets into larger ones, GRO enables applications to process
fewer large packets directly, thus reducing the number of packets to
be processed. To benefit DPDK-based applications, like Open vSwitch,
DPDK also provides own GRO implementation. In DPDK, GRO is implemented
as a standalone library. Applications explicitly use the GRO library to
reassemble packets.

32.1. Overview

In the GRO library, there are many GRO types which are defined by packet
types. One GRO type is in charge of process one kind of packets. For
example, TCP/IPv4 GRO processes TCP/IPv4 packets.

Each GRO type has a reassembly function, which defines own algorithm and
table structure to reassemble packets. We assign input packets to the
corresponding GRO functions by MBUF->packet_type.

The GRO library doesn’t check if input packets have correct checksums and
doesn’t re-calculate checksums for merged packets. The GRO library
assumes the packets are complete (i.e., MF==0 && frag_off==0), when IP
fragmentation is possible (i.e., DF==0). Additionally, it complies RFC
6864 to process the IPv4 ID field.

Currently, the GRO library provides GRO supports for TCP/IPv4 packets and
VxLAN packets which contain an outer IPv4 header and an inner TCP/IPv4
packet.

32.2. Two Sets of API

For different usage scenarios, the GRO library provides two sets of API.
The one is called the lightweight mode API, which enables applications to
merge a small number of packets rapidly; the other is called the
heavyweight mode API, which provides fine-grained controls to
applications and supports to merge a large number of packets.

32.2.1. Lightweight Mode API

The lightweight mode only has one function rte_gro_reassemble_burst(),
which process N packets at a time. Using the lightweight mode API to
merge packets is very simple. Calling rte_gro_reassemble_burst() is
enough. The GROed packets are returned to applications as soon as it
finishes.

In rte_gro_reassemble_burst(), table structures of different GRO
types are allocated in the stack. This design simplifies applications’
operations. However, limited by the stack size, the maximum number of
packets that rte_gro_reassemble_burst() can process in an invocation
should be less than or equal to RTE_GRO_MAX_BURST_ITEM_NUM.

32.2.2. Heavyweight Mode API

Compared with the lightweight mode, using the heavyweight mode API is
relatively complex. Firstly, applications need to create a GRO context
by rte_gro_ctx_create(). rte_gro_ctx_create() allocates tables
structures in the heap and stores their pointers in the GRO context.
Secondly, applications use rte_gro_reassemble() to merge packets.
If input packets have invalid parameters, rte_gro_reassemble()
returns them to applications. For example, packets of unsupported GRO
types or TCP SYN packets are returned. Otherwise, the input packets are
either merged with the existed packets in the tables or inserted into the
tables. Finally, applications use rte_gro_timeout_flush() to flush
packets from the tables, when they want to get the GROed packets.

Note that all update/lookup operations on the GRO context are not thread
safe. So if different processes or threads want to access the same
context object simultaneously, some external syncing mechanisms must be
used.

32.3. Reassembly Algorithm

The reassembly algorithm is used for reassembling packets. In the GRO
library, different GRO types can use different algorithms. In this
section, we will introduce an algorithm, which is used by TCP/IPv4 GRO
and VxLAN GRO.

32.3.1. Challenges

The reassembly algorithm determines the efficiency of GRO. There are two
challenges in the algorithm design:

	a high cost algorithm/implementation would cause packet dropping in a
high speed network.

	packet reordering makes it hard to merge packets. For example, Linux
GRO fails to merge packets when encounters packet reordering.

The above two challenges require our algorithm is:

	lightweight enough to scale fast networking speed

	capable of handling packet reordering

In DPDK GRO, we use a key-based algorithm to address the two challenges.

32.3.2. Key-based Reassembly Algorithm

Fig. 32.1 illustrates the procedure of the
key-based algorithm. Packets are classified into “flows” by some header
fields (we call them as “key”). To process an input packet, the algorithm
searches for a matched “flow” (i.e., the same value of key) for the
packet first, then checks all packets in the “flow” and tries to find a
“neighbor” for it. If find a “neighbor”, merge the two packets together.
If can’t find a “neighbor”, store the packet into its “flow”. If can’t
find a matched “flow”, insert a new “flow” and store the packet into the
“flow”.

Note

Packets in the same “flow” that can’t merge are always caused
by packet reordering.

The key-based algorithm has two characters:

	classifying packets into “flows” to accelerate packet aggregation is
simple (address challenge 1).

	storing out-of-order packets makes it possible to merge later (address
challenge 2).

[image: ../_images/gro-key-algorithm.svg]
Fig. 32.1 Key-based Reassembly Algorithm

32.4. TCP/IPv4 GRO

The table structure used by TCP/IPv4 GRO contains two arrays: flow array
and item array. The flow array keeps flow information, and the item array
keeps packet information.

Header fields used to define a TCP/IPv4 flow include:

	source and destination: Ethernet and IP address, TCP port

	TCP acknowledge number

TCP/IPv4 packets whose FIN, SYN, RST, URG, PSH, ECE or CWR bit is set
won’t be processed.

Header fields deciding if two packets are neighbors include:

	TCP sequence number

	IPv4 ID. The IPv4 ID fields of the packets, whose DF bit is 0, should
be increased by 1.

32.5. VxLAN GRO

The table structure used by VxLAN GRO, which is in charge of processing
VxLAN packets with an outer IPv4 header and inner TCP/IPv4 packet, is
similar with that of TCP/IPv4 GRO. Differently, the header fields used
to define a VxLAN flow include:

	outer source and destination: Ethernet and IP address, UDP port

	VxLAN header (VNI and flag)

	inner source and destination: Ethernet and IP address, TCP port

Header fields deciding if packets are neighbors include:

	outer IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the
outer IPv4 header is 0, should be increased by 1.

	inner TCP sequence number

	inner IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the
inner IPv4 header is 0, should be increased by 1.

Note

We comply RFC 6864 to process the IPv4 ID field. Specifically,
we check IPv4 ID fields for the packets whose DF bit is 0 and
ignore IPv4 ID fields for the packets whose DF bit is 1.
Additionally, packets which have different value of DF bit can’t
be merged.

32.6. GRO Library Limitations

	GRO library uses MBUF->l2_len/l3_len/l4_len/outer_l2_len/
outer_l3_len/packet_type to get protocol headers for the
input packet, rather than parsing the packet header. Therefore,
before call GRO APIs to merge packets, user applications
must set MBUF->l2_len/l3_len/l4_len/outer_l2_len/outer_l3_len/
packet_type to the same values as the protocol headers of the
packet.

	GRO library doesn’t support to process the packets with IPv4
Options or VLAN tagged.

	GRO library just supports to process the packet organized
in a single MBUF. If the input packet consists of multiple
MBUFs (i.e. chained MBUFs), GRO reassembly behaviors are
unknown.

33. Generic Segmentation Offload Library

33.1. Overview

Generic Segmentation Offload (GSO) is a widely used software implementation of
TCP Segmentation Offload (TSO), which reduces per-packet processing overhead.
Much like TSO, GSO gains performance by enabling upper layer applications to
process a smaller number of large packets (e.g. MTU size of 64KB), instead of
processing higher numbers of small packets (e.g. MTU size of 1500B), thus
reducing per-packet overhead.

For example, GSO allows guest kernel stacks to transmit over-sized TCP segments
that far exceed the kernel interface’s MTU; this eliminates the need to segment
packets within the guest, and improves the data-to-overhead ratio of both the
guest-host link, and PCI bus. The expectation of the guest network stack in this
scenario is that segmentation of egress frames will take place either in the NIC
HW, or where that hardware capability is unavailable, either in the host
application, or network stack.

Bearing that in mind, the GSO library enables DPDK applications to segment
packets in software. Note however, that GSO is implemented as a standalone
library, and not via a ‘fallback’ mechanism (i.e. for when TSO is unsupported
in the underlying hardware); that is, applications must explicitly invoke the
GSO library to segment packets. The size of GSO segments (segsz) is
configurable by the application.

33.2. Limitations

	The GSO library doesn’t check if input packets have correct checksums.

	In addition, the GSO library doesn’t re-calculate checksums for segmented
packets (that task is left to the application).

	IP fragments are unsupported by the GSO library.

	The egress interface’s driver must support multi-segment packets.

	Currently, the GSO library supports the following IPv4 packet types:

	TCP

	UDP

	VxLAN

	GRE

See Supported GSO Packet Types for further details.

33.3. Packet Segmentation

The rte_gso_segment() function is the GSO library’s primary
segmentation API.

Before performing segmentation, an application must create a GSO context object
(struct rte_gso_ctx), which provides the library with some of the
information required to understand how the packet should be segmented. Refer to
How to Segment a Packet for additional details on same. Once the GSO context
has been created, and populated, the application can then use the
rte_gso_segment() function to segment packets.

The GSO library typically stores each segment that it creates in two parts: the
first part contains a copy of the original packet’s headers, while the second
part contains a pointer to an offset within the original packet. This mechanism
is explained in more detail in GSO Output Segment Format.

The GSO library supports both single- and multi-segment input mbufs.

33.3.1. GSO Output Segment Format

To reduce the number of expensive memcpy operations required when segmenting a
packet, the GSO library typically stores each segment that it creates as a
two-part mbuf (technically, this is termed a ‘two-segment’ mbuf; however, since
the elements produced by the API are also called ‘segments’, for clarity the
term ‘part’ is used here instead).

The first part of each output segment is a direct mbuf and contains a copy of
the original packet’s headers, which must be prepended to each output segment.
These headers are copied from the original packet into each output segment.

The second part of each output segment, represents a section of data from the
original packet, i.e. a data segment. Rather than copy the data directly from
the original packet into the output segment (which would impact performance
considerably), the second part of each output segment is an indirect mbuf,
which contains no actual data, but simply points to an offset within the
original packet.

The combination of the ‘header’ segment and the ‘data’ segment constitutes a
single logical output GSO segment of the original packet. This is illustrated
in Fig. 33.2.

[image: ../_images/gso-output-segment-format.svg]
Fig. 33.2 Two-part GSO output segment

In one situation, the output segment may contain additional ‘data’ segments.
This only occurs when:

	the input packet on which GSO is to be performed is represented by a
multi-segment mbuf.

	the output segment is required to contain data that spans the boundaries
between segments of the input multi-segment mbuf.

The GSO library traverses each segment of the input packet, and produces
numerous output segments; for optimal performance, the number of output
segments is kept to a minimum. Consequently, the GSO library maximizes the
amount of data contained within each output segment; i.e. each output segment
segsz bytes of data. The only exception to this is in the case of the very
final output segment; if pkt_len % segsz, then the final segment is
smaller than the rest.

In order for an output segment to meet its MSS, it may need to include data from
multiple input segments. Due to the nature of indirect mbufs (each indirect mbuf
can point to only one direct mbuf), the solution here is to add another indirect
mbuf to the output segment; this additional segment then points to the next
input segment. If necessary, this chaining process is repeated, until the sum of
all of the data ‘contained’ in the output segment reaches segsz. This
ensures that the amount of data contained within each output segment is uniform,
with the possible exception of the last segment, as previously described.

Fig. 33.3 illustrates an example of a three-part
output segment. In this example, the output segment needs to include data from
the end of one input segment, and the beginning of another. To achieve this,
an additional indirect mbuf is chained to the second part of the output segment,
and is attached to the next input segment (i.e. it points to the data in the
next input segment).

[image: ../_images/gso-three-seg-mbuf.svg]
Fig. 33.3 Three-part GSO output segment

33.4. Supported GSO Packet Types

33.4.1. TCP/IPv4 GSO

TCP/IPv4 GSO supports segmentation of suitably large TCP/IPv4 packets, which
may also contain an optional VLAN tag.

33.4.2. UDP/IPv4 GSO

UDP/IPv4 GSO supports segmentation of suitably large UDP/IPv4 packets, which
may also contain an optional VLAN tag. UDP GSO is the same as IP fragmentation.
Specifically, UDP GSO treats the UDP header as a part of the payload and
does not modify it during segmentation. Therefore, after UDP GSO, only the
first output packet has the original UDP header, and others just have l2
and l3 headers.

33.4.3. VxLAN GSO

VxLAN packets GSO supports segmentation of suitably large VxLAN packets,
which contain an outer IPv4 header, inner TCP/IPv4 headers, and optional
inner and/or outer VLAN tag(s).

33.4.4. GRE GSO

GRE GSO supports segmentation of suitably large GRE packets, which contain
an outer IPv4 header, inner TCP/IPv4 headers, and an optional VLAN tag.

33.5. How to Segment a Packet

To segment an outgoing packet, an application must:

	First create a GSO context (struct rte_gso_ctx); this contains:

	a pointer to the mbuf pool for allocating the direct buffers, which are
used to store the GSO segments’ packet headers.

	a pointer to the mbuf pool for allocating indirect buffers, which are
used to locate GSO segments’ packet payloads.

Note

An application may use the same pool for both direct and indirect
buffers. However, since indirect mbufs simply store a pointer, the
application may reduce its memory consumption by creating a separate memory
pool, containing smaller elements, for the indirect pool.

	the size of each output segment, including packet headers and payload,
measured in bytes.

	the bit mask of required GSO types. The GSO library uses the same macros as
those that describe a physical device’s TX offloading capabilities (i.e.
DEV_TX_OFFLOAD_*_TSO) for gso_types. For example, if an application
wants to segment TCP/IPv4 packets, it should set gso_types to
DEV_TX_OFFLOAD_TCP_TSO. The only other supported values currently
supported for gso_types are DEV_TX_OFFLOAD_VXLAN_TNL_TSO, and
DEV_TX_OFFLOAD_GRE_TNL_TSO; a combination of these macros is also
allowed.

	a flag, that indicates whether the IPv4 headers of output segments should
contain fixed or incremental ID values.

	Set the appropriate ol_flags in the mbuf.

	The GSO library use the value of an mbuf’s ol_flags attribute to
determine how a packet should be segmented. It is the application’s
responsibility to ensure that these flags are set.

	For example, in order to segment TCP/IPv4 packets, the application should
add the PKT_TX_IPV4 and PKT_TX_TCP_SEG flags to the mbuf’s
ol_flags.

	If checksum calculation in hardware is required, the application should
also add the PKT_TX_TCP_CKSUM and PKT_TX_IP_CKSUM flags.

	Check if the packet should be processed. Packets with one of the
following properties are not processed and are returned immediately:

	Packet length is less than segsz (i.e. GSO is not required).

	Packet type is not supported by GSO library (see
Supported GSO Packet Types).

	Application has not enabled GSO support for the packet type.

	Packet’s ol_flags have been incorrectly set.

	Allocate space in which to store the output GSO segments. If the amount of
space allocated by the application is insufficient, segmentation will fail.

	Invoke the GSO segmentation API, rte_gso_segment().

	If required, update the L3 and L4 checksums of the newly-created segments.
For tunneled packets, the outer IPv4 headers’ checksums should also be
updated. Alternatively, the application may offload checksum calculation
to HW.

34. The librte_pdump Library

The librte_pdump library provides a framework for packet capturing in DPDK.
The library does the complete copy of the Rx and Tx mbufs to a new mempool and
hence it slows down the performance of the applications, so it is recommended
to use this library for debugging purposes.

The library provides the following APIs to initialize the packet capture framework, to enable
or disable the packet capture, and to uninitialize it:

	rte_pdump_init():
This API initializes the packet capture framework.

	rte_pdump_enable():
This API enables the packet capture on a given port and queue.
Note: The filter option in the API is a place holder for future enhancements.

	rte_pdump_enable_by_deviceid():
This API enables the packet capture on a given device id (vdev name or pci address) and queue.
Note: The filter option in the API is a place holder for future enhancements.

	rte_pdump_disable():
This API disables the packet capture on a given port and queue.

	rte_pdump_disable_by_deviceid():
This API disables the packet capture on a given device id (vdev name or pci address) and queue.

	rte_pdump_uninit():
This API uninitializes the packet capture framework.

34.1. Operation

The librte_pdump library works on a client/server model. The server is responsible for enabling or
disabling the packet capture and the clients are responsible for requesting the enabling or disabling of
the packet capture.

The packet capture framework, as part of its initialization, creates the pthread and the server socket in
the pthread. The application that calls the framework initialization will have the server socket created,
either under the path that the application has passed or under the default path i.e. either /var/run/.dpdk for
root user or ~/.dpdk for non root user.

Applications that request enabling or disabling of the packet capture will have the client socket created either under
the path that the application has passed or under the default path i.e. either /var/run/.dpdk for root user or
~/.dpdk for not root user to send the requests to the server. The server socket will listen for client requests for
enabling or disabling the packet capture.

34.2. Implementation Details

The library API rte_pdump_init(), initializes the packet capture framework by creating the pdump server by calling
rte_mp_action_register() function. The server will listen to the client requests to enable or disable the
packet capture.

The library APIs rte_pdump_enable() and rte_pdump_enable_by_deviceid() enables the packet capture.
On each call to these APIs, the library creates a separate client socket, creates the “pdump enable” request and sends
the request to the server. The server that is listening on the socket will take the request and enable the packet capture
by registering the Ethernet RX and TX callbacks for the given port or device_id and queue combinations.
Then the server will mirror the packets to the new mempool and enqueue them to the rte_ring that clients have passed
to these APIs. The server also sends the response back to the client about the status of the request that was processed.
After the response is received from the server, the client socket is closed.

The library APIs rte_pdump_disable() and rte_pdump_disable_by_deviceid() disables the packet capture.
On each call to these APIs, the library creates a separate client socket, creates the “pdump disable” request and sends
the request to the server. The server that is listening on the socket will take the request and disable the packet
capture by removing the Ethernet RX and TX callbacks for the given port or device_id and queue combinations. The server
also sends the response back to the client about the status of the request that was processed. After the response is
received from the server, the client socket is closed.

The library API rte_pdump_uninit(), uninitializes the packet capture framework by calling rte_mp_action_unregister()
function.

34.3. Use Case: Packet Capturing

The DPDK app/pdump tool is developed based on this library to capture packets in DPDK.
Users can use this as an example to develop their own packet capturing tools.

35. Multi-process Support

In the DPDK, multi-process support is designed to allow a group of DPDK processes
to work together in a simple transparent manner to perform packet processing,
or other workloads.
To support this functionality,
a number of additions have been made to the core DPDK Environment Abstraction Layer (EAL).

The EAL has been modified to allow different types of DPDK processes to be spawned,
each with different permissions on the hugepage memory used by the applications.
For now, there are two types of process specified:

	primary processes, which can initialize and which have full permissions on shared memory

	secondary processes, which cannot initialize shared memory,
but can attach to pre- initialized shared memory and create objects in it.

Standalone DPDK processes are primary processes,
while secondary processes can only run alongside a primary process or
after a primary process has already configured the hugepage shared memory for them.

Note

Secondary processes should run alongside primary process with same DPDK version.

Secondary processes which requires access to physical devices in Primary process, must
be passed with the same whitelist and blacklist options.

To support these two process types, and other multi-process setups described later,
two additional command-line parameters are available to the EAL:

	--proc-type: for specifying a given process instance as the primary or secondary DPDK instance

	--file-prefix: to allow processes that do not want to co-operate to have different memory regions

A number of example applications are provided that demonstrate how multiple DPDK processes can be used together.
These are more fully documented in the “Multi- process Sample Application” chapter
in the DPDK Sample Application’s User Guide.

35.1. Memory Sharing

The key element in getting a multi-process application working using the DPDK is to ensure that
memory resources are properly shared among the processes making up the multi-process application.
Once there are blocks of shared memory available that can be accessed by multiple processes,
then issues such as inter-process communication (IPC) becomes much simpler.

On application start-up in a primary or standalone process,
the DPDK records to memory-mapped files the details of the memory configuration it is using - hugepages in use,
the virtual addresses they are mapped at, the number of memory channels present, etc.
When a secondary process is started, these files are read and the EAL recreates the same memory configuration
in the secondary process so that all memory zones are shared between processes and all pointers to that memory are valid,
and point to the same objects, in both processes.

Note

Refer to Multi-process Limitations for details of
how Linux kernel Address-Space Layout Randomization (ASLR) can affect memory sharing.

If the primary process was run with --legacy-mem or
--single-file-segments switch, secondary processes must be run with the
same switch specified. Otherwise, memory corruption may occur.

[image: ../_images/multi_process_memory.svg]
Fig. 35.1 Memory Sharing in the DPDK Multi-process Sample Application

The EAL also supports an auto-detection mode (set by EAL --proc-type=auto flag),
whereby an DPDK process is started as a secondary instance if a primary instance is already running.

35.2. Deployment Models

35.2.1. Symmetric/Peer Processes

DPDK multi-process support can be used to create a set of peer processes where each process performs the same workload.
This model is equivalent to having multiple threads each running the same main-loop function,
as is done in most of the supplied DPDK sample applications.
In this model, the first of the processes spawned should be spawned using the --proc-type=primary EAL flag,
while all subsequent instances should be spawned using the --proc-type=secondary flag.

The simple_mp and symmetric_mp sample applications demonstrate this usage model.
They are described in the “Multi-process Sample Application” chapter in the DPDK Sample Application’s User Guide.

35.2.2. Asymmetric/Non-Peer Processes

An alternative deployment model that can be used for multi-process applications
is to have a single primary process instance that acts as a load-balancer or
server distributing received packets among worker or client threads, which are run as secondary processes.
In this case, extensive use of rte_ring objects is made, which are located in shared hugepage memory.

The client_server_mp sample application shows this usage model.
It is described in the “Multi-process Sample Application” chapter in the DPDK Sample Application’s User Guide.

35.2.3. Running Multiple Independent DPDK Applications

In addition to the above scenarios involving multiple DPDK processes working together,
it is possible to run multiple DPDK processes side-by-side,
where those processes are all working independently.
Support for this usage scenario is provided using the --file-prefix parameter to the EAL.

By default, the EAL creates hugepage files on each hugetlbfs filesystem using the rtemap_X filename,
where X is in the range 0 to the maximum number of hugepages -1.
Similarly, it creates shared configuration files, memory mapped in each process, using the /var/run/.rte_config filename,
when run as root (or $HOME/.rte_config when run as a non-root user;
if filesystem and device permissions are set up to allow this).
The rte part of the filenames of each of the above is configurable using the file-prefix parameter.

In addition to specifying the file-prefix parameter,
any DPDK applications that are to be run side-by-side must explicitly limit their memory use.
This is less of a problem on Linux, as by default, applications will not
allocate more memory than they need. However if --legacy-mem is used, DPDK
will attempt to preallocate all memory it can get to, and memory use must be
explicitly limited. This is done by passing the -m flag to each process to
specify how much hugepage memory, in megabytes, each process can use (or passing
--socket-mem to specify how much hugepage memory on each socket each process
can use).

Note

Independent DPDK instances running side-by-side on a single machine cannot share any network ports.
Any network ports being used by one process should be blacklisted in every other process.

35.2.4. Running Multiple Independent Groups of DPDK Applications

In the same way that it is possible to run independent DPDK applications side- by-side on a single system,
this can be trivially extended to multi-process groups of DPDK applications running side-by-side.
In this case, the secondary processes must use the same --file-prefix parameter
as the primary process whose shared memory they are connecting to.

Note

All restrictions and issues with multiple independent DPDK processes running side-by-side
apply in this usage scenario also.

35.3. Multi-process Limitations

There are a number of limitations to what can be done when running DPDK multi-process applications.
Some of these are documented below:

	The multi-process feature requires that the exact same hugepage memory mappings be present in all applications.
This makes secondary process startup process generally unreliable. Disabling
Linux security feature - Address-Space Layout Randomization (ASLR) may
help getting more consistent mappings, but not necessarily more reliable -
if the mappings are wrong, they will be consistently wrong!

Warning

Disabling Address-Space Layout Randomization (ASLR) may have security implications,
so it is recommended that it be disabled only when absolutely necessary,
and only when the implications of this change have been understood.

	All DPDK processes running as a single application and using shared memory must have distinct coremask/corelist arguments.
It is not possible to have a primary and secondary instance, or two secondary instances,
using any of the same logical cores.
Attempting to do so can cause corruption of memory pool caches, among other issues.

	The delivery of interrupts, such as Ethernet* device link status interrupts, do not work in secondary processes.
All interrupts are triggered inside the primary process only.
Any application needing interrupt notification in multiple processes should provide its own mechanism
to transfer the interrupt information from the primary process to any secondary process that needs the information.

	The use of function pointers between multiple processes running based of different compiled binaries is not supported,
since the location of a given function in one process may be different to its location in a second.
This prevents the librte_hash library from behaving properly as in a multi-process instance,
since it uses a pointer to the hash function internally.

To work around this issue, it is recommended that multi-process applications perform the hash calculations by directly calling
the hashing function from the code and then using the rte_hash_add_with_hash()/rte_hash_lookup_with_hash() functions
instead of the functions which do the hashing internally, such as rte_hash_add()/rte_hash_lookup().

	Depending upon the hardware in use, and the number of DPDK processes used,
it may not be possible to have HPET timers available in each DPDK instance.
The minimum number of HPET comparators available to Linux* userspace can be just a single comparator,
which means that only the first, primary DPDK process instance can open and mmap /dev/hpet.
If the number of required DPDK processes exceeds that of the number of available HPET comparators,
the TSC (which is the default timer in this release) must be used as a time source across all processes instead of the HPET.

35.4. Communication between multiple processes

While there are multiple ways one can approach inter-process communication in
DPDK, there is also a native DPDK IPC API available. It is not intended to be
performance-critical, but rather is intended to be a convenient, general
purpose API to exchange short messages between primary and secondary processes.

DPDK IPC API supports the following communication modes:

	Unicast message from secondary to primary

	Broadcast message from primary to all secondaries

In other words, any IPC message sent in a primary process will be delivered to
all secondaries, while any IPC message sent in a secondary process will only be
delivered to primary process. Unicast from primary to secondary or from
secondary to secondary is not supported.

There are three types of communications that are available within DPDK IPC API:

	Message

	Synchronous request

	Asynchronous request

A “message” type does not expect a response and is meant to be a best-effort
notification mechanism, while the two types of “requests” are meant to be a two
way communication mechanism, with the requester expecting a response from the
other side.

Both messages and requests will trigger a named callback on the receiver side.
These callbacks will be called from within a dedicated IPC or interrupt thread
that are not part of EAL lcore threads.

35.4.1. Registering for incoming messages

Before any messages can be received, a callback will need to be registered.
This is accomplished by calling rte_mp_action_register() function. This
function accepts a unique callback name, and a function pointer to a callback
that will be called when a message or a request matching this callback name
arrives.

If the application is no longer willing to receive messages intended for a
specific callback function, rte_mp_action_unregister() function can be
called to ensure that callback will not be triggered again.

35.4.2. Sending messages

To send a message, a rte_mp_msg descriptor must be populated first. The list
of fields to be populated are as follows:

	name - message name. This name must match receivers’ callback name.

	param - message data (up to 256 bytes).

	len_param - length of message data.

	fds - file descriptors to pass long with the data (up to 8 fd’s).

	num_fds - number of file descriptors to send.

Once the structure is populated, calling rte_mp_sendmsg() will send the
descriptor either to all secondary processes (if sent from primary process), or
to primary process (if sent from secondary process). The function will return
a value indicating whether sending the message succeeded or not.

35.4.3. Sending requests

Sending requests involves waiting for the other side to reply, so they can block
for a relatively long time.

To send a request, a message descriptor rte_mp_msg must be populated.
Additionally, a timespec value must be specified as a timeout, after which
IPC will stop waiting and return.

For synchronous requests, the rte_mp_reply descriptor must also be created.
This is where the responses will be stored.
The list of fields that will be populated by IPC are as follows:

	nb_sent - number indicating how many requests were sent (i.e. how many
peer processes were active at the time of the request).

	nb_received - number indicating how many responses were received (i.e. of
those peer processes that were active at the time of request, how many have
replied)

	msgs - pointer to where all of the responses are stored. The order in
which responses appear is undefined. When doing synchronous requests, this
memory must be freed by the requestor after request completes!

For asynchronous requests, a function pointer to the callback function must be
provided instead. This callback will be called when the request either has timed
out, or will have received a response to all the messages that were sent.

Warning

When an asynchronous request times out, the callback will be called not by
a dedicated IPC thread, but rather from EAL interrupt thread. Because of
this, it may not be possible for DPDK to trigger another interrupt-based
event (such as an alarm) while handling asynchronous IPC callback.

When the callback is called, the original request descriptor will be provided
(so that it would be possible to determine for which sent message this is a
callback to), along with a response descriptor like the one described above.
When doing asynchronous requests, there is no need to free the resulting
rte_mp_reply descriptor.

35.4.4. Receiving and responding to messages

To receive a message, a name callback must be registered using the
rte_mp_action_register() function. The name of the callback must match the
name field in sender’s rte_mp_msg message descriptor in order for this
message to be delivered and for the callback to be trigger.

The callback’s definition is rte_mp_t, and consists of the incoming message
pointer msg, and an opaque pointer peer. Contents of msg will be
identical to ones sent by the sender.

If a response is required, a new rte_mp_msg message descriptor must be
constructed and sent via rte_mp_reply() function, along with peer
pointer. The resulting response will then be delivered to the correct requestor.

Warning

Simply returning a value when processing a request callback will not send a
response to the request - it must always be explicitly sent even in case
of errors. Implementation of error signalling rests with the application,
there is no built-in way to indicate success or error for a request. Failing
to do so will cause the requestor to time out while waiting on a response.

35.4.5. Misc considerations

Due to the underlying IPC implementation being single-threaded, recursive
requests (i.e. sending a request while responding to another request) is not
supported. However, since sending messages (not requests) does not involve an
IPC thread, sending messages while processing another message or request is
supported.

Since the memory sybsystem uses IPC internally, memory allocations and IPC must
not be mixed: it is not safe to use IPC inside a memory-related callback, nor is
it safe to allocate/free memory inside IPC callbacks. Attempting to do so may
lead to a deadlock.

Asynchronous request callbacks may be triggered either from IPC thread or from
interrupt thread, depending on whether the request has timed out. It is
therefore suggested to avoid waiting for interrupt-based events (such as alarms)
inside asynchronous IPC request callbacks. This limitation does not apply to
messages or synchronous requests.

If callbacks spend a long time processing the incoming requests, the requestor
might time out, so setting the right timeout value on the requestor side is
imperative.

If some of the messages timed out, nb_sent and nb_received fields in the
rte_mp_reply descriptor will not have matching values. This is not treated
as error by the IPC API, and it is expected that the user will be responsible
for deciding how to handle such cases.

If a callback has been registered, IPC will assume that it is safe to call it.
This is important when registering callbacks during DPDK initialization.
During initialization, IPC will consider the receiving side as non-existing if
the callback has not been registered yet. However, once the callback has been
registered, it is expected that IPC should be safe to trigger it, even if the
rest of the DPDK initialization hasn’t finished yet.

36. Kernel NIC Interface

The DPDK Kernel NIC Interface (KNI) allows userspace applications access to the Linux* control plane.

The benefits of using the DPDK KNI are:

	Faster than existing Linux TUN/TAP interfaces
(by eliminating system calls and copy_to_user()/copy_from_user() operations.

	Allows management of DPDK ports using standard Linux net tools such as ethtool, ifconfig and tcpdump.

	Allows an interface with the kernel network stack.

The components of an application using the DPDK Kernel NIC Interface are shown in Fig. 36.1.

[image: ../_images/kernel_nic_intf.png]

Fig. 36.1 Components of a DPDK KNI Application

36.1. The DPDK KNI Kernel Module

The KNI kernel loadable module rte_kni provides the kernel interface
for DPDK applications.

When the rte_kni module is loaded, it will create a device /dev/kni
that is used by the DPDK KNI API functions to control and communicate with
the kernel module.

The rte_kni kernel module contains several optional parameters which
can be specified when the module is loaded to control its behavior:

modinfo rte_kni.ko
<snip>
parm: lo_mode: KNI loopback mode (default=lo_mode_none):
 lo_mode_none Kernel loopback disabled
 lo_mode_fifo Enable kernel loopback with fifo
 lo_mode_fifo_skb Enable kernel loopback with fifo and skb buffer
 (charp)
parm: kthread_mode: Kernel thread mode (default=single):
 single Single kernel thread mode enabled.
 multiple Multiple kernel thread mode enabled.
 (charp)
parm: carrier: Default carrier state for KNI interface (default=off):
 off Interfaces will be created with carrier state set to off.
 on Interfaces will be created with carrier state set to on.
 (charp)

Loading the rte_kni kernel module without any optional parameters is
the typical way a DPDK application gets packets into and out of the kernel
network stack. Without any parameters, only one kernel thread is created
for all KNI devices for packet receiving in kernel side, loopback mode is
disabled, and the default carrier state of KNI interfaces is set to off.

insmod kmod/rte_kni.ko

36.1.1. Loopback Mode

For testing, the rte_kni kernel module can be loaded in loopback mode
by specifying the lo_mode parameter:

insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo

The lo_mode_fifo loopback option will loop back ring enqueue/dequeue
operations in kernel space.

insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

The lo_mode_fifo_skb loopback option will loop back ring enqueue/dequeue
operations and sk buffer copies in kernel space.

If the lo_mode parameter is not specified, loopback mode is disabled.

36.1.2. Kernel Thread Mode

To provide flexibility of performance, the rte_kni KNI kernel module
can be loaded with the kthread_mode parameter. The rte_kni kernel
module supports two options: “single kernel thread” mode and “multiple
kernel thread” mode.

Single kernel thread mode is enabled as follows:

insmod kmod/rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI interfaces to
receive data on the kernel side. By default, this kernel thread is not
bound to any particular core, but the user can set the core affinity for
this kernel thread by setting the core_id and force_bind parameters
in struct rte_kni_conf when the first KNI interface is created:

For optimum performance, the kernel thread should be bound to a core in
on the same socket as the DPDK lcores used in the application.

The KNI kernel module can also be configured to start a separate kernel
thread for each KNI interface created by the DPDK application. Multiple
kernel thread mode is enabled as follows:

insmod kmod/rte_kni.ko kthread_mode=multiple

This mode will create a separate kernel thread for each KNI interface to
receive data on the kernel side. The core affinity of each kni_thread
kernel thread can be specified by setting the core_id and force_bind
parameters in struct rte_kni_conf when each KNI interface is created.

Multiple kernel thread mode can provide scalable higher performance if
sufficient unused cores are available on the host system.

If the kthread_mode parameter is not specified, the “single kernel
thread” mode is used.

36.1.3. Default Carrier State

The default carrier state of KNI interfaces created by the rte_kni
kernel module is controlled via the carrier option when the module
is loaded.

If carrier=off is specified, the kernel module will leave the carrier
state of the interface down when the interface is management enabled.
The DPDK application can set the carrier state of the KNI interface using the
rte_kni_update_link() function. This is useful for DPDK applications
which require that the carrier state of the KNI interface reflect the
actual link state of the corresponding physical NIC port.

If carrier=on is specified, the kernel module will automatically set
the carrier state of the interface to up when the interface is management
enabled. This is useful for DPDK applications which use the KNI interface as
a purely virtual interface that does not correspond to any physical hardware
and do not wish to explicitly set the carrier state of the interface with
rte_kni_update_link(). It is also useful for testing in loopback mode
where the NIC port may not be physically connected to anything.

To set the default carrier state to on:

insmod kmod/rte_kni.ko carrier=on

To set the default carrier state to off:

insmod kmod/rte_kni.ko carrier=off

If the carrier parameter is not specified, the default carrier state
of KNI interfaces will be set to off.

36.2. KNI Creation and Deletion

Before any KNI interfaces can be created, the rte_kni kernel module must
be loaded into the kernel and configured withe rte_kni_init() function.

The KNI interfaces are created by a DPDK application dynamically via the
rte_kni_alloc() function.

The struct rte_kni_conf structure contains fields which allow the
user to specify the interface name, set the MTU size, set an explicit or
random MAC address and control the affinity of the kernel Rx thread(s)
(both single and multi-threaded modes).
By default the KNI sample example gets the MTU from the matching device,
and in case of KNI PMD it is derived from mbuf buffer length.

The struct rte_kni_ops structure contains pointers to functions to
handle requests from the rte_kni kernel module. These functions
allow DPDK applications to perform actions when the KNI interfaces are
manipulated by control commands or functions external to the application.

For example, the DPDK application may wish to enabled/disable a physical
NIC port when a user enabled/disables a KNI interface with ip link set
[up|down] dev <ifaceX>. The DPDK application can register a callback for
config_network_if which will be called when the interface management
state changes.

There are currently four callbacks for which the user can register
application functions:

config_network_if:

Called when the management state of the KNI interface changes.
For example, when the user runs ip link set [up|down] dev <ifaceX>.

change_mtu:

Called when the user changes the MTU size of the KNI
interface. For example, when the user runs ip link set mtu <size>
dev <ifaceX>.

config_mac_address:

Called when the user changes the MAC address of the KNI interface.
For example, when the user runs ip link set address <MAC>
dev <ifaceX>. If the user sets this callback function to NULL,
but sets the port_id field to a value other than -1, a default
callback handler in the rte_kni library kni_config_mac_address()
will be called which calls rte_eth_dev_default_mac_addr_set()
on the specified port_id.

config_promiscusity:

Called when the user changes the promiscuity state of the KNI
interface. For example, when the user runs ip link set promisc
[on|off] dev <ifaceX>. If the user sets this callback function to
NULL, but sets the port_id field to a value other than -1, a default
callback handler in the rte_kni library kni_config_promiscusity()
will be called which calls rte_eth_promiscuous_<enable|disable>()
on the specified port_id.

config_allmulticast:

Called when the user changes the allmulticast state of the KNI interface.
For example, when the user runs ifconfig <ifaceX> [-]allmulti. If the
user sets this callback function to NULL, but sets the port_id field to
a value other than -1, a default callback handler in the rte_kni library
kni_config_allmulticast() will be called which calls
rte_eth_allmulticast_<enable|disable>() on the specified port_id.

In order to run these callbacks, the application must periodically call
the rte_kni_handle_request() function. Any user callback function
registered will be called directly from rte_kni_handle_request() so
care must be taken to prevent deadlock and to not block any DPDK fastpath
tasks. Typically DPDK applications which use these callbacks will need
to create a separate thread or secondary process to periodically call
rte_kni_handle_request().

The KNI interfaces can be deleted by a DPDK application with
rte_kni_release(). All KNI interfaces not explicitly deleted will be
deleted when the /dev/kni device is closed, either explicitly with
rte_kni_close() or when the DPDK application is closed.

36.3. DPDK mbuf Flow

To minimize the amount of DPDK code running in kernel space, the mbuf mempool is managed in userspace only.
The kernel module will be aware of mbufs,
but all mbuf allocation and free operations will be handled by the DPDK application only.

Fig. 36.2 shows a typical scenario with packets sent in both directions.

[image: ../_images/pkt_flow_kni.png]

Fig. 36.2 Packet Flow via mbufs in the DPDK KNI

36.4. Use Case: Ingress

On the DPDK RX side, the mbuf is allocated by the PMD in the RX thread context.
This thread will enqueue the mbuf in the rx_q FIFO,
and the next pointers in mbuf-chain will convert to physical address.
The KNI thread will poll all KNI active devices for the rx_q.
If an mbuf is dequeued, it will be converted to a sk_buff and sent to the net stack via netif_rx().
The dequeued mbuf must be freed, so the same pointer is sent back in the free_q FIFO,
and next pointers must convert back to virtual address if exists before put in the free_q FIFO.

The RX thread, in the same main loop, polls this FIFO and frees the mbuf after dequeuing it.
The address conversion of the next pointer is to prevent the chained mbuf
in different hugepage segments from causing kernel crash.

36.5. Use Case: Egress

For packet egress the DPDK application must first enqueue several mbufs to create an mbuf cache on the kernel side.

The packet is received from the Linux net stack, by calling the kni_net_tx() callback.
The mbuf is dequeued (without waiting due the cache) and filled with data from sk_buff.
The sk_buff is then freed and the mbuf sent in the tx_q FIFO.

The DPDK TX thread dequeues the mbuf and sends it to the PMD via rte_eth_tx_burst().
It then puts the mbuf back in the cache.

36.6. IOVA = VA: Support

KNI operates in IOVA_VA scheme when

	LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0) and

	EAL option iova-mode=va is passed or bus IOVA scheme in the DPDK is selected
as RTE_IOVA_VA.

Due to IOVA to KVA address translations, based on the KNI use case there
can be a performance impact. For mitigation, forcing IOVA to PA via EAL
“–iova-mode=pa” option can be used, IOVA_DC bus iommu scheme can also
result in IOVA as PA.

36.7. Ethtool

Ethtool is a Linux-specific tool with corresponding support in the kernel.
The current version of kni provides minimal ethtool functionality
including querying version and link state. It does not support link
control, statistics, or dumping device registers.

37. Thread Safety of DPDK Functions

The DPDK is comprised of several libraries.
Some of the functions in these libraries can be safely called from multiple threads simultaneously, while others cannot.
This section allows the developer to take these issues into account when building their own application.

The run-time environment of the DPDK is typically a single thread per logical core.
In some cases, it is not only multi-threaded, but multi-process.
Typically, it is best to avoid sharing data structures between threads and/or processes where possible.
Where this is not possible, then the execution blocks must access the data in a thread- safe manner.
Mechanisms such as atomics or locking can be used that will allow execution blocks to operate serially.
However, this can have an effect on the performance of the application.

37.1. Fast-Path APIs

Applications operating in the data plane are performance sensitive but
certain functions within those libraries may not be safe to call from multiple threads simultaneously.
The hash, LPM and mempool libraries and RX/TX in the PMD are examples of this.

The hash and LPM libraries are, by design, thread unsafe in order to maintain performance.
However, if required the developer can add layers on top of these libraries to provide thread safety.
Locking is not needed in all situations, and in both the hash and LPM libraries,
lookups of values can be performed in parallel in multiple threads.
Adding, removing or modifying values, however,
cannot be done in multiple threads without using locking when a single hash or LPM table is accessed.
Another alternative to locking would be to create multiple instances of these tables allowing each thread its own copy.

The RX and TX of the PMD are the most critical aspects of a DPDK application
and it is recommended that no locking be used as it will impact performance.
Note, however, that these functions can safely be used from multiple threads
when each thread is performing I/O on a different NIC queue.
If multiple threads are to use the same hardware queue on the same NIC port,
then locking, or some other form of mutual exclusion, is necessary.

The ring library is based on a lockless ring-buffer algorithm that maintains its original design for thread safety.
Moreover, it provides high performance for either multi- or single-consumer/producer enqueue/dequeue operations.
The mempool library is based on the DPDK lockless ring library and therefore is also multi-thread safe.

37.2. Performance Insensitive API

Outside of the performance sensitive areas described in Section 25.1,
the DPDK provides a thread-safe API for most other libraries.
For example, malloc and memzone functions are safe for use in multi-threaded and multi-process environments.

The setup and configuration of the PMD is not performance sensitive, but is not thread safe either.
It is possible that the multiple read/writes during PMD setup and configuration could be corrupted in a multi-thread environment.
Since this is not performance sensitive, the developer can choose to add their own layer to provide thread-safe setup and configuration.
It is expected that, in most applications, the initial configuration of the network ports would be done by a single thread at startup.

37.3. Library Initialization

It is recommended that DPDK libraries are initialized in the main thread at application startup
rather than subsequently in the forwarding threads.
However, the DPDK performs checks to ensure that libraries are only initialized once.
If initialization is attempted more than once, an error is returned.

In the multi-process case, the configuration information of shared memory will only be initialized by the master process.
Thereafter, both master and secondary processes can allocate/release any objects of memory that finally rely on rte_malloc or memzones.

37.4. Interrupt Thread

The DPDK works almost entirely in Linux user space in polling mode.
For certain infrequent operations, such as receiving a PMD link status change notification,
callbacks may be called in an additional thread outside the main DPDK processing threads.
These function callbacks should avoid manipulating DPDK objects that are also managed by the normal DPDK threads,
and if they need to do so,
it is up to the application to provide the appropriate locking or mutual exclusion restrictions around those objects.

38. Event Device Library

The DPDK Event device library is an abstraction that provides the application
with features to schedule events. This is achieved using the PMD architecture
similar to the ethdev or cryptodev APIs, which may already be familiar to the
reader.

The eventdev framework introduces the event driven programming model. In a
polling model, lcores poll ethdev ports and associated Rx queues directly
to look for a packet. By contrast in an event driven model, lcores call the
scheduler that selects packets for them based on programmer-specified criteria.
The Eventdev library adds support for an event driven programming model, which
offers applications automatic multicore scaling, dynamic load balancing,
pipelining, packet ingress order maintenance and synchronization services to
simplify application packet processing.

By introducing an event driven programming model, DPDK can support both polling
and event driven programming models for packet processing, and applications are
free to choose whatever model (or combination of the two) best suits their
needs.

Step-by-step instructions of the eventdev design is available in the API
Walk-through section later in this document.

38.1. Event struct

The eventdev API represents each event with a generic struct, which contains a
payload and metadata required for scheduling by an eventdev. The
rte_event struct is a 16 byte C structure, defined in
libs/librte_eventdev/rte_eventdev.h.

38.1.1. Event Metadata

The rte_event structure contains the following metadata fields, which the
application fills in to have the event scheduled as required:

	flow_id - The targeted flow identifier for the enq/deq operation.

	event_type - The source of this event, e.g. RTE_EVENT_TYPE_ETHDEV or CPU.

	sub_event_type - Distinguishes events inside the application, that have
the same event_type (see above)

	op - This field takes one of the RTE_EVENT_OP_* values, and tells the
eventdev about the status of the event - valid values are NEW, FORWARD or
RELEASE.

	sched_type - Represents the type of scheduling that should be performed
on this event, valid values are the RTE_SCHED_TYPE_ORDERED, ATOMIC and
PARALLEL.

	queue_id - The identifier for the event queue that the event is sent to.

	priority - The priority of this event, see RTE_EVENT_DEV_PRIORITY.

38.1.2. Event Payload

The rte_event struct contains a union for payload, allowing flexibility in what
the actual event being scheduled is. The payload is a union of the following:

	uint64_t u64

	void *event_ptr

	struct rte_mbuf *mbuf

These three items in a union occupy the same 64 bits at the end of the rte_event
structure. The application can utilize the 64 bits directly by accessing the
u64 variable, while the event_ptr and mbuf are provided as convenience
variables. For example the mbuf pointer in the union can used to schedule a
DPDK packet.

38.1.3. Queues

An event queue is a queue containing events that are scheduled by the event
device. An event queue contains events of different flows associated with
scheduling types, such as atomic, ordered, or parallel.

38.1.3.1. Queue All Types Capable

If RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES capability bit is set in the event device,
then events of any type may be sent to any queue. Otherwise, the queues only
support events of the type that it was created with.

38.1.3.2. Queue All Types Incapable

In this case, each stage has a specified scheduling type. The application
configures each queue for a specific type of scheduling, and just enqueues all
events to the eventdev. An example of a PMD of this type is the eventdev
software PMD.

The Eventdev API supports the following scheduling types per queue:

	Atomic

	Ordered

	Parallel

Atomic, Ordered and Parallel are load-balanced scheduling types: the output
of the queue can be spread out over multiple CPU cores.

Atomic scheduling on a queue ensures that a single flow is not present on two
different CPU cores at the same time. Ordered allows sending all flows to any
core, but the scheduler must ensure that on egress the packets are returned to
ingress order on downstream queue enqueue. Parallel allows sending all flows
to all CPU cores, without any re-ordering guarantees.

38.1.3.3. Single Link Flag

There is a SINGLE_LINK flag which allows an application to indicate that only
one port will be connected to a queue. Queues configured with the single-link
flag follow a FIFO like structure, maintaining ordering but it is only capable
of being linked to a single port (see below for port and queue linking details).

38.1.4. Ports

Ports are the points of contact between worker cores and the eventdev. The
general use-case will see one CPU core using one port to enqueue and dequeue
events from an eventdev. Ports are linked to queues in order to retrieve events
from those queues (more details in Linking Queues and Ports below).

38.2. API Walk-through

This section will introduce the reader to the eventdev API, showing how to
create and configure an eventdev and use it for a two-stage atomic pipeline
with one core each for RX and TX. RX and TX cores are shown here for
illustration, refer to Eventdev Adapter documentation for further details.
The diagram below shows the final state of the application after this
walk-through:

[image: ../_images/eventdev_usage.svg]
Fig. 38.1 Sample eventdev usage, with RX, two atomic stages and a single-link to TX.

A high level overview of the setup steps are:

	rte_event_dev_configure()

	rte_event_queue_setup()

	rte_event_port_setup()

	rte_event_port_link()

	rte_event_dev_start()

38.2.1. Init and Config

The eventdev library uses vdev options to add devices to the DPDK application.
The --vdev EAL option allows adding eventdev instances to your DPDK
application, using the name of the eventdev PMD as an argument.

For example, to create an instance of the software eventdev scheduler, the
following vdev arguments should be provided to the application EAL command line:

./dpdk_application --vdev="event_sw0"

In the following code, we configure eventdev instance with 3 queues
and 6 ports as follows. The 3 queues consist of 2 Atomic and 1 Single-Link,
while the 6 ports consist of 4 workers, 1 RX and 1 TX.

const struct rte_event_dev_config config = {
 .nb_event_queues = 3,
 .nb_event_ports = 6,
 .nb_events_limit = 4096,
 .nb_event_queue_flows = 1024,
 .nb_event_port_dequeue_depth = 128,
 .nb_event_port_enqueue_depth = 128,
};
int err = rte_event_dev_configure(dev_id, &config);

The remainder of this walk-through assumes that dev_id is 0.

38.2.2. Setting up Queues

Once the eventdev itself is configured, the next step is to configure queues.
This is done by setting the appropriate values in a queue_conf structure, and
calling the setup function. Repeat this step for each queue, starting from
0 and ending at nb_event_queues - 1 from the event_dev config above.

struct rte_event_queue_conf atomic_conf = {
 .schedule_type = RTE_SCHED_TYPE_ATOMIC,
 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
 .nb_atomic_flows = 1024,
 .nb_atomic_order_sequences = 1024,
};
struct rte_event_queue_conf single_link_conf = {
 .event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK,
};
int dev_id = 0;
int atomic_q_1 = 0;
int atomic_q_2 = 1;
int single_link_q = 2;
int err = rte_event_queue_setup(dev_id, atomic_q_1, &atomic_conf);
int err = rte_event_queue_setup(dev_id, atomic_q_2, &atomic_conf);
int err = rte_event_queue_setup(dev_id, single_link_q, &single_link_conf);

As shown above, queue IDs are as follows:

	id 0, atomic queue #1

	id 1, atomic queue #2

	id 2, single-link queue

These queues are used for the remainder of this walk-through.

38.2.3. Setting up Ports

Once queues are set up successfully, create the ports as required.

struct rte_event_port_conf rx_conf = {
 .dequeue_depth = 128,
 .enqueue_depth = 128,
 .new_event_threshold = 1024,
};
struct rte_event_port_conf worker_conf = {
 .dequeue_depth = 16,
 .enqueue_depth = 64,
 .new_event_threshold = 4096,
};
struct rte_event_port_conf tx_conf = {
 .dequeue_depth = 128,
 .enqueue_depth = 128,
 .new_event_threshold = 4096,
};
int dev_id = 0;
int rx_port_id = 0;
int err = rte_event_port_setup(dev_id, rx_port_id, &rx_conf);

for(int worker_port_id = 1; worker_port_id <= 4; worker_port_id++) {
 int err = rte_event_port_setup(dev_id, worker_port_id, &worker_conf);
}

int tx_port_id = 5;
int err = rte_event_port_setup(dev_id, tx_port_id, &tx_conf);

As shown above:

	port 0: RX core

	ports 1,2,3,4: Workers

	port 5: TX core

These ports are used for the remainder of this walk-through.

38.2.4. Linking Queues and Ports

The final step is to “wire up” the ports to the queues. After this, the
eventdev is capable of scheduling events, and when cores request work to do,
the correct events are provided to that core. Note that the RX core takes input
from e.g.: a NIC so it is not linked to any eventdev queues.

Linking all workers to atomic queues, and the TX core to the single-link queue
can be achieved like this:

uint8_t rx_port_id = 0;
uint8_t tx_port_id = 5;
uint8_t atomic_qs[] = {0, 1};
uint8_t single_link_q = 2;
uint8_t priority = RTE_EVENT_DEV_PRIORITY_NORMAL;

for(int worker_port_id = 1; worker_port_id <= 4; worker_port_id++) {
 int links_made = rte_event_port_link(dev_id, worker_port_id, atomic_qs, NULL, 2);
}
int links_made = rte_event_port_link(dev_id, tx_port_id, &single_link_q, &priority, 1);

38.2.5. Starting the EventDev

A single function call tells the eventdev instance to start processing
events. Note that all queues must be linked to for the instance to start, as
if any queue is not linked to, enqueuing to that queue will cause the
application to backpressure and eventually stall due to no space in the
eventdev.

int err = rte_event_dev_start(dev_id);

Note

EventDev needs to be started before starting the event producers such
as event_eth_rx_adapter, event_timer_adapter and event_crypto_adapter.

38.2.6. Ingress of New Events

Now that the eventdev is set up, and ready to receive events, the RX core must
enqueue some events into the system for it to schedule. The events to be
scheduled are ordinary DPDK packets, received from an eth_rx_burst() as normal.
The following code shows how those packets can be enqueued into the eventdev:

const uint16_t nb_rx = rte_eth_rx_burst(eth_port, 0, mbufs, BATCH_SIZE);

for (i = 0; i < nb_rx; i++) {
 ev[i].flow_id = mbufs[i]->hash.rss;
 ev[i].op = RTE_EVENT_OP_NEW;
 ev[i].sched_type = RTE_SCHED_TYPE_ATOMIC;
 ev[i].queue_id = atomic_q_1;
 ev[i].event_type = RTE_EVENT_TYPE_ETHDEV;
 ev[i].sub_event_type = 0;
 ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
 ev[i].mbuf = mbufs[i];
}

const int nb_tx = rte_event_enqueue_burst(dev_id, rx_port_id, ev, nb_rx);
if (nb_tx != nb_rx) {
 for(i = nb_tx; i < nb_rx; i++)
 rte_pktmbuf_free(mbufs[i]);
}

38.2.7. Forwarding of Events

Now that the RX core has injected events, there is work to be done by the
workers. Note that each worker will dequeue as many events as it can in a burst,
process each one individually, and then burst the packets back into the
eventdev.

The worker can lookup the events source from event.queue_id, which should
indicate to the worker what workload needs to be performed on the event.
Once done, the worker can update the event.queue_id to a new value, to send
the event to the next stage in the pipeline.

int timeout = 0;
struct rte_event events[BATCH_SIZE];
uint16_t nb_rx = rte_event_dequeue_burst(dev_id, worker_port_id, events, BATCH_SIZE, timeout);

for (i = 0; i < nb_rx; i++) {
 /* process mbuf using events[i].queue_id as pipeline stage */
 struct rte_mbuf *mbuf = events[i].mbuf;
 /* Send event to next stage in pipeline */
 events[i].queue_id++;
}

uint16_t nb_tx = rte_event_enqueue_burst(dev_id, worker_port_id, events, nb_rx);

38.2.8. Egress of Events

Finally, when the packet is ready for egress or needs to be dropped, we need
to inform the eventdev that the packet is no longer being handled by the
application. This can be done by calling dequeue() or dequeue_burst(), which
indicates that the previous burst of packets is no longer in use by the
application.

An event driven worker thread has following typical workflow on fastpath:

while (1) {
 rte_event_dequeue_burst(...);
 (event processing)
 rte_event_enqueue_burst(...);
}

38.3. Summary

The eventdev library allows an application to easily schedule events as it
requires, either using a run-to-completion or pipeline processing model. The
queues and ports abstract the logical functionality of an eventdev, providing
the application with a generic method to schedule events. With the flexible
PMD infrastructure applications benefit of improvements in existing eventdevs
and additions of new ones without modification.

39. Event Ethernet Rx Adapter Library

The DPDK Eventdev API allows the application to use an event driven programming
model for packet processing. In this model, the application polls an event
device port for receiving events that reference packets instead of polling Rx
queues of ethdev ports. Packet transfer between ethdev and the event device can
be supported in hardware or require a software thread to receive packets from
the ethdev port using ethdev poll mode APIs and enqueue these as events to the
event device using the eventdev API. Both transfer mechanisms may be present on
the same platform depending on the particular combination of the ethdev and
the event device. For SW based packet transfer, if the mbuf does not have a
timestamp set, the adapter adds a timestamp to the mbuf using
rte_get_tsc_cycles(), this provides a more accurate timestamp as compared to
if the application were to set the timestamp since it avoids event device
schedule latency.

The Event Ethernet Rx Adapter library is intended for the application code to
configure both transfer mechanisms using a common API. A capability API allows
the eventdev PMD to advertise features supported for a given ethdev and allows
the application to perform configuration as per supported features.

39.1. API Walk-through

This section will introduce the reader to the adapter API. The
application has to first instantiate an adapter which is associated with
a single eventdev, next the adapter instance is configured with Rx queues
that are either polled by a SW thread or linked using hardware support. Finally
the adapter is started.

For SW based packet transfers from ethdev to eventdev, the adapter uses a
DPDK service function and the application is also required to assign a core to
the service function.

39.1.1. Creating an Adapter Instance

An adapter instance is created using rte_event_eth_rx_adapter_create(). This
function is passed the event device to be associated with the adapter and port
configuration for the adapter to setup an event port if the adapter needs to use
a service function.

int err;
uint8_t dev_id;
struct rte_event_dev_info dev_info;
struct rte_event_port_conf rx_p_conf;

err = rte_event_dev_info_get(id, &dev_info);

rx_p_conf.new_event_threshold = dev_info.max_num_events;
rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
err = rte_event_eth_rx_adapter_create(id, dev_id, &rx_p_conf);

If the application desires to have finer control of eventdev port allocation
and setup, it can use the rte_event_eth_rx_adapter_create_ext() function.
The rte_event_eth_rx_adapter_create_ext() function is passed a callback
function. The callback function is invoked if the adapter needs to use a
service function and needs to create an event port for it. The callback is
expected to fill the struct rte_event_eth_rx_adapter_conf structure
passed to it.

39.1.2. Adding Rx Queues to the Adapter Instance

Ethdev Rx queues are added to the instance using the
rte_event_eth_rx_adapter_queue_add() function. Configuration for the Rx
queue is passed in using a struct rte_event_eth_rx_adapter_queue_conf
parameter. Event information for packets from this Rx queue is encoded in the
ev field of struct rte_event_eth_rx_adapter_queue_conf. The
servicing_weight member of the struct rte_event_eth_rx_adapter_queue_conf
is the relative polling frequency of the Rx queue and is applicable when the
adapter uses a service core function.

ev.queue_id = 0;
ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
ev.priority = 0;

queue_config.rx_queue_flags = 0;
queue_config.ev = ev;
queue_config.servicing_weight = 1;

err = rte_event_eth_rx_adapter_queue_add(id,
 eth_dev_id,
 0, &queue_config);

39.1.3. Querying Adapter Capabilities

The rte_event_eth_rx_adapter_caps_get() function allows
the application to query the adapter capabilities for an eventdev and ethdev
combination. For e.g, if the RTE_EVENT_ETH_RX_ADAPTER_CAP_OVERRIDE_FLOW_ID
is set, the application can override the adapter generated flow ID in the event
using rx_queue_flags field in struct rte_event_eth_rx_adapter_queue_conf
which is passed as a parameter to the rte_event_eth_rx_adapter_queue_add()
function.

err = rte_event_eth_rx_adapter_caps_get(dev_id, eth_dev_id, &cap);

queue_config.rx_queue_flags = 0;
if (cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_OVERRIDE_FLOW_ID) {
 ev.flow_id = 1;
 queue_config.rx_queue_flags =
 RTE_EVENT_ETH_RX_ADAPTER_QUEUE_FLOW_ID_VALID;
}

39.1.4. Configuring the Service Function

If the adapter uses a service function, the application is required to assign
a service core to the service function as show below.

uint32_t service_id;

if (rte_event_eth_rx_adapter_service_id_get(0, &service_id) == 0)
 rte_service_map_lcore_set(service_id, RX_CORE_ID);

39.1.5. Starting the Adapter Instance

The application calls rte_event_eth_rx_adapter_start() to start the adapter.
This function calls the start callbacks of the eventdev PMDs for hardware based
eventdev-ethdev connections and rte_service_run_state_set() to enable the
service function if one exists.

Note

The eventdev to which the event_eth_rx_adapter is connected needs to
be started before calling rte_event_eth_rx_adapter_start().

39.1.6. Getting Adapter Statistics

The rte_event_eth_rx_adapter_stats_get() function reports counters defined
in struct rte_event_eth_rx_adapter_stats. The received packet and
enqueued event counts are a sum of the counts from the eventdev PMD callbacks
if the callback is supported, and the counts maintained by the service function,
if one exists. The service function also maintains a count of cycles for which
it was not able to enqueue to the event device.

39.1.7. Interrupt Based Rx Queues

The service core function is typically set up to poll ethernet Rx queues for
packets. Certain queues may have low packet rates and it would be more
efficient to enable the Rx queue interrupt and read packets after receiving
the interrupt.

The servicing_weight member of struct rte_event_eth_rx_adapter_queue_conf
is applicable when the adapter uses a service core function. The application
has to enable Rx queue interrupts when configuring the ethernet device
using the rte_eth_dev_configure() function and then use a servicing_weight
of zero when adding the Rx queue to the adapter.

The adapter creates a thread blocked on the interrupt, on an interrupt this
thread enqueues the port id and the queue id to a ring buffer. The adapter
service function dequeues the port id and queue id from the ring buffer,
invokes the rte_eth_rx_burst() to receive packets on the queue and
converts the received packets to events in the same manner as packets
received on a polled Rx queue. The interrupt thread is affinitized to the same
CPUs as the lcores of the Rx adapter service function, if the Rx adapter
service function has not been mapped to any lcores, the interrupt thread
is mapped to the master lcore.

39.1.8. Rx Callback for SW Rx Adapter

For SW based packet transfers, i.e., when the
RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT is not set in the adapter’s
capabilities flags for a particular ethernet device, the service function
temporarily enqueues mbufs to an event buffer before batch enqueuing these
to the event device. If the buffer fills up, the service function stops
dequeuing packets from the ethernet device. The application may want to
monitor the buffer fill level and instruct the service function to selectively
enqueue packets to the event device. The application may also use some other
criteria to decide which packets should enter the event device even when
the event buffer fill level is low. The
rte_event_eth_rx_adapter_cb_register() function allow the application
to register a callback that selects which packets to enqueue to the event
device.

40. Event Ethernet Tx Adapter Library

The DPDK Eventdev API allows the application to use an event driven programming
model for packet processing in which the event device distributes events
referencing packets to the application cores in a dynamic load balanced fashion
while handling atomicity and packet ordering. Event adapters provide the interface
between the ethernet, crypto and timer devices and the event device. Event adapter
APIs enable common application code by abstracting PMD specific capabilities.
The Event ethernet Tx adapter provides configuration and data path APIs for the
transmit stage of the application allowing the same application code to use eventdev
PMD support or in its absence, a common implementation.

In the common implementation, the application enqueues mbufs to the adapter
which runs as a rte_service function. The service function dequeues events
from its event port and transmits the mbufs referenced by these events.

40.1. API Walk-through

This section will introduce the reader to the adapter API. The
application has to first instantiate an adapter which is associated with
a single eventdev, next the adapter instance is configured with Tx queues,
finally the adapter is started and the application can start enqueuing mbufs
to it.

40.1.1. Creating an Adapter Instance

An adapter instance is created using rte_event_eth_tx_adapter_create(). This
function is passed the event device to be associated with the adapter and port
configuration for the adapter to setup an event port if the adapter needs to use
a service function.

If the application desires to have finer control of eventdev port configuration,
it can use the rte_event_eth_tx_adapter_create_ext() function. The
rte_event_eth_tx_adapter_create_ext() function is passed a callback function.
The callback function is invoked if the adapter needs to use a service function
and needs to create an event port for it. The callback is expected to fill the
struct rte_event_eth_tx_adapter_conf structure passed to it.

struct rte_event_dev_info dev_info;
struct rte_event_port_conf tx_p_conf = {0};

err = rte_event_dev_info_get(id, &dev_info);

tx_p_conf.new_event_threshold = dev_info.max_num_events;
tx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
tx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;

err = rte_event_eth_tx_adapter_create(id, dev_id, &tx_p_conf);

40.1.2. Adding Tx Queues to the Adapter Instance

Ethdev Tx queues are added to the instance using the
rte_event_eth_tx_adapter_queue_add() function. A queue value
of -1 is used to indicate all queues within a device.

int err = rte_event_eth_tx_adapter_queue_add(id,
 eth_dev_id,
 q);

40.1.3. Querying Adapter Capabilities

The rte_event_eth_tx_adapter_caps_get() function allows
the application to query the adapter capabilities for an eventdev and ethdev
combination. Currently, the only capability flag defined is
RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT, the application can
query this flag to determine if a service function is associated with the
adapter and retrieve its service identifier using the
rte_event_eth_tx_adapter_service_id_get() API.

int err = rte_event_eth_tx_adapter_caps_get(dev_id, eth_dev_id, &cap);

if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT))
 err = rte_event_eth_tx_adapter_service_id_get(id, &service_id);

40.1.4. Linking a Queue to the Adapter’s Event Port

If the adapter uses a service function as described in the previous section, the
application is required to link a queue to the adapter’s event port. The adapter’s
event port can be obtained using the rte_event_eth_tx_adapter_event_port_get()
function. The queue can be configured with the RTE_EVENT_QUEUE_CFG_SINGLE_LINK
since it is linked to a single event port.

40.1.5. Configuring the Service Function

If the adapter uses a service function, the application can assign
a service core to the service function as shown below.

if (rte_event_eth_tx_adapter_service_id_get(id, &service_id) == 0)
 rte_service_map_lcore_set(service_id, TX_CORE_ID);

40.1.6. Starting the Adapter Instance

The application calls rte_event_eth_tx_adapter_start() to start the adapter.
This function calls the start callback of the eventdev PMD if supported,
and the rte_service_run_state_set() to enable the service function if one exists.

40.1.7. Enqueuing Packets to the Adapter

The application needs to notify the adapter about the transmit port and queue used
to send the packet. The transmit port is set in the struct rte mbuf::port field
and the transmit queue is set using the rte_event_eth_tx_adapter_txq_set()
function.

If the eventdev PMD supports the RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT
capability for a given ethernet device, the application should use the
rte_event_eth_tx_adapter_enqueue() function to enqueue packets to the adapter.

If the adapter uses a service function for the ethernet device then the application
should use the rte_event_enqueue_burst() function.

struct rte_event event;

if (cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT) {

 event.mbuf = m;
 eq_flags = 0;

 m->port = tx_port;
 rte_event_eth_tx_adapter_txq_set(m, tx_queue_id);

 rte_event_eth_tx_adapter_enqueue(dev_id, ev_port, &event, 1, eq_flags);
} else {

 event.queue_id = qid; /* event queue linked to adapter port */
 event.op = RTE_EVENT_OP_NEW;
 event.event_type = RTE_EVENT_TYPE_CPU;
 event.sched_type = RTE_SCHED_TYPE_ATOMIC;
 event.mbuf = m;

 m->port = tx_port;
 rte_event_eth_tx_adapter_txq_set(m, tx_queue_id);

 rte_event_enqueue_burst(dev_id, ev_port, &event, 1);
}

40.1.8. Getting Adapter Statistics

The rte_event_eth_tx_adapter_stats_get() function reports counters defined
in struct rte_event_eth_tx_adapter_stats. The counter values are the sum of
the counts from the eventdev PMD callback if the callback is supported, and
the counts maintained by the service function, if one exists.

41. Event Timer Adapter Library

The DPDK Event Device library
introduces an event driven programming model which presents applications with
an alternative to the polling model traditionally used in DPDK
applications. Event devices can be coupled with arbitrary components to provide
new event sources by using event adapters. The Event Timer Adapter is one
such adapter; it bridges event devices and timer mechanisms.

The Event Timer Adapter library extends the event driven model
by introducing a new type of event that represents
a timer expiration, and providing an API with which adapters can be created or
destroyed, and event timers can be armed and canceled.

The Event Timer Adapter library is designed to interface with hardware or
software implementations of the timer mechanism; it will query an eventdev PMD
to determine which implementation should be used. The default software
implementation manages timers using the DPDK
Timer library.

Examples of using the API are presented in the API Overview and
Processing Timer Expiry Events sections. Code samples are abstracted and
are based on the example of handling a TCP retransmission.

41.1. Event Timer struct

Event timers are timers that enqueue a timer expiration event to an event
device upon timer expiration.

The Event Timer Adapter API represents each event timer with a generic struct,
which contains an event and user metadata. The rte_event_timer struct is
defined in lib/librte_event/librte_event_timer_adapter.h.

41.1.1. Timer Expiry Event

The event contained by an event timer is enqueued in the event device when the
timer expires, and the event device uses the attributes below when scheduling
it:

	event_queue_id - Application should set this to specify an event queue to
which the timer expiry event should be enqueued

	event_priority - Application can set this to indicate the priority of the
timer expiry event in the event queue relative to other events

	sched_type - Application can set this to specify the scheduling type of
the timer expiry event

	flow_id - Application can set this to indicate which flow this timer
expiry event corresponds to

	op - Will be set to RTE_EVENT_OP_NEW by the event timer adapter

	event_type - Will be set to RTE_EVENT_TYPE_TIMER by the event timer
adapter

41.1.2. Timeout Ticks

The number of ticks from now in which the timer will expire. The ticks value
has a resolution (timer_tick_ns) that is specified in the event timer
adapter configuration.

41.1.3. State

Before arming an event timer, the application should initialize its state to
RTE_EVENT_TIMER_NOT_ARMED. The event timer’s state will be updated when a
request to arm or cancel it takes effect.

If the application wishes to rearm the timer after it has expired, it should
reset the state back to RTE_EVENT_TIMER_NOT_ARMED before doing so.

41.1.4. User Metadata

Memory to store user specific metadata. The event timer adapter implementation
will not modify this area.

41.2. API Overview

This section will introduce the reader to the event timer adapter API, showing
how to create and configure an event timer adapter and use it to manage event
timers.

From a high level, the setup steps are:

	rte_event_timer_adapter_create()

	rte_event_timer_adapter_start()

And to start and stop timers:

	rte_event_timer_arm_burst()

	rte_event_timer_cancel_burst()

41.2.1. Create and Configure an Adapter Instance

To create an event timer adapter instance, initialize an
rte_event_timer_adapter_conf struct with the desired values, and pass it
to rte_event_timer_adapter_create().

#define NSECPERSEC 1E9 // No of ns in 1 sec
const struct rte_event_timer_adapter_conf adapter_config = {
 .event_dev_id = event_dev_id,
 .timer_adapter_id = 0,
 .clk_src = RTE_EVENT_TIMER_ADAPTER_CPU_CLK,
 .timer_tick_ns = NSECPERSEC / 10, // 100 milliseconds
 .max_tmo_nsec = 180 * NSECPERSEC // 2 minutes
 .nb_timers = 40000,
 .timer_adapter_flags = 0,
};

struct rte_event_timer_adapter *adapter = NULL;
adapter = rte_event_timer_adapter_create(&adapter_config);

if (adapter == NULL) { ... };

Before creating an instance of a timer adapter, the application should create
and configure an event device along with its event ports. Based on the event
device capability, it might require creating an additional event port to be
used by the timer adapter. If required, the
rte_event_timer_adapter_create() function will use a default method to
configure an event port; it will examine the current event device
configuration, determine the next available port identifier number, and create
a new event port with a default port configuration.

If the application desires to have finer control of event port allocation
and setup, it can use the rte_event_timer_adapter_create_ext() function.
This function is passed a callback function that will be invoked if the
adapter needs to create an event port, giving the application the opportunity
to control how it is done.

41.2.2. Retrieve Event Timer Adapter Contextual Information

The event timer adapter implementation may have constraints on tick resolution
or maximum timer expiry timeout based on the given event timer adapter or
system. In this case, the implementation may adjust the tick resolution or
maximum timeout to the best possible configuration.

Upon successful event timer adapter creation, the application can get the
configured resolution and max timeout with
rte_event_timer_adapter_get_info(). This function will return an
rte_event_timer_adapter_info struct, which contains the following members:

	min_resolution_ns - Minimum timer adapter tick resolution in ns.

	max_tmo_ns - Maximum timer timeout(expiry) in ns.

	adapter_conf - Configured event timer adapter attributes

41.2.3. Configuring the Service Component

If the adapter uses a service component, the application is required to map
the service to a service core before starting the adapter:

uint32_t service_id;

if (rte_event_timer_adapter_service_id_get(adapter, &service_id) == 0)
 rte_service_map_lcore_set(service_id, EVTIM_CORE_ID);

An event timer adapter uses a service component if the event device PMD
indicates that the adapter should use a software implementation.

41.2.4. Starting the Adapter Instance

The application should call rte_event_timer_adapter_start() to start
running the event timer adapter. This function calls the start entry points
defined by eventdev PMDs for hardware implementations or puts a service
component into the running state in the software implementation.

Note

The eventdev to which the event_timer_adapter is connected needs to
be started before calling rte_event_timer_adapter_start().

41.2.5. Arming Event Timers

Once an event timer adapter has been started, an application can begin to
manage event timers with it.

The application should allocate struct rte_event_timer objects from a
mempool or huge-page backed application buffers of required size. Upon
successful allocation, the application should initialize the event timer, and
then set any of the necessary event attributes described in the
Timer Expiry Event section. In the following example, assume conn
represents a TCP connection and that event_timer_pool is a mempool that
was created previously:

rte_mempool_get(event_timer_pool, (void **)&conn->evtim);
if (conn->evtim == NULL) { ... }

/* Set up the event timer. */
conn->evtim->ev.op = RTE_EVENT_OP_NEW;
conn->evtim->ev.queue_id = event_queue_id;
conn->evtim->ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
conn->evtim->ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
conn->evtim->ev.event_type = RTE_EVENT_TYPE_TIMER;
conn->evtim->ev.event_ptr = conn;
conn->evtim->state = RTE_EVENT_TIMER_NOT_ARMED;
conn->evtim->timeout_ticks = 30; //3 sec Per RFC1122(TCP returns)

Note that it is necessary to initialize the event timer state to
RTE_EVENT_TIMER_NOT_ARMED. Also note that we have saved a pointer to the
conn object in the timer’s event payload. This will allow us to locate
the connection object again once we dequeue the timer expiry event from the
event device later. As a convenience, the application may specify no value for
ev.event_ptr, and the adapter will by default set it to point at the event
timer itself.

Now we can arm the event timer with rte_event_timer_arm_burst():

ret = rte_event_timer_arm_burst(adapter, &conn->evtim, 1);
if (ret != 1) { ... }

Once an event timer expires, the application may free it or rearm it as
necessary. If the application will rearm the timer, the state should be reset
to RTE_EVENT_TIMER_NOT_ARMED by the application before rearming it.

41.2.5.1. Multiple Event Timers with Same Expiry Value

In the special case that there is a set of event timers that should all expire
at the same time, the application may call
rte_event_timer_arm_tmo_tick_burst(), which allows the implementation to
optimize the operation if possible.

41.2.6. Canceling Event Timers

An event timer that has been armed as described in Arming Event Timers can
be canceled by calling rte_event_timer_cancel_burst():

/* Ack for the previous tcp data packet has been received;
 * cancel the retransmission timer
 */
rte_event_timer_cancel_burst(adapter, &conn->timer, 1);

41.3. Processing Timer Expiry Events

Once an event timer has successfully enqueued a timer expiry event in the event
device, the application will subsequently dequeue it from the event device.
The application can use the event payload to retrieve a pointer to the object
associated with the event timer. It can then re-arm the event timer or free the
event timer object as desired:

void
event_processing_loop(...)
{
 while (...) {
 /* Receive events from the configured event port. */
 rte_event_dequeue_burst(event_dev_id, event_port, &ev, 1, 0);
 ...
 switch(ev.event_type) {
 ...
 case RTE_EVENT_TYPE_TIMER:
 process_timer_event(ev);
 ...
 break;
 }
 }
}

uint8_t
process_timer_event(...)
{
 /* A retransmission timeout for the connection has been received. */
 conn = ev.event_ptr;
 /* Retransmit last packet (e.g. TCP segment). */
 ...
 /* Re-arm timer using original values. */
 rte_event_timer_arm_burst(adapter_id, &conn->timer, 1);
}

41.4. Summary

The Event Timer Adapter library extends the DPDK event-based programming model
by representing timer expirations as events in the system and allowing
applications to use existing event processing loops to arm and cancel event
timers or handle timer expiry events.

42. Event Crypto Adapter Library

The DPDK Eventdev library provides event driven
programming model with features to schedule events.
The Cryptodev library provides an interface to
the crypto poll mode drivers which supports different crypto operations.
The Event Crypto Adapter is one of the adapter which is intended to
bridge between the event device and the crypto device.

The packet flow from crypto device to the event device can be accomplished
using SW and HW based transfer mechanism.
The Adapter queries an eventdev PMD to determine which mechanism to be used.
The adapter uses an EAL service core function for SW based packet transfer
and uses the eventdev PMD functions to configure HW based packet transfer
between the crypto device and the event device. The crypto adapter uses a new
event type called RTE_EVENT_TYPE_CRYPTODEV to indicate the event source.

The application can choose to submit a crypto operation directly to
crypto device or send it to the crypto adapter via eventdev based on
RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD capability.
The first mode is known as the event new(RTE_EVENT_CRYPTO_ADAPTER_OP_NEW)
mode and the second as the event forward(RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD)
mode. The choice of mode can be specified while creating the adapter.
In the former mode, it is an application responsibility to enable ingress
packet ordering. In the latter mode, it is the adapter responsibility to
enable the ingress packet ordering.

42.1. Adapter Mode

42.1.1. RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode

In the RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode, application submits crypto
operations directly to crypto device. The adapter then dequeues crypto
completions from crypto device and enqueues them as events to the event device.
This mode does not ensure ingress ordering, if the application directly
enqueues to the cryptodev without going through crypto/atomic stage.
In this mode, events dequeued from the adapter will be treated as new events.
The application needs to specify event information (response information)
which is needed to enqueue an event after the crypto operation is completed.

[image: ../_images/event_crypto_adapter_op_new.svg]
Fig. 42.3 Working model of RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode

42.1.2. RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

In the RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, if HW supports
RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD capability the application
can directly submit the crypto operations to the cryptodev.
If not, application retrieves crypto adapter’s event port using
rte_event_crypto_adapter_event_port_get() API. Then, links its event
queue to this port and starts enqueuing crypto operations as events
to the eventdev. The adapter then dequeues the events and submits the
crypto operations to the cryptodev. After the crypto completions, the
adapter enqueues events to the event device.
Application can use this mode, when ingress packet ordering is needed.
In this mode, events dequeued from the adapter will be treated as
forwarded events. The application needs to specify the cryptodev ID
and queue pair ID (request information) needed to enqueue a crypto
operation in addition to the event information (response information)
needed to enqueue an event after the crypto operation has completed.

[image: ../_images/event_crypto_adapter_op_forward.svg]
Fig. 42.4 Working model of RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

42.2. API Overview

This section has a brief introduction to the event crypto adapter APIs.
The application is expected to create an adapter which is associated with
a single eventdev, then add cryptodev and queue pair to the adapter instance.

42.2.1. Create an adapter instance

An adapter instance is created using rte_event_crypto_adapter_create(). This
function is called with event device to be associated with the adapter and port
configuration for the adapter to setup an event port(if the adapter needs to use
a service function).

Adapter can be started in RTE_EVENT_CRYPTO_ADAPTER_OP_NEW or
RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode.

int err;
uint8_t dev_id, id;
struct rte_event_dev_info dev_info;
struct rte_event_port_conf conf;
enum rte_event_crypto_adapter_mode mode;

err = rte_event_dev_info_get(id, &dev_info);

conf.new_event_threshold = dev_info.max_num_events;
conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
mode = RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD;
err = rte_event_crypto_adapter_create(id, dev_id, &conf, mode);

If the application desires to have finer control of eventdev port allocation
and setup, it can use the rte_event_crypto_adapter_create_ext() function.
The rte_event_crypto_adapter_create_ext() function is passed as a callback
function. The callback function is invoked if the adapter needs to use a
service function and needs to create an event port for it. The callback is
expected to fill the struct rte_event_crypto_adapter_conf structure
passed to it.

For RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, the event port created by adapter
can be retrieved using rte_event_crypto_adapter_event_port_get() API.
Application can use this event port to link with event queue on which it
enqueues events towards the crypto adapter.

uint8_t id, evdev, crypto_ev_port_id, app_qid;
struct rte_event ev;
int ret;

ret = rte_event_crypto_adapter_event_port_get(id, &crypto_ev_port_id);
ret = rte_event_queue_setup(evdev, app_qid, NULL);
ret = rte_event_port_link(evdev, crypto_ev_port_id, &app_qid, NULL, 1);

// Fill in event info and update event_ptr with rte_crypto_op
memset(&ev, 0, sizeof(ev));
ev.queue_id = app_qid;
.
.
ev.event_ptr = op;
ret = rte_event_enqueue_burst(evdev, app_ev_port_id, ev, nb_events);

42.2.2. Querying adapter capabilities

The rte_event_crypto_adapter_caps_get() function allows
the application to query the adapter capabilities for an eventdev and cryptodev
combination. This API provides whether cryptodev and eventdev are connected using
internal HW port or not.

rte_event_crypto_adapter_caps_get(dev_id, cdev_id, &cap);

42.2.3. Adding queue pair to the adapter instance

Cryptodev device id and queue pair are created using cryptodev APIs.
For more information see here.

struct rte_cryptodev_config conf;
struct rte_cryptodev_qp_conf qp_conf;
uint8_t cdev_id = 0;
uint16_t qp_id = 0;

rte_cryptodev_configure(cdev_id, &conf);
rte_cryptodev_queue_pair_setup(cdev_id, qp_id, &qp_conf);

These cryptodev id and queue pair are added to the instance using the
rte_event_crypto_adapter_queue_pair_add() API.
The same is removed using rte_event_crypto_adapter_queue_pair_del() API.
If HW supports RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND
capability, event information must be passed to the add API.

uint32_t cap;
int ret;

ret = rte_event_crypto_adapter_caps_get(id, evdev, &cap);
if (cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND) {
 struct rte_event event;

 // Fill in event information & pass it to add API
 rte_event_crypto_adapter_queue_pair_add(id, cdev_id, qp_id, &event);
} else
 rte_event_crypto_adapter_queue_pair_add(id, cdev_id, qp_id, NULL);

42.2.4. Configure the service function

If the adapter uses a service function, the application is required to assign
a service core to the service function as show below.

uint32_t service_id;

if (rte_event_crypto_adapter_service_id_get(id, &service_id) == 0)
 rte_service_map_lcore_set(service_id, CORE_ID);

42.2.5. Set event request/response information

In the RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, the application needs
to specify the cryptodev ID and queue pair ID (request information) in
addition to the event information (response information) needed to enqueue
an event after the crypto operation has completed. The request and response
information are specified in the struct rte_crypto_op private data or
session’s private data.

In the RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode, the application is required
to provide only the response information.

The SW adapter or HW PMD uses rte_crypto_op::sess_type to
decide whether request/response data is located in the crypto session/
crypto security session or at an offset in the struct rte_crypto_op.
The rte_crypto_op::private_data_offset is used to locate the request/
response in the rte_crypto_op.

For crypto session, rte_cryptodev_sym_session_set_user_data() API
will be used to set request/response data. The same data will be obtained
by rte_cryptodev_sym_session_get_user_data() API. The
RTE_EVENT_CRYPTO_ADAPTER_CAP_SESSION_PRIVATE_DATA capability indicates
whether HW or SW supports this feature.

For security session, rte_security_session_set_private_data() API
will be used to set request/response data. The same data will be obtained
by rte_security_session_get_private_data() API.

For session-less it is mandatory to place the request/response data with
the rte_crypto_op.

union rte_event_crypto_metadata m_data;
struct rte_event ev;
struct rte_crypto_op *op;

/* Allocate & fill op structure */
op = rte_crypto_op_alloc();

memset(&m_data, 0, sizeof(m_data));
memset(&ev, 0, sizeof(ev));
/* Fill event information and update event_ptr to rte_crypto_op */
ev.event_ptr = op;

if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
 /* Copy response information */
 rte_memcpy(&m_data.response_info, &ev, sizeof(ev));
 /* Copy request information */
 m_data.request_info.cdev_id = cdev_id;
 m_data.request_info.queue_pair_id = qp_id;
 /* Call set API to store private data information */
 rte_cryptodev_sym_session_set_user_data(
 op->sym->session,
 &m_data,
 sizeof(m_data));
} if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
 uint32_t len = IV_OFFSET + MAXIMUM_IV_LENGTH +
 (sizeof(struct rte_crypto_sym_xform) * 2);
 op->private_data_offset = len;
 /* Copy response information */
 rte_memcpy(&m_data.response_info, &ev, sizeof(ev));
 /* Copy request information */
 m_data.request_info.cdev_id = cdev_id;
 m_data.request_info.queue_pair_id = qp_id;
 /* Store private data information along with rte_crypto_op */
 rte_memcpy(op + len, &m_data, sizeof(m_data));
}

42.2.6. Start the adapter instance

The application calls rte_event_crypto_adapter_start() to start the adapter.
This function calls the start callbacks of the eventdev PMDs for hardware based
eventdev-cryptodev connections and rte_service_run_state_set() to enable the
service function if one exists.

rte_event_crypto_adapter_start(id, mode);

Note

The eventdev to which the event_crypto_adapter is connected needs to
be started before calling rte_event_crypto_adapter_start().

42.2.7. Get adapter statistics

The rte_event_crypto_adapter_stats_get() function reports counters defined
in struct rte_event_crypto_adapter_stats. The received packet and
enqueued event counts are a sum of the counts from the eventdev PMD callbacks
if the callback is supported, and the counts maintained by the service function,
if one exists.

43. Quality of Service (QoS) Framework

This chapter describes the DPDK Quality of Service (QoS) framework.

43.1. Packet Pipeline with QoS Support

An example of a complex packet processing pipeline with QoS support is shown in the following figure.

[image: ../_images/pkt_proc_pipeline_qos.png]

Fig. 43.2 Complex Packet Processing Pipeline with QoS Support

This pipeline can be built using reusable DPDK software libraries.
The main blocks implementing QoS in this pipeline are: the policer, the dropper and the scheduler.
A functional description of each block is provided in the following table.

Table 43.1 Packet Processing Pipeline Implementing QoS

	#

	Block

	Functional Description

	1

	Packet I/O RX & TX

	Packet reception/ transmission from/to multiple NIC ports. Poll mode drivers
(PMDs) for Intel 1 GbE/10 GbE NICs.

	2

	Packet parser

	Identify the protocol stack of the input packet. Check the integrity of the
packet headers.

	3

	Flow classification

	Map the input packet to one of the known traffic flows. Exact match table
lookup using configurable hash function (jhash, CRC and so on) and bucket
logic to handle collisions.

	4

	Policer

	Packet metering using srTCM (RFC 2697) or trTCM (RFC2698) algorithms.

	5

	Load Balancer

	Distribute the input packets to the application workers. Provide uniform load
to each worker. Preserve the affinity of traffic flows to workers and the
packet order within each flow.

	6

	Worker threads

	Placeholders for the customer specific application workload (for example, IP
stack and so on).

	7

	Dropper

	Congestion management using the Random Early Detection (RED) algorithm
(specified by the Sally Floyd - Van Jacobson paper) or Weighted RED (WRED).
Drop packets based on the current scheduler queue load level and packet
priority. When congestion is experienced, lower priority packets are dropped
first.

	8

	Hierarchical Scheduler

	5-level hierarchical scheduler (levels are: output port, subport, pipe,
traffic class and queue) with thousands (typically 64K) leaf nodes (queues).
Implements traffic shaping (for subport and pipe levels), strict priority
(for traffic class level) and Weighted Round Robin (WRR) (for queues within
each pipe traffic class).

The infrastructure blocks used throughout the packet processing pipeline are listed in the following table.

Table 43.2 Infrastructure Blocks Used by the Packet Processing Pipeline

	#

	Block

	Functional Description

	1

	Buffer manager

	Support for global buffer pools and private per-thread buffer caches.

	2

	Queue manager

	Support for message passing between pipeline blocks.

	3

	Power saving

	Support for power saving during low activity periods.

The mapping of pipeline blocks to CPU cores is configurable based on the performance level required by each specific application
and the set of features enabled for each block.
Some blocks might consume more than one CPU core (with each CPU core running a different instance of the same block on different input packets),
while several other blocks could be mapped to the same CPU core.

43.2. Hierarchical Scheduler

The hierarchical scheduler block, when present, usually sits on the TX side just before the transmission stage.
Its purpose is to prioritize the transmission of packets from different users and different traffic classes
according to the policy specified by the Service Level Agreements (SLAs) of each network node.

43.2.1. Overview

The hierarchical scheduler block is similar to the traffic manager block used by network processors
that typically implement per flow (or per group of flows) packet queuing and scheduling.
It typically acts like a buffer that is able to temporarily store a large number of packets just before their transmission (enqueue operation);
as the NIC TX is requesting more packets for transmission,
these packets are later on removed and handed over to the NIC TX with the packet selection logic observing the predefined SLAs (dequeue operation).

[image: ../_images/hier_sched_blk.png]

Fig. 43.3 Hierarchical Scheduler Block Internal Diagram

The hierarchical scheduler is optimized for a large number of packet queues.
When only a small number of queues are needed, message passing queues should be used instead of this block.
See Worst Case Scenarios for Performance for a more detailed discussion.

43.2.2. Scheduling Hierarchy

The scheduling hierarchy is shown in Fig. 43.4.
The first level of the hierarchy is the Ethernet TX port 1/10/40 GbE,
with subsequent hierarchy levels defined as subport, pipe, traffic class and queue.

Typically, each subport represents a predefined group of users, while each pipe represents an individual user/subscriber.
Each traffic class is the representation of a different traffic type with specific loss rate,
delay and jitter requirements, such as voice, video or data transfers.
Each queue hosts packets from one or multiple connections of the same type belonging to the same user.

[image: ../_images/sched_hier_per_port.svg]
Fig. 43.4 Scheduling Hierarchy per Port

The functionality of each hierarchical level is detailed in the following table.

Table 43.3 Port Scheduling Hierarchy

	#

	Level

	Siblings per Parent

	Functional Description

	1

	Port

	
	

	
	Output Ethernet port 1/10/40 GbE.

	Multiple ports are scheduled in round robin order with
all ports having equal priority.

	2

	Subport

	Configurable (default: 8)

	
	Traffic shaping using token bucket algorithm (one token
bucket per subport).

	Upper limit enforced per Traffic Class (TC) at the
subport level.

	Lower priority TCs able to reuse subport bandwidth
currently unused by higher priority TCs.

	3

	Pipe

	Configurable (default: 4K)

	
	Traffic shaping using the token bucket algorithm (one
token bucket per pipe.

	4

	Traffic Class (TC)

	13

	
	TCs of the same pipe handled in strict priority order.

	Upper limit enforced per TC at the pipe level.

	Lower priority TCs able to reuse pipe bandwidth currently
unused by higher priority TCs.

	When subport TC is oversubscribed (configuration time
event), pipe TC upper limit is capped to a dynamically
adjusted value that is shared by all the subport pipes.

	5

	Queue

	High priority TCs: 1,
Lowest priority TC: 4

	
	All the high priority TCs (TC0, TC1, …,TC11) have
exactly 1 queue, while the lowest priority TC (TC12),
called Best Effort (BE), has 4 queues.

	Queues of the lowest priority TC (BE) are serviced using
Weighted Round Robin (WRR) according to predefined weights
weights.

43.2.3. Application Programming Interface (API)

43.2.3.1. Port Scheduler Configuration API

The rte_sched.h file contains configuration functions for port, subport and pipe.

43.2.3.2. Port Scheduler Enqueue API

The port scheduler enqueue API is very similar to the API of the DPDK PMD TX function.

int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

43.2.3.3. Port Scheduler Dequeue API

The port scheduler dequeue API is very similar to the API of the DPDK PMD RX function.

int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

43.2.3.4. Usage Example

/* File "application.c" */

#define N_PKTS_RX 64
#define N_PKTS_TX 48
#define NIC_RX_PORT 0
#define NIC_RX_QUEUE 0
#define NIC_TX_PORT 1
#define NIC_TX_QUEUE 0

struct rte_sched_port *port = NULL;
struct rte_mbuf *pkts_rx[N_PKTS_RX], *pkts_tx[N_PKTS_TX];
uint32_t n_pkts_rx, n_pkts_tx;

/* Initialization */

<initialization code>

/* Runtime */
while (1) {
 /* Read packets from NIC RX queue */

 n_pkts_rx = rte_eth_rx_burst(NIC_RX_PORT, NIC_RX_QUEUE, pkts_rx, N_PKTS_RX);

 /* Hierarchical scheduler enqueue */

 rte_sched_port_enqueue(port, pkts_rx, n_pkts_rx);

 /* Hierarchical scheduler dequeue */

 n_pkts_tx = rte_sched_port_dequeue(port, pkts_tx, N_PKTS_TX);

 /* Write packets to NIC TX queue */

 rte_eth_tx_burst(NIC_TX_PORT, NIC_TX_QUEUE, pkts_tx, n_pkts_tx);
}

43.2.4. Implementation

43.2.4.1. Internal Data Structures per Port

A schematic of the internal data structures in shown in with details in.

[image: ../_images/data_struct_per_port.png]

Fig. 43.5 Internal Data Structures per Port

Table 43.4 Scheduler Internal Data Structures per Port

	#

	Data structure

	Size (bytes)

	# per port

	Access type

	Description

	Enq

	Deq

	

	1

	Subport table entry

	64

	# subports per port

	
	

	Rd, Wr

	Persistent subport data (credits, etc).

	2

	Pipe table entry

	64

	# pipes per port

	
	

	Rd, Wr

	Persistent data for pipe, its TCs and its queues
(credits, etc) that is updated during run-time.

The pipe configuration parameters do not change
during run-time. The same pipe configuration
parameters are shared by multiple pipes,
therefore they are not part of pipe table entry.

	3

	Queue table entry

	4

	#queues per port

	Rd, Wr

	Rd, Wr

	Persistent queue data (read and write pointers).
The queue size is the same per TC for all queues,
allowing the queue base address to be computed
using a fast formula, so these two parameters are
not part of queue table entry.

The queue table entries for any given pipe are
stored in the same cache line.

	4

	Queue storage area

	Config (default: 64 x8)

	# queues per port

	Wr

	Rd

	Array of elements per queue; each element is 8
byte in size (mbuf pointer).

	5

	Active queues bitmap

	1 bit per queue

	1

	Wr (Set)

	Rd, Wr (Clear)

	The bitmap maintains one status bit per queue:
queue not active (queue is empty) or queue active
(queue is not empty).

Queue bit is set by the scheduler enqueue and
cleared by the scheduler dequeue when queue
becomes empty.

Bitmap scan operation returns the next non-empty
pipe and its status (16-bit mask of active queue
in the pipe).

	6

	Grinder

	~128

	Config (default: 8)

	
	

	Rd, Wr

	Short list of active pipes currently under
processing. The grinder contains temporary data
during pipe processing.

Once the current pipe exhausts packets or
credits, it is replaced with another active pipe
from the bitmap.

43.2.4.2. Multicore Scaling Strategy

The multicore scaling strategy is:

	Running different physical ports on different threads. The enqueue and dequeue of the same port are run by the same thread.

	Splitting the same physical port to different threads by running different sets of subports of the same physical port (virtual ports) on different threads.
Similarly, a subport can be split into multiple subports that are each run by a different thread.
The enqueue and dequeue of the same port are run by the same thread.
This is only required if, for performance reasons, it is not possible to handle a full port with a single core.

43.2.4.2.1. Enqueue and Dequeue for the Same Output Port

Running enqueue and dequeue operations for the same output port from different cores is likely to cause significant impact on scheduler’s performance
and it is therefore not recommended.

The port enqueue and dequeue operations share access to the following data structures:

	Packet descriptors

	Queue table

	Queue storage area

	Bitmap of active queues

The expected drop in performance is due to:

	Need to make the queue and bitmap operations thread safe,
which requires either using locking primitives for access serialization (for example, spinlocks/ semaphores) or
using atomic primitives for lockless access (for example, Test and Set, Compare And Swap, an so on).
The impact is much higher in the former case.

	Ping-pong of cache lines storing the shared data structures between the cache hierarchies of the two cores
(done transparently by the MESI protocol cache coherency CPU hardware).

Therefore, the scheduler enqueue and dequeue operations have to be run from the same thread,
which allows the queues and the bitmap operations to be non-thread safe and
keeps the scheduler data structures internal to the same core.

43.2.4.2.2. Performance Scaling

Scaling up the number of NIC ports simply requires a proportional increase in the number of CPU cores to be used for traffic scheduling.

43.2.4.3. Enqueue Pipeline

The sequence of steps per packet:

	Access the mbuf to read the data fields required to identify the destination queue for the packet.
These fields are: port, subport, traffic class and queue within traffic class, and are typically set by the classification stage.

	Access the queue structure to identify the write location in the queue array.
If the queue is full, then the packet is discarded.

	Access the queue array location to store the packet (i.e. write the mbuf pointer).

It should be noted the strong data dependency between these steps, as steps 2 and 3 cannot start before the result from steps 1 and 2 becomes available,
which prevents the processor out of order execution engine to provide any significant performance optimizations.

Given the high rate of input packets and the large amount of queues,
it is expected that the data structures accessed to enqueue the current packet are not present
in the L1 or L2 data cache of the current core, thus the above 3 memory accesses would result (on average) in L1 and L2 data cache misses.
A number of 3 L1/L2 cache misses per packet is not acceptable for performance reasons.

The workaround is to prefetch the required data structures in advance. The prefetch operation has an execution latency during which
the processor should not attempt to access the data structure currently under prefetch, so the processor should execute other work.
The only other work available is to execute different stages of the enqueue sequence of operations on other input packets,
thus resulting in a pipelined implementation for the enqueue operation.

Fig. 43.6 illustrates a pipelined implementation for the enqueue operation with 4 pipeline stages and each stage executing 2 different input packets.
No input packet can be part of more than one pipeline stage at a given time.

[image: ../_images/prefetch_pipeline.png]

Fig. 43.6 Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

The congestion management scheme implemented by the enqueue pipeline described above is very basic:
packets are enqueued until a specific queue becomes full,
then all the packets destined to the same queue are dropped until packets are consumed (by the dequeue operation).
This can be improved by enabling RED/WRED as part of the enqueue pipeline which looks at the queue occupancy and
packet priority in order to yield the enqueue/drop decision for a specific packet
(as opposed to enqueuing all packets / dropping all packets indiscriminately).

43.2.4.4. Dequeue State Machine

The sequence of steps to schedule the next packet from the current pipe is:

	Identify the next active pipe using the bitmap scan operation, prefetch pipe.

	Read pipe data structure. Update the credits for the current pipe and its subport.
Identify the first active traffic class within the current pipe, select the next queue using WRR,
prefetch queue pointers for all the 16 queues of the current pipe.

	Read next element from the current WRR queue and prefetch its packet descriptor.

	Read the packet length from the packet descriptor (mbuf structure).
Based on the packet length and the available credits (of current pipe, pipe traffic class, subport and subport traffic class),
take the go/no go scheduling decision for the current packet.

To avoid the cache misses, the above data structures (pipe, queue, queue array, mbufs) are prefetched in advance of being accessed.
The strategy of hiding the latency of the prefetch operations is to switch from the current pipe (in grinder A) to another pipe
(in grinder B) immediately after a prefetch is issued for the current pipe.
This gives enough time to the prefetch operation to complete before the execution switches back to this pipe (in grinder A).

The dequeue pipe state machine exploits the data presence into the processor cache,
therefore it tries to send as many packets from the same pipe TC and pipe as possible (up to the available packets and credits) before
moving to the next active TC from the same pipe (if any) or to another active pipe.

[image: ../_images/pipe_prefetch_sm.png]

Fig. 43.7 Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue
Operation

43.2.4.5. Timing and Synchronization

The output port is modeled as a conveyor belt of byte slots that need to be filled by the scheduler with data for transmission.
For 10 GbE, there are 1.25 billion byte slots that need to be filled by the port scheduler every second.
If the scheduler is not fast enough to fill the slots, provided that enough packets and credits exist,
then some slots will be left unused and bandwidth will be wasted.

In principle, the hierarchical scheduler dequeue operation should be triggered by NIC TX.
Usually, once the occupancy of the NIC TX input queue drops below a predefined threshold,
the port scheduler is woken up (interrupt based or polling based,
by continuously monitoring the queue occupancy) to push more packets into the queue.

43.2.4.5.1. Internal Time Reference

The scheduler needs to keep track of time advancement for the credit logic,
which requires credit updates based on time (for example, subport and pipe traffic shaping, traffic class upper limit enforcement, and so on).

Every time the scheduler decides to send a packet out to the NIC TX for transmission, the scheduler will increment its internal time reference accordingly.
Therefore, it is convenient to keep the internal time reference in units of bytes,
where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium.
This way, as a packet is scheduled for transmission, the time is incremented with (n + h),
where n is the packet length in bytes and h is the number of framing overhead bytes per packet.

43.2.4.5.2. Internal Time Reference Re-synchronization

The scheduler needs to align its internal time reference to the pace of the port conveyor belt.
The reason is to make sure that the scheduler does not feed the NIC TX with more bytes than the line rate of the physical medium in order to prevent packet drop
(by the scheduler, due to the NIC TX input queue being full, or later on, internally by the NIC TX).

The scheduler reads the current time on every dequeue invocation.
The CPU time stamp can be obtained by reading either the Time Stamp Counter (TSC) register or the High Precision Event Timer (HPET) register.
The current CPU time stamp is converted from number of CPU clocks to number of bytes:
time_bytes = time_cycles / cycles_per_byte, where cycles_per_byte
is the amount of CPU cycles that is equivalent to the transmission time for one byte on the wire
(e.g. for a CPU frequency of 2 GHz and a 10GbE port,*cycles_per_byte = 1.6*).

The scheduler maintains an internal time reference of the NIC time.
Whenever a packet is scheduled, the NIC time is incremented with the packet length (including framing overhead).
On every dequeue invocation, the scheduler checks its internal reference of the NIC time against the current time:

	If NIC time is in the future (NIC time >= current time), no adjustment of NIC time is needed.
This means that scheduler is able to schedule NIC packets before the NIC actually needs those packets, so the NIC TX is well supplied with packets;

	If NIC time is in the past (NIC time < current time), then NIC time should be adjusted by setting it to the current time.
This means that the scheduler is not able to keep up with the speed of the NIC byte conveyor belt,
so NIC bandwidth is wasted due to poor packet supply to the NIC TX.

43.2.4.5.3. Scheduler Accuracy and Granularity

The scheduler round trip delay (SRTD) is the time (number of CPU cycles) between two consecutive examinations of the same pipe by the scheduler.

To keep up with the output port (that is, avoid bandwidth loss),
the scheduler should be able to schedule n packets faster than the same n packets are transmitted by NIC TX.

The scheduler needs to keep up with the rate of each individual pipe,
as configured for the pipe token bucket, assuming that no port oversubscription is taking place.
This means that the size of the pipe token bucket should be set high enough to prevent it from overflowing due to big SRTD,
as this would result in credit loss (and therefore bandwidth loss) for the pipe.

43.2.4.6. Credit Logic

43.2.4.6.1. Scheduling Decision

The scheduling decision to send next packet from (subport S, pipe P, traffic class TC, queue Q) is favorable (packet is sent)
when all the conditions below are met:

	Pipe P of subport S is currently selected by one of the port grinders;

	Traffic class TC is the highest priority active traffic class of pipe P;

	Queue Q is the next queue selected by WRR within traffic class TC of pipe P;

	Subport S has enough credits to send the packet;

	Subport S has enough credits for traffic class TC to send the packet;

	Pipe P has enough credits to send the packet;

	Pipe P has enough credits for traffic class TC to send the packet.

If all the above conditions are met,
then the packet is selected for transmission and the necessary credits are subtracted from subport S,
subport S traffic class TC, pipe P, pipe P traffic class TC.

43.2.4.6.2. Framing Overhead

As the greatest common divisor for all packet lengths is one byte, the unit of credit is selected as one byte.
The number of credits required for the transmission of a packet of n bytes is equal to (n+h),
where h is equal to the number of framing overhead bytes per packet.

Table 43.5 Ethernet Frame Overhead Fields

	#

	Packet field

	Length (bytes)

	Comments

	1

	Preamble

	7

	

	2

	Start of Frame Delimiter (SFD)

	1

	

	3

	Frame Check Sequence (FCS)

	4

	Considered overhead only if not included in the mbuf packet length field.

	4

	Inter Frame Gap (IFG)

	12

	

	5

	Total

	24

	

43.2.4.6.3. Traffic Shaping

The traffic shaping for subport and pipe is implemented using a token bucket per subport/per pipe.
Each token bucket is implemented using one saturated counter that keeps track of the number of available credits.

The token bucket generic parameters and operations are presented in Table 43.6 and Table 43.7.

Table 43.6 Token Bucket Generic Parameters

	#

	Token Bucket Parameter

	Unit

	Description

	1

	bucket_rate

	Credits per second

	Rate of adding credits to the bucket.

	2

	bucket_size

	Credits

	Max number of credits that can be stored in the bucket.

Table 43.7 Token Bucket Generic Operations

	#

	Token Bucket Operation

	Description

	1

	Initialization

	Bucket set to a predefined value, e.g. zero or half of the bucket size.

	2

	Credit update

	Credits are added to the bucket on top of existing ones, either periodically
or on demand, based on the bucket_rate. Credits cannot exceed the upper
limit defined by the bucket_size, so any credits to be added to the bucket
while the bucket is full are dropped.

	3

	Credit consumption

	As result of packet scheduling, the necessary number of credits is removed
from the bucket. The packet can only be sent if enough credits are in the
bucket to send the full packet (packet bytes and framing overhead for the
packet).

To implement the token bucket generic operations described above,
the current design uses the persistent data structure presented in Table 43.8,
while the implementation of the token bucket operations is described in Table 43.9.

Table 43.8 Token Bucket Persistent Data Structure

	#

	Token bucket field

	Unit

	Description

	1

	tb_time

	Bytes

	Time of the last credit update. Measured in bytes instead of seconds
or CPU cycles for ease of credit consumption operation
(as the current time is also maintained in bytes).

See Section 26.2.4.5.1 “Internal Time Reference” for an
explanation of why the time is maintained in byte units.

	2

	tb_period

	Bytes

	Time period that should elapse since the last credit update in order
for the bucket to be awarded tb_credits_per_period worth or credits.

	3

	tb_credits_per_period

	Bytes

	Credit allowance per tb_period.

	4

	tb_size

	Bytes

	Bucket size, i.e. upper limit for the tb_credits.

	5

	tb_credits

	Bytes

	Number of credits currently in the bucket.

The bucket rate (in bytes per second) can be computed with the following formula:

bucket_rate = (tb_credits_per_period / tb_period) * r

where, r = port line rate (in bytes per second).

Table 43.9 Token Bucket Operations

	#

	Token bucket operation

	Description

	1

	Initialization

	tb_credits = 0; or tb_credits = tb_size / 2;

	2

	Credit update

	Credit update options:

	Every time a packet is sent for a port, update the credits of all the
the subports and pipes of that port. Not feasible.

	Every time a packet is sent, update the credits for the pipe and
subport. Very accurate, but not needed (a lot of calculations).

	Every time a pipe is selected (that is, picked by one
of the grinders), update the credits for the pipe and its subport.

The current implementation is using option 3. According to Section
Dequeue State Machine, the pipe and subport credits are
updated every time a pipe is selected by the dequeue process before the
pipe and subport credits are actually used.

The implementation uses a tradeoff between accuracy and speed by updating
the bucket credits only when at least a full tb_period has elapsed since
the last update.

	Full accuracy can be achieved by selecting the value for tb_period
for which tb_credits_per_period = 1.

	When full accuracy is not required, better performance is achieved by
setting tb_credits to a larger value.

Update operations:

	n_periods = (time - tb_time) / tb_period;

	tb_credits += n_periods * tb_credits_per_period;

	tb_credits = min(tb_credits, tb_size);

	tb_time += n_periods * tb_period;

	3

	
	Credit consumption
	(on packet scheduling)

	As result of packet scheduling, the necessary number of credits is removed
from the bucket. The packet can only be sent if enough credits are in the
bucket to send the full packet (packet bytes and framing overhead for the
packet).

Scheduling operations:

pkt_credits = pkt_len + frame_overhead;
if (tb_credits >= pkt_credits){tb_credits -= pkt_credits;}

43.2.4.6.4. Traffic Classes

43.2.4.6.4.1. Implementation of Strict Priority Scheduling

Strict priority scheduling of traffic classes within the same pipe is implemented by the pipe dequeue state machine,
which selects the queues in ascending order.
Therefore, queue 0 (associated with TC 0, highest priority TC) is handled before
queue 1 (TC 1, lower priority than TC 0),
which is handled before queue 2 (TC 2, lower priority than TC 1) and it conitnues until queues of all TCs except the
lowest priority TC are handled. At last, queues 12..15 (best effort TC, lowest priority TC) are handled.

43.2.4.6.4.2. Upper Limit Enforcement

The traffic classes at the pipe and subport levels are not traffic shaped,
so there is no token bucket maintained in this context.
The upper limit for the traffic classes at the subport and
pipe levels is enforced by periodically refilling the subport / pipe traffic class credit counter,
out of which credits are consumed every time a packet is scheduled for that subport / pipe,
as described in Table 43.10 and Table 43.11.

Table 43.10 Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

	#

	Subport or pipe field

	Unit

	Description

	1

	tc_time

	Bytes

	Time of the next update (upper limit refill) for the TCs of the
current subport / pipe.

See Section Internal Time Reference for the
explanation of why the time is maintained in byte units.

	2

	tc_period

	Bytes

	Time between two consecutive updates for the all TCs of the current
subport / pipe. This is expected to be many times bigger than the
typical value of the token bucket tb_period.

	3

	tc_credits_per_period

	Bytes

	Upper limit for the number of credits allowed to be consumed by the
current TC during each enforcement period tc_period.

	4

	tc_credits

	Bytes

	Current upper limit for the number of credits that can be consumed by
the current traffic class for the remainder of the current
enforcement period.

Table 43.11 Subport/Pipe Traffic Class Upper Limit Enforcement Operations

	#

	Traffic Class Operation

	Description

	1

	Initialization

	tc_credits = tc_credits_per_period;

tc_time = tc_period;

	2

	Credit update

	Update operations:

if (time >= tc_time) {

tc_credits = tc_credits_per_period;

tc_time = time + tc_period;

}

	3

	Credit consumption
(on packet scheduling)

	As result of packet scheduling, the TC limit is decreased with the
necessary number of credits. The packet can only be sent if enough credits
are currently available in the TC limit to send the full packet
(packet bytes and framing overhead for the packet).

Scheduling operations:

pkt_credits = pk_len + frame_overhead;

if (tc_credits >= pkt_credits) {tc_credits -= pkt_credits;}

43.2.4.6.5. Weighted Round Robin (WRR)

The evolution of the WRR design solution for the lowest priority traffic class (best effort TC) from simple to complex is shown in Table 43.12.

Table 43.12 Weighted Round Robin (WRR)

	#

	All Queues
Active?

	Equal Weights
for All Queues?

	All Packets
Equal?

	Strategy

	1

	Yes

	Yes

	Yes

	Byte level round robin

Next queue queue #i, i = (i + 1) % n

	2

	Yes

	Yes

	No

	Packet level round robin

Consuming one byte from queue #i requires consuming
exactly one token for queue #i.

T(i) = Accumulated number of tokens previously consumed
from queue #i. Every time a packet is consumed from
queue #i, T(i) is updated as: T(i) += pkt_len.

Next queue : queue with the smallest T.

	3

	Yes

	No

	No

	Packet level weighted round robin

This case can be reduced to the previous case by
introducing a cost per byte that is different for each
queue. Queues with lower weights have a higher cost per
byte. This way, it is still meaningful to compare the
consumption amongst different queues in order to select
the next queue.

w(i) = Weight of queue #i

t(i) = Tokens per byte for queue #i, defined as the
inverse weight of queue #i.
For example, if w[0..3] = [1:2:4:8],
then t[0..3] = [8:4:2:1]; if w[0..3] = [1:4:15:20],
then t[0..3] = [60:15:4:3].
Consuming one byte from queue #i requires consuming t(i)
tokens for queue #i.

T(i) = Accumulated number of tokens previously consumed
from queue #i. Every time a packet is consumed from
queue #i, T(i) is updated as: T(i) += pkt_len * t(i).
Next queue : queue with the smallest T.

	4

	No

	No

	No

	Packet level weighted round robin with variable queue
status

Reduce this case to the previous case by setting the
consumption of inactive queues to a high number, so that
the inactive queues will never be selected by the
smallest T logic.

To prevent T from overflowing as result of successive
accumulations, T(i) is truncated after each packet
consumption for all queues.
For example, T[0..3] = [1000, 1100, 1200, 1300]
is truncated to T[0..3] = [0, 100, 200, 300]
by subtracting the min T from T(i), i = 0..n.

This requires having at least one active queue in the
set of input queues, which is guaranteed by the dequeue
state machine never selecting an inactive traffic class.

mask(i) = Saturation mask for queue #i, defined as:

mask(i) = (queue #i is active)? 0 : 0xFFFFFFFF;

w(i) = Weight of queue #i

t(i) = Tokens per byte for queue #i, defined as the
inverse weight of queue #i.

T(i) = Accumulated numbers of tokens previously consumed
from queue #i.

Next queue : queue with smallest T.

Before packet consumption from queue #i:

T(i) |= mask(i)

After packet consumption from queue #i:

T(j) -= T(i), j != i

T(i) = pkt_len * t(i)

Note: T(j) uses the T(i) value before T(i) is updated.

43.2.4.6.6. Subport Traffic Class Oversubscription

43.2.4.6.6.1. Problem Statement

Oversubscription for subport traffic class X is a configuration-time event that occurs when
more bandwidth is allocated for traffic class X at the level of subport member pipes than
allocated for the same traffic class at the parent subport level.

The existence of the oversubscription for a specific subport and
traffic class is solely the result of pipe and
subport-level configuration as opposed to being created due
to dynamic evolution of the traffic load at run-time (as congestion is).

When the overall demand for traffic class X for the current subport is low,
the existence of the oversubscription condition does not represent a problem,
as demand for traffic class X is completely satisfied for all member pipes.
However, this can no longer be achieved when the aggregated demand for traffic class X
for all subport member pipes exceeds the limit configured at the subport level.

43.2.4.6.6.2. Solution Space

summarizes some of the possible approaches for handling this problem,
with the third approach selected for implementation.

Table 43.13 Subport Traffic Class Oversubscription

	No.

	Approach

	Description

	1

	Don’t care

	First come, first served.

This approach is not fair amongst subport member pipes, as pipes that
are served first will use up as much bandwidth for TC X as they need,
while pipes that are served later will receive poor service due to
bandwidth for TC X at the subport level being scarce.

	2

	Scale down all pipes

	All pipes within the subport have their bandwidth limit for TC X scaled
down by the same factor.

This approach is not fair among subport member pipes, as the low end
pipes (that is, pipes configured with low bandwidth) can potentially
experience severe service degradation that might render their service
unusable (if available bandwidth for these pipes drops below the
minimum requirements for a workable service), while the service
degradation for high end pipes might not be noticeable at all.

	3

	Cap the high demand pipes

	Each subport member pipe receives an equal share of the bandwidth
available at run-time for TC X at the subport level. Any bandwidth left
unused by the low-demand pipes is redistributed in equal portions to
the high-demand pipes. This way, the high-demand pipes are truncated
while the low-demand pipes are not impacted.

Typically, the subport TC oversubscription feature is enabled only for the lowest priority traffic class,
which is typically used for best effort traffic,
with the management plane preventing this condition from occurring for the other (higher priority) traffic classes.

To ease implementation, it is also assumed that the upper limit for subport best effort TC is set to 100% of the subport rate,
and that the upper limit for pipe best effort TC is set to 100% of pipe rate for all subport member pipes.

43.2.4.6.6.3. Implementation Overview

The algorithm computes a watermark, which is periodically updated based on the current demand experienced by the subport member pipes,
whose purpose is to limit the amount of traffic that each pipe is allowed to send for best effort TC.
The watermark is computed at the subport level at the beginning of each traffic class upper limit enforcement period and
the same value is used by all the subport member pipes throughout the current enforcement period.
illustrates how the watermark computed as subport level at the beginning of each period is propagated to all subport member pipes.

At the beginning of the current enforcement period (which coincides with the end of the previous enforcement period),
the value of the watermark is adjusted based on the amount of bandwidth allocated to best effort TC at the beginning of the previous period that
was not left unused by the subport member pipes at the end of the previous period.

If there was subport best effort TC bandwidth left unused,
the value of the watermark for the current period is increased to encourage the subport member pipes to consume more bandwidth.
Otherwise, the value of the watermark is decreased to enforce equality of bandwidth consumption among subport member pipes for best effort TC.

The increase or decrease in the watermark value is done in small increments,
so several enforcement periods might be required to reach the equilibrium state.
This state can change at any moment due to variations in the demand experienced by the subport member pipes for best effort TC, for example,
as a result of demand increase (when the watermark needs to be lowered) or demand decrease (when the watermark needs to be increased).

When demand is low, the watermark is set high to prevent it from impeding the subport member pipes from consuming more bandwidth.
The highest value for the watermark is picked as the highest rate configured for a subport member pipe.
Table 43.14 and Table 43.15 illustrates the watermark operation.

Table 43.14 Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period

	No.

	Subport Traffic Class Operation

	Description

	1

	Initialization

	Subport level: subport_period_id= 0

Pipe level: pipe_period_id = 0

	2

	Credit update

	Subport Level:

if (time>=subport_tc_time)

	{
	subport_wm = water_mark_update();

subport_tc_time = time + subport_tc_period;

subport_period_id++;

}

Pipelevel:

if(pipe_period_id != subport_period_id)

{

pipe_ov_credits = subport_wm * pipe_weight;

pipe_period_id = subport_period_id;

}

	3

	Credit consumption
(on packet scheduling)

	Pipe level:

pkt_credits = pk_len + frame_overhead;

if(pipe_ov_credits >= pkt_credits{

pipe_ov_credits -= pkt_credits;

}

Table 43.15 Watermark Calculation

	No.

	Subport Traffic
Class Operation

	Description

	1

	Initialization

	Subport level:

wm = WM_MAX

	2

	Credit update

	Subport level (water_mark_update):

tc0_cons = subport_tc0_credits_per_period - subport_tc0_credits;

tc1_cons = subport_tc1_credits_per_period - subport_tc1_credits;

tc2_cons = subport_tc2_credits_per_period - subport_tc2_credits;

tc3_cons = subport_tc3_credits_per_period - subport_tc3_credits;

tc4_cons = subport_tc4_credits_per_period - subport_tc4_credits;

tc5_cons = subport_tc5_credits_per_period - subport_tc5_credits;

tc6_cons = subport_tc6_credits_per_period - subport_tc6_credits;

tc7_cons = subport_tc7_credits_per_period - subport_tc7_credits;

tc8_cons = subport_tc8_credits_per_period - subport_tc8_credits;

tc9_cons = subport_tc9_credits_per_period - subport_tc9_credits;

tc10_cons = subport_tc10_credits_per_period - subport_tc10_credits;

tc11_cons = subport_tc11_credits_per_period - subport_tc11_credits;

tc_be_cons_max = subport_tc_be_credits_per_period - (tc0_cons + tc1_cons +
tc2_cons + tc3_cons + tc4_cons + tc5_cons + tc6_cons + tc7_cons + tc8_cons +
tc9_cons + tc10_cons + tc11_cons);

if(tc_be_consumption > (tc_be_consumption_max - MTU)){

wm -= wm >> 7;

if(wm < WM_MIN) wm = WM_MIN;

} else {

wm += (wm >> 7) + 1;

if(wm > WM_MAX) wm = WM_MAX;

}

43.2.5. Worst Case Scenarios for Performance

43.2.5.1. Lots of Active Queues with Not Enough Credits

The more queues the scheduler has to examine for packets and credits in order to select one packet,
the lower the performance of the scheduler is.

The scheduler maintains the bitmap of active queues, which skips the non-active queues,
but in order to detect whether a specific pipe has enough credits,
the pipe has to be drilled down using the pipe dequeue state machine,
which consumes cycles regardless of the scheduling result
(no packets are produced or at least one packet is produced).

This scenario stresses the importance of the policer for the scheduler performance:
if the pipe does not have enough credits,
its packets should be dropped as soon as possible (before they reach the hierarchical scheduler),
thus rendering the pipe queues as not active,
which allows the dequeue side to skip that pipe with no cycles being spent on investigating the pipe credits
that would result in a “not enough credits” status.

43.2.5.2. Single Queue with 100% Line Rate

The port scheduler performance is optimized for a large number of queues.
If the number of queues is small,
then the performance of the port scheduler for the same level of active traffic is expected to be worse than
the performance of a small set of message passing queues.

43.3. Dropper

The purpose of the DPDK dropper is to drop packets arriving at a packet scheduler to avoid congestion.
The dropper supports the Random Early Detection (RED),
Weighted Random Early Detection (WRED) and tail drop algorithms.
Fig. 43.8 illustrates how the dropper integrates with the scheduler.
The DPDK currently does not support congestion management
so the dropper provides the only method for congestion avoidance.

[image: ../_images/blk_diag_dropper.png]

Fig. 43.8 High-level Block Diagram of the DPDK Dropper

The dropper uses the Random Early Detection (RED) congestion avoidance algorithm as documented in the reference publication.
The purpose of the RED algorithm is to monitor a packet queue,
determine the current congestion level in the queue and decide whether an arriving packet should be enqueued or dropped.
The RED algorithm uses an Exponential Weighted Moving Average (EWMA) filter to compute average queue size which
gives an indication of the current congestion level in the queue.

For each enqueue operation, the RED algorithm compares the average queue size to minimum and maximum thresholds.
Depending on whether the average queue size is below, above or in between these thresholds,
the RED algorithm calculates the probability that an arriving packet should be dropped and
makes a random decision based on this probability.

The dropper also supports Weighted Random Early Detection (WRED) by allowing the scheduler to select
different RED configurations for the same packet queue at run-time.
In the case of severe congestion, the dropper resorts to tail drop.
This occurs when a packet queue has reached maximum capacity and cannot store any more packets.
In this situation, all arriving packets are dropped.

The flow through the dropper is illustrated in Fig. 43.9.
The RED/WRED algorithm is exercised first and tail drop second.

[image: ../_images/flow_tru_droppper.png]

Fig. 43.9 Flow Through the Dropper

The use cases supported by the dropper are:

	
	Initialize configuration data

	
	Initialize run-time data

	
	Enqueue (make a decision to enqueue or drop an arriving packet)

	
	Mark empty (record the time at which a packet queue becomes empty)

The configuration use case is explained in Section2.23.3.1,
the enqueue operation is explained in Section 2.23.3.2
and the mark empty operation is explained in Section 2.23.3.3.

43.3.1. Configuration

A RED configuration contains the parameters given in Table 43.16.

Table 43.16 RED Configuration Parameters

	Parameter

	Minimum

	Maximum

	Typical

	Minimum Threshold

	0

	1022

	1/4 x queue size

	Maximum Threshold

	1

	1023

	1/2 x queue size

	Inverse Mark Probability

	1

	255

	10

	EWMA Filter Weight

	1

	12

	9

The meaning of these parameters is explained in more detail in the following sections.
The format of these parameters as specified to the dropper module API
corresponds to the format used by Cisco* in their RED implementation.
The minimum and maximum threshold parameters are specified to the dropper module in terms of number of packets.
The mark probability parameter is specified as an inverse value, for example,
an inverse mark probability parameter value of 10 corresponds
to a mark probability of 1/10 (that is, 1 in 10 packets will be dropped).
The EWMA filter weight parameter is specified as an inverse log value,
for example, a filter weight parameter value of 9 corresponds to a filter weight of 1/29.

43.3.2. Enqueue Operation

In the example shown in Fig. 43.10, q (actual queue size) is the input value,
avg (average queue size) and count (number of packets since the last drop) are run-time values,
decision is the output value and the remaining values are configuration parameters.

[image: ../_images/ex_data_flow_tru_dropper.png]

Fig. 43.10 Example Data Flow Through Dropper

43.3.2.1. EWMA Filter Microblock

The purpose of the EWMA Filter microblock is to filter queue size values to smooth out transient changes
that result from “bursty” traffic.
The output value is the average queue size which gives a more stable view of the current congestion level in the queue.

The EWMA filter has one configuration parameter, filter weight, which determines how quickly
or slowly the average queue size output responds to changes in the actual queue size input.
Higher values of filter weight mean that the average queue size responds more quickly to changes in actual queue size.

43.3.2.1.1. Average Queue Size Calculation when the Queue is not Empty

The definition of the EWMA filter is given in the following equation.

[image: ../_images/ewma_filter_eq_1.png]
Where:

	avg = average queue size

	wq = filter weight

	q = actual queue size

Note

	The filter weight, wq = 1/2^n, where n is the filter weight parameter value passed to the dropper module
	on configuration (see Section2.23.3.1).

43.3.2.2. Average Queue Size Calculation when the Queue is Empty

The EWMA filter does not read time stamps and instead assumes that enqueue operations will happen quite regularly.
Special handling is required when the queue becomes empty as the queue could be empty for a short time or a long time.
When the queue becomes empty, average queue size should decay gradually to zero instead of dropping suddenly to zero
or remaining stagnant at the last computed value.
When a packet is enqueued on an empty queue, the average queue size is computed using the following formula:

[image: ../_images/ewma_filter_eq_2.png]
Where:

	m = the number of enqueue operations that could have occurred on this queue while the queue was empty

In the dropper module, m is defined as:

[image: ../_images/m_definition.png]
Where:

	time = current time

	qtime = time the queue became empty

	s = typical time between successive enqueue operations on this queue

The time reference is in units of bytes,
where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium
(see Section Internal Time Reference).
The parameter s is defined in the dropper module as a constant with the value: s=2^22.
This corresponds to the time required by every leaf node in a hierarchy with 64K leaf nodes
to transmit one 64-byte packet onto the wire and represents the worst case scenario.
For much smaller scheduler hierarchies,
it may be necessary to reduce the parameter s, which is defined in the red header source file (rte_red.h) as:

#define RTE_RED_S

Since the time reference is in bytes, the port speed is implied in the expression: time-qtime.
The dropper does not have to be configured with the actual port speed.
It adjusts automatically to low speed and high speed links.

43.3.2.2.1. Implementation

A numerical method is used to compute the factor (1-wq)^m that appears in Equation 2.

This method is based on the following identity:

[image: ../_images/eq2_factor.png]
This allows us to express the following:

[image: ../_images/eq2_expression.png]
In the dropper module, a look-up table is used to compute log2(1-wq) for each value of wq supported by the dropper module.
The factor (1-wq)^m can then be obtained by multiplying the table value by m and applying shift operations.
To avoid overflow in the multiplication, the value, m, and the look-up table values are limited to 16 bits.
The total size of the look-up table is 56 bytes.
Once the factor (1-wq)^m is obtained using this method, the average queue size can be calculated from Equation 2.

43.3.2.2.2. Alternative Approaches

Other methods for calculating the factor (1-wq)^m in the expression for computing average queue size
when the queue is empty (Equation 2) were considered.
These approaches include:

	Floating-point evaluation

	Fixed-point evaluation using a small look-up table (512B) and up to 16 multiplications
(this is the approach used in the FreeBSD* ALTQ RED implementation)

	Fixed-point evaluation using a small look-up table (512B) and 16 SSE multiplications
(SSE optimized version of the approach used in the FreeBSD* ALTQ RED implementation)

	Large look-up table (76 KB)

The method that was finally selected (described above in Section 26.3.2.2.1) out performs all of these approaches
in terms of run-time performance and memory requirements and
also achieves accuracy comparable to floating-point evaluation.
Table 43.17 lists the performance of each of these alternative approaches relative to the method that is used in the dropper.
As can be seen, the floating-point implementation achieved the worst performance.

Table 43.17 Relative Performance of Alternative Approaches

	Method

	Relative Performance

	Current dropper method (see Section 23.3.2.1.3)

	100%

	Fixed-point method with small (512B) look-up table

	148%

	SSE method with small (512B) look-up table

	114%

	Large (76KB) look-up table

	118%

	Floating-point

	595%

	Note: In this case, since performance is expressed as time spent executing the operation in a
specific condition, any relative performance value above 100% runs slower than the reference method.

43.3.2.3. Drop Decision Block

The Drop Decision block:

	Compares the average queue size with the minimum and maximum thresholds

	Calculates a packet drop probability

	Makes a random decision to enqueue or drop an arriving packet

The calculation of the drop probability occurs in two stages.
An initial drop probability is calculated based on the average queue size,
the minimum and maximum thresholds and the mark probability.
An actual drop probability is then computed from the initial drop probability.
The actual drop probability takes the count run-time value into consideration
so that the actual drop probability increases as more packets arrive to the packet queue
since the last packet was dropped.

43.3.2.3.1. Initial Packet Drop Probability

The initial drop probability is calculated using the following equation.

[image: ../_images/drop_probability_eq3.png]
Where:

	maxp = mark probability

	avg = average queue size

	minth = minimum threshold

	maxth = maximum threshold

The calculation of the packet drop probability using Equation 3 is illustrated in Fig. 43.11.
If the average queue size is below the minimum threshold, an arriving packet is enqueued.
If the average queue size is at or above the maximum threshold, an arriving packet is dropped.
If the average queue size is between the minimum and maximum thresholds,
a drop probability is calculated to determine if the packet should be enqueued or dropped.

[image: ../_images/pkt_drop_probability.png]

Fig. 43.11 Packet Drop Probability for a Given RED Configuration

43.3.2.3.2. Actual Drop Probability

If the average queue size is between the minimum and maximum thresholds,
then the actual drop probability is calculated from the following equation.

[image: ../_images/drop_probability_eq4.png]
Where:

	Pb = initial drop probability (from Equation 3)

	count = number of packets that have arrived since the last drop

The constant 2, in Equation 4 is the only deviation from the drop probability formulae
given in the reference document where a value of 1 is used instead.
It should be noted that the value pa computed from can be negative or greater than 1.
If this is the case, then a value of 1 should be used instead.

The initial and actual drop probabilities are shown in Fig. 43.12.
The actual drop probability is shown for the case where
the formula given in the reference document1 is used (blue curve)
and also for the case where the formula implemented in the dropper module,
is used (red curve).
The formula in the reference document results in a significantly higher drop rate
compared to the mark probability configuration parameter specified by the user.
The choice to deviate from the reference document is simply a design decision and
one that has been taken by other RED implementations, for example, FreeBSD* ALTQ RED.

[image: ../_images/drop_probability_graph.png]

Fig. 43.12 Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using
a Factor 1 (Blue Curve) and a Factor 2 (Red Curve)

43.3.3. Queue Empty Operation

The time at which a packet queue becomes empty must be recorded and saved with the RED run-time data
so that the EWMA filter block can calculate the average queue size on the next enqueue operation.
It is the responsibility of the calling application to inform the dropper module
through the API that a queue has become empty.

43.3.4. Source Files Location

The source files for the DPDK dropper are located at:

	DPDK/lib/librte_sched/rte_red.h

	DPDK/lib/librte_sched/rte_red.c

43.3.5. Integration with the DPDK QoS Scheduler

RED functionality in the DPDK QoS scheduler is disabled by default.
To enable it, use the DPDK configuration parameter:

CONFIG_RTE_SCHED_RED=y

This parameter must be set to y.
The parameter is found in the build configuration files in the DPDK/config directory,
for example, DPDK/config/common_linux.
RED configuration parameters are specified in the rte_red_params structure within the rte_sched_port_params structure
that is passed to the scheduler on initialization.
RED parameters are specified separately for four traffic classes and three packet colors (green, yellow and red)
allowing the scheduler to implement Weighted Random Early Detection (WRED).

43.3.6. Integration with the DPDK QoS Scheduler Sample Application

The DPDK QoS Scheduler Application reads a configuration file on start-up.
The configuration file includes a section containing RED parameters.
The format of these parameters is described in Section2.23.3.1.
A sample RED configuration is shown below. In this example, the queue size is 64 packets.

Note

For correct operation, the same EWMA filter weight parameter (wred weight) should be used
for each packet color (green, yellow, red) in the same traffic class (tc).

 ; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 28 22 16
tc 0 wred max = 32 32 32
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 28 22 16
tc 1 wred max = 32 32 32
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 28 22 16
tc 2 wred max = 32 32 32
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 28 22 16
tc 3 wred max = 32 32 32
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

tc 4 wred min = 28 22 16
tc 4 wred max = 32 32 32
tc 4 wred inv prob = 10 10 10
tc 4 wred weight = 9 9 9

tc 5 wred min = 28 22 16
tc 5 wred max = 32 32 32
tc 5 wred inv prob = 10 10 10
tc 5 wred weight = 9 9 9

tc 6 wred min = 28 22 16
tc 6 wred max = 32 32 32
tc 6 wred inv prob = 10 10 10
tc 6 wred weight = 9 9 9

tc 7 wred min = 28 22 16
tc 7 wred max = 32 32 32
tc 7 wred inv prob = 10 10 10
tc 7 wred weight = 9 9 9

tc 8 wred min = 28 22 16
tc 8 wred max = 32 32 32
tc 8 wred inv prob = 10 10 10
tc 8 wred weight = 9 9 9

tc 9 wred min = 28 22 16
tc 9 wred max = 32 32 32
tc 9 wred inv prob = 10 10 10
tc 9 wred weight = 9 9 9

tc 10 wred min = 28 22 16
tc 10 wred max = 32 32 32
tc 10 wred inv prob = 10 10 10
tc 10 wred weight = 9 9 9

tc 11 wred min = 28 22 16
tc 11 wred max = 32 32 32
tc 11 wred inv prob = 10 10 10
tc 11 wred weight = 9 9 9

tc 12 wred min = 28 22 16
tc 12 wred max = 32 32 32
tc 12 wred inv prob = 10 10 10
tc 12 wred weight = 9 9 9

With this configuration file, the RED configuration that applies to green,
yellow and red packets in traffic class 0 is shown in Table 43.18.

Table 43.18 RED Configuration Corresponding to RED Configuration File

	RED Parameter

	Configuration Name

	Green

	Yellow

	Red

	Minimum Threshold

	tc 0 wred min

	28

	22

	16

	Maximum Threshold

	tc 0 wred max

	32

	32

	32

	Mark Probability

	tc 0 wred inv prob

	10

	10

	10

	EWMA Filter Weight

	tc 0 wred weight

	9

	9

	9

43.3.7. Application Programming Interface (API)

43.3.7.1. Enqueue API

The syntax of the enqueue API is as follows:

int rte_red_enqueue(const struct rte_red_config *red_cfg, struct rte_red *red, const unsigned q, const uint64_t time)

The arguments passed to the enqueue API are configuration data, run-time data,
the current size of the packet queue (in packets) and a value representing the current time.
The time reference is in units of bytes,
where a byte signifies the time duration required by the physical interface to send out a byte on the transmission medium
(see Section 26.2.4.5.1 “Internal Time Reference”).
The dropper reuses the scheduler time stamps for performance reasons.

43.3.7.2. Empty API

The syntax of the empty API is as follows:

void rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)

The arguments passed to the empty API are run-time data and the current time in bytes.

43.4. Traffic Metering

The traffic metering component implements the Single Rate Three Color Marker (srTCM) and
Two Rate Three Color Marker (trTCM) algorithms, as defined by IETF RFC 2697 and 2698 respectively.
These algorithms meter the stream of incoming packets based on the allowance defined in advance for each traffic flow.
As result, each incoming packet is tagged as green,
yellow or red based on the monitored consumption of the flow the packet belongs to.

43.4.1. Functional Overview

The srTCM algorithm defines two token buckets for each traffic flow,
with the two buckets sharing the same token update rate:

	Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate (CIR) parameter
(measured in IP packet bytes per second).
The size of the C bucket is defined by the Committed Burst Size (CBS) parameter (measured in bytes);

	Excess (E) bucket: fed with tokens at the same rate as the C bucket.
The size of the E bucket is defined by the Excess Burst Size (EBS) parameter (measured in bytes).

The trTCM algorithm defines two token buckets for each traffic flow,
with the two buckets being updated with tokens at independent rates:

	Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate (CIR) parameter
(measured in bytes of IP packet per second).
The size of the C bucket is defined by the Committed Burst Size (CBS) parameter (measured in bytes);

	Peak (P) bucket: fed with tokens at the rate defined by the Peak Information Rate (PIR) parameter
(measured in IP packet bytes per second).
The size of the P bucket is defined by the Peak Burst Size (PBS) parameter (measured in bytes).

Please refer to RFC 2697 (for srTCM) and RFC 2698 (for trTCM) for details on how tokens are consumed
from the buckets and how the packet color is determined.

43.4.1.1. Color Blind and Color Aware Modes

For both algorithms, the color blind mode is functionally equivalent to the color aware mode with input color set as green.
For color aware mode, a packet with red input color can only get the red output color,
while a packet with yellow input color can only get the yellow or red output colors.

The reason why the color blind mode is still implemented distinctly than the color aware mode is
that color blind mode can be implemented with fewer operations than the color aware mode.

43.4.2. Implementation Overview

For each input packet, the steps for the srTCM / trTCM algorithms are:

	Update the C and E / P token buckets. This is done by reading the current time (from the CPU timestamp counter),
identifying the amount of time since the last bucket update and computing the associated number of tokens
(according to the pre-configured bucket rate).
The number of tokens in the bucket is limited by the pre-configured bucket size;

	Identify the output color for the current packet based on the size of the IP packet
and the amount of tokens currently available in the C and E / P buckets; for color aware mode only,
the input color of the packet is also considered.
When the output color is not red, a number of tokens equal to the length of the IP packet are
subtracted from the C or E /P or both buckets, depending on the algorithm and the output color of the packet.

44. Power Management

The DPDK Power Management feature allows users space applications to save power
by dynamically adjusting CPU frequency or entering into different C-States.

	Adjusting the CPU frequency dynamically according to the utilization of RX queue.

	Entering into different deeper C-States according to the adaptive algorithms to speculate
brief periods of time suspending the application if no packets are received.

The interfaces for adjusting the operating CPU frequency are in the power management library.
C-State control is implemented in applications according to the different use cases.

44.1. CPU Frequency Scaling

The Linux kernel provides a cpufreq module for CPU frequency scaling for each lcore.
For example, for cpuX, /sys/devices/system/cpu/cpuX/cpufreq/ has the following sys files for frequency scaling:

	affected_cpus

	bios_limit

	cpuinfo_cur_freq

	cpuinfo_max_freq

	cpuinfo_min_freq

	cpuinfo_transition_latency

	related_cpus

	scaling_available_frequencies

	scaling_available_governors

	scaling_cur_freq

	scaling_driver

	scaling_governor

	scaling_max_freq

	scaling_min_freq

	scaling_setspeed

In the DPDK, scaling_governor is configured in user space.
Then, a user space application can prompt the kernel by writing scaling_setspeed to adjust the CPU frequency
according to the strategies defined by the user space application.

44.2. Core-load Throttling through C-States

Core state can be altered by speculative sleeps whenever the specified lcore has nothing to do.
In the DPDK, if no packet is received after polling,
speculative sleeps can be triggered according the strategies defined by the user space application.

44.3. Per-core Turbo Boost

Individual cores can be allowed to enter a Turbo Boost state on a per-core
basis. This is achieved by enabling Turbo Boost Technology in the BIOS, then
looping through the relevant cores and enabling/disabling Turbo Boost on each
core.

44.4. Use of Power Library in a Hyper-Threaded Environment

In the case where the power library is in use on a system with Hyper-Threading enabled,
the frequency on the physical core is set to the highest frequency of the Hyper-Thread siblings.
So even though an application may request a scale down, the core frequency will
remain at the highest frequency until all Hyper-Threads on that core request a scale down.

44.5. API Overview of the Power Library

The main methods exported by power library are for CPU frequency scaling and include the following:

	Freq up: Prompt the kernel to scale up the frequency of the specific lcore.

	Freq down: Prompt the kernel to scale down the frequency of the specific lcore.

	Freq max: Prompt the kernel to scale up the frequency of the specific lcore to the maximum.

	Freq min: Prompt the kernel to scale down the frequency of the specific lcore to the minimum.

	Get available freqs: Read the available frequencies of the specific lcore from the sys file.

	Freq get: Get the current frequency of the specific lcore.

	Freq set: Prompt the kernel to set the frequency for the specific lcore.

	Enable turbo: Prompt the kernel to enable Turbo Boost for the specific lcore.

	Disable turbo: Prompt the kernel to disable Turbo Boost for the specific lcore.

44.6. User Cases

The power management mechanism is used to save power when performing L3 forwarding.

44.7. Empty Poll API

44.7.1. Abstract

For packet processing workloads such as DPDK polling is continuous.
This means CPU cores always show 100% busy independent of how much work
those cores are doing. It is critical to accurately determine how busy
a core is hugely important for the following reasons:

	No indication of overload conditions

	User does not know how much real load is on a system, resulting
in wasted energy as no power management is utilized

Compared to the original l3fwd-power design, instead of going to sleep
after detecting an empty poll, the new mechanism just lowers the core frequency.
As a result, the application does not stop polling the device, which leads
to improved handling of bursts of traffic.

When the system become busy, the empty poll mechanism can also increase the core
frequency (including turbo) to do best effort for intensive traffic. This gives
us more flexible and balanced traffic awareness over the standard l3fwd-power
application.

44.7.2. Proposed Solution

The proposed solution focuses on how many times empty polls are executed.
The less the number of empty polls, means current core is busy with processing
workload, therefore, the higher frequency is needed. The high empty poll number
indicates the current core not doing any real work therefore, we can lower the
frequency to safe power.

In the current implementation, each core has 1 empty-poll counter which assume
1 core is dedicated to 1 queue. This will need to be expanded in the future to
support multiple queues per core.

44.7.2.1. Power state definition:

	LOW: Not currently used, reserved for future use.

	MED: the frequency is used to process modest traffic workload.

	HIGH: the frequency is used to process busy traffic workload.

44.7.2.2. There are two phases to establish the power management system:

	Training phase. This phase is used to measure the optimal frequency
change thresholds for a given system. The thresholds will differ from
system to system due to differences in processor micro-architecture,
cache and device configurations.
In this phase, the user must ensure that no traffic can enter the
system so that counts can be measured for empty polls at low, medium
and high frequencies. Each frequency is measured for two seconds.
Once the training phase is complete, the threshold numbers are
displayed, and normal mode resumes, and traffic can be allowed into
the system. These threshold number can be used on the command line
when starting the application in normal mode to avoid re-training
every time.

	Normal phase. Every 10ms the run-time counters are compared
to the supplied threshold values, and the decision will be made
whether to move to a different power state (by adjusting the
frequency).

44.7.3. API Overview for Empty Poll Power Management

	State Init: initialize the power management system.

	State Free: free the resource hold by power management system.

	Update Empty Poll Counter: update the empty poll counter.

	Update Valid Poll Counter: update the valid poll counter.

	Set the Frequency Index: update the power state/frequency mapping.

	Detect empty poll state change: empty poll state change detection algorithm then take action.

44.8. User Cases

The mechanism can applied to any device which is based on polling. e.g. NIC, FPGA.

44.9. References

	The L3 Forwarding with Power Management Sample Application
chapter in the Sample Applications User Guides section.

	The Virtual Machine Power Management Application
chapter in the Sample Applications User Guides section.

45. Packet Classification and Access Control

The DPDK provides an Access Control library that gives the ability
to classify an input packet based on a set of classification rules.

The ACL library is used to perform an N-tuple search over a set of rules with multiple categories
and find the best match (highest priority) for each category.
The library API provides the following basic operations:

	Create a new Access Control (AC) context.

	Add rules into the context.

	For all rules in the context, build the runtime structures necessary to perform packet classification.

	Perform input packet classifications.

	Destroy an AC context and its runtime structures and free the associated memory.

45.1. Overview

45.1.1. Rule definition

The current implementation allows the user for each AC context to specify its own rule (set of fields)
over which packet classification will be performed.
Though there are few restrictions on the rule fields layout:

	First field in the rule definition has to be one byte long.

	All subsequent fields has to be grouped into sets of 4 consecutive bytes.

This is done mainly for performance reasons - search function processes the first input byte as part of the flow setup and then the inner loop of the search function is unrolled to process four input bytes at a time.

To define each field inside an AC rule, the following structure is used:

struct rte_acl_field_def {
 uint8_t type; /*< type - ACL_FIELD_TYPE. */
 uint8_t size; /*< size of field 1,2,4, or 8. */
 uint8_t field_index; /*< index of field inside the rule. */
 uint8_t input_index; /*< 0-N input index. */
 uint32_t offset; /*< offset to start of field. */
};

	type
The field type is one of three choices:

	_MASK - for fields such as IP addresses that have a value and a mask defining the number of relevant bits.

	_RANGE - for fields such as ports that have a lower and upper value for the field.

	_BITMASK - for fields such as protocol identifiers that have a value and a bit mask.

	size
The size parameter defines the length of the field in bytes. Allowable values are 1, 2, 4, or 8 bytes.
Note that due to the grouping of input bytes, 1 or 2 byte fields must be defined as consecutive fields
that make up 4 consecutive input bytes.
Also, it is best to define fields of 8 or more bytes as 4 byte fields so that
the build processes can eliminate fields that are all wild.

	field_index
A zero-based value that represents the position of the field inside the rule; 0 to N-1 for N fields.

	input_index
As mentioned above, all input fields, except the very first one, must be in groups of 4 consecutive bytes.
The input index specifies to which input group that field belongs to.

	offset
The offset field defines the offset for the field.
This is the offset from the beginning of the buffer parameter for the search.

For example, to define classification for the following IPv4 5-tuple structure:

struct ipv4_5tuple {
 uint8_t proto;
 uint32_t ip_src;
 uint32_t ip_dst;
 uint16_t port_src;
 uint16_t port_dst;
};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[5] = {
 /* first input field - always one byte long. */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct ipv4_5tuple, proto),
 },

 /* next input field (IPv4 source address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct ipv4_5tuple, ip_src),
 },

 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct ipv4_5tuple, ip_dst),
 },

 /*
 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
 * They share the same input index.
 */
 {
 .type = RTE_ACL_FIELD_TYPE_RANGE,
 .size = sizeof (uint16_t),
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct ipv4_5tuple, port_src),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_RANGE,
 .size = sizeof (uint16_t),
 .field_index = 4,
 .input_index = 3,
 .offset = offsetof (struct ipv4_5tuple, port_dst),
 },
};

A typical example of such an IPv4 5-tuple rule is a follows:

source addr/mask destination addr/mask source ports dest ports protocol/mask
192.168.1.0/24 192.168.2.31/32 0:65535 1234:1234 17/0xff

Any IPv4 packets with protocol ID 17 (UDP), source address 192.168.1.[0-255], destination address 192.168.2.31,
source port [0-65535] and destination port 1234 matches the above rule.

To define classification for the IPv6 2-tuple: <protocol, IPv6 source address> over the following IPv6 header structure:

struct rte_ipv6_hdr {
 uint32_t vtc_flow; /* IP version, traffic class & flow label. */
 uint16_t payload_len; /* IP packet length - includes sizeof(ip_header). */
 uint8_t proto; /* Protocol, next header. */
 uint8_t hop_limits; /* Hop limits. */
 uint8_t src_addr[16]; /* IP address of source host. */
 uint8_t dst_addr[16]; /* IP address of destination host(s). */
} __rte_packed;

The following array of field definitions can be used:

struct rte_acl_field_def ipv6_2tuple_defs[5] = {
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct rte_ipv6_hdr, proto),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct rte_ipv6_hdr, src_addr[0]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct rte_ipv6_hdr, src_addr[4]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct rte_ipv6_hdr, src_addr[8]),
 },

 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 4,
 .input_index = 4,
 .offset = offsetof (struct rte_ipv6_hdr, src_addr[12]),
 },
};

A typical example of such an IPv6 2-tuple rule is a follows:

source addr/mask protocol/mask
2001:db8:1234:0000:0000:0000:0000:0000/48 6/0xff

Any IPv6 packets with protocol ID 6 (TCP), and source address inside the range
[2001:db8:1234:0000:0000:0000:0000:0000 - 2001:db8:1234:ffff:ffff:ffff:ffff:ffff] matches the above rule.

In the following example the last element of the search key is 8-bit long.
So it is a case where the 4 consecutive bytes of an input field are not fully occupied.
The structure for the classification is:

struct acl_key {
 uint8_t ip_proto;
 uint32_t ip_src;
 uint32_t ip_dst;
 uint8_t tos; /*< This is partially using a 32-bit input element */
};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[4] = {
 /* first input field - always one byte long. */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint8_t),
 .field_index = 0,
 .input_index = 0,
 .offset = offsetof (struct acl_key, ip_proto),
 },

 /* next input field (IPv4 source address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 1,
 .input_index = 1,
 .offset = offsetof (struct acl_key, ip_src),
 },

 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
 {
 .type = RTE_ACL_FIELD_TYPE_MASK,
 .size = sizeof (uint32_t),
 .field_index = 2,
 .input_index = 2,
 .offset = offsetof (struct acl_key, ip_dst),
 },

 /*
 * Next element of search key (Type of Service) is indeed 1 byte long.
 * Anyway we need to allocate all the 4 consecutive bytes for it.
 */
 {
 .type = RTE_ACL_FIELD_TYPE_BITMASK,
 .size = sizeof (uint32_t), /* All the 4 consecutive bytes are allocated */
 .field_index = 3,
 .input_index = 3,
 .offset = offsetof (struct acl_key, tos),
 },
};

A typical example of such an IPv4 4-tuple rule is as follows:

source addr/mask destination addr/mask tos/mask protocol/mask
192.168.1.0/24 192.168.2.31/32 1/0xff 6/0xff

Any IPv4 packets with protocol ID 6 (TCP), source address 192.168.1.[0-255], destination address 192.168.2.31,
ToS 1 matches the above rule.

When creating a set of rules, for each rule, additional information must be supplied also:

	priority: A weight to measure the priority of the rules (higher is better).
If the input tuple matches more than one rule, then the rule with the higher priority is returned.
Note that if the input tuple matches more than one rule and these rules have equal priority,
it is undefined which rule is returned as a match.
It is recommended to assign a unique priority for each rule.

	category_mask: Each rule uses a bit mask value to select the relevant category(s) for the rule.
When a lookup is performed, the result for each category is returned.
This effectively provides a “parallel lookup” by enabling a single search to return multiple results if,
for example, there were four different sets of ACL rules, one for access control, one for routing, and so on.
Each set could be assigned its own category and by combining them into a single database,
one lookup returns a result for each of the four sets.

	userdata: A user-defined value.
For each category, a successful match returns the userdata field of the highest priority matched rule.
When no rules match, returned value is zero.

Note

When adding new rules into an ACL context, all fields must be in host byte order (LSB).
When the search is performed for an input tuple, all fields in that tuple must be in network byte order (MSB).

45.1.2. RT memory size limit

Build phase (rte_acl_build()) creates for a given set of rules internal structure for further run-time traversal.
With current implementation it is a set of multi-bit tries (with stride == 8).
Depending on the rules set, that could consume significant amount of memory.
In attempt to conserve some space ACL build process tries to split the given
rule-set into several non-intersecting subsets and construct a separate trie
for each of them.
Depending on the rule-set, it might reduce RT memory requirements but might
increase classification time.
There is a possibility at build-time to specify maximum memory limit for internal RT structures for given AC context.
It could be done via max_size field of the rte_acl_config structure.
Setting it to the value greater than zero, instructs rte_acl_build() to:

	attempt to minimize number of tries in the RT table, but

	make sure that size of RT table wouldn’t exceed given value.

Setting it to zero makes rte_acl_build() to use the default behavior:
try to minimize size of the RT structures, but doesn’t expose any hard limit on it.

That gives the user the ability to decisions about performance/space trade-off.
For example:

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/*
 * assuming that acx points to already created and
 * populated with rules AC context and cfg filled properly.
 */

 /* try to build AC context, with RT structures less then 8MB. */
 cfg.max_size = 0x800000;
 ret = rte_acl_build(acx, &cfg);

 /*
 * RT structures can't fit into 8MB for given context.
 * Try to build without exposing any hard limit.
 */
 if (ret == -ERANGE) {
 cfg.max_size = 0;
 ret = rte_acl_build(acx, &cfg);
 }

45.1.3. Classification methods

After rte_acl_build() over given AC context has finished successfully, it can be used to perform classification - search for a rule with highest priority over the input data.
There are several implementations of classify algorithm:

	RTE_ACL_CLASSIFY_SCALAR: generic implementation, doesn’t require any specific HW support.

	RTE_ACL_CLASSIFY_SSE: vector implementation, can process up to 8 flows in parallel. Requires SSE 4.1 support.

	RTE_ACL_CLASSIFY_AVX2: vector implementation, can process up to 16 flows in parallel. Requires AVX2 support.

It is purely a runtime decision which method to choose, there is no build-time difference.
All implementations operates over the same internal RT structures and use similar principles. The main difference is that vector implementations can manually exploit IA SIMD instructions and process several input data flows in parallel.
At startup ACL library determines the highest available classify method for the given platform and sets it as default one. Though the user has an ability to override the default classifier function for a given ACL context or perform particular search using non-default classify method. In that case it is user responsibility to make sure that given platform supports selected classify implementation.

45.2. Application Programming Interface (API) Usage

Note

For more details about the Access Control API, please refer to the DPDK API Reference.

The following example demonstrates IPv4, 5-tuple classification for rules defined above
with multiple categories in more detail.

45.2.1. Classify with Multiple Categories

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/* define a structure for the rule with up to 5 fields. */

RTE_ACL_RULE_DEF(acl_ipv4_rule, RTE_DIM(ipv4_defs));

/* AC context creation parameters. */

struct rte_acl_param prm = {
 .name = "ACL_example",
 .socket_id = SOCKET_ID_ANY,
 .rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ipv4_defs)),

 /* number of fields per rule. */

 .max_rule_num = 8, /* maximum number of rules in the AC context. */
};

struct acl_ipv4_rule acl_rules[] = {

 /* matches all packets traveling to 192.168.0.0/16, applies for categories: 0,1 */
 {
 .data = {.userdata = 1, .category_mask = 3, .priority = 1},

 /* destination IPv4 */
 .field[2] = {.value.u32 = RTE_IPV4(192,168,0,0),. mask_range.u32 = 16,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

 /* matches all packets traveling to 192.168.1.0/24, applies for categories: 0 */
 {
 .data = {.userdata = 2, .category_mask = 1, .priority = 2},

 /* destination IPv4 */
 .field[2] = {.value.u32 = RTE_IPV4(192,168,1,0),. mask_range.u32 = 24,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

 /* matches all packets traveling from 10.1.1.1, applies for categories: 1 */
 {
 .data = {.userdata = 3, .category_mask = 2, .priority = 3},

 /* source IPv4 */
 .field[1] = {.value.u32 = RTE_IPV4(10,1,1,1),. mask_range.u32 = 32,},

 /* source port */
 .field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

 /* destination port */
 .field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
 },

};

/* create an empty AC context */

if ((acx = rte_acl_create(&prm)) == NULL) {

 /* handle context create failure. */

}

/* add rules to the context */

ret = rte_acl_add_rules(acx, acl_rules, RTE_DIM(acl_rules));
if (ret != 0) {
 /* handle error at adding ACL rules. */
}

/* prepare AC build config. */

cfg.num_categories = 2;
cfg.num_fields = RTE_DIM(ipv4_defs);

memcpy(cfg.defs, ipv4_defs, sizeof (ipv4_defs));

/* build the runtime structures for added rules, with 2 categories. */

ret = rte_acl_build(acx, &cfg);
if (ret != 0) {
 /* handle error at build runtime structures for ACL context. */
}

For a tuple with source IP address: 10.1.1.1 and destination IP address: 192.168.1.15,
once the following lines are executed:

uint32_t results[4]; /* make classify for 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

then the results[] array contains:

results[4] = {2, 3, 0, 0};

	For category 0, both rules 1 and 2 match, but rule 2 has higher priority,
therefore results[0] contains the userdata for rule 2.

	For category 1, both rules 1 and 3 match, but rule 3 has higher priority,
therefore results[1] contains the userdata for rule 3.

	For categories 2 and 3, there are no matches, so results[2] and results[3] contain zero,
which indicates that no matches were found for those categories.

For a tuple with source IP address: 192.168.1.1 and destination IP address: 192.168.2.11,
once the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {1, 1, 0, 0};

	For categories 0 and 1, only rule 1 matches.

	For categories 2 and 3, there are no matches.

For a tuple with source IP address: 10.1.1.1 and destination IP address: 201.212.111.12,
once the following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {0, 3, 0, 0};

	For category 1, only rule 3 matches.

	For categories 0, 2 and 3, there are no matches.

46. Packet Framework

46.1. Design Objectives

The main design objectives for the DPDK Packet Framework are:

	Provide standard methodology to build complex packet processing pipelines.
Provide reusable and extensible templates for the commonly used pipeline functional blocks;

	Provide capability to switch between pure software and hardware-accelerated implementations for the same pipeline functional block;

	Provide the best trade-off between flexibility and performance.
Hardcoded pipelines usually provide the best performance, but are not flexible,
while developing flexible frameworks is never a problem, but performance is usually low;

	Provide a framework that is logically similar to Open Flow.

46.2. Overview

Packet processing applications are frequently structured as pipelines of multiple stages,
with the logic of each stage glued around a lookup table.
For each incoming packet, the table defines the set of actions to be applied to the packet,
as well as the next stage to send the packet to.

The DPDK Packet Framework minimizes the development effort required to build packet processing pipelines
by defining a standard methodology for pipeline development,
as well as providing libraries of reusable templates for the commonly used pipeline blocks.

The pipeline is constructed by connecting the set of input ports with the set of output ports
through the set of tables in a tree-like topology.
As result of lookup operation for the current packet in the current table,
one of the table entries (on lookup hit) or the default table entry (on lookup miss)
provides the set of actions to be applied on the current packet,
as well as the next hop for the packet, which can be either another table, an output port or packet drop.

An example of packet processing pipeline is presented in Fig. 46.1:

[image: ../_images/figure32.png]

Fig. 46.1 Example of Packet Processing Pipeline where Input Ports 0 and 1
are Connected with Output Ports 0, 1 and 2 through Tables 0 and 1

46.3. Port Library Design

46.3.1. Port Types

Table 46.2 is a non-exhaustive list of ports that can be implemented with the Packet Framework.

Table 46.2 Port Types

	#

	Port type

	Description

	1

	SW ring

	SW circular buffer used for message passing between the application threads. Uses
the DPDK rte_ring primitive. Expected to be the most commonly used type of
port.

	2

	HW ring

	Queue of buffer descriptors used to interact with NIC, switch or accelerator ports.
For NIC ports, it uses the DPDK rte_eth_rx_queue or rte_eth_tx_queue
primitives.

	3

	IP reassembly

	Input packets are either IP fragments or complete IP datagrams. Output packets are
complete IP datagrams.

	4

	IP fragmentation

	Input packets are jumbo (IP datagrams with length bigger than MTU) or non-jumbo
packets. Output packets are non-jumbo packets.

	5

	Traffic manager

	Traffic manager attached to a specific NIC output port, performing congestion
management and hierarchical scheduling according to pre-defined SLAs.

	6

	KNI

	Send/receive packets to/from Linux kernel space.

	7

	Source

	Input port used as packet generator. Similar to Linux kernel /dev/zero character
device.

	8

	Sink

	Output port used to drop all input packets. Similar to Linux kernel /dev/null
character device.

	9

	Sym_crypto

	Output port used to extract DPDK Cryptodev operations from a fixed offset of the
packet and then enqueue to the Cryptodev PMD. Input port used to dequeue the
Cryptodev operations from the Cryptodev PMD and then retrieve the packets from them.

46.3.2. Port Interface

Each port is unidirectional, i.e. either input port or output port.
Each input/output port is required to implement an abstract interface that
defines the initialization and run-time operation of the port.
The port abstract interface is described in.

Table 46.3 20 Port Abstract Interface

	#

	Port Operation

	Description

	1

	Create

	Create the low-level port object (e.g. queue). Can internally allocate memory.

	2

	Free

	Free the resources (e.g. memory) used by the low-level port object.

	3

	RX

	Read a burst of input packets. Non-blocking operation. Only defined for input ports.

	4

	TX

	Write a burst of input packets. Non-blocking operation. Only defined for output ports.

	5

	Flush

	Flush the output buffer. Only defined for output ports.

46.4. Table Library Design

46.4.1. Table Types

Table 46.4 is a non-exhaustive list of types of tables that can be implemented with the Packet Framework.

Table 46.4 Table Types

	#

	Table Type

	Description

	1

	Hash table

	Lookup key is n-tuple based.

Typically, the lookup key is hashed to produce a signature that is used to
identify a bucket of entries where the lookup key is searched next.

The signature associated with the lookup key of each input packet is either
read from the packet descriptor (pre-computed signature) or computed at
table lookup time.

The table lookup, add entry and delete entry operations, as well as any
other pipeline block that pre-computes the signature all have to use the
same hashing algorithm to generate the signature.

Typically used to implement flow classification tables, ARP caches, routing
table for tunnelling protocols, etc.

	2

	Longest Prefix Match (LPM)

	Lookup key is the IP address.

Each table entries has an associated IP prefix (IP and depth).

The table lookup operation selects the IP prefix that is matched by the
lookup key; in case of multiple matches, the entry with the longest prefix
depth wins.

Typically used to implement IP routing tables.

	3

	Access Control List (ACLs)

	Lookup key is 7-tuple of two VLAN/MPLS labels, IP destination address,
IP source addresses, L4 protocol, L4 destination port, L4 source port.

Each table entry has an associated ACL and priority. The ACL contains bit
masks for the VLAN/MPLS labels, IP prefix for IP destination address, IP
prefix for IP source addresses, L4 protocol and bitmask, L4 destination
port and bit mask, L4 source port and bit mask.

The table lookup operation selects the ACL that is matched by the lookup
key; in case of multiple matches, the entry with the highest priority wins.

Typically used to implement rule databases for firewalls, etc.

	4

	Pattern matching search

	Lookup key is the packet payload.

Table is a database of patterns, with each pattern having a priority
assigned.

The table lookup operation selects the patterns that is matched by the
input packet; in case of multiple matches, the matching pattern with the
highest priority wins.

	5

	Array

	Lookup key is the table entry index itself.

46.4.2. Table Interface

Each table is required to implement an abstract interface that defines the initialization
and run-time operation of the table.
The table abstract interface is described in Table 46.5.

Table 46.5 Table Abstract Interface

	#

	Table operation

	Description

	1

	Create

	Create the low-level data structures of the lookup table. Can internally allocate
memory.

	2

	Free

	Free up all the resources used by the lookup table.

	3

	Add entry

	Add new entry to the lookup table.

	4

	Delete entry

	Delete specific entry from the lookup table.

	5

	Lookup

	Look up a burst of input packets and return a bit mask specifying the result of the
lookup operation for each packet: a set bit signifies lookup hit for the corresponding
packet, while a cleared bit a lookup miss.

For each lookup hit packet, the lookup operation also returns a pointer to the table
entry that was hit, which contains the actions to be applied on the packet and any
associated metadata.

For each lookup miss packet, the actions to be applied on the packet and any
associated metadata are specified by the default table entry preconfigured for lookup
miss.

46.4.3. Hash Table Design

46.4.3.1. Hash Table Overview

Hash tables are important because the key lookup operation is optimized for speed:
instead of having to linearly search the lookup key through all the keys in the table,
the search is limited to only the keys stored in a single table bucket.

Associative Arrays

An associative array is a function that can be specified as a set of (key, value) pairs,
with each key from the possible set of input keys present at most once.
For a given associative array, the possible operations are:

	add (key, value): When no value is currently associated with key, then the (key, value) association is created.
When key is already associated value value0, then the association (key, value0) is removed
and association (key, value) is created;

	delete key: When no value is currently associated with key, this operation has no effect.
When key is already associated value, then association (key, value) is removed;

	lookup key: When no value is currently associated with key, then this operation returns void value (lookup miss).
When key is associated with value, then this operation returns value.
The (key, value) association is not changed.

The matching criterion used to compare the input key against the keys in the associative array is exact match,
as the key size (number of bytes) and the key value (array of bytes) have to match exactly for the two keys under comparison.

Hash Function

A hash function deterministically maps data of variable length (key) to data of fixed size (hash value or key signature).
Typically, the size of the key is bigger than the size of the key signature.
The hash function basically compresses a long key into a short signature.
Several keys can share the same signature (collisions).

High quality hash functions have uniform distribution.
For large number of keys, when dividing the space of signature values into a fixed number of equal intervals (buckets),
it is desirable to have the key signatures evenly distributed across these intervals (uniform distribution),
as opposed to most of the signatures going into only a few of the intervals
and the rest of the intervals being largely unused (non-uniform distribution).

Hash Table

A hash table is an associative array that uses a hash function for its operation.
The reason for using a hash function is to optimize the performance of the lookup operation
by minimizing the number of table keys that have to be compared against the input key.

Instead of storing the (key, value) pairs in a single list, the hash table maintains multiple lists (buckets).
For any given key, there is a single bucket where that key might exist, and this bucket is uniquely identified based on the key signature.
Once the key signature is computed and the hash table bucket identified,
the key is either located in this bucket or it is not present in the hash table at all,
so the key search can be narrowed down from the full set of keys currently in the table
to just the set of keys currently in the identified table bucket.

The performance of the hash table lookup operation is greatly improved,
provided that the table keys are evenly distributed among the hash table buckets,
which can be achieved by using a hash function with uniform distribution.
The rule to map a key to its bucket can simply be to use the key signature (modulo the number of table buckets) as the table bucket ID:

bucket_id = f_hash(key) % n_buckets;

By selecting the number of buckets to be a power of two, the modulo operator can be replaced by a bitwise AND logical operation:

bucket_id = f_hash(key) & (n_buckets - 1);

considering n_bits as the number of bits set in bucket_mask = n_buckets - 1,
this means that all the keys that end up in the same hash table bucket have the lower n_bits of their signature identical.
In order to reduce the number of keys in the same bucket (collisions), the number of hash table buckets needs to be increased.

In packet processing context, the sequence of operations involved in hash table operations is described in Fig. 46.2:

[image: ../_images/figure33.png]

Fig. 46.2 Sequence of Steps for Hash Table Operations in a Packet Processing Context

46.4.3.2. Hash Table Use Cases

Flow Classification

Description: The flow classification is executed at least once for each input packet.
This operation maps each incoming packet against one of the known traffic flows in the flow database that typically contains millions of flows.

Hash table name: Flow classification table

Number of keys: Millions

Key format: n-tuple of packet fields that uniquely identify a traffic flow/connection.
Example: DiffServ 5-tuple of (Source IP address, Destination IP address, L4 protocol, L4 protocol source port, L4 protocol destination port).
For IPv4 protocol and L4 protocols like TCP, UDP or SCTP, the size of the DiffServ 5-tuple is 13 bytes, while for IPv6 it is 37 bytes.

Key value (key data): actions and action meta-data describing what processing to be applied for the packets of the current flow.
The size of the data associated with each traffic flow can vary from 8 bytes to kilobytes.

Address Resolution Protocol (ARP)

Description: Once a route has been identified for an IP packet (so the output interface and the IP address of the next hop station are known),
the MAC address of the next hop station is needed in order to send this packet onto the next leg of the journey
towards its destination (as identified by its destination IP address).
The MAC address of the next hop station becomes the destination MAC address of the outgoing Ethernet frame.

Hash table name: ARP table

Number of keys: Thousands

Key format: The pair of (Output interface, Next Hop IP address), which is typically 5 bytes for IPv4 and 17 bytes for IPv6.

Key value (key data): MAC address of the next hop station (6 bytes).

46.4.3.3. Hash Table Types

Table 46.6 lists the hash table configuration parameters shared by all different hash table types.

Table 46.6 Configuration Parameters Common for All Hash Table Types

	#

	Parameter

	Details

	1

	Key size

	Measured as number of bytes. All keys have the same size.

	2

	Key value (key data) size

	Measured as number of bytes.

	3

	Number of buckets

	Needs to be a power of two.

	4

	Maximum number of keys

	Needs to be a power of two.

	5

	Hash function

	Examples: jhash, CRC hash, etc.

	6

	Hash function seed

	Parameter to be passed to the hash function.

	7

	Key offset

	Offset of the lookup key byte array within the packet meta-data stored in
the packet buffer.

46.4.3.3.1. Bucket Full Problem

On initialization, each hash table bucket is allocated space for exactly 4 keys.
As keys are added to the table, it can happen that a given bucket already has 4 keys when a new key has to be added to this bucket.
The possible options are:

	Least Recently Used (LRU) Hash Table.
One of the existing keys in the bucket is deleted and the new key is added in its place.
The number of keys in each bucket never grows bigger than 4. The logic to pick the key to be dropped from the bucket is LRU.
The hash table lookup operation maintains the order in which the keys in the same bucket are hit, so every time a key is hit,
it becomes the new Most Recently Used (MRU) key, i.e. the last candidate for drop.
When a key is added to the bucket, it also becomes the new MRU key.
When a key needs to be picked and dropped, the first candidate for drop, i.e. the current LRU key, is always picked.
The LRU logic requires maintaining specific data structures per each bucket.

	Extendable Bucket Hash Table.
The bucket is extended with space for 4 more keys.
This is done by allocating additional memory at table initialization time,
which is used to create a pool of free keys (the size of this pool is configurable and always a multiple of 4).
On key add operation, the allocation of a group of 4 keys only happens successfully within the limit of free keys,
otherwise the key add operation fails.
On key delete operation, a group of 4 keys is freed back to the pool of free keys
when the key to be deleted is the only key that was used within its group of 4 keys at that time.
On key lookup operation, if the current bucket is in extended state and a match is not found in the first group of 4 keys,
the search continues beyond the first group of 4 keys, potentially until all keys in this bucket are examined.
The extendable bucket logic requires maintaining specific data structures per table and per each bucket.

Table 46.7 Configuration Parameters Specific to Extendable Bucket Hash Table

	#

	Parameter

	Details

	1

	Number of additional keys

	Needs to be a power of two, at least equal to 4.

46.4.3.3.2. Signature Computation

The possible options for key signature computation are:

	Pre-computed key signature.
The key lookup operation is split between two CPU cores.
The first CPU core (typically the CPU core that performs packet RX) extracts the key from the input packet,
computes the key signature and saves both the key and the key signature in the packet buffer as packet meta-data.
The second CPU core reads both the key and the key signature from the packet meta-data
and performs the bucket search step of the key lookup operation.

	Key signature computed on lookup (“do-sig” version).
The same CPU core reads the key from the packet meta-data, uses it to compute the key signature
and also performs the bucket search step of the key lookup operation.

Table 46.8 Configuration Parameters Specific to Pre-computed Key Signature Hash Table

	#

	Parameter

	Details

	1

	Signature offset

	Offset of the pre-computed key signature within the packet meta-data.

46.4.3.3.3. Key Size Optimized Hash Tables

For specific key sizes, the data structures and algorithm of key lookup operation can be specially handcrafted for further performance improvements,
so following options are possible:

	Implementation supporting configurable key size.

	Implementation supporting a single key size.
Typical key sizes are 8 bytes and 16 bytes.

46.4.3.4. Bucket Search Logic for Configurable Key Size Hash Tables

The performance of the bucket search logic is one of the main factors influencing the performance of the key lookup operation.
The data structures and algorithm are designed to make the best use of Intel CPU architecture resources like:
cache memory space, cache memory bandwidth, external memory bandwidth, multiple execution units working in parallel,
out of order instruction execution, special CPU instructions, etc.

The bucket search logic handles multiple input packets in parallel.
It is built as a pipeline of several stages (3 or 4), with each pipeline stage handling two different packets from the burst of input packets.
On each pipeline iteration, the packets are pushed to the next pipeline stage: for the 4-stage pipeline,
two packets (that just completed stage 3) exit the pipeline,
two packets (that just completed stage 2) are now executing stage 3, two packets (that just completed stage 1) are now executing stage 2,
two packets (that just completed stage 0) are now executing stage 1 and two packets (next two packets to read from the burst of input packets)
are entering the pipeline to execute stage 0.
The pipeline iterations continue until all packets from the burst of input packets execute the last stage of the pipeline.

The bucket search logic is broken into pipeline stages at the boundary of the next memory access.
Each pipeline stage uses data structures that are stored (with high probability) into the L1 or L2 cache memory of the current CPU core and
breaks just before the next memory access required by the algorithm.
The current pipeline stage finalizes by prefetching the data structures required by the next pipeline stage,
so given enough time for the prefetch to complete,
when the next pipeline stage eventually gets executed for the same packets,
it will read the data structures it needs from L1 or L2 cache memory and thus avoid the significant penalty incurred by L2 or L3 cache memory miss.

By prefetching the data structures required by the next pipeline stage in advance (before they are used)
and switching to executing another pipeline stage for different packets,
the number of L2 or L3 cache memory misses is greatly reduced, hence one of the main reasons for improved performance.
This is because the cost of L2/L3 cache memory miss on memory read accesses is high, as usually due to data dependency between instructions,
the CPU execution units have to stall until the read operation is completed from L3 cache memory or external DRAM memory.
By using prefetch instructions, the latency of memory read accesses is hidden,
provided that it is preformed early enough before the respective data structure is actually used.

By splitting the processing into several stages that are executed on different packets (the packets from the input burst are interlaced),
enough work is created to allow the prefetch instructions to complete successfully (before the prefetched data structures are actually accessed) and
also the data dependency between instructions is loosened.
For example, for the 4-stage pipeline, stage 0 is executed on packets 0 and 1 and then,
before same packets 0 and 1 are used (i.e. before stage 1 is executed on packets 0 and 1),
different packets are used: packets 2 and 3 (executing stage 1), packets 4 and 5 (executing stage 2) and packets 6 and 7 (executing stage 3).
By executing useful work while the data structures are brought into the L1 or L2 cache memory, the latency of the read memory accesses is hidden.
By increasing the gap between two consecutive accesses to the same data structure, the data dependency between instructions is loosened;
this allows making the best use of the super-scalar and out-of-order execution CPU architecture,
as the number of CPU core execution units that are active (rather than idle or stalled due to data dependency constraints between instructions) is maximized.

The bucket search logic is also implemented without using any branch instructions.
This avoids the important cost associated with flushing the CPU core execution pipeline on every instance of branch misprediction.

46.4.3.4.1. Configurable Key Size Hash Table

Fig. 46.3, Table 46.9 and Table 46.10 detail the main data structures used to implement configurable key size hash tables (either LRU or extendable bucket,
either with pre-computed signature or “do-sig”).

[image: ../_images/figure34.png]

Fig. 46.3 Data Structures for Configurable Key Size Hash Tables

Table 46.9 Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

	#

	Array name

	Number of entries

	Entry size (bytes)

	Description

	1

	Bucket array

	n_buckets (configurable)

	32

	Buckets of the hash table.

	2

	Bucket extensions array

	n_buckets_ext (configurable)

	32

	This array is only created
for extendable bucket tables.

	3

	Key array

	n_keys

	key_size (configurable)

	Keys added to the hash table.

	4

	Data array

	n_keys

	entry_size (configurable)

	Key values (key data)
associated with the hash
table keys.

Table 46.10 Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

	#

	Field name

	Field size (bytes)

	Description

	1

	Next Ptr/LRU

	8

	For LRU tables, this fields represents the LRU list for the
current bucket stored as array of 4 entries of 2 bytes each.
Entry 0 stores the index (0 .. 3) of the MRU key, while entry 3
stores the index of the LRU key.

For extendable bucket tables, this field represents the next
pointer (i.e. the pointer to the next group of 4 keys linked to
the current bucket). The next pointer is not NULL if the bucket
is currently extended or NULL otherwise.
To help the branchless implementation, bit 0 (least significant
bit) of this field is set to 1 if the next pointer is not NULL
and to 0 otherwise.

	2

	Sig[0 .. 3]

	4 x 2

	If key X (X = 0 .. 3) is valid, then sig X bits 15 .. 1 store
the most significant 15 bits of key X signature and sig X bit 0
is set to 1.

If key X is not valid, then sig X is set to zero.

	3

	Key Pos [0 .. 3]

	4 x 4

	If key X is valid (X = 0 .. 3), then Key Pos X represents the
index into the key array where key X is stored, as well as the
index into the data array where the value associated with key X
is stored.

If key X is not valid, then the value of Key Pos X is undefined.

Fig. 46.4 and Table 46.11 detail the bucket search pipeline stages (either LRU or extendable bucket,
either with pre-computed signature or “do-sig”).
For each pipeline stage, the described operations are applied to each of the two packets handled by that stage.

[image: ../_images/figure35.png]

Fig. 46.4 Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash
Tables)

Table 46.11 Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash Tables)

	#

	Stage name

	Description

	0

	Prefetch packet meta-data

	Select next two packets from the burst of input packets.

Prefetch packet meta-data containing the key and key signature.

	1

	Prefetch table bucket

	Read the key signature from the packet meta-data (for extendable bucket hash
tables) or read the key from the packet meta-data and compute key signature
(for LRU tables).

Identify the bucket ID using the key signature.

Set bit 0 of the signature to 1 (to match only signatures of valid keys from
the table).

Prefetch the bucket.

	2

	Prefetch table key

	Read the key signatures from the bucket.

Compare the signature of the input key against the 4 key signatures from the
packet. As result, the following is obtained:

match
= equal to TRUE if there was at least one signature match and to FALSE in
the case of no signature match;

match_many
= equal to TRUE is there were more than one signature matches (can be up to
4 signature matches in the worst case scenario) and to FALSE otherwise;

match_pos
= the index of the first key that produced signature match (only valid if
match is true).

For extendable bucket hash tables only, set
match_many
to TRUE if next pointer is valid.

Prefetch the bucket key indicated by
match_pos
(even if
match_pos
does not point to valid key valid).

	3

	Prefetch table data

	Read the bucket key indicated by
match_pos.

Compare the bucket key against the input key. As result, the following is
obtained:
match_key
= equal to TRUE if the two keys match and to FALSE otherwise.

Report input key as lookup hit only when both
match
and
match_key
are equal to TRUE and as lookup miss otherwise.

For LRU tables only, use branchless logic to update the bucket LRU list
(the current key becomes the new MRU) only on lookup hit.

Prefetch the key value (key data) associated with the current key (to avoid
branches, this is done on both lookup hit and miss).

Additional notes:

	The pipelined version of the bucket search algorithm is executed only if there are at least 7 packets in the burst of input packets.
If there are less than 7 packets in the burst of input packets,
a non-optimized implementation of the bucket search algorithm is executed.

	Once the pipelined version of the bucket search algorithm has been executed for all the packets in the burst of input packets,
the non-optimized implementation of the bucket search algorithm is also executed for any packets that did not produce a lookup hit,
but have the match_many flag set.
As result of executing the non-optimized version, some of these packets may produce a lookup hit or lookup miss.
This does not impact the performance of the key lookup operation,
as the probability of matching more than one signature in the same group of 4 keys or of having the bucket in extended state
(for extendable bucket hash tables only) is relatively small.

Key Signature Comparison Logic

The key signature comparison logic is described in Table 46.12.

Table 46.12 Lookup Tables for Match, Match_Many and Match_Pos

	#

	mask

	match (1 bit)

	match_many (1 bit)

	match_pos (2 bits)

	0

	0000

	0

	0

	00

	1

	0001

	1

	0

	00

	2

	0010

	1

	0

	01

	3

	0011

	1

	1

	00

	4

	0100

	1

	0

	10

	5

	0101

	1

	1

	00

	6

	0110

	1

	1

	01

	7

	0111

	1

	1

	00

	8

	1000

	1

	0

	11

	9

	1001

	1

	1

	00

	10

	1010

	1

	1

	01

	11

	1011

	1

	1

	00

	12

	1100

	1

	1

	10

	13

	1101

	1

	1

	00

	14

	1110

	1

	1

	01

	15

	1111

	1

	1

	00

The input mask hash bit X (X = 0 .. 3) set to 1 if input signature is equal to bucket signature X and set to 0 otherwise.
The outputs match, match_many and match_pos are 1 bit, 1 bit and 2 bits in size respectively and their meaning has been explained above.

As displayed in Table 46.13, the lookup tables for match and match_many can be collapsed into a single 32-bit value and the lookup table for
match_pos can be collapsed into a 64-bit value.
Given the input mask, the values for match, match_many and match_pos can be obtained by indexing their respective bit array to extract 1 bit,
1 bit and 2 bits respectively with branchless logic.

Table 46.13 Collapsed Lookup Tables for Match, Match_Many and Match_Pos

	
	Bit array

	Hexadecimal value

	match

	1111_1111_1111_1110

	0xFFFELLU

	match_many

	1111_1110_1110_1000

	0xFEE8LLU

	match_pos

	0001_0010_0001_0011__0001_0010_0001_0000

	0x12131210LLU

The pseudo-code for match, match_many and match_pos is:

match = (0xFFFELLU >> mask) & 1;

match_many = (0xFEE8LLU >> mask) & 1;

match_pos = (0x12131210LLU >> (mask << 1)) & 3;

46.4.3.4.2. Single Key Size Hash Tables

Fig. 46.5, Fig. 46.6, Table 46.14 and Table 46.15 detail the main data structures used to implement 8-byte and 16-byte key hash tables
(either LRU or extendable bucket, either with pre-computed signature or “do-sig”).

[image: ../_images/figure37.png]

Fig. 46.5 Data Structures for 8-byte Key Hash Tables

[image: ../_images/figure38.png]

Fig. 46.6 Data Structures for 16-byte Key Hash Tables

Table 46.14 Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash Tables

	#

	Array name

	Number of entries

	Entry size (bytes)

	Description

	1

	Bucket array

	n_buckets (configurable)

	8-byte key size:

64 + 4 x entry_size

16-byte key size:

128 + 4 x entry_size

	Buckets of the hash table.

	2

	Bucket extensions array

	n_buckets_ext (configurable)

	8-byte key size:

64 + 4 x entry_size

16-byte key size:

128 + 4 x entry_size

	This array is only created for
extendable bucket tables.

Table 46.15 Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

	#

	Field name

	Field size (bytes)

	Description

	1

	Valid

	8

	Bit X (X = 0 .. 3) is set to 1 if key X is valid or to 0 otherwise.

Bit 4 is only used for extendable bucket tables to help with the
implementation of the branchless logic. In this case, bit 4 is set to 1 if
next pointer is valid (not NULL) or to 0 otherwise.

	2

	Next Ptr/LRU

	8

	For LRU tables, this fields represents the LRU list for the current bucket
stored as array of 4 entries of 2 bytes each. Entry 0 stores the index
(0 .. 3) of the MRU key, while entry 3 stores the index of the LRU key.

For extendable bucket tables, this field represents the next pointer (i.e.
the pointer to the next group of 4 keys linked to the current bucket). The
next pointer is not NULL if the bucket is currently extended or NULL
otherwise.

	3

	Key [0 .. 3]

	4 x key_size

	Full keys.

	4

	Data [0 .. 3]

	4 x entry_size

	Full key values (key data) associated with keys 0 .. 3.

and detail the bucket search pipeline used to implement 8-byte and 16-byte key hash tables (either LRU or extendable bucket,
either with pre-computed signature or “do-sig”).
For each pipeline stage, the described operations are applied to each of the two packets handled by that stage.

[image: ../_images/figure39.png]

Fig. 46.7 Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash
Tables)

Table 46.16 Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash Tables)

	#

	Stage name

	Description

	0

	Prefetch packet meta-data

	
	Select next two packets from the burst of input packets.

	Prefetch packet meta-data containing the key and key signature.

	1

	Prefetch table bucket

	
	Read the key signature from the packet meta-data (for extendable bucket
hash tables) or read the key from the packet meta-data and compute key
signature (for LRU tables).

	Identify the bucket ID using the key signature.

	Prefetch the bucket.

	2

	Prefetch table data

	
	Read the bucket.

	Compare all 4 bucket keys against the input key.

	Report input key as lookup hit only when a match is identified (more
than one key match is not possible)

	For LRU tables only, use branchless logic to update the bucket LRU list
(the current key becomes the new MRU) only on lookup hit.

	Prefetch the key value (key data) associated with the matched key (to
avoid branches, this is done on both lookup hit and miss).

Additional notes:

	The pipelined version of the bucket search algorithm is executed only if there are at least 5 packets in the burst of input packets.
If there are less than 5 packets in the burst of input packets, a non-optimized implementation of the bucket search algorithm is executed.

	For extendable bucket hash tables only,
once the pipelined version of the bucket search algorithm has been executed for all the packets in the burst of input packets,
the non-optimized implementation of the bucket search algorithm is also executed for any packets that did not produce a lookup hit,
but have the bucket in extended state.
As result of executing the non-optimized version, some of these packets may produce a lookup hit or lookup miss.
This does not impact the performance of the key lookup operation,
as the probability of having the bucket in extended state is relatively small.

46.5. Pipeline Library Design

A pipeline is defined by:

	The set of input ports;

	The set of output ports;

	The set of tables;

	The set of actions.

The input ports are connected with the output ports through tree-like topologies of interconnected tables.
The table entries contain the actions defining the operations to be executed on the input packets and the packet flow within the pipeline.

46.5.1. Connectivity of Ports and Tables

To avoid any dependencies on the order in which pipeline elements are created,
the connectivity of pipeline elements is defined after all the pipeline input ports,
output ports and tables have been created.

General connectivity rules:

	Each input port is connected to a single table. No input port should be left unconnected;

	The table connectivity to other tables or to output ports is regulated by the next hop actions of each table entry and the default table entry.
The table connectivity is fluid, as the table entries and the default table entry can be updated during run-time.

	A table can have multiple entries (including the default entry) connected to the same output port.
A table can have different entries connected to different output ports.
Different tables can have entries (including default table entry) connected to the same output port.

	A table can have multiple entries (including the default entry) connected to another table,
in which case all these entries have to point to the same table.
This constraint is enforced by the API and prevents tree-like topologies from being created (allowing table chaining only),
with the purpose of simplifying the implementation of the pipeline run-time execution engine.

46.5.2. Port Actions

46.5.2.1. Port Action Handler

An action handler can be assigned to each input/output port to define actions to be executed on each input packet that is received by the port.
Defining the action handler for a specific input/output port is optional (i.e. the action handler can be disabled).

For input ports, the action handler is executed after RX function. For output ports, the action handler is executed before the TX function.

The action handler can decide to drop packets.

46.5.3. Table Actions

46.5.3.1. Table Action Handler

An action handler to be executed on each input packet can be assigned to each table.
Defining the action handler for a specific table is optional (i.e. the action handler can be disabled).

The action handler is executed after the table lookup operation is performed and the table entry associated with each input packet is identified.
The action handler can only handle the user-defined actions, while the reserved actions (e.g. the next hop actions) are handled by the Packet Framework.
The action handler can decide to drop the input packet.

46.5.3.2. Reserved Actions

The reserved actions are handled directly by the Packet Framework without the user being able to change their meaning
through the table action handler configuration.
A special category of the reserved actions is represented by the next hop actions, which regulate the packet flow between input ports,
tables and output ports through the pipeline.
Table 46.17 lists the next hop actions.

Table 46.17 Next Hop Actions (Reserved)

	#

	Next hop action

	Description

	1

	Drop

	Drop the current packet.

	2

	Send to output port

	Send the current packet to specified output port. The output port ID is metadata
stored in the same table entry.

	3

	Send to table

	Send the current packet to specified table. The table ID is metadata stored in
the same table entry.

46.5.3.3. User Actions

For each table, the meaning of user actions is defined through the configuration of the table action handler.
Different tables can be configured with different action handlers, therefore the meaning of the user actions
and their associated meta-data is private to each table.
Within the same table, all the table entries (including the table default entry) share the same definition
for the user actions and their associated meta-data,
with each table entry having its own set of enabled user actions and its own copy of the action meta-data.
Table 46.18 contains a non-exhaustive list of user action examples.

Table 46.18 User Action Examples

	#

	User action

	Description

	1

	Metering

	Per flow traffic metering using the srTCM and trTCM algorithms.

	2

	Statistics

	Update the statistics counters maintained per flow.

	3

	App ID

	Per flow state machine fed by variable length sequence of packets
at the flow initialization with the purpose of identifying the
traffic type and application.

	4

	Push/pop labels

	Push/pop VLAN/MPLS labels to/from the current packet.

	5

	Network Address Translation (NAT)

	Translate between the internal (LAN) and external (WAN) IP
destination/source address and/or L4 protocol destination/source
port.

	6

	TTL update

	Decrement IP TTL and, in case of IPv4 packets, update the IP
checksum.

	7

	Sym Crypto

	Generate Cryptodev session based on the user-specified algorithm
and key(s), and assemble the cryptodev operation based on the
predefined offsets.

46.6. Multicore Scaling

A complex application is typically split across multiple cores, with cores communicating through SW queues.
There is usually a performance limit on the number of table lookups
and actions that can be fitted on the same CPU core due to HW constraints like:
available CPU cycles, cache memory size, cache transfer BW, memory transfer BW, etc.

As the application is split across multiple CPU cores, the Packet Framework facilitates the creation of several pipelines,
the assignment of each such pipeline to a different CPU core
and the interconnection of all CPU core-level pipelines into a single application-level complex pipeline.
For example, if CPU core A is assigned to run pipeline P1 and CPU core B pipeline P2,
then the interconnection of P1 with P2 could be achieved by having the same set of SW queues act like output ports
for P1 and input ports for P2.

This approach enables the application development using the pipeline, run-to-completion (clustered) or hybrid (mixed) models.

It is allowed for the same core to run several pipelines, but it is not allowed for several cores to run the same pipeline.

46.6.1. Shared Data Structures

The threads performing table lookup are actually table writers rather than just readers.
Even if the specific table lookup algorithm is thread-safe for multiple readers
(e. g. read-only access of the search algorithm data structures is enough to conduct the lookup operation),
once the table entry for the current packet is identified, the thread is typically expected to update the action meta-data stored in the table entry
(e.g. increment the counter tracking the number of packets that hit this table entry), and thus modify the table entry.
During the time this thread is accessing this table entry (either writing or reading; duration is application specific),
for data consistency reasons, no other threads (threads performing table lookup or entry add/delete operations) are allowed to modify this table entry.

Mechanisms to share the same table between multiple threads:

	Multiple writer threads.
Threads need to use synchronization primitives like semaphores (distinct semaphore per table entry) or atomic instructions.
The cost of semaphores is usually high, even when the semaphore is free.
The cost of atomic instructions is normally higher than the cost of regular instructions.

	Multiple writer threads, with single thread performing table lookup operations and multiple threads performing table entry add/delete operations.
The threads performing table entry add/delete operations send table update requests to the reader (typically through message passing queues),
which does the actual table updates and then sends the response back to the request initiator.

	Single writer thread performing table entry add/delete operations and multiple reader threads that perform table lookup operations with read-only access to the table entries.
The reader threads use the main table copy while the writer is updating the mirror copy.
Once the writer update is done, the writer can signal to the readers and busy wait until all readers swaps between the mirror copy (which now becomes the main copy) and
the mirror copy (which now becomes the main copy).

46.7. Interfacing with Accelerators

The presence of accelerators is usually detected during the initialization phase by inspecting the HW devices that are part of the system (e.g. by PCI bus enumeration).
Typical devices with acceleration capabilities are:

	Inline accelerators: NICs, switches, FPGAs, etc;

	Look-aside accelerators: chipsets, FPGAs, Intel QuickAssist, etc.

Usually, to support a specific functional block, specific implementation of Packet Framework tables and/or ports and/or actions has to be provided for each accelerator,
with all the implementations sharing the same API: pure SW implementation (no acceleration), implementation using accelerator A, implementation using accelerator B, etc.
The selection between these implementations could be done at build time or at run-time (recommended), based on which accelerators are present in the system,
with no application changes required.

47. Vhost Library

The vhost library implements a user space virtio net server allowing the user
to manipulate the virtio ring directly. In another words, it allows the user
to fetch/put packets from/to the VM virtio net device. To achieve this, a
vhost library should be able to:

	Access the guest memory:

For QEMU, this is done by using the -object memory-backend-file,share=on,...
option. Which means QEMU will create a file to serve as the guest RAM.
The share=on option allows another process to map that file, which
means it can access the guest RAM.

	Know all the necessary information about the vring:

Information such as where the available ring is stored. Vhost defines some
messages (passed through a Unix domain socket file) to tell the backend all
the information it needs to know how to manipulate the vring.

47.1. Vhost API Overview

The following is an overview of some key Vhost API functions:

	rte_vhost_driver_register(path, flags)

This function registers a vhost driver into the system. path specifies
the Unix domain socket file path.

Currently supported flags are:

	RTE_VHOST_USER_CLIENT

DPDK vhost-user will act as the client when this flag is given. See below
for an explanation.

	RTE_VHOST_USER_NO_RECONNECT

When DPDK vhost-user acts as the client it will keep trying to reconnect
to the server (QEMU) until it succeeds. This is useful in two cases:

	When QEMU is not started yet.

	When QEMU restarts (for example due to a guest OS reboot).

This reconnect option is enabled by default. However, it can be turned off
by setting this flag.

	RTE_VHOST_USER_DEQUEUE_ZERO_COPY

Dequeue zero copy will be enabled when this flag is set. It is disabled by
default.

There are some truths (including limitations) you might want to know while
setting this flag:

	zero copy is not good for small packets (typically for packet size below
512).

	zero copy is really good for VM2VM case. For iperf between two VMs, the
boost could be above 70% (when TSO is enabled).

	For zero copy in VM2NIC case, guest Tx used vring may be starved if the
PMD driver consume the mbuf but not release them timely.

For example, i40e driver has an optimization to maximum NIC pipeline which
postpones returning transmitted mbuf until only tx_free_threshold free
descs left. The virtio TX used ring will be starved if the formula
(num_i40e_tx_desc - num_virtio_tx_desc > tx_free_threshold) is true, since
i40e will not return back mbuf.

A performance tip for tuning zero copy in VM2NIC case is to adjust the
frequency of mbuf free (i.e. adjust tx_free_threshold of i40e driver) to
balance consumer and producer.

	Guest memory should be backended with huge pages to achieve better
performance. Using 1G page size is the best.

When dequeue zero copy is enabled, the guest phys address and host phys
address mapping has to be established. Using non-huge pages means far
more page segments. To make it simple, DPDK vhost does a linear search
of those segments, thus the fewer the segments, the quicker we will get
the mapping. NOTE: we may speed it by using tree searching in future.

	zero copy can not work when using vfio-pci with iommu mode currently, this
is because we don’t setup iommu dma mapping for guest memory. If you have
to use vfio-pci driver, please insert vfio-pci kernel module in noiommu
mode.

	The consumer of zero copy mbufs should consume these mbufs as soon as
possible, otherwise it may block the operations in vhost.

	RTE_VHOST_USER_IOMMU_SUPPORT

IOMMU support will be enabled when this flag is set. It is disabled by
default.

Enabling this flag makes possible to use guest vIOMMU to protect vhost
from accessing memory the virtio device isn’t allowed to, when the feature
is negotiated and an IOMMU device is declared.

However, this feature enables vhost-user’s reply-ack protocol feature,
which implementation is buggy in Qemu v2.7.0-v2.9.0 when doing multiqueue.
Enabling this flag with these Qemu version results in Qemu being blocked
when multiple queue pairs are declared.

	RTE_VHOST_USER_POSTCOPY_SUPPORT

Postcopy live-migration support will be enabled when this flag is set.
It is disabled by default.

Enabling this flag should only be done when the calling application does
not pre-fault the guest shared memory, otherwise migration would fail.

	RTE_VHOST_USER_LINEARBUF_SUPPORT

Enabling this flag forces vhost dequeue function to only provide linear
pktmbuf (no multi-segmented pktmbuf).

The vhost library by default provides a single pktmbuf for given a
packet, but if for some reason the data doesn’t fit into a single
pktmbuf (e.g., TSO is enabled), the library will allocate additional
pktmbufs from the same mempool and chain them together to create a
multi-segmented pktmbuf.

However, the vhost application needs to support multi-segmented format.
If the vhost application does not support that format and requires large
buffers to be dequeue, this flag should be enabled to force only linear
buffers (see RTE_VHOST_USER_EXTBUF_SUPPORT) or drop the packet.

It is disabled by default.

	RTE_VHOST_USER_EXTBUF_SUPPORT

Enabling this flag allows vhost dequeue function to allocate and attach
an external buffer to a pktmbuf if the pkmbuf doesn’t provide enough
space to store all data.

This is useful when the vhost application wants to support large packets
but doesn’t want to increase the default mempool object size nor to
support multi-segmented mbufs (non-linear). In this case, a fresh buffer
is allocated using rte_malloc() which gets attached to a pktmbuf using
rte_pktmbuf_attach_extbuf().

See RTE_VHOST_USER_LINEARBUF_SUPPORT as well to disable multi-segmented
mbufs for application that doesn’t support chained mbufs.

It is disabled by default.

	rte_vhost_driver_set_features(path, features)

This function sets the feature bits the vhost-user driver supports. The
vhost-user driver could be vhost-user net, yet it could be something else,
say, vhost-user SCSI.

	rte_vhost_driver_callback_register(path, vhost_device_ops)

This function registers a set of callbacks, to let DPDK applications take
the appropriate action when some events happen. The following events are
currently supported:

	new_device(int vid)

This callback is invoked when a virtio device becomes ready. vid
is the vhost device ID.

	destroy_device(int vid)

This callback is invoked when a virtio device is paused or shut down.

	vring_state_changed(int vid, uint16_t queue_id, int enable)

This callback is invoked when a specific queue’s state is changed, for
example to enabled or disabled.

	features_changed(int vid, uint64_t features)

This callback is invoked when the features is changed. For example,
VHOST_F_LOG_ALL will be set/cleared at the start/end of live
migration, respectively.

	new_connection(int vid)

This callback is invoked on new vhost-user socket connection. If DPDK
acts as the server the device should not be deleted before
destroy_connection callback is received.

	destroy_connection(int vid)

This callback is invoked when vhost-user socket connection is closed.
It indicates that device with id vid is no longer in use and can be
safely deleted.

	rte_vhost_driver_disable/enable_features(path, features))

This function disables/enables some features. For example, it can be used to
disable mergeable buffers and TSO features, which both are enabled by
default.

	rte_vhost_driver_start(path)

This function triggers the vhost-user negotiation. It should be invoked at
the end of initializing a vhost-user driver.

	rte_vhost_enqueue_burst(vid, queue_id, pkts, count)

Transmits (enqueues) count packets from host to guest.

	rte_vhost_dequeue_burst(vid, queue_id, mbuf_pool, pkts, count)

Receives (dequeues) count packets from guest, and stored them at pkts.

	rte_vhost_crypto_create(vid, cryptodev_id, sess_mempool, socket_id)

As an extension of new_device(), this function adds virtio-crypto workload
acceleration capability to the device. All crypto workload is processed by
DPDK cryptodev with the device ID of cryptodev_id.

	rte_vhost_crypto_free(vid)

Frees the memory and vhost-user message handlers created in
rte_vhost_crypto_create().

	rte_vhost_crypto_fetch_requests(vid, queue_id, ops, nb_ops)

Receives (dequeues) nb_ops virtio-crypto requests from guest, parses
them to DPDK Crypto Operations, and fills the ops with parsing results.

	rte_vhost_crypto_finalize_requests(queue_id, ops, nb_ops)

After the ops are dequeued from Cryptodev, finalizes the jobs and
notifies the guest(s).

	rte_vhost_crypto_set_zero_copy(vid, option)

Enable or disable zero copy feature of the vhost crypto backend.

47.2. Vhost-user Implementations

Vhost-user uses Unix domain sockets for passing messages. This means the DPDK
vhost-user implementation has two options:

	DPDK vhost-user acts as the server.

DPDK will create a Unix domain socket server file and listen for
connections from the frontend.

Note, this is the default mode, and the only mode before DPDK v16.07.

	DPDK vhost-user acts as the client.

Unlike the server mode, this mode doesn’t create the socket file;
it just tries to connect to the server (which responses to create the
file instead).

When the DPDK vhost-user application restarts, DPDK vhost-user will try to
connect to the server again. This is how the “reconnect” feature works.

Note

	The “reconnect” feature requires QEMU v2.7 (or above).

	The vhost supported features must be exactly the same before and
after the restart. For example, if TSO is disabled and then enabled,
nothing will work and issues undefined might happen.

No matter which mode is used, once a connection is established, DPDK
vhost-user will start receiving and processing vhost messages from QEMU.

For messages with a file descriptor, the file descriptor can be used directly
in the vhost process as it is already installed by the Unix domain socket.

The supported vhost messages are:

	VHOST_SET_MEM_TABLE

	VHOST_SET_VRING_KICK

	VHOST_SET_VRING_CALL

	VHOST_SET_LOG_FD

	VHOST_SET_VRING_ERR

For VHOST_SET_MEM_TABLE message, QEMU will send information for each
memory region and its file descriptor in the ancillary data of the message.
The file descriptor is used to map that region.

VHOST_SET_VRING_KICK is used as the signal to put the vhost device into
the data plane, and VHOST_GET_VRING_BASE is used as the signal to remove
the vhost device from the data plane.

When the socket connection is closed, vhost will destroy the device.

47.3. Guest memory requirement

	Memory pre-allocation

For non-zerocopy, guest memory pre-allocation is not a must. This can help
save of memory. If users really want the guest memory to be pre-allocated
(e.g., for performance reason), we can add option -mem-prealloc when
starting QEMU. Or, we can lock all memory at vhost side which will force
memory to be allocated when mmap at vhost side; option –mlockall in
ovs-dpdk is an example in hand.

For zerocopy, we force the VM memory to be pre-allocated at vhost lib when
mapping the guest memory; and also we need to lock the memory to prevent
pages being swapped out to disk.

	Memory sharing

Make sure share=on QEMU option is given. vhost-user will not work with
a QEMU version without shared memory mapping.

47.4. Vhost supported vSwitch reference

For more vhost details and how to support vhost in vSwitch, please refer to
the vhost example in the DPDK Sample Applications Guide.

47.5. Vhost data path acceleration (vDPA)

vDPA supports selective datapath in vhost-user lib by enabling virtio ring
compatible devices to serve virtio driver directly for datapath acceleration.

rte_vhost_driver_attach_vdpa_device is used to configure the vhost device
with accelerated backend.

Also vhost device capabilities are made configurable to adopt various devices.
Such capabilities include supported features, protocol features, queue number.

Finally, a set of device ops is defined for device specific operations:

	get_queue_num

Called to get supported queue number of the device.

	get_features

Called to get supported features of the device.

	get_protocol_features

Called to get supported protocol features of the device.

	dev_conf

Called to configure the actual device when the virtio device becomes ready.

	dev_close

Called to close the actual device when the virtio device is stopped.

	set_vring_state

Called to change the state of the vring in the actual device when vring state
changes.

	set_features

Called to set the negotiated features to device.

	migration_done

Called to allow the device to response to RARP sending.

	get_vfio_group_fd

Called to get the VFIO group fd of the device.

	get_vfio_device_fd

Called to get the VFIO device fd of the device.

	get_notify_area

Called to get the notify area info of the queue.

48. Metrics Library

The Metrics library implements a mechanism by which producers can
publish numeric information for later querying by consumers. In
practice producers will typically be other libraries or primary
processes, whereas consumers will typically be applications.

Metrics themselves are statistics that are not generated by PMDs. Metric
information is populated using a push model, where producers update the
values contained within the metric library by calling an update function
on the relevant metrics. Consumers receive metric information by querying
the central metric data, which is held in shared memory.

For each metric, a separate value is maintained for each port id, and
when publishing metric values the producers need to specify which port is
being updated. In addition there is a special id RTE_METRICS_GLOBAL
that is intended for global statistics that are not associated with any
individual device. Since the metrics library is self-contained, the only
restriction on port numbers is that they are less than RTE_MAX_ETHPORTS
- there is no requirement for the ports to actually exist.

48.1. Initializing the library

Before the library can be used, it has to be initialized by calling
rte_metrics_init() which sets up the metric store in shared memory.
This is where producers will publish metric information to, and where
consumers will query it from.

rte_metrics_init(rte_socket_id());

This function must be called from a primary process, but otherwise
producers and consumers can be in either primary or secondary processes.

48.2. Registering metrics

Metrics must first be registered, which is the way producers declare
the names of the metrics they will be publishing. Registration can either
be done individually, or a set of metrics can be registered as a group.
Individual registration is done using rte_metrics_reg_name():

id_1 = rte_metrics_reg_name("mean_bits_in");
id_2 = rte_metrics_reg_name("mean_bits_out");
id_3 = rte_metrics_reg_name("peak_bits_in");
id_4 = rte_metrics_reg_name("peak_bits_out");

or alternatively, a set of metrics can be registered together using
rte_metrics_reg_names():

const char * const names[] = {
 "mean_bits_in", "mean_bits_out",
 "peak_bits_in", "peak_bits_out",
};
id_set = rte_metrics_reg_names(&names[0], 4);

If the return value is negative, it means registration failed. Otherwise
the return value is the key for the metric, which is used when updating
values. A table mapping together these key values and the metrics’ names
can be obtained using rte_metrics_get_names().

48.3. Updating metric values

Once registered, producers can update the metric for a given port using
the rte_metrics_update_value() function. This uses the metric key
that is returned when registering the metric, and can also be looked up
using rte_metrics_get_names().

rte_metrics_update_value(port_id, id_1, values[0]);
rte_metrics_update_value(port_id, id_2, values[1]);
rte_metrics_update_value(port_id, id_3, values[2]);
rte_metrics_update_value(port_id, id_4, values[3]);

if metrics were registered as a single set, they can either be updated
individually using rte_metrics_update_value(), or updated together
using the rte_metrics_update_values() function:

rte_metrics_update_value(port_id, id_set, values[0]);
rte_metrics_update_value(port_id, id_set + 1, values[1]);
rte_metrics_update_value(port_id, id_set + 2, values[2]);
rte_metrics_update_value(port_id, id_set + 3, values[3]);

rte_metrics_update_values(port_id, id_set, values, 4);

Note that rte_metrics_update_values() cannot be used to update
metric values from multiple sets, as there is no guarantee two
sets registered one after the other have contiguous id values.

48.4. Querying metrics

Consumers can obtain metric values by querying the metrics library using
the rte_metrics_get_values() function that return an array of
struct rte_metric_value. Each entry within this array contains a metric
value and its associated key. A key-name mapping can be obtained using the
rte_metrics_get_names() function that returns an array of
struct rte_metric_name that is indexed by the key. The following will
print out all metrics for a given port:

void print_metrics() {
 struct rte_metric_value *metrics;
 struct rte_metric_name *names;
 int len;

 len = rte_metrics_get_names(NULL, 0);
 if (len < 0) {
 printf("Cannot get metrics count\n");
 return;
 }
 if (len == 0) {
 printf("No metrics to display (none have been registered)\n");
 return;
 }
 metrics = malloc(sizeof(struct rte_metric_value) * len);
 names = malloc(sizeof(struct rte_metric_name) * len);
 if (metrics == NULL || names == NULL) {
 printf("Cannot allocate memory\n");
 free(metrics);
 free(names);
 return;
 }
 ret = rte_metrics_get_values(port_id, metrics, len);
 if (ret < 0 || ret > len) {
 printf("Cannot get metrics values\n");
 free(metrics);
 free(names);
 return;
 }
 printf("Metrics for port %i:\n", port_id);
 for (i = 0; i < len; i++)
 printf(" %s: %"PRIu64"\n",
 names[metrics[i].key].name, metrics[i].value);
 free(metrics);
 free(names);
}

48.5. Deinitialising the library

Once the library usage is done, it must be deinitialized by calling
rte_metrics_deinit() which will free the shared memory reserved
during initialization.

err = rte_metrics_deinit(void);

If the return value is negative, it means deinitialization failed.
This function must be called from a primary process.

48.6. Bit-rate statistics library

The bit-rate library calculates the exponentially-weighted moving
average and peak bit-rates for each active port (i.e. network device).
These statistics are reported via the metrics library using the
following names:

	mean_bits_in: Average inbound bit-rate

	mean_bits_out: Average outbound bit-rate

	ewma_bits_in: Average inbound bit-rate (EWMA smoothed)

	ewma_bits_out: Average outbound bit-rate (EWMA smoothed)

	peak_bits_in: Peak inbound bit-rate

	peak_bits_out: Peak outbound bit-rate

Once initialised and clocked at the appropriate frequency, these
statistics can be obtained by querying the metrics library.

48.6.1. Initialization

Before the library can be used, it has to be initialised by calling
rte_stats_bitrate_create(), which will return a bit-rate
calculation object. Since the bit-rate library uses the metrics library
to report the calculated statistics, the bit-rate library then needs to
register the calculated statistics with the metrics library. This is
done using the helper function rte_stats_bitrate_reg().

struct rte_stats_bitrates *bitrate_data;

bitrate_data = rte_stats_bitrate_create();
if (bitrate_data == NULL)
 rte_exit(EXIT_FAILURE, "Could not allocate bit-rate data.\n");
rte_stats_bitrate_reg(bitrate_data);

48.6.2. Controlling the sampling rate

Since the library works by periodic sampling but does not use an
internal thread, the application has to periodically call
rte_stats_bitrate_calc(). The frequency at which this function
is called should be the intended sampling rate required for the
calculated statistics. For instance if per-second statistics are
desired, this function should be called once a second.

tics_datum = rte_rdtsc();
tics_per_1sec = rte_get_timer_hz();

while(1) {
 /* ... */
 tics_current = rte_rdtsc();
 if (tics_current - tics_datum >= tics_per_1sec) {
 /* Periodic bitrate calculation */
 for (idx_port = 0; idx_port < cnt_ports; idx_port++)
 rte_stats_bitrate_calc(bitrate_data, idx_port);
 tics_datum = tics_current;
 }
 /* ... */
}

48.7. Latency statistics library

The latency statistics library calculates the latency of packet
processing by a DPDK application, reporting the minimum, average,
and maximum nano-seconds that packet processing takes, as well as
the jitter in processing delay. These statistics are then reported
via the metrics library using the following names:

	min_latency_ns: Minimum processing latency (nano-seconds)

	avg_latency_ns: Average processing latency (nano-seconds)

	mac_latency_ns: Maximum processing latency (nano-seconds)

	jitter_ns: Variance in processing latency (nano-seconds)

Once initialised and clocked at the appropriate frequency, these
statistics can be obtained by querying the metrics library.

48.7.1. Initialization

Before the library can be used, it has to be initialised by calling
rte_latencystats_init().

lcoreid_t latencystats_lcore_id = -1;

int ret = rte_latencystats_init(1, NULL);
if (ret)
 rte_exit(EXIT_FAILURE, "Could not allocate latency data.\n");

48.7.2. Triggering statistic updates

The rte_latencystats_update() function needs to be called
periodically so that latency statistics can be updated.

if (latencystats_lcore_id == rte_lcore_id())
 rte_latencystats_update();

48.7.3. Library shutdown

When finished, rte_latencystats_uninit() needs to be called to
de-initialise the latency library.

rte_latencystats_uninit();

48.7.4. Timestamp and latency calculation

The Latency stats library marks the time in the timestamp field of the
mbuf for the ingress packets and sets the PKT_RX_TIMESTAMP flag of
ol_flags for the mbuf to indicate the marked time as a valid one.
At the egress, the mbufs with the flag set are considered having valid
timestamp and are used for the latency calculation.

49. Telemetry Library

The Telemetry library provides an interface to retrieve information from a
variety of DPDK libraries. The library provides this information via socket
connection, taking requests from a connected client and replying with the JSON
response containing the requested telemetry information.

Telemetry is enabled to run by default when running a DPDK application, and the
telemetry information from enabled libraries is made available. Libraries are
responsible for registering their own commands, and providing the callback
function that will format the library specific stats into the correct data
format, when requested.

49.1. Registering Commands

Libraries and applications must register commands to make their information
available via the Telemetry library. This involves providing a string command
in the required format (“/library/command”), the callback function that
will handle formatting the information when required, and help text for the
command. An example showing ethdev commands being registered is shown below:

rte_telemetry_register_cmd("/ethdev/list", handle_port_list,
 "Returns list of available ethdev ports. Takes no parameters");
rte_telemetry_register_cmd("/ethdev/xstats", handle_port_xstats,
 "Returns the extended stats for a port. Parameters: int port_id");
rte_telemetry_register_cmd("/ethdev/link_status", handle_port_link_status,
 "Returns the link status for a port. Parameters: int port_id");

49.2. Formatting JSON response

The callback function provided by the library must format its telemetry
information in the required data format. The Telemetry library provides a data
utilities API to build up the response. For example, the ethdev library provides a
list of available ethdev ports in a formatted data response, constructed using the
following functions to build up the list:

rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
 RTE_ETH_FOREACH_DEV(port_id)
 rte_tel_data_add_array_int(d, port_id);

The data structure is then formatted into a JSON response before sending.
The resulting response shows the port list data provided above by the handler
function in ethdev, placed in a JSON reply by telemetry:

{"/ethdev/list": [0, 1]}

For more information on the range of data functions available in the API,
please refer to the docs.

50. Berkeley Packet Filter Library

The DPDK provides an BPF library that gives the ability
to load and execute Enhanced Berkeley Packet Filter (eBPF) bytecode within
user-space dpdk application.

It supports basic set of features from eBPF spec.
Please refer to the
eBPF spec <https://www.kernel.org/doc/Documentation/networking/filter.txt>
for more information.
Also it introduces basic framework to load/unload BPF-based filters
on eth devices (right now only via SW RX/TX callbacks).

The library API provides the following basic operations:

	Create a new BPF execution context and load user provided eBPF code into it.

	Destroy an BPF execution context and its runtime structures and free the associated memory.

	Execute eBPF bytecode associated with provided input parameter.

	Provide information about natively compiled code for given BPF context.

	Load BPF program from the ELF file and install callback to execute it on given ethdev port/queue.

50.1. Not currently supported eBPF features

	JIT support only available for X86_64 and arm64 platforms

	cBPF

	tail-pointer call

	eBPF MAP

	skb

	external function calls for 32-bit platforms

51. IPsec Packet Processing Library

DPDK provides a library for IPsec data-path processing.
The library utilizes the existing DPDK crypto-dev and
security API to provide the application with a transparent and
high performant IPsec packet processing API.
The library is concentrated on data-path protocols processing
(ESP and AH), IKE protocol(s) implementation is out of scope
for this library.

51.1. SA level API

This API operates on the IPsec Security Association (SA) level.
It provides functionality that allows user for given SA to process
inbound and outbound IPsec packets.

To be more specific:

	for inbound ESP/AH packets perform decryption, authentication, integrity checking, remove ESP/AH related headers

	for outbound packets perform payload encryption, attach ICV, update/add IP headers, add ESP/AH headers/trailers,

	setup related mbuf fields (ol_flags, tx_offloads, etc.).

	initialize/un-initialize given SA based on user provided parameters.

The SA level API is based on top of crypto-dev/security API and relies on
them to perform actual cipher and integrity checking.

Due to the nature of the crypto-dev API (enqueue/dequeue model) the library
introduces an asynchronous API for IPsec packets destined to be processed by
the crypto-device.

The expected API call sequence for data-path processing would be:

/* enqueue for processing by crypto-device */
rte_ipsec_pkt_crypto_prepare(...);
rte_cryptodev_enqueue_burst(...);
/* dequeue from crypto-device and do final processing (if any) */
rte_cryptodev_dequeue_burst(...);
rte_ipsec_pkt_crypto_group(...); /* optional */
rte_ipsec_pkt_process(...);

For packets destined for inline processing no extra overhead
is required and the synchronous API call: rte_ipsec_pkt_process()
is sufficient for that case.

Note

For more details about the IPsec API, please refer to the DPDK API Reference.

The current implementation supports all four currently defined
rte_security types:

51.1.1. RTE_SECURITY_ACTION_TYPE_NONE

In that mode the library functions perform

	for inbound packets:

	check SQN

	prepare rte_crypto_op structure for each input packet

	verify that integrity check and decryption performed by crypto device
completed successfully

	check padding data

	remove outer IP header (tunnel mode) / update IP header (transport mode)

	remove ESP header and trailer, padding, IV and ICV data

	update SA replay window

	for outbound packets:

	generate SQN and IV

	add outer IP header (tunnel mode) / update IP header (transport mode)

	add ESP header and trailer, padding and IV data

	prepare rte_crypto_op structure for each input packet

	verify that crypto device operations (encryption, ICV generation)
were completed successfully

51.1.2. RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO

In that mode the library functions perform same operations as in
RTE_SECURITY_ACTION_TYPE_NONE. The only difference is that crypto operations
are performed with CPU crypto synchronous API.

51.1.3. RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO

In that mode the library functions perform

	for inbound packets:

	verify that integrity check and decryption performed by rte_security
device completed successfully

	check SQN

	check padding data

	remove outer IP header (tunnel mode) / update IP header (transport mode)

	remove ESP header and trailer, padding, IV and ICV data

	update SA replay window

	for outbound packets:

	generate SQN and IV

	add outer IP header (tunnel mode) / update IP header (transport mode)

	add ESP header and trailer, padding and IV data

	update ol_flags inside struct rte_mbuf to indicate that
inline-crypto processing has to be performed by HW on this packet

	invoke rte_security device specific set_pkt_metadata() to associate
security device specific data with the packet

51.1.4. RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL

In that mode the library functions perform

	for inbound packets:

	verify that integrity check and decryption performed by rte_security
device completed successfully

	for outbound packets:

	update ol_flags inside struct rte_mbuf to indicate that
inline-crypto processing has to be performed by HW on this packet

	invoke rte_security device specific set_pkt_metadata() to associate
security device specific data with the packet

51.1.5. RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL

In that mode the library functions perform

	for inbound packets:

	prepare rte_crypto_op structure for each input packet

	verify that integrity check and decryption performed by crypto device
completed successfully

	for outbound packets:

	prepare rte_crypto_op structure for each input packet

	verify that crypto device operations (encryption, ICV generation)
were completed successfully

To accommodate future custom implementations function pointers
model is used for both crypto_prepare and process implementations.

51.2. SA database API

SA database(SAD) is a table with <key, value> pairs.

Value is an opaque user provided pointer to the user defined SA data structure.

According to RFC4301 each SA can be uniquely identified by a key
which is either:

	security parameter index(SPI)

	or SPI and destination IP(DIP)

	or SPI, DIP and source IP(SIP)

In case of multiple matches, longest matching key will be returned.

51.2.1. Create/destroy

librte_ipsec SAD implementation provides ability to create/destroy SAD tables.

To create SAD table user has to specify how many entries of each key type is
required and IP protocol type (IPv4/IPv6).
As an example:

struct rte_ipsec_sad *sad;
struct rte_ipsec_sad_conf conf;

conf.socket_id = -1;
conf.max_sa[RTE_IPSEC_SAD_SPI_ONLY] = some_nb_rules_spi_only;
conf.max_sa[RTE_IPSEC_SAD_SPI_DIP] = some_nb_rules_spi_dip;
conf.max_sa[RTE_IPSEC_SAD_SPI_DIP_SIP] = some_nb_rules_spi_dip_sip;
conf.flags = RTE_IPSEC_SAD_FLAG_RW_CONCURRENCY;

sad = rte_ipsec_sad_create("test", &conf);

Note

for more information please refer to ipsec library API reference

51.2.2. Add/delete rules

Library also provides methods to add or delete key/value pairs from the SAD.
To add user has to specify key, key type and a value which is an opaque pointer to SA.
The key type reflects a set of tuple fields that will be used for lookup of the SA.
As mentioned above there are 3 types of a key and the representation of a key type is:

RTE_IPSEC_SAD_SPI_ONLY,
RTE_IPSEC_SAD_SPI_DIP,
RTE_IPSEC_SAD_SPI_DIP_SIP,

As an example, to add new entry into the SAD for IPv4 addresses:

struct rte_ipsec_sa *sa;
union rte_ipsec_sad_key key;

key.v4.spi = rte_cpu_to_be_32(spi_val);
if (key_type >= RTE_IPSEC_SAD_SPI_DIP) /* DIP is optional*/
 key.v4.dip = rte_cpu_to_be_32(dip_val);
if (key_type == RTE_IPSEC_SAD_SPI_DIP_SIP) /* SIP is optional*/
 key.v4.sip = rte_cpu_to_be_32(sip_val);

rte_ipsec_sad_add(sad, &key, key_type, sa);

Note

By performance reason it is better to keep spi/dip/sip in net byte order
to eliminate byteswap on lookup

To delete user has to specify key and key type.

Delete code would look like:

union rte_ipsec_sad_key key;

key.v4.spi = rte_cpu_to_be_32(necessary_spi);
if (key_type >= RTE_IPSEC_SAD_SPI_DIP) /* DIP is optional*/
 key.v4.dip = rte_cpu_to_be_32(necessary_dip);
if (key_type == RTE_IPSEC_SAD_SPI_DIP_SIP) /* SIP is optional*/
 key.v4.sip = rte_cpu_to_be_32(necessary_sip);

rte_ipsec_sad_del(sad, &key, key_type);

51.2.3. Lookup

Library provides lookup by the given {SPI,DIP,SIP} tuple of
inbound ipsec packet as a key.

The search key is represented by:

union rte_ipsec_sad_key {
 struct rte_ipsec_sadv4_key v4;
 struct rte_ipsec_sadv6_key v6;
};

where v4 is a tuple for IPv4:

struct rte_ipsec_sadv4_key {
 uint32_t spi;
 uint32_t dip;
 uint32_t sip;
};

and v6 is a tuple for IPv6:

struct rte_ipsec_sadv6_key {
 uint32_t spi;
 uint8_t dip[16];
 uint8_t sip[16];
};

As an example, lookup related code could look like that:

int i;
union rte_ipsec_sad_key keys[BURST_SZ];
const union rte_ipsec_sad_key *keys_p[BURST_SZ];
void *vals[BURST_SZ];

for (i = 0; i < BURST_SZ_MAX; i++) {
 keys[i].v4.spi = esp_hdr[i]->spi;
 keys[i].v4.dip = ipv4_hdr[i]->dst_addr;
 keys[i].v4.sip = ipv4_hdr[i]->src_addr;
 keys_p[i] = &keys[i];
}
rte_ipsec_sad_lookup(sad, keys_p, vals, BURST_SZ);

for (i = 0; i < BURST_SZ_MAX; i++) {
 if (vals[i] == NULL)
 printf("SA not found for key index %d\n", i);
 else
 printf("SA pointer is %p\n", vals[i]);
}

51.3. Supported features

	ESP protocol tunnel mode both IPv4/IPv6.

	ESP protocol transport mode both IPv4/IPv6.

	ESN and replay window.

	algorithms: 3DES-CBC, AES-CBC, AES-CTR, AES-GCM, HMAC-SHA1, NULL.

51.4. Limitations

The following features are not properly supported in the current version:

	Hard/soft limit for SA lifetime (time interval/byte count).

52. Graph Library and Inbuilt Nodes

Graph architecture abstracts the data processing functions as a node and
links them together to create a complex graph to enable reusable/modular
data processing functions.

The graph library provides API to enable graph framework operations such as
create, lookup, dump and destroy on graph and node operations such as clone,
edge update, and edge shrink, etc. The API also allows to create the stats
cluster to monitor per graph and per node stats.

52.1. Features

Features of the Graph library are:

	Nodes as plugins.

	Support for out of tree nodes.

	Inbuilt nodes for packet processing.

	Multi-process support.

	Low overhead graph walk and node enqueue.

	Low overhead statistics collection infrastructure.

	Support to export the graph as a Graphviz dot file. See rte_graph_export().

	Allow having another graph walk implementation in the future by segregating
the fast path(rte_graph_worker.h) and slow path code.

52.2. Advantages of Graph architecture

	Memory latency is the enemy for high-speed packet processing, moving the
similar packet processing code to a node will reduce the I cache and D
caches misses.

	Exploits the probability that most packets will follow the same nodes in the
graph.

	Allow SIMD instructions for packet processing of the node.-

	The modular scheme allows having reusable nodes for the consumers.

	The modular scheme allows us to abstract the vendor HW specific
optimizations as a node.

52.3. Performance tuning parameters

	Test with various burst size values (256, 128, 64, 32) using
CONFIG_RTE_GRAPH_BURST_SIZE config option.
The testing shows, on x86 and arm64 servers, The sweet spot is 256 burst
size. While on arm64 embedded SoCs, it is either 64 or 128.

	Disable node statistics (using CONFIG_RTE_LIBRTE_GRAPH_STATS config option)
if not needed.

	Use arm64 optimized memory copy for arm64 architecture by
selecting CONFIG_RTE_ARCH_ARM64_MEMCPY.

52.4. Programming model

52.4.1. Anatomy of Node:

[image: ../_images/anatomy_of_a_node.svg]
The figure_anatomy_of_a_node diagram depicts the anatomy of a node.

The node is the basic building block of the graph framework.

A node consists of:

52.4.1.1. process():

The callback function will be invoked by worker thread using
rte_graph_walk() function when there is data to be processed by the node.
A graph node process the function using process() and enqueue to next
downstream node using rte_node_enqueue*() function.

52.4.1.2. Context memory:

It is memory allocated by the library to store the node-specific context
information. This memory will be used by process(), init(), fini() callbacks.

52.4.1.3. init():

The callback function will be invoked by rte_graph_create() on when
a node gets attached to a graph.

52.4.1.4. fini():

The callback function will be invoked by rte_graph_destroy() on when a
node gets detached to a graph.

52.4.1.5. Node name:

It is the name of the node. When a node registers to graph library, the library
gives the ID as rte_node_t type. Both ID or Name shall be used lookup the
node. rte_node_from_name(), rte_node_id_to_name() are the node
lookup functions.

52.4.1.6. nb_edges:

The number of downstream nodes connected to this node. The next_nodes[]
stores the downstream nodes objects. rte_node_edge_update() and
rte_node_edge_shrink() functions shall be used to update the next_node[]
objects. Consumers of the node APIs are free to update the next_node[]
objects till rte_graph_create() invoked.

52.4.1.7. next_node[]:

The dynamic array to store the downstream nodes connected to this node. Downstream
node should not be current node itself or a source node.

52.4.1.8. Source node:

Source nodes are static nodes created using RTE_NODE_REGISTER by passing
flags as RTE_NODE_SOURCE_F.
While performing the graph walk, the process() function of all the source
nodes will be called first. So that these nodes can be used as input nodes for a graph.

52.4.2. Node creation and registration

	Node implementer creates the node by implementing ops and attributes of
struct rte_node_register.

	The library registers the node by invoking RTE_NODE_REGISTER on library load
using the constructor scheme. The constructor scheme used here to support multi-process.

52.4.3. Link the Nodes to create the graph topology

[image: ../_images/link_the_nodes.svg]
The figure_link_the_nodes diagram shows a graph topology after
linking the N nodes.

Once nodes are available to the program, Application or node public API
functions can links them together to create a complex packet processing graph.

There are multiple different types of strategies to link the nodes.

52.4.3.1. Method (a):

Provide the next_nodes[] at the node registration time. See struct rte_node_register::nb_edges.
This is a use case to address the static node scheme where one knows upfront the
next_nodes[] of the node.

52.4.3.2. Method (b):

Use rte_node_edge_get(), rte_node_edge_update(), rte_node_edge_shrink()
to update the next_nodes[] links for the node runtime but before graph create.

52.4.3.3. Method (c):

Use rte_node_clone() to clone a already existing node, created using RTE_NODE_REGISTER.
When rte_node_clone() invoked, The library, would clone all the attributes
of the node and creates a new one. The name for cloned node shall be
"parent_node_name-user_provided_name".

This method enables the use case of Rx and Tx nodes where multiple of those nodes
need to be cloned based on the number of CPU available in the system.
The cloned nodes will be identical, except the "context memory".
Context memory will have information of port, queue pair in case of Rx and Tx
ethdev nodes.

52.4.4. Create the graph object

Now that the nodes are linked, Its time to create a graph by including
the required nodes. The application can provide a set of node patterns to
form a graph object. The famish() API used underneath for the pattern
matching to include the required nodes. After the graph create any changes to
nodes or graph is not allowed.

The rte_graph_create() API shall be used to create the graph.

Example of a graph object creation:

{"ethdev_rx-0-0", ip4*, ethdev_tx-*"}

In the above example, A graph object will be created with ethdev Rx
node of port 0 and queue 0, all ipv4* nodes in the system,
and ethdev tx node of all ports.

52.4.5. Multicore graph processing

In the current graph library implementation, specifically,
rte_graph_walk() and rte_node_enqueue* fast path API functions
are designed to work on single-core to have better performance.
The fast path API works on graph object, So the multi-core graph
processing strategy would be to create graph object PER WORKER.

52.4.6. In fast path

Typical fast-path code looks like below, where the application
gets the fast-path graph object using rte_graph_lookup()
on the worker thread and run the rte_graph_walk() in a tight loop.

struct rte_graph *graph = rte_graph_lookup("worker0");

while (!done) {
 rte_graph_walk(graph);
}

52.4.7. Context update when graph walk in action

The fast-path object for the node is struct rte_node.

It may be possible that in slow-path or after the graph walk-in action,
the user needs to update the context of the node hence access to
struct rte_node * memory.

rte_graph_foreach_node(), rte_graph_node_get(),
rte_graph_node_get_by_name() APIs can be used to to get the
struct rte_node*. rte_graph_foreach_node() iterator function works on
struct rte_graph * fast-path graph object while others works on graph ID or name.

52.4.8. Get the node statistics using graph cluster

The user may need to know the aggregate stats of the node across
multiple graph objects. Especially the situation where each graph object bound
to a worker thread.

Introduced a graph cluster object for statistics.
rte_graph_cluster_stats_create() API shall be used for creating a
graph cluster with multiple graph objects and rte_graph_cluster_stats_get()
to get the aggregate node statistics.

An example statistics output from rte_graph_cluster_stats_get()

+---------+-----------+-------------+---------------+-----------+---------------+-----------+
|Node |calls |objs |realloc_count |objs/call |objs/sec(10E6) |cycles/call|
+---------------------+-------------+---------------+-----------+---------------+-----------+
node0	12977424	3322220544	5	256.000	3047.151872	20.0000
node1	12977653	3322279168	0	256.000	3047.210496	17.0000
node2	12977696	3322290176	0	256.000	3047.221504	17.0000
node3	12977734	3322299904	0	256.000	3047.231232	17.0000
node4	12977784	3322312704	1	256.000	3047.243776	17.0000
node5	12977825	3322323200	0	256.000	3047.254528	17.0000
+---------+-----------+-------------+---------------+-----------+---------------+-----------+

52.4.9. Node writing guidelines

The process() function of a node is the fast-path function and that needs
to be written carefully to achieve max performance.

Broadly speaking, there are two different types of nodes.

52.4.10. Static nodes

The first kind of nodes are those that have a fixed next_nodes[] for the
complete burst (like ethdev_rx, ethdev_tx) and it is simple to write.
process() function can move the obj burst to the next node either using
rte_node_next_stream_move() or using rte_node_next_stream_get() and
rte_node_next_stream_put().

52.4.11. Intermediate nodes

The second kind of such node is intermediate nodes that decide what is the
next_node[] to send to on a per-packet basis. In these nodes,

	Firstly, there has to be the best possible packet processing logic.

	Secondly, each packet needs to be queued to its next node.

This can be done using rte_node_enqueue_[x1|x2|x4]() APIs if
they are to single next or rte_node_enqueue_next() that takes array of nexts.

In scenario where multiple intermediate nodes are present but most of the time
each node using the same next node for all its packets, the cost of moving every
pointer from current node’s stream to next node’s stream could be avoided.
This is called home run and rte_node_next_stream_move() could be used to
just move stream from the current node to the next node with least number of cycles.
Since this can be avoided only in the case where all the packets are destined
to the same next node, node implementation should be also having worst-case
handling where every packet could be going to different next node.

52.4.11.1. Example of intermediate node implementation with home run:

1. Start with speculation that next_node = node->ctx.
This could be the next_node application used in the previous function call of this node.

2. Get the next_node stream array with required space using
rte_node_next_stream_get(next_node, space).

3. while n_left_from > 0 (i.e packets left to be sent) prefetch next pkt_set
and process current pkt_set to find their next node

4. if all the next nodes of the current pkt_set match speculated next node,
just count them as successfully speculated(last_spec) till now and
continue the loop without actually moving them to the next node. else if there is
a mismatch, copy all the pkt_set pointers that were last_spec and move the
current pkt_set to their respective next’s nodes using rte_enqueue_next_x1().
Also, one of the next_node can be updated as speculated next_node if it is more
probable. Finally, reset last_spec to zero.

	if n_left_from != 0 then goto 3) to process remaining packets.

6. if last_spec == nb_objs, All the objects passed were successfully speculated
to single next node. So, the current stream can be moved to next node using
rte_node_next_stream_move(node, next_node).
This is the home run where memcpy of buffer pointers to next node is avoided.

	Update the node->ctx with more probable next node.

52.5. Graph object memory layout

[image: ../_images/graph_mem_layout.svg]
The figure_graph_mem_layout diagram shows rte_graph object memory
layout. Understanding the memory layout helps to debug the graph library and
improve the performance if needed.

Graph object consists of a header, circular buffer to store the pending
stream when walking over the graph, and variable-length memory to store
the rte_node objects.

The graph_nodes_mem_create() creates and populate this memory. The functions
such as rte_graph_walk() and rte_node_enqueue_* use this memory
to enable fastpath services.

52.6. Inbuilt Nodes

DPDK provides a set of nodes for data processing. The following section
details the documentation for the same.

52.6.1. ethdev_rx

This node does rte_eth_rx_burst() into stream buffer passed to it
(src node stream) and does rte_node_next_stream_move() only when
there are packets received. Each rte_node works only on one Rx port and
queue that it gets from node->ctx. For each (port X, rx_queue Y),
a rte_node is cloned from ethdev_rx_base_node as ethdev_rx-X-Y in
rte_node_eth_config() along with updating node->ctx.
Each graph needs to be associated with a unique rte_node for a (port, rx_queue).

52.6.2. ethdev_tx

This node does rte_eth_tx_burst() for a burst of objs received by it.
It sends the burst to a fixed Tx Port and Queue information from
node->ctx. For each (port X), this rte_node is cloned from
ethdev_tx_node_base as “ethdev_tx-X” in rte_node_eth_config()
along with updating node->context.

Since each graph doesn’t need more than one Txq, per port, a Txq is assigned
based on graph id to each rte_node instance. Each graph needs to be associated
with a rte_node for each (port).

52.6.3. pkt_drop

This node frees all the objects passed to it considering them as
rte_mbufs that need to be freed.

52.6.4. ip4_lookup

This node is an intermediate node that does LPM lookup for the received
ipv4 packets and the result determines each packets next node.

On successful LPM lookup, the result contains the next_node id and
next-hop id with which the packet needs to be further processed.

On LPM lookup failure, objects are redirected to pkt_drop node.
rte_node_ip4_route_add() is control path API to add ipv4 routes.
To achieve home run, node use rte_node_stream_move() as mentioned in above
sections.

52.6.5. ip4_rewrite

This node gets packets from ip4_lookup node with next-hop id for each
packet is embedded in node_mbuf_priv1(mbuf)->nh. This id is used
to determine the L2 header to be written to the packet before sending
the packet out to a particular ethdev_tx node.
rte_node_ip4_rewrite_add() is control path API to add next-hop info.

52.6.6. null

This node ignores the set of objects passed to it and reports that all are
processed.

 Part 2: Development Environment

53. Source Organization

This section describes the organization of sources in the DPDK framework.

53.1. Makefiles and Config

Note

In the following descriptions,
RTE_SDK is the environment variable that points to the base directory into which the tarball was extracted.
See
Useful Variables Provided by the Build System
for descriptions of other variables.

Makefiles that are provided by the DPDK libraries and applications are located in $(RTE_SDK)/mk.

Config templates are located in $(RTE_SDK)/config. The templates describe the options that are enabled for each target.
The config file also contains items that can be enabled and disabled for many of the DPDK libraries,
including debug options.
The user should look at the config file and become familiar with these options.
The config file is also used to create a header file, which will be located in the new build directory.

53.2. Libraries

Libraries are located in subdirectories of $(RTE_SDK)/lib.
By convention a library refers to any code that provides an API to an application.
Typically, it generates an archive file (.a), but a kernel module would also go in the same directory.

53.3. Drivers

Drivers are special libraries which provide poll-mode driver implementations for
devices: either hardware devices or pseudo/virtual devices. They are contained
in the drivers subdirectory, classified by type, and each compiles to a
library with the format librte_pmd_X.a where X is the driver name.

Note

Several of the driver/net directories contain a base
sub-directory. The base directory generally contains code the shouldn’t
be modified directly by the user. Any enhancements should be done via the
X_osdep.c and/or X_osdep.h files in that directory. Refer to the
local README in the base directories for driver specific instructions.

53.4. Applications

Applications are source files that contain a main() function.
They are located in the $(RTE_SDK)/app and $(RTE_SDK)/examples directories.

The app directory contains sample applications that are used to test DPDK (such as autotests)
or the Poll Mode Drivers (test-pmd).

The examples directory contains Sample applications that show how libraries can be used.

54. Development Kit Build System

The DPDK requires a build system for compilation activities and so on.
This section describes the constraints and the mechanisms used in the DPDK framework.

There are two use-cases for the framework:

	Compilation of the DPDK libraries and sample applications;
the framework generates specific binary libraries,
include files and sample applications

	Compilation of an external application or library, using an installed binary DPDK

54.1. Building the Development Kit Binary

The following provides details on how to build the DPDK binary.

54.1.1. Build Directory Concept

After installation, a build directory structure is created.
Each build directory contains include files, libraries, and applications.

A build directory is specific to a configuration that includes architecture + execution environment + toolchain.
It is possible to have several build directories sharing the same sources with different configurations.

For instance, to create a new build directory called my_sdk_build_dir using the default configuration template config/defconfig_x86_64-linux,
we use:

cd ${RTE_SDK}
make config T=x86_64-native-linux-gcc O=my_sdk_build_dir

This creates a new my_sdk_build_dir directory. After that, we can compile by doing:

cd my_sdk_build_dir
make

which is equivalent to:

make O=my_sdk_build_dir

Refer to
Development Kit Root Makefile Help
for details about make commands that can be used from the root of DPDK.

54.2. Building External Applications

Since DPDK is in essence a development kit, the first objective of end users will be to create an application using this SDK.
To compile an application, the user must set the RTE_SDK and RTE_TARGET environment variables.

export RTE_SDK=/opt/DPDK
export RTE_TARGET=x86_64-native-linux-gcc
cd /path/to/my_app

For a new application, the user must create their own Makefile that includes some .mk files, such as
${RTE_SDK}/mk/rte.vars.mk, and ${RTE_SDK}/mk/ rte.app.mk.
This is described in
Building Your Own Application.

Depending on the chosen target (architecture, machine, executive environment, toolchain) defined in the Makefile or as an environment variable,
the applications and libraries will compile using the appropriate .h files and will link with the appropriate .a files.
These files are located in ${RTE_SDK}/arch-machine-execenv-toolchain, which is referenced internally by ${RTE_BIN_SDK}.

To compile their application, the user just has to call make.
The compilation result will be located in /path/to/my_app/build directory.

Sample applications are provided in the examples directory.

54.3. Makefile Description

54.3.1. General Rules For DPDK Makefiles

In the DPDK, Makefiles always follow the same scheme:

	Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

	Define specific variables for RTE build system.

	Include a specific $(RTE_SDK)/mk/rte.XYZ.mk, where XYZ can be app, lib, extapp, extlib, obj, gnuconfigure,
and so on, depending on what kind of object you want to build.
See Makefile Types below.

	Include user-defined rules and variables.

The following is a very simple example of an external application Makefile:

include $(RTE_SDK)/mk/rte.vars.mk

binary name
APP = helloworld

all source are stored in SRCS-y
SRCS-y := main.c

CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)

include $(RTE_SDK)/mk/rte.extapp.mk

54.3.2. Makefile Types

Depending on the .mk file which is included at the end of the user Makefile, the Makefile will have a different role.
Note that it is not possible to build a library and an application in the same Makefile.
For that, the user must create two separate Makefiles, possibly in two different directories.

In any case, the rte.vars.mk file must be included in the user Makefile as soon as possible.

54.3.2.1. Application

These Makefiles generate a binary application.

	rte.app.mk: Application in the development kit framework

	rte.extapp.mk: External application

	rte.hostapp.mk: prerequisite tool to build dpdk

54.3.2.2. Library

Generate a .a library.

	rte.lib.mk: Library in the development kit framework

	rte.extlib.mk: external library

	rte.hostlib.mk: host library in the development kit framework

54.3.2.3. Install

	rte.install.mk: Does not build anything, it is only used to create links or copy files to the installation directory.
This is useful for including files in the development kit framework.

54.3.2.4. Kernel Module

	rte.module.mk: Build a kernel module in the development kit framework.

54.3.2.5. Objects

	rte.obj.mk: Object aggregation (merge several .o in one) in the development kit framework.

	rte.extobj.mk: Object aggregation (merge several .o in one) outside the development kit framework.

54.3.2.6. Misc

	rte.gnuconfigure.mk: Build an application that is configure-based.

	rte.subdir.mk: Build several directories in the development kit framework.

54.3.3. Internally Generated Build Tools

app/dpdk-pmdinfogen

dpdk-pmdinfogen scans an object (.o) file for various well known symbol names.
These well known symbol names are defined by various macros and used to export
important information about hardware support and usage for pmd files. For
instance the macro:

RTE_PMD_REGISTER_PCI(name, drv)

Creates the following symbol:

static char this_pmd_name0[] __attribute__((used)) = "<name>";

Which dpdk-pmdinfogen scans for. Using this information other relevant
bits of data can be exported from the object file and used to produce a
hardware support description, that dpdk-pmdinfogen then encodes into a
JSON formatted string in the following format:

static char <name_pmd_string>="PMD_INFO_STRING=\"{'name' : '<name>', ...}\"";

These strings can then be searched for by external tools to determine the
hardware support of a given library or application.

54.3.4. Useful Variables Provided by the Build System

	RTE_SDK: The absolute path to the DPDK sources.
When compiling the development kit, this variable is automatically set by the framework.
It has to be defined by the user as an environment variable if compiling an external application.

	RTE_SRCDIR: The path to the root of the sources. When compiling the development kit, RTE_SRCDIR = RTE_SDK.
When compiling an external application, the variable points to the root of external application sources.

	RTE_OUTPUT: The path to which output files are written.
Typically, it is $(RTE_SRCDIR)/build, but it can be overridden by the O= option in the make command line.

	RTE_TARGET: A string identifying the target for which we are building.
The format is arch-machine-execenv-toolchain.
When compiling the SDK, the target is deduced by the build system from the configuration (.config).
When building an external application, it must be specified by the user in the Makefile or as an environment variable.

	RTE_SDK_BIN: References $(RTE_SDK)/$(RTE_TARGET).

	RTE_ARCH: Defines the architecture (i686, x86_64).
It is the same value as CONFIG_RTE_ARCH but without the double-quotes around the string.

	RTE_MACHINE: Defines the machine.
It is the same value as CONFIG_RTE_MACHINE but without the double-quotes around the string.

	RTE_TOOLCHAIN: Defines the toolchain (gcc , icc).
It is the same value as CONFIG_RTE_TOOLCHAIN but without the double-quotes around the string.

	RTE_EXEC_ENV: Defines the executive environment (linux).
It is the same value as CONFIG_RTE_EXEC_ENV but without the double-quotes around the string.

	RTE_KERNELDIR: This variable contains the absolute path to the kernel sources that will be used to compile the kernel modules.
The kernel headers must be the same as the ones that will be used on the target machine (the machine that will run the application).
By default, the variable is set to /lib/modules/$(shell uname -r)/build,
which is correct when the target machine is also the build machine.

	RTE_DEVEL_BUILD: Stricter options (stop on warning). It defaults to y in a git tree.

54.3.5. Variables that Can be Set/Overridden in a Makefile Only

	VPATH: The path list that the build system will search for sources. By default, RTE_SRCDIR will be included in VPATH.

	CFLAGS: Flags to use for C compilation. The user should use += to append data in this variable.

	LDFLAGS: Flags to use for linking. The user should use += to append data in this variable.

	ASFLAGS: Flags to use for assembly. The user should use += to append data in this variable.

	CPPFLAGS: Flags to use to give flags to C preprocessor (only useful when assembling .S files).
The user should use += to append data in this variable.

	LDLIBS: In an application, the list of libraries to link with (for example, -L /path/to/libfoo -lfoo).
The user should use += to append data in this variable.

	SRC-y: A list of source files (.c, .S, or .o if the source is a binary) in case of application, library or object Makefiles.
The sources must be available from VPATH.

	INSTALL-y-$(INSTPATH): A list of files to be installed in $(INSTPATH).
The files must be available from VPATH and will be copied in $(RTE_OUTPUT)/$(INSTPATH). Can be used in almost any RTE Makefile.

	SYMLINK-y-$(INSTPATH): A list of files to be installed in $(INSTPATH).
The files must be available from VPATH and will be linked (symbolically) in $(RTE_OUTPUT)/$(INSTPATH).
This variable can be used in almost any DPDK Makefile.

	PREBUILD: A list of prerequisite actions to be taken before building. The user should use += to append data in this variable.

	POSTBUILD: A list of actions to be taken after the main build. The user should use += to append data in this variable.

	PREINSTALL: A list of prerequisite actions to be taken before installing. The user should use += to append data in this variable.

	POSTINSTALL: A list of actions to be taken after installing. The user should use += to append data in this variable.

	PRECLEAN: A list of prerequisite actions to be taken before cleaning. The user should use += to append data in this variable.

	POSTCLEAN: A list of actions to be taken after cleaning. The user should use += to append data in this variable.

	DEPDIRS-$(DIR): Only used in the development kit framework to specify if the build of the current directory depends on build of another one.
This is needed to support parallel builds correctly.

54.3.6. Variables that can be Set/Overridden by the User on the Command Line Only

Some variables can be used to configure the build system behavior. They are documented in
Development Kit Root Makefile Help and
External Application/Library Makefile Help

	WERROR_CFLAGS: By default, this is set to a specific value that depends on the compiler.
Users are encouraged to use this variable as follows:

CFLAGS += $(WERROR_CFLAGS)

This avoids the use of different cases depending on the compiler (icc or gcc).
Also, this variable can be overridden from the command line, which allows bypassing of the flags for testing purposes.

54.3.7. Variables that Can be Set/Overridden by the User in a Makefile or Command Line

	CFLAGS_my_file.o: Specific flags to add for C compilation of my_file.c.

	LDFLAGS_my_app: Specific flags to add when linking my_app.

	EXTRA_CFLAGS: The content of this variable is appended after CFLAGS when compiling.

	EXTRA_LDFLAGS: The content of this variable is appended after LDFLAGS when linking.

	EXTRA_LDLIBS: The content of this variable is appended after LDLIBS when linking.

	EXTRA_ASFLAGS: The content of this variable is appended after ASFLAGS when assembling.

	EXTRA_CPPFLAGS: The content of this variable is appended after CPPFLAGS when using a C preprocessor on assembly files.

55. Development Kit Root Makefile Help

The DPDK provides a root level Makefile with targets for configuration, building, cleaning, testing, installation and others.
These targets are explained in the following sections.

55.1. Configuration Targets

The configuration target requires the name of the target, which is specified using T=mytarget and it is mandatory.
The list of available targets are in $(RTE_SDK)/config (remove the defconfig _ prefix).

Configuration targets also support the specification of the name of the output directory, using O=mybuilddir.
This is an optional parameter, the default output directory is build.

	Config

This will create a build directory, and generates a configuration from a template.
A Makefile is also created in the new build directory.

Example:

make config O=mybuild T=x86_64-native-linux-gcc

55.2. Build Targets

Build targets support the optional specification of the name of the output directory, using O=mybuilddir.
The default output directory is build.

	all, build or just make

Build the DPDK in the output directory previously created by a make config.

Example:

make O=mybuild

	clean

Clean all objects created using make build.

Example:

make clean O=mybuild

	%_sub

Build a subdirectory only, without managing dependencies on other directories.

Example:

make lib/librte_eal_sub O=mybuild

	%_clean

Clean a subdirectory only.

Example:

make lib/librte_eal_clean O=mybuild

55.3. Install Targets

	Install

The list of available targets are in $(RTE_SDK)/config (remove the defconfig_ prefix).

The GNU standards variables may be used:
http://gnu.org/prep/standards/html_node/Directory-Variables.html and
http://gnu.org/prep/standards/html_node/DESTDIR.html

Example:

make install DESTDIR=myinstall prefix=/usr

55.4. Test Targets

	test

Launch automatic tests for a build directory specified using O=mybuilddir.
It is optional, the default output directory is build.

Example:

make test O=mybuild

55.5. Documentation Targets

	doc

Generate the documentation (API and guides).

	doc-api-html

Generate the Doxygen API documentation in html.

	doc-guides-html

Generate the guides documentation in html.

	doc-guides-pdf

Generate the guides documentation in pdf.

55.6. Misc Targets

	help

Show a quick help.

55.7. Other Useful Command-line Variables

The following variables can be specified on the command line:

	V=

Enable verbose build (show full compilation command line, and some intermediate commands).

	D=

Enable dependency debugging. This provides some useful information about why a target is built or not.

	EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_LDLIBS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

	CROSS=

Specify a cross toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

55.8. Make in a Build Directory

All targets described above are called from the SDK root $(RTE_SDK).
It is possible to run the same Makefile targets inside the build directory.
For instance, the following command:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linux-gcc
make O=mybuild

is equivalent to:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linux-gcc
cd mybuild

no need to specify O= now
make

55.9. Compiling for Debug

To compile the DPDK and sample applications with debugging information included and the optimization level set to 0,
the EXTRA_CFLAGS environment variable should be set before compiling as follows:

export EXTRA_CFLAGS='-O0 -g'

56. Installing DPDK Using the meson build system

56.1. Summary

For many platforms, compiling and installing DPDK should work using the
following set of commands:

meson build
cd build
ninja
ninja install

This will compile DPDK in the build subdirectory, and then install the
resulting libraries, drivers and header files onto the system - generally
in /usr/local. A package-config file, libdpdk.pc, for DPDK will also
be installed to allow ease of compiling and linking with applications.

After installation, to use DPDK, the necessary CFLAG and LDFLAG variables
can be got from pkg-config:

pkg-config --cflags libdpdk
pkg-config --libs libdpdk

More detail on each of these steps can be got from the following sections.

56.2. Getting the Tools

The meson tool is used to configure a DPDK build. On most Linux
distributions this can be got using the local package management system,
e.g. dnf install meson or apt-get install meson. If meson is not
available as a suitable package, it can also be installed using the Python
3 pip tool, e.g. pip3 install meson. Version 0.47.1 of meson is
required - if the version packaged is too old, the latest version is
generally available from “pip”.

The other dependency for building is the ninja tool, which acts similar
to make and performs the actual build using information provided by meson.
Installing meson will, in many cases, also install ninja, but, if not
already installed, it too is generally packaged by most Linux distributions.
If not available as a package, it can be downloaded as source or binary from
https://ninja-build.org/

56.3. Configuring the Build

To configure a build, run the meson tool, passing the path to the directory
to be used for the build e.g. meson build, as shown above. If calling
meson from somewhere other than the root directory of the DPDK project the
path to the root directory should be passed as the first parameter, and the
build path as the second. For example, to build DPDK in /tmp/dpdk-build:

user@host:/tmp$ meson ~user/dpdk dpdk-build

Meson will then configure the build based on settings in the project’s
meson.build files, and by checking the build environment for e.g. compiler
properties or the presence of dependencies, such as libpcap, or openssl
libcrypto libraries. Once done, meson writes a build.ninja file in the
build directory to be used to do the build itself when ninja is called.

Tuning of the build is possible, both as part of the original meson call,
or subsequently using meson configure command (mesonconf in some
older versions). Some options, such as buildtype, or werror are
built into meson, while others, such as max_lcores, or the list of
examples to build, are DPDK-specific. To have a list of all options
available run meson configure in the build directory.

Examples of adjusting the defaults when doing initial meson configuration.
Project-specific options are passed used -Doption=value:

meson --werror werrorbuild # build with warnings as errors

meson --buildtype=debug debugbuild # build for debugging

meson -Dexamples=l3fwd,l2fwd fwdbuild # build some examples as
 # part of the normal DPDK build

meson -Dmax_lcores=8 smallbuild # scale build for smaller systems

meson -Denable_docs=true fullbuild # build and install docs

meson -Dmachine=default # use builder-independent baseline -march

meson -Ddisable_drivers=event/*,net/tap # disable tap driver and all
 # eventdev PMDs for a smaller build

meson -Denable_trace_fp=true tracebuild # build with fast path traces
 # enabled

Examples of setting some of the same options using meson configure:

meson configure -Dwerror=true

meson configure -Dbuildtype=debug

meson configure -Dexamples=l3fwd,l2fwd

meson configure -Dmax_lcores=8

meson configure -Denable_trace_fp=true

NOTE: once meson has been run to configure a build in a directory, it
cannot be run again on the same directory. Instead meson configure
should be used to change the build settings within the directory, and when
ninja is called to do the build itself, it will trigger the necessary
re-scan from meson.

NOTE: machine=default uses a config that works on all supported architectures
regardless of the capabilities of the machine where the build is happening.

As well as those settings taken from meson configure, other options
such as the compiler to use can be passed via environment variables. For
example:

CC=clang meson clang-build

NOTE: for more comprehensive overriding of compilers or other environment
settings, the tools for cross-compilation may be considered. However, for
basic overriding of the compiler etc., the above form works as expected.

56.4. Performing the Build

Use ninja to perform the actual build inside the build folder
previously configured. In most cases no arguments are necessary.

Ninja accepts a number of flags which are similar to make. For example, to
call ninja from outside the build folder, you can use ninja -C build.
Ninja also runs parallel builds by default, but you can limit this using
the -j flag, e.g. ninja -j1 -v to do the build one step at a time,
printing each command on a new line as it runs.

56.5. Installing the Compiled Files

Use ninja install to install the required DPDK files onto the system.
The install prefix defaults to /usr/local but can be used as with other
options above. The environment variable DESTDIR can be used to adjust
the root directory for the install, for example when packaging.

With the base install directory, the individual directories for libraries
and headers are configurable. By default, the following will be the
installed layout:

headers -> /usr/local/include
libraries -> /usr/local/lib64
drivers -> /usr/local/lib64/dpdk/drivers
libdpdk.pc -> /usr/local/lib64/pkgconfig

For the drivers, these will also be symbolically linked into the library
install directory, so that ld.so can find them in cases where one driver may
depend on another, e.g. a NIC PMD depending upon the PCI bus driver. Within
the EAL, the default search path for drivers will be set to the configured
driver install path, so dynamically-linked applications can be run without
having to pass in -d /path/to/driver options for standard drivers.

56.6. Cross Compiling DPDK

To cross-compile DPDK on a desired target machine we can use the following
command:

meson cross-build --cross-file <target_machine_configuration>

For example if the target machine is arm64 we can use the following
command:

meson arm-build --cross-file config/arm/arm64_armv8_linux_gcc

where config/arm/arm64_armv8_linux_gcc contains settings for the compilers
and other build tools to be used, as well as characteristics of the target
machine.

56.7. Using the DPDK within an Application

To compile and link against DPDK within an application, pkg-config should
be used to query the correct parameters. Examples of this are given in the
makefiles for the example applications included with DPDK. They demonstrate
how to link either against the DPDK shared libraries, or against the static
versions of the same.

From examples/helloworld/Makefile:

PC_FILE := $(shell pkg-config --path libdpdk)
CFLAGS += -O3 $(shell pkg-config --cflags libdpdk)
LDFLAGS_SHARED = $(shell pkg-config --libs libdpdk)
LDFLAGS_STATIC = -Wl,-Bstatic $(shell pkg-config --static --libs libdpdk)

build/$(APP)-shared: $(SRCS-y) Makefile $(PC_FILE) | build
 $(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_SHARED)

build/$(APP)-static: $(SRCS-y) Makefile $(PC_FILE) | build
 $(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_STATIC)

build:
 @mkdir -p $@

57. Running DPDK Unit Tests with Meson

This section describes how to run test cases with the DPDK meson build system.

Steps to build and install DPDK using meson can be referred
in Installing DPDK Using the meson build system

57.1. Grouping of test cases

Test cases have been classified into four different groups.

	Fast tests.

	Performance tests.

	Driver tests.

	Tests which produce lists of objects as output, and therefore that need
manual checking.

These tests can be run using the argument to meson test as
--suite project_name:label.

For example:

$ meson test -C <build path> --suite DPDK:fast-tests

If the <build path> is current working directory,
the -C <build path> option can be skipped as below:

$ meson test --suite DPDK:fast-tests

The project name is optional so the following is equivalent to the previous
command:

$ meson test --suite fast-tests

The meson command to list all available tests:

$ meson test --list

Test cases are run serially by default for better stability.

Arguments of test() that can be provided in meson.build are as below:

	is_parallel is used to run test case either in parallel or non-parallel mode.

	timeout is used to specify the timeout of test case.

	args is used to specify test specific parameters.

	env is used to specify test specific environment parameters.

57.2. Dealing with skipped test cases

Some unit test cases have a dependency on external libraries, driver modules
or config flags, without which the test cases cannot be run. Such test cases
will be reported as skipped if they cannot run. To enable those test cases,
the user should ensure the required dependencies are met.
Below are a few possible causes why tests may be skipped:

	Optional external libraries are not found.

	Config flags for the dependent library are not enabled.

	Dependent driver modules are not installed on the system.

	Not enough processing cores. Some tests are skipped on machines with 2 or 4 cores.

58. Extending the DPDK

This chapter describes how a developer can extend the DPDK to provide a new library,
a new target, or support a new target.

58.1. Example: Adding a New Library libfoo

To add a new library to the DPDK, proceed as follows:

	Add a new configuration option:

for f in config/*; do \
 echo CONFIG_RTE_LIBFOO=y >> $f; done

	Create a new directory with sources:

mkdir ${RTE_SDK}/lib/libfoo
touch ${RTE_SDK}/lib/libfoo/foo.c
touch ${RTE_SDK}/lib/libfoo/foo.h

	Add a foo() function in libfoo.

Definition is in foo.c:

void foo(void)
{
}

Declaration is in foo.h:

extern void foo(void);

	Update lib/Makefile:

vi ${RTE_SDK}/lib/Makefile
add:
DIRS-$(CONFIG_RTE_LIBFOO) += libfoo

	Create a new Makefile for this library, for example, derived from mempool Makefile:

cp ${RTE_SDK}/lib/librte_mempool/Makefile ${RTE_SDK}/lib/libfoo/

vi ${RTE_SDK}/lib/libfoo/Makefile
replace:
librte_mempool -> libfoo
rte_mempool -> foo

	Update mk/DPDK.app.mk, and add -lfoo in LDLIBS variable when the option is enabled.
This will automatically add this flag when linking a DPDK application.

	Build the DPDK with the new library (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linux-gcc
make

	Check that the library is installed:

ls build/lib
ls build/include

58.1.1. Example: Using libfoo in the Test Application

The test application is used to validate all functionality of the DPDK.
Once you have added a library, a new test case should be added in the test application.

	A new test_foo.c file should be added, that includes foo.h and calls the foo() function from test_foo().
When the test passes, the test_foo() function should return 0.

	Makefile, test.h and commands.c must be updated also, to handle the new test case.

	Test report generation: autotest.py is a script that is used to generate the test report that is available in the
${RTE_SDK}/doc/rst/test_report/autotests directory. This script must be updated also.
If libfoo is in a new test family, the links in ${RTE_SDK}/doc/rst/test_report/test_report.rst must be updated.

	Build the DPDK with the updated test application (we only show a specific target here):

cd ${RTE_SDK}
make config T=x86_64-native-linux-gcc
make

59. Building Your Own Application

59.1. Compiling a Sample Application in the Development Kit Directory

When compiling a sample application (for example, hello world), the following variables must be exported:
RTE_SDK and RTE_TARGET.

~/DPDK$ cd examples/helloworld/
~/DPDK/examples/helloworld$ export RTE_SDK=/home/user/DPDK
~/DPDK/examples/helloworld$ export RTE_TARGET=x86_64-native-linux-gcc
~/DPDK/examples/helloworld$ make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

The binary is generated in the build directory by default:

~/DPDK/examples/helloworld$ ls build/app
helloworld helloworld.map

59.2. Build Your Own Application Outside the Development Kit

The sample application (Hello World) can be duplicated in a new directory as a starting point for your development:

~$ cp -r DPDK/examples/helloworld my_rte_app
~$ cd my_rte_app/
~/my_rte_app$ export RTE_SDK=/home/user/DPDK
~/my_rte_app$ export RTE_TARGET=x86_64-native-linux-gcc
~/my_rte_app$ make
 CC main.o
 LD helloworld
 INSTALL-APP helloworld
 INSTALL-MAP helloworld.map

59.3. Customizing Makefiles

59.3.1. Application Makefile

The default makefile provided with the Hello World sample application is a good starting point. It includes:

	$(RTE_SDK)/mk/rte.vars.mk at the beginning

	$(RTE_SDK)/mk/rte.extapp.mk at the end

The user must define several variables:

	APP: Contains the name of the application.

	SRCS-y: List of source files (*.c, *.S).

59.3.2. Library Makefile

It is also possible to build a library in the same way:

	Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

	Include $(RTE_SDK)/mk/rte.extlib.mk at the end.

The only difference is that APP should be replaced by LIB, which contains the name of the library. For example, libfoo.a.

59.3.3. Customize Makefile Actions

Some variables can be defined to customize Makefile actions. The most common are listed below. Refer to
Makefile Description section in
Development Kit Build System

chapter for details.

	VPATH: The path list where the build system will search for sources. By default,
RTE_SRCDIR will be included in VPATH.

	CFLAGS_my_file.o: The specific flags to add for C compilation of my_file.c.

	CFLAGS: The flags to use for C compilation.

	LDFLAGS: The flags to use for linking.

	CPPFLAGS: The flags to use to provide flags to the C preprocessor (only useful when assembling .S files)

	LDLIBS: A list of libraries to link with (for example, -L /path/to/libfoo - lfoo)

60. External Application/Library Makefile help

External applications or libraries should include specific Makefiles from RTE_SDK, located in mk directory.
These Makefiles are:

	${RTE_SDK}/mk/rte.extapp.mk: Build an application

	${RTE_SDK}/mk/rte.extlib.mk: Build a static library

	${RTE_SDK}/mk/rte.extobj.mk: Build objects (.o)

60.1. Prerequisites

The following variables must be defined:

	${RTE_SDK}: Points to the root directory of the DPDK.

	${RTE_TARGET}: Reference the target to be used for compilation (for example, x86_64-native-linux-gcc).

60.2. Build Targets

Build targets support the specification of the name of the output directory, using O=mybuilddir.
This is optional; the default output directory is build.

	all, “nothing” (meaning just make)

Build the application or the library in the specified output directory.

Example:

make O=mybuild

	clean

Clean all objects created using make build.

Example:

make clean O=mybuild

60.3. Help Targets

	help

Show this help.

60.4. Other Useful Command-line Variables

The following variables can be specified at the command line:

	S=

Specify the directory in which the sources are located. By default, it is the current directory.

	M=

Specify the Makefile to call once the output directory is created. By default, it uses $(S)/Makefile.

	V=

Enable verbose build (show full compilation command line and some intermediate commands).

	D=

Enable dependency debugging. This provides some useful information about why a target must be rebuilt or not.

	EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

	CROSS=

Specify a cross-toolchain header that will prefix all gcc/binutils applications. This only works when using gcc.

60.5. Make from Another Directory

It is possible to run the Makefile from another directory, by specifying the output and the source dir. For example:

export RTE_SDK=/path/to/DPDK
export RTE_TARGET=x86_64-native-linux-icc
make -f /path/to/my_app/Makefile S=/path/to/my_app O=/path/to/build_dir

 Part 3: Performance Optimization

61. Performance Optimization Guidelines

61.1. Introduction

The following sections describe optimizations used in DPDK and optimizations that should be considered for new applications.

They also highlight the performance-impacting coding techniques that should,
and should not be, used when developing an application using the DPDK.

And finally, they give an introduction to application profiling using a Performance Analyzer from Intel to optimize the software.

62. Writing Efficient Code

This chapter provides some tips for developing efficient code using the DPDK.
For additional and more general information,
please refer to the Intel® 64 and IA-32 Architectures Optimization Reference Manual
which is a valuable reference to writing efficient code.

62.1. Memory

This section describes some key memory considerations when developing applications in the DPDK environment.

62.1.1. Memory Copy: Do not Use libc in the Data Plane

Many libc functions are available in the DPDK, via the Linux* application environment.
This can ease the porting of applications and the development of the configuration plane.
However, many of these functions are not designed for performance.
Functions such as memcpy() or strcpy() should not be used in the data plane.
To copy small structures, the preference is for a simpler technique that can be optimized by the compiler.
Refer to the VTune™ Performance Analyzer Essentials publication from Intel Press for recommendations.

For specific functions that are called often,
it is also a good idea to provide a self-made optimized function, which should be declared as static inline.

The DPDK API provides an optimized rte_memcpy() function.

62.1.2. Memory Allocation

Other functions of libc, such as malloc(), provide a flexible way to allocate and free memory.
In some cases, using dynamic allocation is necessary,
but it is really not advised to use malloc-like functions in the data plane because
managing a fragmented heap can be costly and the allocator may not be optimized for parallel allocation.

If you really need dynamic allocation in the data plane, it is better to use a memory pool of fixed-size objects.
This API is provided by librte_mempool.
This data structure provides several services that increase performance, such as memory alignment of objects,
lockless access to objects, NUMA awareness, bulk get/put and per-lcore cache.
The rte_malloc () function uses a similar concept to mempools.

62.1.3. Concurrent Access to the Same Memory Area

Read-Write (RW) access operations by several lcores to the same memory area can generate a lot of data cache misses,
which are very costly.
It is often possible to use per-lcore variables, for example, in the case of statistics.
There are at least two solutions for this:

	Use RTE_PER_LCORE variables. Note that in this case, data on lcore X is not available to lcore Y.

	Use a table of structures (one per lcore). In this case, each structure must be cache-aligned.

Read-mostly variables can be shared among lcores without performance losses if there are no RW variables in the same cache line.

62.1.4. NUMA

On a NUMA system, it is preferable to access local memory since remote memory access is slower.
In the DPDK, the memzone, ring, rte_malloc and mempool APIs provide a way to create a pool on a specific socket.

Sometimes, it can be a good idea to duplicate data to optimize speed.
For read-mostly variables that are often accessed,
it should not be a problem to keep them in one socket only, since data will be present in cache.

62.1.5. Distribution Across Memory Channels

Modern memory controllers have several memory channels that can load or store data in parallel.
Depending on the memory controller and its configuration,
the number of channels and the way the memory is distributed across the channels varies.
Each channel has a bandwidth limit,
meaning that if all memory access operations are done on the first channel only, there is a potential bottleneck.

By default, the Mempool Library spreads the addresses of objects among memory channels.

62.1.6. Locking memory pages

The underlying operating system is allowed to load/unload memory pages at its own discretion.
These page loads could impact the performance, as the process is on hold when the kernel fetches them.

To avoid these you could pre-load, and lock them into memory with the mlockall() call.

if (mlockall(MCL_CURRENT | MCL_FUTURE)) {
 RTE_LOG(NOTICE, USER1, "mlockall() failed with error \"%s\"\n",
 strerror(errno));
}

62.2. Communication Between lcores

To provide a message-based communication between lcores,
it is advised to use the DPDK ring API, which provides a lockless ring implementation.

The ring supports bulk and burst access,
meaning that it is possible to read several elements from the ring with only one costly atomic operation
(see Ring Library).
Performance is greatly improved when using bulk access operations.

The code algorithm that dequeues messages may be something similar to the following:

 #define MAX_BULK 32

 while (1) {
 /* Process as many elements as can be dequeued. */
 count = rte_ring_dequeue_burst(ring, obj_table, MAX_BULK, NULL);
 if (unlikely(count == 0))
 continue;

 my_process_bulk(obj_table, count);
}

62.3. PMD Driver

The DPDK Poll Mode Driver (PMD) is also able to work in bulk/burst mode,
allowing the factorization of some code for each call in the send or receive function.

Avoid partial writes.
When PCI devices write to system memory through DMA,
it costs less if the write operation is on a full cache line as opposed to part of it.
In the PMD code, actions have been taken to avoid partial writes as much as possible.

62.3.1. Lower Packet Latency

Traditionally, there is a trade-off between throughput and latency.
An application can be tuned to achieve a high throughput,
but the end-to-end latency of an average packet will typically increase as a result.
Similarly, the application can be tuned to have, on average,
a low end-to-end latency, at the cost of lower throughput.

In order to achieve higher throughput,
the DPDK attempts to aggregate the cost of processing each packet individually by processing packets in bursts.

Using the testpmd application as an example,
the burst size can be set on the command line to a value of 16 (also the default value).
This allows the application to request 16 packets at a time from the PMD.
The testpmd application then immediately attempts to transmit all the packets that were received,
in this case, all 16 packets.

The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the network port.
This behavior is desirable when tuning for high throughput because
the cost of tail pointer updates to both the RX and TX queues can be spread across 16 packets,
effectively hiding the relatively slow MMIO cost of writing to the PCIe* device.
However, this is not very desirable when tuning for low latency because
the first packet that was received must also wait for another 15 packets to be received.
It cannot be transmitted until the other 15 packets have also been processed because
the NIC will not know to transmit the packets until the TX tail pointer has been updated,
which is not done until all 16 packets have been processed for transmission.

To consistently achieve low latency, even under heavy system load,
the application developer should avoid processing packets in bunches.
The testpmd application can be configured from the command line to use a burst value of 1.
This will allow a single packet to be processed at a time, providing lower latency,
but with the added cost of lower throughput.

62.4. Locks and Atomic Operations

Atomic operations imply a lock prefix before the instruction,
causing the processor’s LOCK# signal to be asserted during execution of the following instruction.
This has a big impact on performance in a multicore environment.

Performance can be improved by avoiding lock mechanisms in the data plane.
It can often be replaced by other solutions like per-lcore variables.
Also, some locking techniques are more efficient than others.
For instance, the Read-Copy-Update (RCU) algorithm can frequently replace simple rwlocks.

62.5. Coding Considerations

62.5.1. Inline Functions

Small functions can be declared as static inline in the header file.
This avoids the cost of a call instruction (and the associated context saving).
However, this technique is not always efficient; it depends on many factors including the compiler.

62.5.2. Branch Prediction

The Intel® C/C++ Compiler (icc)/gcc built-in helper functions likely() and unlikely()
allow the developer to indicate if a code branch is likely to be taken or not.
For instance:

if (likely(x > 1))
 do_stuff();

62.6. Setting the Target CPU Type

The DPDK supports CPU microarchitecture-specific optimizations by means of CONFIG_RTE_MACHINE option
in the DPDK configuration file.
The degree of optimization depends on the compiler’s ability to optimize for a specific microarchitecture,
therefore it is preferable to use the latest compiler versions whenever possible.

If the compiler version does not support the specific feature set (for example, the Intel® AVX instruction set),
the build process gracefully degrades to whatever latest feature set is supported by the compiler.

Since the build and runtime targets may not be the same,
the resulting binary also contains a platform check that runs before the
main() function and checks if the current machine is suitable for running the binary.

Along with compiler optimizations,
a set of preprocessor defines are automatically added to the build process (regardless of the compiler version).
These defines correspond to the instruction sets that the target CPU should be able to support.
For example, a binary compiled for any SSE4.2-capable processor will have RTE_MACHINE_CPUFLAG_SSE4_2 defined,
thus enabling compile-time code path selection for different platforms.

63. Link Time Optimization

The DPDK supports compilation with link time optimization turned on.
This depends obviously on the ability of the compiler to do “whole
program” optimization at link time and is available only for compilers
that support that feature.
To be more specific, compiler (in addition to performing LTO) have to
support creation of ELF objects containing both normal code and internal
representation (called fat-lto-objects in gcc and icc).
This is required since during build some code is generated by parsing
produced ELF objects (pmdinfogen).

The amount of performance gain that one can get from LTO depends on the
compiler and the code that is being compiled.
However LTO is also useful for additional code analysis done by the
compiler.
In particular due to interprocedural analysis compiler can produce
additional warnings about variables that might be used uninitialized.
Some of these warnings might be “false positives” though and you might
need to explicitly initialize variable in order to silence the compiler.

Please note that turning LTO on causes considerable extension of
build time.

When using make based build, link time optimization can be enabled for
the whole DPDK by setting:

CONFIG_RTE_ENABLE_LTO=y

in config file.

For the meson based build it can be enabled by setting meson built-in
‘b_lto’ option:

meson build -Db_lto=true

64. Profile Your Application

The following sections describe methods of profiling DPDK applications on
different architectures.

64.1. Profiling on x86

Intel processors provide performance counters to monitor events.
Some tools provided by Intel, such as Intel® VTune™ Amplifier, can be used
to profile and benchmark an application.
See the VTune Performance Analyzer Essentials publication from Intel Press for more information.

For a DPDK application, this can be done in a Linux* application environment only.

The main situations that should be monitored through event counters are:

	Cache misses

	Branch mis-predicts

	DTLB misses

	Long latency instructions and exceptions

Refer to the
Intel Performance Analysis Guide [http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf]
for details about application profiling.

64.1.1. Profiling with VTune

To allow VTune attaching to the DPDK application, reconfigure and recompile
the DPDK with CONFIG_RTE_ETHDEV_RXTX_CALLBACKS and
CONFIG_RTE_ETHDEV_PROFILE_WITH_VTUNE enabled.

64.2. Profiling on ARM64

64.2.1. Using Linux perf

The ARM64 architecture provide performance counters to monitor events. The
Linux perf tool can be used to profile and benchmark an application. In
addition to the standard events, perf can be used to profile arm64
specific PMU (Performance Monitor Unit) events through raw events (-e
-rXX).

For more derails refer to the
ARM64 specific PMU events enumeration [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_0002_04_en/way1382543438508.html].

64.2.2. Low-resolution generic counter

The default cntvct_el0 based rte_rdtsc() provides a portable means to
get a wall clock counter in user space. Typically it runs at a lower clock frequency than the CPU clock frequency.
Cycles counted using this method should be scaled to CPU clock frequency.

64.2.3. High-resolution cycle counter

The alternative method to enable rte_rdtsc() for a high resolution wall
clock counter is through the ARMv8 PMU subsystem. The PMU cycle counter runs
at CPU frequency. However, access to the PMU cycle counter from user space is
not enabled by default in the arm64 linux kernel. It is possible to enable
cycle counter for user space access by configuring the PMU from the privileged
mode (kernel space).

By default the rte_rdtsc() implementation uses a portable cntvct_el0
scheme. Application can choose the PMU based implementation with
CONFIG_RTE_ARM_EAL_RDTSC_USE_PMU.

The example below shows the steps to configure the PMU based cycle counter on
an ARMv8 machine.

git clone https://github.com/jerinjacobk/armv8_pmu_cycle_counter_el0
cd armv8_pmu_cycle_counter_el0
make
sudo insmod pmu_el0_cycle_counter.ko
cd $DPDK_DIR
make config T=arm64-armv8a-linux-gcc
echo "CONFIG_RTE_ARM_EAL_RDTSC_USE_PMU=y" >> build/.config
make

Warning

The PMU based scheme is useful for high accuracy performance profiling with
rte_rdtsc(). However, this method can not be used in conjunction with
Linux userspace profiling tools like perf as this scheme alters the PMU
registers state.

65. Glossary

	ACL
	Access Control List

	API
	Application Programming Interface

	ASLR
	Linux* kernel Address-Space Layout Randomization

	BSD
	Berkeley Software Distribution

	Clr
	Clear

	CIDR
	Classless Inter-Domain Routing

	Control Plane
	The control plane is concerned with the routing of packets and with
providing a start or end point.

	Core
	A core may include several lcores or threads if the processor supports
hyperthreading.

	Core Components
	A set of libraries provided by the DPDK, including eal, ring, mempool,
mbuf, timers, and so on.

	CPU
	Central Processing Unit

	CRC
	Cyclic Redundancy Check

	Data Plane
	In contrast to the control plane, the data plane in a network architecture
are the layers involved when forwarding packets. These layers must be
highly optimized to achieve good performance.

	DIMM
	Dual In-line Memory Module

	Doxygen
	A documentation generator used in the DPDK to generate the API reference.

	DPDK
	Data Plane Development Kit

	DRAM
	Dynamic Random Access Memory

	EAL
	The Environment Abstraction Layer (EAL) provides a generic interface that
hides the environment specifics from the applications and libraries. The
services expected from the EAL are: development kit loading and launching,
core affinity/ assignment procedures, system memory allocation/description,
PCI bus access, inter-partition communication.

	FIFO
	First In First Out

	FPGA
	Field Programmable Gate Array

	GbE
	Gigabit Ethernet

	HW
	Hardware

	HPET
	High Precision Event Timer; a hardware timer that provides a precise time
reference on x86 platforms.

	ID
	Identifier

	IOCTL
	Input/Output Control

	I/O
	Input/Output

	IP
	Internet Protocol

	IPv4
	Internet Protocol version 4

	IPv6
	Internet Protocol version 6

	lcore
	A logical execution unit of the processor, sometimes called a hardware
thread.

	KNI
	Kernel Network Interface

	L1
	Layer 1

	L2
	Layer 2

	L3
	Layer 3

	L4
	Layer 4

	LAN
	Local Area Network

	LPM
	Longest Prefix Match

	master lcore
	The execution unit that executes the main() function and that launches
other lcores.

	mbuf
	An mbuf is a data structure used internally to carry messages (mainly
network packets). The name is derived from BSD stacks. To understand the
concepts of packet buffers or mbuf, refer to TCP/IP Illustrated, Volume 2:
The Implementation.

	MESI
	Modified Exclusive Shared Invalid (CPU cache coherency protocol)

	MTU
	Maximum Transfer Unit

	NIC
	Network Interface Card

	OOO
	Out Of Order (execution of instructions within the CPU pipeline)

	NUMA
	Non-uniform Memory Access

	PCI
	Peripheral Connect Interface

	PHY
	An abbreviation for the physical layer of the OSI model.

	pktmbuf
	An mbuf carrying a network packet.

	PMD
	Poll Mode Driver

	QoS
	Quality of Service

	RCU
	Read-Copy-Update algorithm, an alternative to simple rwlocks.

	Rd
	Read

	RED
	Random Early Detection

	RSS
	Receive Side Scaling

	RTE
	Run Time Environment. Provides a fast and simple framework for fast packet
processing, in a lightweight environment as a Linux* application and using
Poll Mode Drivers (PMDs) to increase speed.

	Rx
	Reception

	Slave lcore
	Any lcore that is not the master lcore.

	Socket
	A physical CPU, that includes several cores.

	SLA
	Service Level Agreement

	srTCM
	Single Rate Three Color Marking

	SRTD
	Scheduler Round Trip Delay

	SW
	Software

	Target
	In the DPDK, the target is a combination of architecture, machine,
executive environment and toolchain. For example:
i686-native-linux-gcc.

	TCP
	Transmission Control Protocol

	TC
	Traffic Class

	TLB
	Translation Lookaside Buffer

	TLS
	Thread Local Storage

	trTCM
	Two Rate Three Color Marking

	TSC
	Time Stamp Counter

	Tx
	Transmission

	TUN/TAP
	TUN and TAP are virtual network kernel devices.

	VLAN
	Virtual Local Area Network

	Wr
	Write

	WRED
	Weighted Random Early Detection

	WRR
	Weighted Round Robin

HowTo Guides

	1. Live Migration of VM with SR-IOV VF
	1.1. Overview

	1.2. Test Setup

	1.3. Live Migration steps

	1.4. Sample host scripts

	1.5. Sample VM scripts

	1.6. Sample switch configuration

	2. Live Migration of VM with Virtio on host running vhost_user
	2.1. Overview

	2.2. Test Setup

	2.3. Live Migration steps

	2.4. Sample host scripts

	2.5. Sample VM scripts

	3. Flow Bifurcation How-to Guide
	3.1. Using Flow Bifurcation on Mellanox ConnectX

	4. Generic flow API - examples
	4.1. Simple IPv4 drop

	4.2. Range IPv4 drop

	4.3. Send vlan to queue

	5. PVP reference benchmark setup using testpmd
	5.1. Setup overview

	5.2. Host setup

	5.3. Guest setup

	5.4. Results template

	6. VF daemon (VFd)
	6.1. Preparing

	6.2. Common functions of IXGBE and I40E

	6.3. The IXGBE specific VFd functions

	6.4. The I40E specific VFd functions

	7. Virtio_user for Container Networking
	7.1. Overview

	7.2. Sample Usage

	7.3. Limitations

	8. Virtio_user as Exceptional Path
	8.1. Sample Usage

	8.2. Limitations

	9. DPDK pdump Library and pdump Tool
	9.1. Introduction

	9.2. Test Environment

	9.3. Configuration

	9.4. Running the Application

	10. DPDK Telemetry User Guide
	10.1. Telemetry Interface

	10.2. Telemetry Initialization

	10.3. Running Telemetry

	11. Debug & Troubleshoot guide
	11.1. Application Overview

	11.2. Bottleneck Analysis

	11.3. How to develop a custom code to debug?

	12. Enable DPDK on OpenWrt
	12.1. Introduction

	12.2. Build OpenWrt

	12.3. DPDK Cross Compilation for OpenWrt

	12.4. Running DPDK application on OpenWrt

1. Live Migration of VM with SR-IOV VF

1.1. Overview

It is not possible to migrate a Virtual Machine which has an SR-IOV Virtual Function (VF).

To get around this problem the bonding PMD is used.

The following sections show an example of how to do this.

1.2. Test Setup

A bonded device is created in the VM.
The virtio and VF PMD’s are added as slaves to the bonded device.
The VF is set as the primary slave of the bonded device.

A bridge must be set up on the Host connecting the tap device, which is the
backend of the Virtio device and the Physical Function (PF) device.

To test the Live Migration two servers with identical operating systems installed are used.
KVM and Qemu 2.3 is also required on the servers.

In this example, the servers have Niantic and or Fortville NIC’s installed.
The NIC’s on both servers are connected to a switch
which is also connected to the traffic generator.

The switch is configured to broadcast traffic on all the NIC ports.
A Sample switch configuration
can be found in this section.

The host is running the Kernel PF driver (ixgbe or i40e).

The ip address of host_server_1 is 10.237.212.46

The ip address of host_server_2 is 10.237.212.131

[image: ../_images/lm_bond_virtio_sriov.svg]

1.3. Live Migration steps

The sample scripts mentioned in the steps below can be found in the
Sample host scripts and
Sample VM scripts sections.

1.3.1. On host_server_1: Terminal 1

cd /root/dpdk/host_scripts
./setup_vf_on_212_46.sh

For Fortville NIC

./vm_virtio_vf_i40e_212_46.sh

For Niantic NIC

./vm_virtio_vf_one_212_46.sh

1.3.2. On host_server_1: Terminal 2

cd /root/dpdk/host_scripts
./setup_bridge_on_212_46.sh
./connect_to_qemu_mon_on_host.sh
(qemu)

1.3.3. On host_server_1: Terminal 1

In VM on host_server_1:

cd /root/dpdk/vm_scripts
./setup_dpdk_in_vm.sh
./run_testpmd_bonding_in_vm.sh

testpmd> show port info all

The mac_addr command only works with kernel PF for Niantic

testpmd> mac_addr add port 1 vf 0 AA:BB:CC:DD:EE:FF

The syntax of the testpmd command is:

Create bonded device (mode) (socket).

Mode 1 is active backup.

Virtio is port 0 (P0).

VF is port 1 (P1).

Bonding is port 2 (P2).

testpmd> create bonded device 1 0
Created new bonded device net_bond_testpmd_0 on (port 2).
testpmd> add bonding slave 0 2
testpmd> add bonding slave 1 2
testpmd> show bonding config 2

The syntax of the testpmd command is:

set bonding primary (slave id) (port id)

Set primary to P1 before starting bonding port.

testpmd> set bonding primary 1 2
testpmd> show bonding config 2
testpmd> port start 2
Port 2: 02:09:C0:68:99:A5
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex

testpmd> show bonding config 2

Primary is now P1. There are 2 active slaves.

Use P2 only for forwarding.

testpmd> set portlist 2
testpmd> show config fwd
testpmd> set fwd mac
testpmd> start
testpmd> show bonding config 2

Primary is now P1. There are 2 active slaves.

testpmd> show port stats all

VF traffic is seen at P1 and P2.

testpmd> clear port stats all
testpmd> set bonding primary 0 2
testpmd> remove bonding slave 1 2
testpmd> show bonding config 2

Primary is now P0. There is 1 active slave.

testpmd> clear port stats all
testpmd> show port stats all

No VF traffic is seen at P0 and P2, VF MAC address still present.

testpmd> port stop 1
testpmd> port close 1

Port close should remove VF MAC address, it does not remove perm_addr.

The mac_addr command only works with the kernel PF for Niantic.

testpmd> mac_addr remove 1 AA:BB:CC:DD:EE:FF
testpmd> port detach 1
Port '0000:00:04.0' is detached. Now total ports is 2
testpmd> show port stats all

No VF traffic is seen at P0 and P2.

1.3.4. On host_server_1: Terminal 2

(qemu) device_del vf1

1.3.5. On host_server_1: Terminal 1

In VM on host_server_1:

testpmd> show bonding config 2

Primary is now P0. There is 1 active slave.

testpmd> show port info all
testpmd> show port stats all

1.3.6. On host_server_2: Terminal 1

cd /root/dpdk/host_scripts
./setup_vf_on_212_131.sh
./vm_virtio_one_migrate.sh

1.3.7. On host_server_2: Terminal 2

./setup_bridge_on_212_131.sh
./connect_to_qemu_mon_on_host.sh
(qemu) info status
VM status: paused (inmigrate)
(qemu)

1.3.8. On host_server_1: Terminal 2

Check that the switch is up before migrating.

(qemu) migrate tcp:10.237.212.131:5555
(qemu) info status
VM status: paused (postmigrate)

For the Niantic NIC.

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11834 milliseconds
downtime: 18 milliseconds
setup: 3 milliseconds
transferred ram: 389137 kbytes
throughput: 269.49 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 301620 pages
skipped: 0 pages
normal: 96433 pages
normal bytes: 385732 kbytes
dirty sync count: 2
(qemu) quit

For the Fortville NIC.

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11619 milliseconds
downtime: 5 milliseconds
setup: 7 milliseconds
transferred ram: 379699 kbytes
throughput: 267.82 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 303985 pages
skipped: 0 pages
normal: 94073 pages
normal bytes: 376292 kbytes
dirty sync count: 2
(qemu) quit

1.3.9. On host_server_2: Terminal 1

In VM on host_server_2:

Hit Enter key. This brings the user to the testpmd prompt.

testpmd>

1.3.10. On host_server_2: Terminal 2

(qemu) info status
VM status: running

For the Niantic NIC.

(qemu) device_add pci-assign,host=06:10.0,id=vf1

For the Fortville NIC.

(qemu) device_add pci-assign,host=03:02.0,id=vf1

1.3.11. On host_server_2: Terminal 1

In VM on host_server_2:

testpmd> show port info all
testpmd> show port stats all
testpmd> show bonding config 2
testpmd> port attach 0000:00:04.0
Port 1 is attached.
Now total ports is 3
Done

testpmd> port start 1

The mac_addr command only works with the Kernel PF for Niantic.

testpmd> mac_addr add port 1 vf 0 AA:BB:CC:DD:EE:FF
testpmd> show port stats all.
testpmd> show config fwd
testpmd> show bonding config 2
testpmd> add bonding slave 1 2
testpmd> set bonding primary 1 2
testpmd> show bonding config 2
testpmd> show port stats all

VF traffic is seen at P1 (VF) and P2 (Bonded device).

testpmd> remove bonding slave 0 2
testpmd> show bonding config 2
testpmd> port stop 0
testpmd> port close 0
testpmd> port detach 0
Port '0000:00:03.0' is detached. Now total ports is 2

testpmd> show port info all
testpmd> show config fwd
testpmd> show port stats all

VF traffic is seen at P1 (VF) and P2 (Bonded device).

1.4. Sample host scripts

1.4.1. setup_vf_on_212_46.sh

Set up Virtual Functions on host_server_1

#!/bin/sh
This script is run on the host 10.237.212.46 to setup the VF

set up Niantic VF
cat /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
rmmod ixgbevf

set up Fortville VF
cat /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
rmmod i40evf

1.4.2. vm_virtio_vf_one_212_46.sh

Setup Virtual Machine on host_server_1

#!/bin/sh

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/username/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="4"

Memory
MEM=1536

taskset -c 1-5 $KVM_PATH \
 -enable-kvm \
 -m $MEM \
 -smp $VCPUS_NR \
 -cpu host \
 -name VM1 \
 -no-reboot \
 -net none \
 -vnc none -nographic \
 -hda $DISK_IMG \
 -netdev type=tap,id=net1,script=no,downscript=no,ifname=tap1 \
 -device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB \
 -device pci-assign,host=09:10.0,id=vf1 \
 -monitor telnet::3333,server,nowait

1.4.3. setup_bridge_on_212_46.sh

Setup bridge on host_server_1

#!/bin/sh
This script is run on the host 10.237.212.46 to setup the bridge
for the Tap device and the PF device.
This enables traffic to go from the PF to the Tap to the Virtio PMD in the VM.

ens3f0 is the Niantic NIC
ens6f0 is the Fortville NIC

ifconfig ens3f0 down
ifconfig tap1 down
ifconfig ens6f0 down
ifconfig virbr0 down

brctl show virbr0
brctl addif virbr0 ens3f0
brctl addif virbr0 ens6f0
brctl addif virbr0 tap1
brctl show virbr0

ifconfig ens3f0 up
ifconfig tap1 up
ifconfig ens6f0 up
ifconfig virbr0 up

1.4.4. connect_to_qemu_mon_on_host.sh

#!/bin/sh
This script is run on both hosts when the VM is up,
to connect to the Qemu Monitor.

telnet 0 3333

1.4.5. setup_vf_on_212_131.sh

Set up Virtual Functions on host_server_2

#!/bin/sh
This script is run on the host 10.237.212.131 to setup the VF

set up Niantic VF
cat /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
rmmod ixgbevf

set up Fortville VF
cat /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
rmmod i40evf

1.4.6. vm_virtio_one_migrate.sh

Setup Virtual Machine on host_server_2

#!/bin/sh
Start the VM on host_server_2 with the same parameters except without the VF
parameters, as the VM on host_server_1, in migration-listen mode
(-incoming tcp:0:5555)

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/username/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="4"

Memory
MEM=1536

taskset -c 1-5 $KVM_PATH \
 -enable-kvm \
 -m $MEM \
 -smp $VCPUS_NR \
 -cpu host \
 -name VM1 \
 -no-reboot \
 -net none \
 -vnc none -nographic \
 -hda $DISK_IMG \
 -netdev type=tap,id=net1,script=no,downscript=no,ifname=tap1 \
 -device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB \
 -incoming tcp:0:5555 \
 -monitor telnet::3333,server,nowait

1.4.7. setup_bridge_on_212_131.sh

Setup bridge on host_server_2

#!/bin/sh
This script is run on the host to setup the bridge
for the Tap device and the PF device.
This enables traffic to go from the PF to the Tap to the Virtio PMD in the VM.

ens4f0 is the Niantic NIC
ens5f0 is the Fortville NIC

ifconfig ens4f0 down
ifconfig tap1 down
ifconfig ens5f0 down
ifconfig virbr0 down

brctl show virbr0
brctl addif virbr0 ens4f0
brctl addif virbr0 ens5f0
brctl addif virbr0 tap1
brctl show virbr0

ifconfig ens4f0 up
ifconfig tap1 up
ifconfig ens5f0 up
ifconfig virbr0 up

1.5. Sample VM scripts

1.5.1. setup_dpdk_in_vm.sh

Set up DPDK in the Virtual Machine

#!/bin/sh
this script matches the vm_virtio_vf_one script
virtio port is 03
vf port is 04

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ifconfig -a
/root/dpdk/usertools/dpdk-devbind.py --status

rmmod virtio-pci ixgbevf

modprobe uio
insmod /root/dpdk/x86_64-default-linux-gcc/kmod/igb_uio.ko

/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:03.0
/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:04.0

/root/dpdk/usertools/dpdk-devbind.py --status

1.5.2. run_testpmd_bonding_in_vm.sh

Run testpmd in the Virtual Machine.

#!/bin/sh
Run testpmd in the VM

The test system has 8 cpus (0-7), use cpus 2-7 for VM
Use taskset -pc <core number> <thread_id>

use for bonding of virtio and vf tests in VM

/root/dpdk/x86_64-default-linux-gcc/app/testpmd \
-l 0-3 -n 4 --socket-mem 350 -- --i --port-topology=chained

1.6. Sample switch configuration

The Intel switch is used to connect the traffic generator to the
NIC’s on host_server_1 and host_server_2.

In order to run the switch configuration two console windows are required.

Log in as root in both windows.

TestPointShared, run_switch.sh and load /root/switch_config must be executed
in the sequence below.

1.6.1. On Switch: Terminal 1

run TestPointShared

/usr/bin/TestPointShared

1.6.2. On Switch: Terminal 2

execute run_switch.sh

/root/run_switch.sh

1.6.3. On Switch: Terminal 1

load switch configuration

load /root/switch_config

1.6.4. Sample switch configuration script

The /root/switch_config script:

TestPoint History
show port 1,5,9,13,17,21,25
set port 1,5,9,13,17,21,25 up
show port 1,5,9,13,17,21,25
del acl 1
create acl 1
create acl-port-set
create acl-port-set
add port port-set 1 0
add port port-set 5,9,13,17,21,25 1
create acl-rule 1 1
add acl-rule condition 1 1 port-set 1
add acl-rule action 1 1 redirect 1
apply acl
create vlan 1000
add vlan port 1000 1,5,9,13,17,21,25
set vlan tagging 1000 1,5,9,13,17,21,25 tag
set switch config flood_ucast fwd
show port stats all 1,5,9,13,17,21,25

2. Live Migration of VM with Virtio on host running vhost_user

2.1. Overview

Live Migration of a VM with DPDK Virtio PMD on a host which is
running the Vhost sample application (vhost-switch) and using the DPDK PMD (ixgbe or i40e).

The Vhost sample application uses VMDQ so SRIOV must be disabled on the NIC’s.

The following sections show an example of how to do this migration.

2.2. Test Setup

To test the Live Migration two servers with identical operating systems installed are used.
KVM and QEMU is also required on the servers.

QEMU 2.5 is required for Live Migration of a VM with vhost_user running on the hosts.

In this example, the servers have Niantic and or Fortville NIC’s installed.
The NIC’s on both servers are connected to a switch
which is also connected to the traffic generator.

The switch is configured to broadcast traffic on all the NIC ports.

The ip address of host_server_1 is 10.237.212.46

The ip address of host_server_2 is 10.237.212.131

[image: ../_images/lm_vhost_user.svg]

2.3. Live Migration steps

The sample scripts mentioned in the steps below can be found in the
Sample host scripts and
Sample VM scripts sections.

2.3.1. On host_server_1: Terminal 1

Setup DPDK on host_server_1

cd /root/dpdk/host_scripts
./setup_dpdk_on_host.sh

2.3.2. On host_server_1: Terminal 2

Bind the Niantic or Fortville NIC to igb_uio on host_server_1.

For Fortville NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:02:00.0

For Niantic NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:09:00.0

2.3.3. On host_server_1: Terminal 3

For Fortville and Niantic NIC’s reset SRIOV and run the
vhost_user sample application (vhost-switch) on host_server_1.

cd /root/dpdk/host_scripts
./reset_vf_on_212_46.sh
./run_vhost_switch_on_host.sh

2.3.4. On host_server_1: Terminal 1

Start the VM on host_server_1

./vm_virtio_vhost_user.sh

2.3.5. On host_server_1: Terminal 4

Connect to the QEMU monitor on host_server_1.

cd /root/dpdk/host_scripts
./connect_to_qemu_mon_on_host.sh
(qemu)

2.3.6. On host_server_1: Terminal 1

In VM on host_server_1:

Setup DPDK in the VM and run testpmd in the VM.

cd /root/dpdk/vm_scripts
./setup_dpdk_in_vm.sh
./run_testpmd_in_vm.sh

testpmd> show port info all
testpmd> set fwd mac retry
testpmd> start tx_first
testpmd> show port stats all

Virtio traffic is seen at P1 and P2.

2.3.7. On host_server_2: Terminal 1

Set up DPDK on the host_server_2.

cd /root/dpdk/host_scripts
./setup_dpdk_on_host.sh

2.3.8. On host_server_2: Terminal 2

Bind the Niantic or Fortville NIC to igb_uio on host_server_2.

For Fortville NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:03:00.0

For Niantic NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:06:00.0

2.3.9. On host_server_2: Terminal 3

For Fortville and Niantic NIC’s reset SRIOV, and run
the vhost_user sample application on host_server_2.

cd /root/dpdk/host_scripts
./reset_vf_on_212_131.sh
./run_vhost_switch_on_host.sh

2.3.10. On host_server_2: Terminal 1

Start the VM on host_server_2.

./vm_virtio_vhost_user_migrate.sh

2.3.11. On host_server_2: Terminal 4

Connect to the QEMU monitor on host_server_2.

cd /root/dpdk/host_scripts
./connect_to_qemu_mon_on_host.sh
(qemu) info status
VM status: paused (inmigrate)
(qemu)

2.3.12. On host_server_1: Terminal 4

Check that switch is up before migrating the VM.

(qemu) migrate tcp:10.237.212.131:5555
(qemu) info status
VM status: paused (postmigrate)

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11619 milliseconds
downtime: 5 milliseconds
setup: 7 milliseconds
transferred ram: 379699 kbytes
throughput: 267.82 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 303985 pages
skipped: 0 pages
normal: 94073 pages
normal bytes: 376292 kbytes
dirty sync count: 2
(qemu) quit

2.3.13. On host_server_2: Terminal 1

In VM on host_server_2:

Hit Enter key. This brings the user to the testpmd prompt.

testpmd>

2.3.14. On host_server_2: Terminal 4

In QEMU monitor on host_server_2

(qemu) info status
VM status: running

2.3.15. On host_server_2: Terminal 1

In VM on host_server_2:

testpmd> show port info all
testpmd> show port stats all

Virtio traffic is seen at P0 and P1.

2.4. Sample host scripts

2.4.1. reset_vf_on_212_46.sh

#!/bin/sh
This script is run on the host 10.237.212.46 to reset SRIOV

BDF for Fortville NIC is 0000:02:00.0
cat /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:02\:00.0/max_vfs

BDF for Niantic NIC is 0000:09:00.0
cat /sys/bus/pci/devices/0000\:09\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:09\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:09\:00.0/max_vfs

2.4.2. vm_virtio_vhost_user.sh

#/bin/sh
Script for use with vhost_user sample application
The host system has 8 cpu's (0-7)

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/user/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="6"

Memory
MEM=1024

VIRTIO_OPTIONS="csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off"

Socket Path
SOCKET_PATH="/root/dpdk/host_scripts/usvhost"

taskset -c 2-7 $KVM_PATH \
 -enable-kvm \
 -m $MEM \
 -smp $VCPUS_NR \
 -object memory-backend-file,id=mem,size=1024M,mem-path=/mnt/huge,share=on \
 -numa node,memdev=mem,nodeid=0 \
 -cpu host \
 -name VM1 \
 -no-reboot \
 -net none \
 -vnc none \
 -nographic \
 -hda $DISK_IMG \
 -chardev socket,id=chr0,path=$SOCKET_PATH \
 -netdev type=vhost-user,id=net1,chardev=chr0,vhostforce \
 -device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
 -chardev socket,id=chr1,path=$SOCKET_PATH \
 -netdev type=vhost-user,id=net2,chardev=chr1,vhostforce \
 -device virtio-net-pci,netdev=net2,mac=DD:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
 -monitor telnet::3333,server,nowait

2.4.3. connect_to_qemu_mon_on_host.sh

#!/bin/sh
This script is run on both hosts when the VM is up,
to connect to the Qemu Monitor.

telnet 0 3333

2.4.4. reset_vf_on_212_131.sh

#!/bin/sh
This script is run on the host 10.237.212.131 to reset SRIOV

BDF for Niantic NIC is 0000:06:00.0
cat /sys/bus/pci/devices/0000\:06\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:06\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:06\:00.0/max_vfs

BDF for Fortville NIC is 0000:03:00.0
cat /sys/bus/pci/devices/0000\:03\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:03\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:03\:00.0/max_vfs

2.4.5. vm_virtio_vhost_user_migrate.sh

#/bin/sh
Script for use with vhost user sample application
The host system has 8 cpu's (0-7)

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/user/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="6"

Memory
MEM=1024

VIRTIO_OPTIONS="csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off"

Socket Path
SOCKET_PATH="/root/dpdk/host_scripts/usvhost"

taskset -c 2-7 $KVM_PATH \
 -enable-kvm \
 -m $MEM \
 -smp $VCPUS_NR \
 -object memory-backend-file,id=mem,size=1024M,mem-path=/mnt/huge,share=on \
 -numa node,memdev=mem,nodeid=0 \
 -cpu host \
 -name VM1 \
 -no-reboot \
 -net none \
 -vnc none \
 -nographic \
 -hda $DISK_IMG \
 -chardev socket,id=chr0,path=$SOCKET_PATH \
 -netdev type=vhost-user,id=net1,chardev=chr0,vhostforce \
 -device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
 -chardev socket,id=chr1,path=$SOCKET_PATH \
 -netdev type=vhost-user,id=net2,chardev=chr1,vhostforce \
 -device virtio-net-pci,netdev=net2,mac=DD:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
 -incoming tcp:0:5555 \
 -monitor telnet::3333,server,nowait

2.5. Sample VM scripts

2.5.1. setup_dpdk_virtio_in_vm.sh

#!/bin/sh
this script matches the vm_virtio_vhost_user script
virtio port is 03
virtio port is 04

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ifconfig -a
/root/dpdk/usertools/dpdk-devbind.py --status

rmmod virtio-pci

modprobe uio
insmod /root/dpdk/x86_64-default-linux-gcc/kmod/igb_uio.ko

/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:03.0
/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:04.0

/root/dpdk/usertools/dpdk-devbind.py --status

2.5.2. run_testpmd_in_vm.sh

#!/bin/sh
Run testpmd for use with vhost_user sample app.
test system has 8 cpus (0-7), use cpus 2-7 for VM

/root/dpdk/x86_64-default-linux-gcc/app/testpmd \
-l 0-5 -n 4 --socket-mem 350 -- --burst=64 --i

3. Flow Bifurcation How-to Guide

Flow Bifurcation is a mechanism which uses hardware capable Ethernet devices
to split traffic between Linux user space and kernel space. Since it is a
hardware assisted feature this approach can provide line rate processing
capability. Other than KNI, the software is just required to
enable device configuration, there is no need to take care of the packet
movement during the traffic split. This can yield better performance with
less CPU overhead.

The Flow Bifurcation splits the incoming data traffic to user space
applications (such as DPDK applications) and/or kernel space programs (such as
the Linux kernel stack). It can direct some traffic, for example data plane
traffic, to DPDK, while directing some other traffic, for example control
plane traffic, to the traditional Linux networking stack.

There are a number of technical options to achieve this. A typical example is
to combine the technology of SR-IOV and packet classification filtering.

SR-IOV is a PCI standard that allows the same physical adapter to be split as
multiple virtual functions. Each virtual function (VF) has separated queues
with physical functions (PF). The network adapter will direct traffic to a
virtual function with a matching destination MAC address. In a sense, SR-IOV
has the capability for queue division.

Packet classification filtering is a hardware capability available on most
network adapters. Filters can be configured to direct specific flows to a
given receive queue by hardware. Different NICs may have different filter
types to direct flows to a Virtual Function or a queue that belong to it.

In this way the Linux networking stack can receive specific traffic through
the kernel driver while a DPDK application can receive specific traffic
bypassing the Linux kernel by using drivers like VFIO or the DPDK igb_uio
module.

[image: ../_images/flow_bifurcation_overview.svg]
Fig. 3.3 Flow Bifurcation Overview

3.1. Using Flow Bifurcation on Mellanox ConnectX

The Mellanox devices are natively bifurcated,
so there is no need to split into SR-IOV PF/VF
in order to get the flow bifurcation mechanism.
The full device is already shared with the kernel driver.

The DPDK application can setup some flow steering rules,
and let the rest go to the kernel stack.
In order to define the filters strictly with flow rules,
the Flow isolated mode can be configured.

There is no specific instructions to follow.
The recommended reading is the Generic flow API (rte_flow) guide.
Below is an example of testpmd commands
for receiving VXLAN 42 in 4 queues of the DPDK port 0,
while all other packets go to the kernel:

testpmd> flow isolate 0 true
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan vni is 42 / end \
 actions rss queues 0 1 2 3 end / end

4. Generic flow API - examples

This document demonstrates some concrete examples for programming flow rules
with the rte_flow APIs.

	Detail of the rte_flow APIs can be found in the following link:
Generic flow API (rte_flow).

	Details of the TestPMD commands to set the flow rules can be found in the
following link: TestPMD Flow rules

4.1. Simple IPv4 drop

4.1.1. Description

In this example we will create a simple rule that drops packets whose IPv4
destination equals 192.168.3.2. This code is equivalent to the following
testpmd command (wrapped for clarity):

testpmd> flow create 0 ingress pattern eth / vlan /
 ipv4 dst is 192.168.3.2 / end actions drop / end

4.1.2. Code

/* create the attribute structure */
struct rte_flow_attr attr = { .ingress = 1 };
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pass all packets */
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* set the dst ipv4 packet to the required value */
ipv4.hdr.dst_addr = htonl(0xc0a80302);
pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[2].spec = &ipv4;

/* end the pattern array */
pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

/* create the drop action */
actions[0].type = RTE_FLOW_ACTION_TYPE_DROP;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))
 flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.1.3. Output

Terminal 1: running sample app with the flow rule disabled:

./filter-program disable
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4
received packet with src ip = 176.80.50.5

Terminal 1: running sample the app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst ='192.168.3.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4

4.2. Range IPv4 drop

4.2.1. Description

In this example we will create a simple rule that drops packets whose IPv4
destination is in the range 192.168.3.0 to 192.168.3.255. This is done using
a mask.

This code is equivalent to the following testpmd command (wrapped for
clarity):

testpmd> flow create 0 ingress pattern eth / vlan /
 ipv4 dst spec 192.168.3.0 dst mask 255.255.255.0 /
 end actions drop / end

4.2.2. Code

struct rte_flow_attr attr = {.ingress = 1};
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv4 ipv4_mask;
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pass all packets */
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* set the dst ipv4 packet to the required value */
ipv4.hdr.dst_addr = htonl(0xc0a80300);
ipv4_mask.hdr.dst_addr = htonl(0xffffff00);
pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[2].spec = &ipv4;
pattern[2].mask = &ipv4_mask;

/* end the pattern array */
pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

/* create the drop action */
actions[0].type = RTE_FLOW_ACTION_TYPE_DROP;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))
 flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.2.3. Output

Terminal 1: running sample app flow rule disabled:

./filter-program disable
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.6', dst='192.168.5.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4
received packet with src ip = 176.80.50.5
received packet with src ip = 176.80.50.6

Terminal 1: running sample app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.6', dst='192.168.5.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.6

4.3. Send vlan to queue

4.3.1. Description

In this example we will create a rule that routes all vlan id 123 to queue 3.

This code is equivalent to the following testpmd command (wrapped for
clarity):

testpmd> flow create 0 ingress pattern eth / vlan vid spec 123 /
 end actions queue index 3 / end

4.3.2. Code

struct rte_flow_attr attr = { .ingress = 1 };
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_action_queue queue = { .index = 3 };
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pas all packets */
vlan.vid = 123;
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* end the pattern array */
pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

/* create the queue action */
actions[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
actions[0].conf = &queue;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))
 flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.3.3. Output

Terminal 1: running sample app flow rule disabled:

./filter-program disable
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=50)/IP(src='176.80.50.5', dst='192.168.3.2'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.6', dst='192.168.5.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4 sent to queue 2
received packet with src ip = 176.80.50.5 sent to queue 1
received packet with src ip = 176.80.50.6 sent to queue 0

Terminal 1: running sample app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.4', dst='192.168.3.1'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=50)/IP(src='176.80.50.5', dst='192.168.3.2'), \
 iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.6', dst='192.168.5.2'), \
 iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4 sent to queue 3
received packet with src ip = 176.80.50.5 sent to queue 1
received packet with src ip = 176.80.50.6 sent to queue 3

5. PVP reference benchmark setup using testpmd

This guide lists the steps required to setup a PVP benchmark using testpmd as
a simple forwarder between NICs and Vhost interfaces. The goal of this setup
is to have a reference PVP benchmark without using external vSwitches (OVS,
VPP, …) to make it easier to obtain reproducible results and to facilitate
continuous integration testing.

The guide covers two ways of launching the VM, either by directly calling the
QEMU command line, or by relying on libvirt. It has been tested with DPDK
v16.11 using RHEL7 for both host and guest.

5.1. Setup overview

[image: ../_images/pvp_2nics.svg]
Fig. 5.1 PVP setup using 2 NICs

In this diagram, each red arrow represents one logical core. This use-case
requires 6 dedicated logical cores. A forwarding configuration with a single
NIC is also possible, requiring 3 logical cores.

5.2. Host setup

In this setup, we isolate 6 cores (from CPU2 to CPU7) on the same NUMA
node. Two cores are assigned to the VM vCPUs running testpmd and four are
assigned to testpmd on the host.

5.2.1. Host tuning

	On BIOS, disable turbo-boost and hyper-threads.

	Append these options to Kernel command line:

intel_pstate=disable mce=ignore_ce default_hugepagesz=1G hugepagesz=1G hugepages=6 isolcpus=2-7 rcu_nocbs=2-7 nohz_full=2-7 iommu=pt intel_iommu=on

	Disable hyper-threads at runtime if necessary or if BIOS is not accessible:

cat /sys/devices/system/cpu/cpu*[0-9]/topology/thread_siblings_list \
 | sort | uniq \
 | awk -F, '{system("echo 0 > /sys/devices/system/cpu/cpu"$2"/online")}'

	Disable NMIs:

echo 0 > /proc/sys/kernel/nmi_watchdog

	Exclude isolated CPUs from the writeback cpumask:

echo ffffff03 > /sys/bus/workqueue/devices/writeback/cpumask

	Isolate CPUs from IRQs:

clear_mask=0xfc #Isolate CPU2 to CPU7 from IRQs
for i in /proc/irq/*/smp_affinity
do
 echo "obase=16;$((0x$(cat $i) & ~$clear_mask))" | bc > $i
done

5.2.2. Qemu build

Build Qemu:

git clone git://git.qemu.org/qemu.git
cd qemu
mkdir bin
cd bin
../configure --target-list=x86_64-softmmu
make

5.2.3. DPDK build

Build DPDK:

git clone git://dpdk.org/dpdk
cd dpdk
export RTE_SDK=$PWD
make install T=x86_64-native-linux-gcc DESTDIR=install

5.2.4. Testpmd launch

	Assign NICs to DPDK:

modprobe vfio-pci
$RTE_SDK/install/sbin/dpdk-devbind -b vfio-pci 0000:11:00.0 0000:11:00.1

Note

The Sandy Bridge family seems to have some IOMMU limitations giving poor
performance results. To achieve good performance on these machines
consider using UIO instead.

	Launch the testpmd application:

$RTE_SDK/install/bin/testpmd -l 0,2,3,4,5 --socket-mem=1024 -n 4 \
 --vdev 'net_vhost0,iface=/tmp/vhost-user1' \
 --vdev 'net_vhost1,iface=/tmp/vhost-user2' -- \
 --portmask=f -i --rxq=1 --txq=1 \
 --nb-cores=4 --forward-mode=io

With this command, isolated CPUs 2 to 5 will be used as lcores for PMD threads.

	In testpmd interactive mode, set the portlist to obtain the correct port
chaining:

set portlist 0,2,1,3
start

5.2.5. VM launch

The VM may be launched either by calling QEMU directly, or by using libvirt.

5.2.5.1. Qemu way

Launch QEMU with two Virtio-net devices paired to the vhost-user sockets
created by testpmd. Below example uses default Virtio-net options, but options
may be specified, for example to disable mergeable buffers or indirect
descriptors.

<QEMU path>/bin/x86_64-softmmu/qemu-system-x86_64 \
 -enable-kvm -cpu host -m 3072 -smp 3 \
 -chardev socket,id=char0,path=/tmp/vhost-user1 \
 -netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \
 -device virtio-net-pci,netdev=mynet1,mac=52:54:00:02:d9:01,addr=0x10 \
 -chardev socket,id=char1,path=/tmp/vhost-user2 \
 -netdev type=vhost-user,id=mynet2,chardev=char1,vhostforce \
 -device virtio-net-pci,netdev=mynet2,mac=52:54:00:02:d9:02,addr=0x11 \
 -object memory-backend-file,id=mem,size=3072M,mem-path=/dev/hugepages,share=on \
 -numa node,memdev=mem -mem-prealloc \
 -net user,hostfwd=tcp::1002$1-:22 -net nic \
 -qmp unix:/tmp/qmp.socket,server,nowait \
 -monitor stdio <vm_image>.qcow2

You can use this qmp-vcpu-pin [https://patchwork.kernel.org/patch/9361617/]
script to pin vCPUs.

It can be used as follows, for example to pin 3 vCPUs to CPUs 1, 6 and 7,
where isolated CPUs 6 and 7 will be used as lcores for Virtio PMDs:

export PYTHONPATH=$PYTHONPATH:<QEMU path>/scripts/qmp
./qmp-vcpu-pin -s /tmp/qmp.socket 1 6 7

5.2.5.2. Libvirt way

Some initial steps are required for libvirt to be able to connect to testpmd’s
sockets.

First, SELinux policy needs to be set to permissive, since testpmd is
generally run as root (note, as reboot is required):

cat /etc/selinux/config

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive

SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy.
Only selected processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Also, Qemu needs to be run as root, which has to be specified in
/etc/libvirt/qemu.conf:

user = "root"

Once the domain created, the following snippet is an extract of he most
important information (hugepages, vCPU pinning, Virtio PCI devices):

<domain type='kvm'>
 <memory unit='KiB'>3145728</memory>
 <currentMemory unit='KiB'>3145728</currentMemory>
 <memoryBacking>
 <hugepages>
 <page size='1048576' unit='KiB' nodeset='0'/>
 </hugepages>
 <locked/>
 </memoryBacking>
 <vcpu placement='static'>3</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='6'/>
 <vcpupin vcpu='2' cpuset='7'/>
 <emulatorpin cpuset='0'/>
 </cputune>
 <numatune>
 <memory mode='strict' nodeset='0'/>
 </numatune>
 <os>
 <type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
 <boot dev='hd'/>
 </os>
 <cpu mode='host-passthrough'>
 <topology sockets='1' cores='3' threads='1'/>
 <numa>
 <cell id='0' cpus='0-2' memory='3145728' unit='KiB' memAccess='shared'/>
 </numa>
 </cpu>
 <devices>
 <interface type='vhostuser'>
 <mac address='56:48:4f:53:54:01'/>
 <source type='unix' path='/tmp/vhost-user1' mode='client'/>
 <model type='virtio'/>
 <driver name='vhost' rx_queue_size='256' />
 <address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0'/>
 </interface>
 <interface type='vhostuser'>
 <mac address='56:48:4f:53:54:02'/>
 <source type='unix' path='/tmp/vhost-user2' mode='client'/>
 <model type='virtio'/>
 <driver name='vhost' rx_queue_size='256' />
 <address type='pci' domain='0x0000' bus='0x00' slot='0x11' function='0x0'/>
 </interface>
 </devices>
</domain>

5.3. Guest setup

5.3.1. Guest tuning

	Append these options to the Kernel command line:

default_hugepagesz=1G hugepagesz=1G hugepages=1 intel_iommu=on iommu=pt isolcpus=1,2 rcu_nocbs=1,2 nohz_full=1,2

	Disable NMIs:

echo 0 > /proc/sys/kernel/nmi_watchdog

	Exclude isolated CPU1 and CPU2 from the writeback cpumask:

echo 1 > /sys/bus/workqueue/devices/writeback/cpumask

	Isolate CPUs from IRQs:

clear_mask=0x6 #Isolate CPU1 and CPU2 from IRQs
for i in /proc/irq/*/smp_affinity
do
 echo "obase=16;$((0x$(cat $i) & ~$clear_mask))" | bc > $i
done

5.3.2. DPDK build

Build DPDK:

git clone git://dpdk.org/dpdk
cd dpdk
export RTE_SDK=$PWD
make install T=x86_64-native-linux-gcc DESTDIR=install

5.3.3. Testpmd launch

Probe vfio module without iommu:

modprobe -r vfio_iommu_type1
modprobe -r vfio
modprobe vfio enable_unsafe_noiommu_mode=1
cat /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
modprobe vfio-pci

Bind the virtio-net devices to DPDK:

$RTE_SDK/usertools/dpdk-devbind.py -b vfio-pci 0000:00:10.0 0000:00:11.0

Start testpmd:

$RTE_SDK/install/bin/testpmd -l 0,1,2 --socket-mem 1024 -n 4 \
 --proc-type auto --file-prefix pg -- \
 --portmask=3 --forward-mode=macswap --port-topology=chained \
 --disable-rss -i --rxq=1 --txq=1 \
 --rxd=256 --txd=256 --nb-cores=2 --auto-start

5.4. Results template

Below template should be used when sharing results:

Traffic Generator: <Test equipment (e.g. IXIA, Moongen, ...)>
Acceptable Loss: <n>%
Validation run time: <n>min
Host DPDK version/commit: <version, SHA-1>
Guest DPDK version/commit: <version, SHA-1>
Patches applied: <link to patchwork>
QEMU version/commit: <version>
Virtio features: <features (e.g. mrg_rxbuf='off', leave empty if default)>
CPU: <CPU model>, <CPU frequency>
NIC: <NIC model>
Result: <n> Mpps

6. VF daemon (VFd)

VFd (the VF daemon) is a mechanism which can be used to configure features on
a VF (SR-IOV Virtual Function) without direct access to the PF (SR-IOV
Physical Function). VFd is an EXPERIMENTAL feature which can only be used in
the scenario of DPDK PF with a DPDK VF. If the PF port is driven by the Linux
kernel driver then the VFd feature will not work. Currently VFd is only
supported by the ixgbe and i40e drivers.

In general VF features cannot be configured directly by an end user
application since they are under the control of the PF. The normal approach to
configuring a feature on a VF is that an application would call the APIs
provided by the VF driver. If the required feature cannot be configured by the
VF directly (the most common case) the VF sends a message to the PF through
the mailbox on ixgbe and i40e. This means that the availability of the feature
depends on whether the appropriate mailbox messages are defined.

DPDK leverages the mailbox interface defined by the Linux kernel driver so
that compatibility with the kernel driver can be guaranteed. The downside of
this approach is that the availability of messages supported by the kernel
become a limitation when the user wants to configure features on the VF.

VFd is a new method of controlling the features on a VF. The VF driver doesn’t
talk directly to the PF driver when configuring a feature on the VF. When a VF
application (i.e., an application using the VF ports) wants to enable a VF
feature, it can send a message to the PF application (i.e., the application
using the PF port, which can be the same as the VF application). The PF
application will configure the feature for the VF. Obviously, the PF
application can also configure the VF features without a request from the VF
application.

[image: ../_images/vf_daemon_overview.svg]
Fig. 6.2 VF daemon (VFd) Overview

Compared with the traditional approach the VFd moves the negotiation between
VF and PF from the driver level to application level. So the application
should define how the negotiation between the VF and PF works, or even if the
control should be limited to the PF.

It is the application’s responsibility to use VFd. Consider for example a KVM
migration, the VF application may transfer from one VM to another. It is
recommended in this case that the PF control the VF features without
participation from the VF. Then the VF application has no capability to
configure the features. So the user doesn’t need to define the interface
between the VF application and the PF application. The service provider should
take the control of all the features.

The following sections describe the VFd functionality.

Note

Although VFd is supported by both ixgbe and i40e, please be aware that
since the hardware capability is different, the functions supported by
ixgbe and i40e are not the same.

6.1. Preparing

VFd only can be used in the scenario of DPDK PF + DPDK VF. Users should bind
the PF port to igb_uio, then create the VFs based on the DPDK PF host.

The typical procedure to achieve this is as follows:

	Boot the system without iommu, or with iommu=pt.

	Bind the PF port to igb_uio, for example:

dpdk-devbind.py -b igb_uio 01:00.0

	Create a Virtual Function:

echo 1 > /sys/bus/pci/devices/0000:01:00.0/max_vfs

	Start a VM with the new VF port bypassed to it.

	Run a DPDK application on the PF in the host:

testpmd -l 0-7 -n 4 -- -i --txqflags=0

	Bind the VF port to igb_uio in the VM:

dpdk-devbind.py -b igb_uio 03:00.0

	Run a DPDK application on the VF in the VM:

testpmd -l 0-7 -n 4 -- -i --txqflags=0

6.2. Common functions of IXGBE and I40E

The following sections show how to enable PF/VF functionality based on the
above testpmd setup.

6.2.1. TX loopback

Run a testpmd runtime command on the PF to set TX loopback:

set tx loopback 0 on|off

This sets whether the PF port and all the VF ports that belong to it are
allowed to send the packets to other virtual ports.

Although it is a VFd function, it is the global setting for the whole
physical port. When using this function, the PF and all the VFs TX loopback
will be enabled/disabled.

6.2.2. VF MAC address setting

Run a testpmd runtime command on the PF to set the MAC address for a VF port:

set vf mac addr 0 0 A0:36:9F:7B:C3:51

This testpmd runtime command will change the MAC address of the VF port to
this new address. If any other addresses are set before, they will be
overwritten.

6.2.3. VF MAC anti-spoofing

Run a testpmd runtime command on the PF to enable/disable the MAC
anti-spoofing for a VF port:

set vf mac antispoof 0 0 on|off

When enabling the MAC anti-spoofing, the port will not forward packets whose
source MAC address is not the same as the port.

6.2.4. VF VLAN anti-spoofing

Run a testpmd runtime command on the PF to enable/disable the VLAN
anti-spoofing for a VF port:

set vf vlan antispoof 0 0 on|off

When enabling the VLAN anti-spoofing, the port will not send packets whose
VLAN ID does not belong to VLAN IDs that this port can receive.

6.2.5. VF VLAN insertion

Run a testpmd runtime command on the PF to set the VLAN insertion for a VF
port:

set vf vlan insert 0 0 1

When using this testpmd runtime command, an assigned VLAN ID can be inserted
to the transmitted packets by the hardware.

The assigned VLAN ID can be 0. It means disabling the VLAN insertion.

6.2.6. VF VLAN stripping

Run a testpmd runtime command on the PF to enable/disable the VLAN stripping
for a VF port:

set vf vlan stripq 0 0 on|off

This testpmd runtime command is used to enable/disable the RX VLAN stripping
for a specific VF port.

6.2.7. VF VLAN filtering

Run a testpmd runtime command on the PF to set the VLAN filtering for a VF
port:

rx_vlan add 1 port 0 vf 1
rx_vlan rm 1 port 0 vf 1

These two testpmd runtime commands can be used to add or remove the VLAN
filter for several VF ports. When the VLAN filters are added only the packets
that have the assigned VLAN IDs can be received. Other packets will be dropped
by hardware.

6.3. The IXGBE specific VFd functions

The functions in this section are specific to the ixgbe driver.

6.3.1. All queues drop

Run a testpmd runtime command on the PF to enable/disable the all queues
drop:

set all queues drop on|off

This is a global setting for the PF and all the VF ports of the physical port.

Enabling the all queues drop feature means that when there is no available
descriptor for the received packets they are dropped. The all queues drop
feature should be enabled in SR-IOV mode to avoid one queue blocking others.

6.3.2. VF packet drop

Run a testpmd runtime command on the PF to enable/disable the packet drop for
a specific VF:

set vf split drop 0 0 on|off

This is a similar function as all queues drop. The difference is that this
function is per VF setting and the previous function is a global setting.

6.3.3. VF rate limit

Run a testpmd runtime command on the PF to all queues’ rate limit for a
specific VF:

set port 0 vf 0 rate 10 queue_mask 1

This is a function to set the rate limit for all the queues in the
queue_mask bitmap. It is not used to set the summary of the rate
limit. The rate limit of every queue will be set equally to the assigned rate
limit.

6.3.4. VF RX enabling

Run a testpmd runtime command on the PF to enable/disable packet receiving for
a specific VF:

set port 0 vf 0 rx on|off

This function can be used to stop/start packet receiving on a VF.

6.3.5. VF TX enabling

Run a testpmd runtime command on the PF to enable/disable packet transmitting
for a specific VF:

set port 0 vf 0 tx on|off

This function can be used to stop/start packet transmitting on a VF.

6.3.6. VF RX mode setting

Run a testpmd runtime command on the PF to set the RX mode for a specific VF:

set port 0 vf 0 rxmode AUPE|ROPE|BAM|MPE on|off

This function can be used to enable/disable some RX modes on the VF, including:

	If it accept untagged packets.

	If it accepts packets matching the MAC filters.

	If it accept MAC broadcast packets,

	If it enables MAC multicast promiscuous mode.

6.4. The I40E specific VFd functions

The functions in this section are specific to the i40e driver.

6.4.1. VF statistics

This provides an API to get the a specific VF’s statistic from PF.

6.4.2. VF statistics resetting

This provides an API to rest the a specific VF’s statistic from PF.

6.4.3. VF link status change notification

This provide an API to let a specific VF know if the physical link status
changed.

Normally if a VF received this notification, the driver should notify the
application to reset the VF port.

6.4.4. VF MAC broadcast setting

Run a testpmd runtime command on the PF to enable/disable MAC broadcast packet
receiving for a specific VF:

set vf broadcast 0 0 on|off

6.4.5. VF MAC multicast promiscuous mode

Run a testpmd runtime command on the PF to enable/disable MAC multicast
promiscuous mode for a specific VF:

set vf allmulti 0 0 on|off

6.4.6. VF MAC unicast promiscuous mode

Run a testpmd runtime command on the PF to enable/disable MAC unicast
promiscuous mode for a specific VF:

set vf promisc 0 0 on|off

6.4.7. VF max bandwidth

Run a testpmd runtime command on the PF to set the TX maximum bandwidth for a
specific VF:

set vf tx max-bandwidth 0 0 2000

The maximum bandwidth is an absolute value in Mbps.

6.4.8. VF TC bandwidth allocation

Run a testpmd runtime command on the PF to set the TCs (traffic class) TX
bandwidth allocation for a specific VF:

set vf tc tx min-bandwidth 0 0 (20,20,20,40)

The allocated bandwidth should be set for all the TCs. The allocated bandwidth
is a relative value as a percentage. The sum of all the bandwidth should
be 100.

6.4.9. VF TC max bandwidth

Run a testpmd runtime command on the PF to set the TCs TX maximum bandwidth
for a specific VF:

set vf tc tx max-bandwidth 0 0 0 10000

The maximum bandwidth is an absolute value in Mbps.

6.4.10. TC strict priority scheduling

Run a testpmd runtime command on the PF to enable/disable several TCs TX
strict priority scheduling:

set tx strict-link-priority 0 0x3

The 0 in the TC bitmap means disabling the strict priority scheduling for this
TC. To enable use a value of 1.

7. Virtio_user for Container Networking

Container becomes more and more popular for strengths, like low overhead, fast
boot-up time, and easy to deploy, etc. How to use DPDK to accelerate container
networking becomes a common question for users. There are two use models of
running DPDK inside containers, as shown in
Fig. 7.15.

[image: ../_images/use_models_for_running_dpdk_in_containers.svg]
Fig. 7.15 Use models of running DPDK inside container

This page will only cover aggregation model.

7.1. Overview

The virtual device, virtio-user, with unmodified vhost-user backend, is designed
for high performance user space container networking or inter-process
communication (IPC).

The overview of accelerating container networking by virtio-user is shown
in Fig. 7.16.

[image: ../_images/virtio_user_for_container_networking.svg]
Fig. 7.16 Overview of accelerating container networking by virtio-user

Different virtio PCI devices we usually use as a para-virtualization I/O in the
context of QEMU/VM, the basic idea here is to present a kind of virtual devices,
which can be attached and initialized by DPDK. The device emulation layer by
QEMU in VM’s context is saved by just registering a new kind of virtual device
in DPDK’s ether layer. And to minimize the change, we reuse already-existing
virtio PMD code (driver/net/virtio/).

Virtio, in essence, is a shm-based solution to transmit/receive packets. How is
memory shared? In VM’s case, qemu always shares the whole physical layout of VM
to vhost backend. But it’s not feasible for a container, as a process, to share
all virtual memory regions to backend. So only those virtual memory regions
(aka, hugepages initialized in DPDK) are sent to backend. It restricts that only
addresses in these areas can be used to transmit or receive packets.

7.2. Sample Usage

Here we use Docker as container engine. It also applies to LXC, Rocket with
some minor changes.

	Compile DPDK.

make install RTE_SDK=`pwd` T=x86_64-native-linux-gcc

	Write a Dockerfile like below.

cat <<EOT >> Dockerfile
FROM ubuntu:latest
WORKDIR /usr/src/dpdk
COPY . /usr/src/dpdk
ENV PATH "$PATH:/usr/src/dpdk/x86_64-native-linux-gcc/app/"
EOT

	Build a Docker image.

docker build -t dpdk-app-testpmd .

	Start a testpmd on the host with a vhost-user port.

$(testpmd) -l 0-1 -n 4 --socket-mem 1024,1024 \
 --vdev 'eth_vhost0,iface=/tmp/sock0' \
 --file-prefix=host --no-pci -- -i

	Start a container instance with a virtio-user port.

docker run -i -t -v /tmp/sock0:/var/run/usvhost \
 -v /dev/hugepages:/dev/hugepages \
 dpdk-app-testpmd testpmd -l 6-7 -n 4 -m 1024 --no-pci \
 --vdev=virtio_user0,path=/var/run/usvhost \
 --file-prefix=container \
 -- -i

Note: If we run all above setup on the host, it’s a shm-based IPC.

7.3. Limitations

	We have below limitations in this solution:
	
	Cannot work with –huge-unlink option. As we need to reopen the hugepage
file to share with vhost backend.

	Cannot work with –no-huge option. Currently, DPDK uses anonymous mapping
under this option which cannot be reopened to share with vhost backend.

	Cannot work when there are more than VHOST_MEMORY_MAX_NREGIONS(8) hugepages.
If you have more regions (especially when 2MB hugepages are used), the option,
–single-file-segments, can help to reduce the number of shared files.

	Applications should not use file name like HUGEFILE_FMT (“%smap_%d”). That
will bring confusion when sharing hugepage files with backend by name.

	Root privilege is a must. DPDK resolves physical addresses of hugepages
which seems not necessary, and some discussions are going on to remove this
restriction.

8. Virtio_user as Exceptional Path

The virtual device, virtio-user, was originally introduced with vhost-user
backend, as a high performance solution for IPC (Inter-Process Communication)
and user space container networking.

Virtio_user with vhost-kernel backend is a solution for exceptional path,
such as KNI which exchanges packets with kernel networking stack. This
solution is very promising in:

	Maintenance

All kernel modules needed by this solution, vhost and vhost-net (kernel),
are upstreamed and extensively used kernel module.

	Features

vhost-net is born to be a networking solution, which has lots of networking
related features, like multi queue, tso, multi-seg mbuf, etc.

	Performance

similar to KNI, this solution would use one or more kthreads to
send/receive packets to/from user space DPDK applications, which has little
impact on user space polling thread (except that it might enter into kernel
space to wake up those kthreads if necessary).

The overview of an application using virtio-user as exceptional path is shown
in Fig. 8.1.

[image: ../_images/virtio_user_as_exceptional_path.svg]
Fig. 8.1 Overview of a DPDK app using virtio-user as exceptional path

8.1. Sample Usage

As a prerequisite, the vhost/vhost-net kernel CONFIG should be chosen before
compiling the kernel and those kernel modules should be inserted.

	Compile DPDK and bind a physical NIC to igb_uio/uio_pci_generic/vfio-pci.

This physical NIC is for communicating with outside.

	Run testpmd.

$(testpmd) -l 2-3 -n 4 \
 --vdev=virtio_user0,path=/dev/vhost-net,queue_size=1024 \
 -- -i --tx-offloads=0x0000002c --enable-lro \
 --txd=1024 --rxd=1024

This command runs testpmd with two ports, one physical NIC to communicate
with outside, and one virtio-user to communicate with kernel.

	--enable-lro

This is used to negotiate VIRTIO_NET_F_GUEST_TSO4 and
VIRTIO_NET_F_GUEST_TSO6 feature so that large packets from kernel can be
transmitted to DPDK application and further TSOed by physical NIC.

	queue_size

256 by default. To avoid shortage of descriptors, we can increase it to 1024.

	queues

Number of multi-queues. Each queue will be served by a kthread. For example:

$(testpmd) -l 2-3 -n 4 \
 --vdev=virtio_user0,path=/dev/vhost-net,queues=2,queue_size=1024 \
 -- -i --tx-offloads=0x0000002c --enable-lro \
 --txq=2 --rxq=2 --txd=1024 --rxd=1024

	Enable Rx checksum offloads in testpmd:

(testpmd) port stop 0
(testpmd) port config 0 rx_offload tcp_cksum on
(testpmd) port config 0 rx_offload udp_cksum on
(testpmd) port start 0

	Start testpmd:

(testpmd) start

	Configure IP address and start tap:

ifconfig tap0 1.1.1.1/24 up

Note

The tap device will be named tap0, tap1, etc, by kernel.

Then, all traffic from physical NIC can be forwarded into kernel stack, and all
traffic on the tap0 can be sent out from physical NIC.

8.2. Limitations

This solution is only available on Linux systems.

9. DPDK pdump Library and pdump Tool

This document describes how the Data Plane Development Kit (DPDK) Packet
Capture Framework is used for capturing packets on DPDK ports. It is intended
for users of DPDK who want to know more about the Packet Capture feature and
for those who want to monitor traffic on DPDK-controlled devices.

The DPDK packet capture framework was introduced in DPDK v16.07. The DPDK
packet capture framework consists of the DPDK pdump library and DPDK pdump
tool.

9.1. Introduction

The librte_pdump library provides the APIs required to
allow users to initialize the packet capture framework and to enable or
disable packet capture. The library works on a client/server model and its
usage is recommended for debugging purposes.

The dpdk-pdump tool is developed based on the
librte_pdump library. It runs as a DPDK secondary process and is capable
of enabling or disabling packet capture on DPDK ports. The dpdk-pdump tool
provides command-line options with which users can request enabling or
disabling of the packet capture on DPDK ports.

The application which initializes the packet capture framework will act as a
server and the application that enables or disables the packet capture will
act as a client. The server sends the Rx and Tx packets from the DPDK ports
to the client.

In DPDK the testpmd application can be used to initialize the packet
capture framework and act as a server, and the dpdk-pdump tool acts as a
client. To view Rx or Tx packets of testpmd, the application should be
launched first, and then the dpdk-pdump tool. Packets from testpmd
will be sent to the tool, which then sends them on to the Pcap PMD device and
that device writes them to the Pcap file or to an external interface depending
on the command-line option used.

Some things to note:

	The dpdk-pdump tool can only be used in conjunction with a primary
application which has the packet capture framework initialized already. In
dpdk, only testpmd is modified to initialize packet capture framework,
other applications remain untouched. So, if the dpdk-pdump tool has to
be used with any application other than the testpmd, the user needs to
explicitly modify that application to call the packet capture framework
initialization code. Refer to the app/test-pmd/testpmd.c code and look
for pdump keyword to see how this is done.

	The dpdk-pdump tool depends on the libpcap based PMD which is disabled
by default in the build configuration files, owing to an external dependency
on the libpcap development files. Once the libpcap development files are
installed, the libpcap based PMD can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

9.2. Test Environment

The overview of using the Packet Capture Framework and the dpdk-pdump tool
for packet capturing on the DPDK port in
Fig. 9.4.

[image: ../_images/packet_capture_framework.svg]
Fig. 9.4 Packet capturing on a DPDK port using the dpdk-pdump tool.

9.3. Configuration

Modify the DPDK primary application to initialize the packet capture framework
as mentioned in the above notes and enable the following config options and
build DPDK:

CONFIG_RTE_LIBRTE_PMD_PCAP=y
CONFIG_RTE_LIBRTE_PDUMP=y

9.4. Running the Application

The following steps demonstrate how to run the dpdk-pdump tool to capture
Rx side packets on dpdk_port0 in Fig. 9.4 and
inspect them using tcpdump.

	Launch testpmd as the primary application:

sudo ./app/testpmd -c 0xf0 -n 4 -- -i --port-topology=chained

	Launch the pdump tool as follows:

sudo ./build/app/dpdk-pdump -- \
 --pdump 'port=0,queue=*,rx-dev=/tmp/capture.pcap'

	Send traffic to dpdk_port0 from traffic generator.
Inspect packets captured in the file capture.pcap using a tool
that can interpret Pcap files, for example tcpdump:

$tcpdump -nr /tmp/capture.pcap
reading from file /tmp/capture.pcap, link-type EN10MB (Ethernet)
11:11:36.891404 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18
11:11:36.891442 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18
11:11:36.891445 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18

10. DPDK Telemetry User Guide

The Telemetry library provides users with the ability to query DPDK for
telemetry information, currently including information such as ethdev stats,
ethdev port list, and eal parameters.

Note

This library is experimental and the output format may change in the future.

10.1. Telemetry Interface

The Telemetry Library opens a socket with path
<runtime_directory>/dpdk_telemetry.<version>. The version represents the
telemetry version, the latest is v2. For example, a client would connect to a
socket with path /var/run/dpdk/*/dpdk_telemetry.v2 (when the primary process
is run by a root user).

10.2. Telemetry Initialization

The library is enabled by default, however an EAL flag to enable the library
exists, to provide backward compatibility for the previous telemetry library
interface.

--telemetry

A flag exists to disable Telemetry also.

--no-telemetry

10.3. Running Telemetry

The following steps show how to run an application with telemetry support,
and query information using the telemetry client python script.

	Launch testpmd as the primary application with telemetry.

./app/dpdk-testpmd

	Launch the telemetry client script.

python usertools/dpdk-telemetry.py

	When connected, the script displays the following, waiting for user input.

Connecting to /var/run/dpdk/rte/dpdk_telemetry.v2
{"version": "DPDK 20.05.0-rc0", "pid": 60285, "max_output_len": 16384}
-->

	The user can now input commands to send across the socket, and receive the
response.

--> /
{"/": ["/", "/eal/app_params", "/eal/params", "/ethdev/list",
"/ethdev/link_status", "/ethdev/xstats", "/help", "/info"]}
--> /ethdev/list
{"/ethdev/list": [0, 1]}

11. Debug & Troubleshoot guide

DPDK applications can be designed to have simple or complex pipeline processing
stages making use of single or multiple threads. Applications can use poll mode
hardware devices which helps in offloading CPU cycles too. It is common to find
solutions designed with

	single or multiple primary processes

	single primary and single secondary

	single primary and multiple secondaries

In all the above cases, it is tedious to isolate, debug, and understand various
behaviors which occur randomly or periodically. The goal of the guide is to
consolidate a few commonly seen issues for reference. Then, isolate to identify
the root cause through step by step debug at various stages.

Note

It is difficult to cover all possible issues; in a single attempt. With
feedback and suggestions from the community, more cases can be covered.

11.1. Application Overview

By making use of the application model as a reference, we can discuss multiple
causes of issues in the guide. Let us assume the sample makes use of a single
primary process, with various processing stages running on multiple cores. The
application may also make uses of Poll Mode Driver, and libraries like service
cores, mempool, mbuf, eventdev, cryptodev, QoS, and ethdev.

The overview of an application modeled using PMD is shown in
Fig. 11.1.

[image: ../_images/dtg_sample_app_model.svg]
Fig. 11.1 Overview of pipeline stage of an application

11.2. Bottleneck Analysis

A couple of factors that lead the design decision could be the platform, scale
factor, and target. This distinct preference leads to multiple combinations,
that are built using PMD and libraries of DPDK. While the compiler, library
mode, and optimization flags are the components are to be constant, that
affects the application too.

11.2.1. Is there mismatch in packet (received < desired) rate?

RX Port and associated core Fig. 11.2.

[image: ../_images/dtg_rx_rate.svg]
Fig. 11.2 RX packet rate compared against received rate.

	Is the configuration for the RX setup correctly?

	Identify if port Speed and Duplex is matching to desired values with
rte_eth_link_get.

	Check DEV_RX_OFFLOAD_JUMBO_FRAME is set with rte_eth_dev_info_get.

	Check promiscuous mode if the drops do not occur for unique MAC address
with rte_eth_promiscuous_get.

	Is the drop isolated to certain NIC only?

	Make use of rte_eth_dev_stats to identify the drops cause.

	If there are mbuf drops, check nb_desc for RX descriptor as it might not
be sufficient for the application.

	If rte_eth_dev_stats shows drops are on specific RX queues, ensure RX
lcore threads has enough cycles for rte_eth_rx_burst on the port queue
pair.

	If there are redirect to a specific port queue pair with, ensure RX lcore
threads gets enough cycles.

	Check the RSS configuration rte_eth_dev_rss_hash_conf_get if the
spread is not even and causing drops.

	If PMD stats are not updating, then there might be offload or configuration
which is dropping the incoming traffic.

	Is there drops still seen?

	If there are multiple port queue pair, it might be the RX thread, RX
distributor, or event RX adapter not having enough cycles.

	If there are drops seen for RX adapter or RX distributor, try using
rte_prefetch_non_temporal which intimates the core that the mbuf in the
cache is temporary.

11.2.2. Is there packet drops at receive or transmit?

RX-TX port and associated cores Fig. 11.3.

[image: ../_images/dtg_rx_tx_drop.svg]
Fig. 11.3 RX-TX drops

	At RX

	Identify if there are multiple RX queue configured for port by
nb_rx_queues using rte_eth_dev_info_get.

	Using rte_eth_dev_stats fetch drops in q_errors, check if RX thread
is configured to fetch packets from the port queue pair.

	Using rte_eth_dev_stats shows drops in rx_nombuf, check if RX
thread has enough cycles to consume the packets from the queue.

	At TX

	If the TX rate is falling behind the application fill rate, identify if
there are enough descriptors with rte_eth_dev_info_get for TX.

	Check the nb_pkt in rte_eth_tx_burst is done for multiple packets.

	Check rte_eth_tx_burst invokes the vector function call for the PMD.

	If oerrors are getting incremented, TX packet validations are failing.
Check if there queue specific offload failures.

	If the drops occur for large size packets, check MTU and multi-segment
support configured for NIC.

11.2.3. Is there object drops in producer point for the ring library?

Producer point for ring Fig. 11.4.

[image: ../_images/dtg_producer_ring.svg]
Fig. 11.4 Producer point for Rings

	Performance issue isolation at producer

	Use rte_ring_dump to validate for all single producer flag is set to
RING_F_SP_ENQ.

	There should be sufficient rte_ring_free_count at any point in time.

	Extreme stalls in dequeue stage of the pipeline will cause
rte_ring_full to be true.

11.2.4. Is there object drops in consumer point for the ring library?

Consumer point for ring Fig. 11.5.

[image: ../_images/dtg_consumer_ring.svg]
Fig. 11.5 Consumer point for Rings

	Performance issue isolation at consumer

	Use rte_ring_dump to validate for all single consumer flag is set to
RING_F_SC_DEQ.

	If the desired burst dequeue falls behind the actual dequeue, the enqueue
stage is not filling up the ring as required.

	Extreme stall in the enqueue will lead to rte_ring_empty to be true.

11.2.5. Is there a variance in packet or object processing rate in the pipeline?

Memory objects close to NUMA Fig. 11.6.

[image: ../_images/dtg_mempool.svg]
Fig. 11.6 Memory objects have to be close to the device per NUMA.

	Stall in processing pipeline can be attributes of MBUF release delays.
These can be narrowed down to

	Heavy processing cycles at single or multiple processing stages.

	Cache is spread due to the increased stages in the pipeline.

	CPU thread responsible for TX is not able to keep up with the burst of
traffic.

	Extra cycles to linearize multi-segment buffer and software offload like
checksum, TSO, and VLAN strip.

	Packet buffer copy in fast path also results in stalls in MBUF release if
not done selectively.

	Application logic sets rte_pktmbuf_refcnt_set to higher than the
desired value and frequently uses rte_pktmbuf_prefree_seg and does
not release MBUF back to mempool.

	Lower performance between the pipeline processing stages can be

	The NUMA instance for packets or objects from NIC, mempool, and ring
should be the same.

	Drops on a specific socket are due to insufficient objects in the pool.
Use rte_mempool_get_count or rte_mempool_avail_count to monitor
when drops occurs.

	Try prefetching the content in processing pipeline logic to minimize the
stalls.

	Performance issue can be due to special cases

	Check if MBUF continuous with rte_pktmbuf_is_contiguous as certain
offload requires the same.

	Use rte_mempool_cache_create for user threads require access to
mempool objects.

	If the variance is absent for larger huge pages, then try rte_mem_lock_page
on the objects, packets, lookup tables to isolate the issue.

11.2.6. Is there a variance in cryptodev performance?

Crypto device and PMD Fig. 11.7.

[image: ../_images/dtg_crypto.svg]
Fig. 11.7 CRYPTO and interaction with PMD device.

	Performance issue isolation for enqueue

	Ensure cryptodev, resources and enqueue is running on NUMA cores.

	Isolate if the cause of errors for err_count using rte_cryptodev_stats.

	Parallelize enqueue thread for varied multiple queue pair.

	Performance issue isolation for dequeue

	Ensure cryptodev, resources and dequeue are running on NUMA cores.

	Isolate if the cause of errors for err_count using rte_cryptodev_stats.

	Parallelize dequeue thread for varied multiple queue pair.

	Performance issue isolation for crypto operation

	If the cryptodev software-assist is in use, ensure the library is built
with right (SIMD) flags or check if the queue pair using CPU ISA for
feature_flags AVX|SSE|NEON using rte_cryptodev_info_get.

	If the cryptodev hardware-assist is in use, ensure both firmware and
drivers are up to date.

	Configuration issue isolation

	Identify cryptodev instances with rte_cryptodev_count and
rte_cryptodev_info_get.

11.2.7. Is user functions performance is not as expected?

Custom worker function Fig. 11.8.

[image: ../_images/dtg_distributor_worker.svg]
Fig. 11.8 Custom worker function performance drops.

	Performance issue isolation

	The functions running on CPU cores without context switches are the
performing scenarios. Identify lcore with rte_lcore and lcore index
mapping with CPU using rte_lcore_index.

	Use rte_thread_get_affinity to isolate functions running on the same
CPU core.

	Configuration issue isolation

	Identify core role using rte_eal_lcore_role to identify RTE, OFF and
SERVICE. Check performance functions are mapped to run on the cores.

	For high-performance execution logic ensure running it on correct NUMA
and non-master core.

	Analyze run logic with rte_dump_stack, rte_dump_registers and
rte_memdump for more insights.

	Make use of objdump to ensure opcode is matching to the desired state.

11.2.8. Is the execution cycles for dynamic service functions are not frequent?

service functions on service cores Fig. 11.9.

[image: ../_images/dtg_service.svg]
Fig. 11.9 functions running on service cores

	Performance issue isolation

	Services configured for parallel execution should have
rte_service_lcore_count should be equal to
rte_service_lcore_count_services.

	A service to run parallel on all cores should return
RTE_SERVICE_CAP_MT_SAFE for rte_service_probe_capability and
rte_service_map_lcore_get returns unique lcore.

	If service function execution cycles for dynamic service functions are
not frequent?

	If services share the lcore, overall execution should fit budget.

	Configuration issue isolation

	Check if service is running with rte_service_runstate_get.

	Generic debug via rte_service_dump.

11.2.9. Is there a bottleneck in the performance of eventdev?

	Check for generic configuration

	Ensure the event devices created are right NUMA using
rte_event_dev_count and rte_event_dev_socket_id.

	Check for event stages if the events are looped back into the same queue.

	If the failure is on the enqueue stage for events, check if queue depth
with rte_event_dev_info_get.

	If there are performance drops in the enqueue stage

	Use rte_event_dev_dump to dump the eventdev information.

	Periodically checks stats for queue and port to identify the starvation.

	Check the in-flight events for the desired queue for enqueue and dequeue.

11.2.10. Is there a variance in traffic manager?

Traffic Manager on TX interface Fig. 11.10.

[image: ../_images/dtg_qos_tx.svg]
Fig. 11.10 Traffic Manager just before TX.

	Identify the cause for a variance from expected behavior, is due to
insufficient CPU cycles. Use rte_tm_capabilities_get to fetch features
for hierarchies, WRED and priority schedulers to be offloaded hardware.

	Undesired flow drops can be narrowed down to WRED, priority, and rates
limiters.

	Isolate the flow in which the undesired drops occur. Use
rte_tn_get_number_of_leaf_node and flow table to ping down the leaf
where drops occur.

	Check the stats using rte_tm_stats_update and rte_tm_node_stats_read
for drops for hierarchy, schedulers and WRED configurations.

11.2.11. Is the packet in the unexpected format?

Packet capture before and after processing Fig. 11.11.

[image: ../_images/dtg_pdump.svg]
Fig. 11.11 Capture points of Traffic at RX-TX.

	To isolate the possible packet corruption in the processing pipeline,
carefully staged capture packets are to be implemented.

	First, isolate at NIC entry and exit.

Use pdump in primary to allow secondary to access port-queue pair. The
packets get copied over in RX|TX callback by the secondary process using
ring buffers.

	Second, isolate at pipeline entry and exit.

Using hooks or callbacks capture the packet middle of the pipeline stage
to copy the packets, which can be shared to the secondary debug process
via user-defined custom rings.

Note

Use similar analysis to objects and metadata corruption.

11.2.12. Does the issue still persist?

The issue can be further narrowed down to the following causes.

	If there are vendor or application specific metadata, check for errors due
to META data error flags. Dumping private meta-data in the objects can give
insight into details for debugging.

	If there are multi-process for either data or configuration, check for
possible errors in the secondary process where the configuration fails and
possible data corruption in the data plane.

	Random drops in the RX or TX when opening other application is an indication
of the effect of a noisy neighbor. Try using the cache allocation technique
to minimize the effect between applications.

11.3. How to develop a custom code to debug?

	For an application that runs as the primary process only, debug functionality
is added in the same process. These can be invoked by timer call-back,
service core and signal handler.

	For the application that runs as multiple processes. debug functionality in
a standalone secondary process.

12. Enable DPDK on OpenWrt

This document describes how to enable Data Plane Development Kit (DPDK) on
OpenWrt in both a virtual and physical x86 environment.

12.1. Introduction

The OpenWrt project is a well-known source-based router OS which provides a
fully writable filesystem with package management.

12.2. Build OpenWrt

You can obtain OpenWrt image through https://downloads.openwrt.org/releases.
To fully customize your own OpenWrt, it is highly recommended to build it from
the source code. You can clone the OpenWrt source code as follows:

git clone https://git.openwrt.org/openwrt/openwrt.git

12.2.1. OpenWrt configuration

	Select x86 in Target System

	Select x86_64 in Subtarget

	Select Build the OpenWrt SDK for cross-compilation environment

	Select Use glibc in Advanced configuration options (for developers)
then ToolChain Options and C Library implementation

12.2.2. Kernel configuration

The following configurations should be enabled:

	CONFIG_VFIO_IOMMU_TYPE1=y

	CONFIG_VFIO_VIRQFD=y

	CONFIG_VFIO=y

	CONFIG_VFIO_NOIOMMU=y

	CONFIG_VFIO_PCI=y

	CONFIG_VFIO_PCI_MMAP=y

	CONFIG_HUGETLBFS=y

	CONFIG_HUGETLB_PAGE=y

	CONFIG_PROC_PAGE_MONITOR=y

12.2.3. Build steps

For detailed OpenWrt build steps and prerequisites, please refer to the
OpenWrt build guide [https://openwrt.org/docs/guide-developer/build-system/use-buildsystem].

After the build is completed, you can find the images and SDK in
<OpenWrt Root>/bin/targets/x86/64-glibc/.

12.3. DPDK Cross Compilation for OpenWrt

12.3.1. Pre-requisites

NUMA is required to run DPDK in x86.

Note

For compiling the NUMA lib, run libtool --version to ensure the libtool
version >= 2.2, otherwise the compilation will fail with errors.

git clone https://github.com/numactl/numactl.git
cd numactl
git checkout v2.0.13 -b v2.0.13
./autogen.sh
autoconf -i
export PATH=<OpenWrt SDK>/glibc/openwrt-sdk-x86-64_gcc-8.3.0_glibc.Linux-x86_64/staging_dir/toolchain-x86_64_gcc-8.3.0_glibc/bin/:$PATH
./configure CC=x86_64-openwrt-linux-gnu-gcc --prefix=<OpenWrt SDK toolchain dir>
make install

The numa header files and lib file is generated in the include and lib folder
respectively under <OpenWrt SDK toolchain dir>.

12.3.2. Build DPDK

To cross compile with meson build, you need to write a customized cross file
first.

[binaries]
c = 'x86_64-openwrt-linux-gcc'
cpp = 'x86_64-openwrt-linux-cpp'
ar = 'x86_64-openwrt-linux-ar'
strip = 'x86_64-openwrt-linux-strip'

meson builddir --cross-file openwrt-cross
ninja -C builddir

Note

For compiling the igb_uio with the kernel version used in target machine,
you need to explicitly specify kernel_dir in meson_options.txt.

12.4. Running DPDK application on OpenWrt

12.4.1. Virtual machine

	Extract the boot image

gzip -d openwrt-x86-64-combined-ext4.img.gz

	Launch Qemu

qemu-system-x86_64 \
 -cpu host \
 -smp 8 \
 -enable-kvm \
 -M q35 \
 -m 2048M \
 -object memory-backend-file,id=mem,size=2048M,mem-path=/tmp/hugepages,share=on \
 -drive file=<Your OpenWrt images folder>/openwrt-x86-64-combined-ext4.img,id=d0,if=none,bus=0,unit=0 \
 -device ide-hd,drive=d0,bus=ide.0 \
 -net nic,vlan=0 \
 -net nic,vlan=1 \
 -net user,vlan=1 \
 -display none \

12.4.2. Physical machine

You can use the dd tool to write the OpenWrt image to the drive you
want to write the image on.

dd if=openwrt-18.06.1-x86-64-combined-squashfs.img of=/dev/sdX

Where sdX is name of the drive. (You can find it though fdisk -l)

12.4.3. Running DPDK

More detailed info about how to run a DPDK application please refer to
Running DPDK Applications section of the DPDK documentation.

Note

You need to install pre-built NUMA libraries (including soft link)
to /usr/lib64 in OpenWrt.

DPDK Tools User Guides

	1. dpdk-procinfo Application
	1.1. Running the Application

	1.2. Limitations

	2. dpdk-pdump Application
	2.1. Running the Application

	2.2. Example

	3. dpdk-pmdinfo Application
	3.1. Running the Application

	4. dpdk-devbind Application
	4.1. Running the Application

	4.2. OPTIONS

	4.3. Examples

	5. dpdk-test-bbdev Application
	5.1. Compiling the Application

	5.2. Running the Application

	5.3. Running Tests

	5.4. Test Vector files

	6. dpdk-test-crypto-perf Application
	6.1. Limitations

	6.2. Compiling the Application

	6.3. Running the Application

	6.4. Examples

	7. dpdk-test-compress-perf Tool
	7.1. Limitations

	7.2. EAL Options

	7.3. Application Options

	8. dpdk-test-eventdev Application
	8.1. Compiling the Application

	8.2. Running the Application

	8.3. Eventdev Tests

1. dpdk-procinfo Application

The dpdk-procinfo application is a Data Plane Development Kit (DPDK) application
that runs as a DPDK secondary process and is capable of retrieving port
statistics, resetting port statistics, printing DPDK memory information and
displaying debug information for port.
This application extends the original functionality that was supported by
dump_cfg.

1.1. Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/dpdk-procinfo -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset] [--show-port | --show-tm | --show-crypto |
--show-ring[=name] | --show-mempool[=name] | --iter-mempool=name]

1.1.1. Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats
The stats parameter controls the printing of generic port statistics. If no
port mask is specified stats are printed for all DPDK ports.

–xstats
The xstats parameter controls the printing of extended port statistics. If no
port mask is specified xstats are printed for all DPDK ports.

–stats-reset
The stats-reset parameter controls the resetting of generic port statistics. If
no port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset
The xstats-reset parameter controls the resetting of extended port statistics.
If no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

–show-port
The show-port parameter displays port level various configuration information
associated to RX port queue pair.

–show-tm
The show-tm parameter displays per port traffic manager settings, current
configurations and statistics.

–show-crypto
The show-crypto parameter displays available cryptodev configurations,
settings and stats per node.

–show-ring[=name]
The show-ring parameter display current allocation of all ring with
debug information. Specifying the name allows to display details for specific
ring. For invalid or no ring name, whole list is dump.

–show-mempool[=name]
The show-mempool parameter display current allocation of all mempool
debug information. Specifying the name allows to display details for specific
mempool. For invalid or no mempool name, whole list is dump.

–iter-mempool=name
The iter-mempool parameter iterates and displays mempool elements specified
by name. For invalid or no mempool name no elements are displayed.

1.2. Limitations

	dpdk-procinfo should run alongside primary process with same DPDK version.

	When running dpdk-procinfo with shared library mode, it is required to
pass the same NIC PMD libraries as used for the primary application. Any
mismatch in PMD library arguments can lead to undefined behavior and results
affecting primary application too.

	Stats retrieval using dpdk-procinfo is not supported for virtual devices like PCAP and TAP.

	Since default DPDK EAL arguments for dpdk-procinfo are -c1, -n4 & --proc-type=secondary,
It is not expected that the user passes any EAL arguments.

2. dpdk-pdump Application

The dpdk-pdump tool is a Data Plane Development Kit (DPDK) tool that runs as
a DPDK secondary process and is capable of enabling packet capture on dpdk ports.

Note

	The dpdk-pdump tool can only be used in conjunction with a primary
application which has the packet capture framework initialized already.
In dpdk, only the testpmd is modified to initialize packet capture
framework, other applications remain untouched. So, if the dpdk-pdump
tool has to be used with any application other than the testpmd, user
needs to explicitly modify that application to call packet capture
framework initialization code. Refer app/test-pmd/testpmd.c
code to see how this is done.

	The dpdk-pdump tool depends on libpcap based PMD which is disabled
by default in the build configuration files,
owing to an external dependency on the libpcap development files
which must be installed on the board.
Once the libpcap development files are installed, the libpcap based PMD
can be enabled by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

	The dpdk-pdump tool runs as a DPDK secondary process. It exits when
the primary application exits.

2.1. Running the Application

The tool has a number of command line options:

./build/app/dpdk-pdump --
 [--multi]
 --pdump '(port=<port id> | device_id=<pci id or vdev name>),
 (queue=<queue_id>),
 (rx-dev=<iface or pcap file> |
 tx-dev=<iface or pcap file>),
 [ring-size=<ring size>],
 [mbuf-size=<mbuf data size>],
 [total-num-mbufs=<number of mbufs>]'

The --multi command line option is optional argument. If passed, capture
will be running on unique cores for all --pdump options. If ignored,
capture will be running on single core for all --pdump options.

The --pdump command line option is mandatory and it takes various sub arguments which are described in
below section.

Note

	Parameters inside the parentheses represents mandatory parameters.

	Parameters inside the square brackets represents optional parameters.

	Multiple instances of --pdump can be passed to capture packets on different port and queue combinations.

2.1.1. The --pdump parameters

port:
Port id of the eth device on which packets should be captured.

device_id:
PCI address (or) name of the eth device on which packets should be captured.

Note

	As of now the dpdk-pdump tool cannot capture the packets of virtual devices
in the primary process due to a bug in the ethdev library. Due to this bug, in a multi process context,
when the primary and secondary have different ports set, then the secondary process
(here the dpdk-pdump tool) overwrites the rte_eth_devices[] entries of the primary process.

queue:
Queue id of the eth device on which packets should be captured. The user can pass a queue value of * to enable
packet capture on all queues of the eth device.

rx-dev:
Can be either a pcap file name or any Linux iface.

tx-dev:
Can be either a pcap file name or any Linux iface.

Note

	To receive ingress packets only, rx-dev should be passed.

	To receive egress packets only, tx-dev should be passed.

	To receive ingress and egress packets separately rx-dev and tx-dev
should both be passed with the different file names or the Linux iface names.

	To receive ingress and egress packets together, rx-dev and tx-dev
should both be passed with the same file name or the same Linux iface name.

ring-size:
Size of the ring. This value is used internally for ring creation. The ring will be used to enqueue the packets from
the primary application to the secondary. This is an optional parameter with default size 16384.

mbuf-size:
Size of the mbuf data. This is used internally for mempool creation. Ideally this value must be same as
the primary application’s mempool’s mbuf data size which is used for packet RX. This is an optional parameter with
default size 2176.

total-num-mbufs:
Total number mbufs in mempool. This is used internally for mempool creation. This is an optional parameter with default
value 65535.

2.2. Example

$ sudo ./build/app/dpdk-pdump -l 3 -- --pdump 'port=0,queue=*,rx-dev=/tmp/rx.pcap'
$ sudo ./build/app/dpdk-pdump -l 3,4,5 -- --multi --pdump 'port=0,queue=*,rx-dev=/tmp/rx-1.pcap' --pdump 'port=1,queue=*,rx-dev=/tmp/rx-2.pcap'

3. dpdk-pmdinfo Application

The dpdk-pmdinfo tool is a Data Plane Development Kit (DPDK) utility that
can dump a PMDs hardware support info.

3.1. Running the Application

The tool has a number of command line options:

dpdk-pmdinfo [-hrtp] [-d <pci id file] <elf-file>

-h, --help Show a short help message and exit
-r, --raw Dump as raw json strings
-d FILE, --pcidb=FILE Specify a pci database to get vendor names from
-t, --table Output information on hw support as a hex table
-p, --plugindir Scan dpdk for autoload plugins

Note

	Parameters inside the square brackets represents optional parameters.

4. dpdk-devbind Application

The dpdk-devbind tool is a Data Plane Development Kit (DPDK) utility
that helps binding and unbinding devices from specific drivers.
As well as checking their status in that regard.

4.1. Running the Application

The tool has a number of command line options:

dpdk-devbind [options] DEVICE1 DEVICE2

4.2. OPTIONS

	--help, --usage

Display usage information and quit

	-s, --status

Print the current status of all known network interfaces.
For each device, it displays the PCI domain, bus, slot and function,
along with a text description of the device. Depending upon whether the
device is being used by a kernel driver, the igb_uio driver, or no
driver, other relevant information will be displayed:
- the Linux interface name e.g. if=eth0
- the driver being used e.g. drv=igb_uio
- any suitable drivers not currently using that device e.g. unused=igb_uio
NOTE: if this flag is passed along with a bind/unbind option, the
status display will always occur after the other operations have taken
place.

	-b driver, --bind=driver

Select the driver to use or “none” to unbind the device

	-u, --unbind

Unbind a device (Equivalent to -b none)

	--force

By default, devices which are used by Linux - as indicated by having
routes in the routing table - cannot be modified. Using the --force
flag overrides this behavior, allowing active links to be forcibly
unbound.
WARNING: This can lead to loss of network connection and should be used
with caution.

Warning

Due to the way VFIO works, there are certain limitations to which devices can be used with VFIO.
Mainly it comes down to how IOMMU groups work.
Any Virtual Function device can be used with VFIO on its own, but physical devices will require either all ports bound to VFIO,
or some of them bound to VFIO while others not being bound to anything at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU group in which your device is in.
Therefore, the bridge driver should also be unbound from the bridge PCI device for VFIO to work with devices behind the bridge.

Warning

While any user can run the dpdk-devbind.py script to view the status of the network ports,
binding or unbinding network ports requires root privileges.

4.3. Examples

To display current device status:

dpdk-devbind --status

To bind eth1 from the current driver and move to use igb_uio:

dpdk-devbind --bind=igb_uio eth1

To unbind 0000:01:00.0 from using any driver:

dpdk-devbind -u 0000:01:00.0

To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver:

dpdk-devbind -b ixgbe 02:00.0 02:00.1

To check status of all network ports, assign one to the igb_uio driver and check status again:

Check the status of the available devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo dpdk-devbind -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

5. dpdk-test-bbdev Application

The dpdk-test-bbdev tool is a Data Plane Development Kit (DPDK) utility that
allows measuring performance parameters of PMDs available in the bbdev framework.
Available tests available for execution are: latency, throughput, validation,
bler and sanity tests. Execution of tests can be customized using various
parameters passed to a python running script.

5.1. Compiling the Application

Step 1: PMD setting

The dpdk-test-bbdev tool depends on crypto device drivers PMD which
are disabled by default in the build configuration file common_base.
The bbdevice drivers PMD which should be tested can be enabled by setting

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for (baseband_turbo_sw) PMD

CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y

Step 2: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-bbdev application.

Initially, the user must select a DPDK target to choose the correct target type
and compiler options to use when building the libraries.
The user must have all libraries, modules, updates and compilers installed
in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

5.2. Running the Application

The tool application has a number of command line options:

python test-bbdev.py [-h] [-p TESTAPP_PATH] [-e EAL_PARAMS] [-t TIMEOUT]
 [-c TEST_CASE [TEST_CASE ...]]
 [-v TEST_VECTOR [TEST_VECTOR...]] [-n NUM_OPS]
 [-b BURST_SIZE [BURST_SIZE ...]] [-l NUM_LCORES]
 [-t MAX_ITERS [MAX_ITERS ...]]
 [-s SNR [SNR ...]]

5.2.1. command-line Options

The following are the command-line options:

	-h, --help
	Shows help message and exit.

	-p TESTAPP_PATH, --testapp_path TESTAPP_PATH
	Indicates the path to the bbdev test app. If not specified path is set based
on $RTE_SDK environment variable concatenated with “/build/app/testbbdev”.

	-e EAL_PARAMS, --eal_params EAL_PARAMS
	Specifies EAL arguments which are passed to the test app. For more details,
refer to DPDK documentation at EAL parameters.

	-t TIMEOUT, --timeout TIMEOUT
	Specifies timeout in seconds. If not specified timeout is set to 300 seconds.

	-c TEST_CASE [TEST_CASE ...], --test_cases TEST_CASE [TEST_CASE ...]
	Defines test cases to run. If not specified all available tests are run.

Example usage:

	./test-bbdev.py -c validation
	Runs validation test suite

	./test-bbdev.py -c latency throughput
	Runs latency and throughput test suites

	-v TEST_VECTOR [TEST_VECTOR ...], --test_vector TEST_VECTOR [TEST_VECTOR ...]
	Specifies paths to the test vector files. If not specified path is set based
on $RTE_SDK environment variable concatenated with
“/app/test-bbdev/test_vectors/bbdev_null.data” and indicates default
data file.

Example usage:

	./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_dec_test1.data
	Fills vector based on turbo_dec_test1.data file and runs all tests

	./test-bbdev.py -v turbo_dec_test1.data turbo_enc_test2.data
	The bbdev test app is executed twice. First time vector is filled based on
turbo_dec_test1.data file and second time based on
turb_enc_test2.data file. For both executions all tests are run.

	-n NUM_OPS, --num_ops NUM_OPS
	Specifies number of operations to process on device. If not specified num_ops
is set to 32 operations.

	-l NUM_LCORES, --num_lcores NUM_LCORES
	Specifies number of lcores to run. If not specified num_lcores is set
according to value from RTE configuration (EAL coremask)

	-b BURST_SIZE [BURST_SIZE ...], --burst-size BURST_SIZE [BURST_SIZE ...]
	Specifies operations enqueue/dequeue burst size. If not specified burst_size is
set to 32. Maximum is 512.

	-t MAX_ITERS [MAX_ITERS ...], --iter_max MAX_ITERS [MAX_ITERS ...]
	Specifies LDPC decoder operations maximum number of iterations for throughput
and bler tests. If not specified iter_max is set to 6.

	-s SNR [SNR ...], --snr SNR [SNR ...]
	Specifies for LDPC decoder operations the SNR in dB used when generating LLRs
for bler tests. If not specified snr is set to 0 dB.

5.2.2. Test Cases

There are 7 main test cases that can be executed using testbbdev tool:

	
	Sanity checks [-c unittest]
	
	Performs sanity checks on BBDEV interface, validating basic functionality

	
	Validation tests [-c validation]
	
	Performs full operation of enqueue and dequeue

	Compares the dequeued data buffer with a expected values in the test
vector (TV) being used

	Fails if any dequeued value does not match the data in the TV

	
	Offload Cost measurement [-c offload]
	
	Measures the CPU cycles consumed from the receipt of a user enqueue
until it is put on the device queue

	
	The test measures 4 metrics
	
	SW Enq Offload Cost: Software only enqueue offload cost, the cycle
counts and time (us) from the point the enqueue API is called until
the point the operation is put on the accelerator queue.

	Acc Enq Offload Cost: The cycle count and time (us) from the
point the operation is put on the accelerator queue until the return
from enqueue.

	SW Deq Offload Cost: Software dequeue cost, the cycle counts and
time (us) consumed to dequeue one operation.

	Empty Queue Enq Offload Cost: The cycle count and time (us)
consumed to dequeue from an empty queue.

	
	Latency measurement [-c latency]
	
	Measures the time consumed from the first enqueue until the first
appearance of a dequeued result

	This measurement represents the full latency of a bbdev operation
(encode or decode) to execute

	
	Poll-mode Throughput measurement [-c throughput]
	
	Performs full operation of enqueue and dequeue

	Executes in poll mode

	Measures the achieved throughput on a subset or all available CPU cores

	Dequeued data is not validated against expected values stored in TV

	Results are printed in million operations per second and million bits
per second

	
	BLER measurement [-c bler]
	
	Performs full operation of enqueue and dequeue

	Measures the achieved throughput on a subset or all available CPU cores

	Computed BLER (Block Error Rate, ratio of blocks not decoded at a given
SNR) in % based on the total number of operations.

	
	Interrupt-mode Throughput [-c interrupt]
	
	Similar to Throughput test case, but using interrupts. No polling.

5.2.3. Parameter Globbing

Thanks to the globbing functionality in python test-bbdev.py script allows to
run tests with different set of vector files without giving all of them explicitly.

Example usage for 4G:

./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_<enc/dec>_c<c>_k<k>_r<r>_e<e>_<extra-info>.data

It runs all tests with following vectors:

	bbdev_null.data

	turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data

	turbo_enc_c1_k40_r0_e1196_rm.data

	turbo_enc_c2_k5952_r0_e17868_crc24b.data

	turbo_dec_c1_k40_r0_e17280_sbd_negllr.data

	turbo_dec_c1_k6144_r0_e34560_sbd_posllr.data

	turbo_enc_c1_k40_r0_e272_rm.data

	turbo_enc_c3_k4800_r2_e14412_crc24b.data

	turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data

	turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data

	turbo_enc_c1_k6144_r0_e120_rm_rvidx.data

	turbo_enc_c4_k4800_r2_e14412_crc24b.data

	turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data

	turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data

	turbo_enc_c1_k6144_r0_e18444.data

	turbo_dec_c1_k6144_r0_e34560_negllr.data

	turbo_enc_c1_k40_r0_e1190_rm.data

	turbo_enc_c1_k6144_r0_e18448_crc24a.data

	turbo_dec_c1_k6144_r0_e34560_posllr.data

	turbo_enc_c1_k40_r0_e1194_rm.data

	turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

./test-bbdev.py -v app/test-bbdev/turbo_*_default.data

It runs all tests with “default” vectors.

	turbo_dec_default.data is a soft link to
turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data

	turbo_enc_default.data is a soft link to
turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

	ldpc_dec_default.data is a soft link to
ldpc_dec_v6563.data

	ldpc_enc_default.data is a soft link to
ldpc_enc_c1_k8148_r0_e9372_rm.data

5.3. Running Tests

All default reference test-vectors are stored in the test_vector
directory below.
The prefix trivially defines which type of operation is included :
turbo_enc, turbo_dec, ldpc_enc, ldpc_dec.
The details of the configuration are captured in the file but some
vector name refer more explicitly processing specificity such as
‘HARQ’ when HARQ retransmission is used, ‘loopback’ when the data
is purely read/written for external DDR, lbrm when limited buffer
rate matching is expected, or crc_fail when a CRC failure is expected.
They are chosen to have a good coverage across sizes and processing
parameters while still keeping their number limited as part of sanity
regression.

Shortened tree of isg_cid-wireless_dpdk_ae with dpdk compiled for
x86_64-native-linux-icc target:

|-- app
 |-- test-bbdev
 |-- test_vectors

|-- x86_64-native-linux-icc
 |-- app
 |-- testbbdev

5.3.1. All bbdev devices

./test-bbdev.py -p ../../x86_64-native-linux-icc/app/testbbdev
-v turbo_dec_default.data

It runs all available tests using the test vector filled based on
turbo_dec_default.data file.
By default number of operations to process on device is set to 32, timeout is
set to 300s and operations enqueue/dequeue burst size is set to 32.
Moreover a bbdev (baseband_null) device will be created.

5.3.2. baseband turbo_sw device

./test-bbdev.py -p ../../x86_64-native-linux-icc/app/testbbdev
-e="--vdev=baseband_turbo_sw" -t 120 -c validation
-v ./test_vectors/* -n 64 -b 8 32

It runs validation test for each vector file that matches the given pattern.
Number of operations to process on device is set to 64 and operations timeout is
set to 120s and enqueue/dequeue burst size is set to 8 and to 32.
Moreover a bbdev (baseband_turbo_sw) device will be created.

5.3.3. bbdev null device

Executing bbdev null device with bbdev_null.data helps in measuring the
overhead introduced by the bbdev framework.

./test-bbdev.py -e="--vdev=baseband_null0"
-v ./test_vectors/bbdev_null.data

Note:

baseband_null device does not have to be defined explicitly as it is created by default.

5.4. Test Vector files

Test Vector files contain the data which is used to set turbo decoder/encoder
parameters and buffers for validation purpose. New test vector files should be
stored in app/test-bbdev/test_vectors/ directory. Detailed description of
the syntax of the test vector files is in the following section.

5.4.1. Basic principles for test vector files

Line started with # is treated as a comment and is ignored.

If variable is a chain of values, values should be separated by a comma. If
assignment is split into several lines, each line (except the last one) has to
be ended with a comma.
There is no comma after last value in last line. Correct assignment should
look like the following:

variable =
value, value, value, value,
value, value

In case where variable is a single value correct assignment looks like the
following:

variable =
value

Length of chain variable is calculated by parser. Can not be defined
explicitly.

Variable op_type has to be defined as a first variable in file. It specifies
what type of operations will be executed. For 4G decoder op_type has to be set to
RTE_BBDEV_OP_TURBO_DEC and for 4G encoder to RTE_BBDEV_OP_TURBO_ENC.

Full details of the meaning and valid values for the below fields are
documented in rte_bbdev_op.h

5.4.2. Turbo decoder test vectors template

For turbo decoder it has to be always set to RTE_BBDEV_OP_TURBO_DEC

op_type =
RTE_BBDEV_OP_TURBO_DEC

Chain of uint32_t values. Note that it is possible to define more than one
input/output entries which will result in chaining two or more data structures
for segmented Transport Blocks

input0 =
0x00000000, 0x7f817f00, 0x7f7f8100, 0x817f8100, 0x81008100, 0x7f818100, 0x81817f00, 0x7f818100,
0x81007f00, 0x7f818100, 0x817f8100, 0x81817f00, 0x81008100, 0x817f7f00, 0x7f7f8100, 0x81817f00

Chain of uint32_t values

input1 =
0x7f7f0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

input2 =
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

hard_output0 =
0xa7d6732e

Chain of uint32_t values

hard_output1 =
0xa61

Chain of uint32_t values

soft_output0 =
0x817f817f, 0x7f817f7f, 0x81818181, 0x817f7f81, 0x7f818181, 0x8181817f, 0x817f817f, 0x8181817f

Chain of uint32_t values

soft_output1 =
0x817f7f81, 0x7f7f7f81, 0x7f7f8181

uint32_t value

e =
44

uint16_t value

k =
40

uint8_t value

rv_index =
0

uint8_t value

iter_max =
8

uint8_t value

iter_min =
4

uint8_t value

expected_iter_count =
8

uint8_t value

ext_scale =
15

uint8_t value

num_maps =
0

Chain of flags for LDPC decoder operation based on the rte_bbdev_op_td_flag_bitmasks:

Example:

op_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE, RTE_BBDEV_TURBO_EQUALIZER,
RTE_BBDEV_TURBO_SOFT_OUTPUT

Chain of operation statuses that are expected after operation is performed.
Following statuses can be used:

	DMA

	FCW

	CRC

	OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
FCW, CRC

5.4.3. Turbo encoder test vectors template

For turbo encoder it has to be always set to RTE_BBDEV_OP_TURBO_ENC

op_type =
RTE_BBDEV_OP_TURBO_ENC

Chain of uint32_t values

input0 =
0x11d2bcac, 0x4d

Chain of uint32_t values

output0 =
0xd2399179, 0x640eb999, 0x2cbaf577, 0xaf224ae2, 0x9d139927, 0xe6909b29,
0xa25b7f47, 0x2aa224ce, 0x79f2

uint32_t value

e =
272

uint16_t value

k =
40

uint16_t value

ncb =
192

uint8_t value

rv_index =
0

Chain of flags for LDPC decoder operation based on the rte_bbdev_op_te_flag_bitmasks:

RTE_BBDEV_TURBO_ENC_SCATTER_GATHER is used to indicate the parser to
force the input data to be memory split and formed as a segmented mbuf.

op_flags =
RTE_BBDEV_TURBO_RATE_MATCH

Chain of operation statuses that are expected after operation is performed.
Following statuses can be used:

	DMA

	FCW

	OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
OK

5.4.4. LDPC decoder test vectors template

For LDPC decoder it has to be always set to RTE_BBDEV_OP_LDPC_DEC

op_type =
RTE_BBDEV_OP_LDPC_DEC

Chain of uint32_t values. Note that it is possible to define more than one
input/output entries which will result in chaining two or more data structures
for segmented Transport Blocks

input0 =
0x00000000, 0x7f817f00, 0x7f7f8100, 0x817f8100, 0x81008100, 0x7f818100, 0x81817f00, 0x7f818100,
0x81007f00, 0x7f818100, 0x817f8100, 0x81817f00, 0x81008100, 0x817f7f00, 0x7f7f8100, 0x81817f00

output0 =
0xa7d6732e

uint8_t value

basegraph=
1

uint16_t value

z_c=
224

uint16_t value

n_cb=
14784

uint8_t value

q_m=
1

uint16_t value

n_filler=
40

uint32_t value

e=
13072

uint8_t value

rv_index=
2

uint8_t value

code_block_mode=
1

uint8_t value

iter_max=
20

uint8_t value

expected_iter_count=
8

Chain of flags for LDPC decoder operation based on the rte_bbdev_op_ldpcdec_flag_bitmasks:

Example:

op_flags =
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE, RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION

Chain of operation statuses that are expected after operation is performed.
Following statuses can be used:

	OK : No error reported.

	SYN : LDPC syndrome parity check is failing.

	CRC : CRC parity check is failing when CRC check operation is included.

	SYNCRC : Both CRC and LDPC syndromes parity checks are failing.

OK means no errors are expected. Cannot be used with other values.

expected_status =
CRC

5.4.5. LDPC encoder test vectors template

For turbo encoder it has to be always set to RTE_BBDEV_OP_LDPC_ENC

op_type =
RTE_BBDEV_OP_LDPC_ENC

Chain of uint32_t values

input0 =
0x11d2bcac, 0x4d

Chain of uint32_t values

output0 =
0xd2399179, 0x640eb999, 0x2cbaf577, 0xaf224ae2, 0x9d139927, 0xe6909b29,
0xa25b7f47, 0x2aa224ce, 0x79f2

uint8_t value

basegraph=
1

uint16_t value

z_c=
52

uint16_t value

n_cb=
3432

uint8_t value

q_m=
6

uint16_t value

n_filler=
0

uint32_t value

e =
1380

uint8_t value

rv_index =
1

uint8_t value

code_block_mode =
1

Chain of flags for LDPC encoder operation based on the
rte_bbdev_op_ldpcenc_flag_bitmasks:

op_flags =
RTE_BBDEV_LDPC_RATE_MATCH

Chain of operation statuses that are expected after operation is performed.
Following statuses can be used:

	DMA

	FCW

	OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
OK

6. dpdk-test-crypto-perf Application

The dpdk-test-crypto-perf tool is a Data Plane Development Kit (DPDK)
utility that allows measuring performance parameters of PMDs available in the
crypto tree. There are available two measurement types: throughput and latency.
User can use multiply cores to run tests on but only
one type of crypto PMD can be measured during single application
execution. Cipher parameters, type of device, type of operation and
chain mode have to be specified in the command line as application
parameters. These parameters are checked using device capabilities
structure.

6.1. Limitations

On hardware devices the cycle-count doesn’t always represent the actual offload
cost. The cycle-count only represents the offload cost when the hardware
accelerator is not fully loaded, when loaded the cpu cycles freed up by the
offload are still consumed by the test tool and included in the cycle-count.
These cycles are consumed by retries and inefficient API calls enqueuing and
dequeuing smaller bursts than specified by the cmdline parameter. This results
in a larger cycle-count measurement and should not be interpreted as an offload
cost measurement. Using “pmd-cyclecount” mode will give a better idea of
actual costs of hardware acceleration.

On hardware devices the throughput measurement is not necessarily the maximum
possible for the device, e.g. it may be necessary to use multiple cores to keep
the hardware accelerator fully loaded and so measure maximum throughput.

6.2. Compiling the Application

Step 1: PMD setting

The dpdk-test-crypto-perf tool depends on crypto device drivers PMD which
are disabled by default in the build configuration file common_base.
The crypto device drivers PMD which should be tested can be enabled by setting:

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for open ssl PMD:

CONFIG_RTE_LIBRTE_PMD_OPENSSL=y

Step 2: Linearization setting

It is possible linearized input segmented packets just before crypto operation
for devices which doesn’t support scatter-gather, and allows to measure
performance also for this use case.

To set on the linearization options add below definition to the
cperf_ops.h file:

#define CPERF_LINEARIZATION_ENABLE

Step 3: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-crypto-perf application.

Initially, the user must select a DPDK target to choose the correct target type
and compiler options to use when building the libraries.
The user must have all libraries, modules, updates and compilers installed
in the system prior to this,
as described in the earlier chapters in this Getting Started Guide.

6.3. Running the Application

The tool application has a number of command line options:

dpdk-test-crypto-perf [EAL Options] -- [Application Options]

6.3.1. EAL Options

The following are the EAL command-line options that can be used in conjunction
with the dpdk-test-crypto-perf application.
See the DPDK Getting Started Guides for more information on these options.

	-c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a
list cores to use.

	-w <PCI>

Add a PCI device in white list.

	--vdev <driver><id>

Add a virtual device.

6.3.2. Application Options

The following are the application command-line options:

	--ptest type

Set test type, where type is one of the following:

throughput
latency
verify
pmd-cyclecount

	--silent

Disable options dump.

	--pool-sz <n>

Set the number of mbufs to be allocated in the mbuf pool.

	--total-ops <n>

Set the number of total operations performed.

	--burst-sz <n>

Set the number of packets per burst.

	This can be set as:
	
	Single value (i.e. --burst-sz 16)

	Range of values, using the following structure min:inc:max,
where min is minimum size, inc is the increment size and max
is the maximum size (i.e. --burst-sz 16:2:32)

	List of values, up to 32 values, separated in commas (i.e. --burst-sz 16,24,32)

	--buffer-sz <n>

Set the size of single packet (plaintext or ciphertext in it).

	This can be set as:
	
	Single value (i.e. --buffer-sz 16)

	Range of values, using the following structure min:inc:max,
where min is minimum size, inc is the increment size and max
is the maximum size (i.e. --buffer-sz 16:2:32)

	List of values, up to 32 values, separated in commas (i.e. --buffer-sz 32,64,128)

	--imix <n>

Set the distribution of packet sizes.

A list of weights must be passed, containing the same number of items than buffer-sz,
so each item in this list will be the weight of the packet size on the same position
in the buffer-sz parameter (a list have to be passed in that parameter).

Example:

To test a distribution of 20% packets of 64 bytes, 40% packets of 100 bytes and 40% packets
of 256 bytes, the command line would be: --buffer-sz 64,100,256 --imix 20,40,40.
Note that the weights do not have to be percentages, so using --imix 1,2,2 would result
in the same distribution

	--segment-sz <n>

Set the size of the segment to use, for Scatter Gather List testing.
By default, it is set to the size of the maximum buffer size, including the digest size,
so a single segment is created.

	--devtype <name>

Set device type, where name is one of the following:

crypto_null
crypto_aesni_mb
crypto_aesni_gcm
crypto_openssl
crypto_qat
crypto_snow3g
crypto_kasumi
crypto_zuc
crypto_dpaa_sec
crypto_dpaa2_sec
crypto_armv8
crypto_scheduler
crypto_mvsam

	--optype <name>

Set operation type, where name is one of the following:

cipher-only
auth-only
cipher-then-auth
auth-then-cipher
aead
pdcp

For GCM/CCM algorithms you should use aead flag.

	--sessionless

Enable session-less crypto operations mode.

	--out-of-place

Enable out-of-place crypto operations mode.

	--test-file <name>

Set test vector file path. See the Test Vector File chapter.

	--test-name <name>

Set specific test name section in the test vector file.

	--cipher-algo <name>

Set cipher algorithm name, where name is one of the following:

3des-cbc
3des-ecb
3des-ctr
aes-cbc
aes-ctr
aes-ecb
aes-f8
aes-xts
arc4
null
kasumi-f8
snow3g-uea2
zuc-eea3

	--cipher-op <mode>

Set cipher operation mode, where mode is one of the following:

encrypt
decrypt

	--cipher-key-sz <n>

Set the size of cipher key.

	--cipher-iv-sz <n>

Set the size of cipher iv.

	--auth-algo <name>

Set authentication algorithm name, where name is one
of the following:

3des-cbc
aes-cbc-mac
aes-cmac
aes-gmac
aes-xcbc-mac
md5
md5-hmac
sha1
sha1-hmac
sha2-224
sha2-224-hmac
sha2-256
sha2-256-hmac
sha2-384
sha2-384-hmac
sha2-512
sha2-512-hmac
kasumi-f9
snow3g-uia2
zuc-eia3

	--auth-op <mode>

Set authentication operation mode, where mode is one of
the following:

verify
generate

	--auth-key-sz <n>

Set the size of authentication key.

	--auth-iv-sz <n>

Set the size of auth iv.

	--aead-algo <name>

Set AEAD algorithm name, where name is one
of the following:

aes-ccm
aes-gcm

	--aead-op <mode>

Set AEAD operation mode, where mode is one of
the following:

encrypt
decrypt

	--aead-key-sz <n>

Set the size of AEAD key.

	--aead-iv-sz <n>

Set the size of AEAD iv.

	--aead-aad-sz <n>

Set the size of AEAD aad.

	--digest-sz <n>

Set the size of digest.

	--desc-nb <n>

Set number of descriptors for each crypto device.

	--pmd-cyclecount-delay-ms <n>

Add a delay (in milliseconds) between enqueue and dequeue in
pmd-cyclecount benchmarking mode (useful when benchmarking
hardware acceleration).

	--csv-friendly

Enable test result output CSV friendly rather than human friendly.

	--pdcp-sn-sz <n>

Set PDCP sequence number size(n) in bits. Valid values of n will
be 5/7/12/15/18.

	--pdcp-domain <control/user>

Set PDCP domain to specify Control/user plane.

6.3.3. Test Vector File

The test vector file is a text file contain information about test vectors.
The file is made of the sections. The first section doesn’t have header.
It contain global information used in each test variant vectors -
typically information about plaintext, ciphertext, cipher key, auth key,
initial vector. All other sections begin header.
The sections contain particular information typically digest.

Format of the file:

Each line beginning with sign ‘#’ contain comment and it is ignored by parser:

<comment>

Header line is just name in square bracket:

[<section name>]

Data line contain information token then sign ‘=’ and
a string of bytes in C byte array format:

<token> = <C byte array>

Tokens list:

	plaintext

Original plaintext to be encrypted.

	ciphertext

Encrypted plaintext string.

	cipher_key

Key used in cipher operation.

	auth_key

Key used in auth operation.

	cipher_iv

Cipher Initial Vector.

	auth_iv

Auth Initial Vector.

	aad

Additional data.

	digest

Digest string.

6.4. Examples

Call application for performance throughput test of single Aesni MB PMD
for cipher encryption aes-cbc and auth generation sha1-hmac,
one million operations, burst size 32, packet size 64:

dpdk-test-crypto-perf -l 6-7 --vdev crypto_aesni_mb -w 0000:00:00.0 --
--ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth
--cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo
sha1-hmac --auth-op generate --auth-key-sz 64 --digest-sz 12
--total-ops 10000000 --burst-sz 32 --buffer-sz 64

Call application for performance latency test of two Aesni MB PMD executed
on two cores for cipher encryption aes-cbc, ten operations in silent mode:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_aesni_mb1
--vdev crypto_aesni_mb2 -w 0000:00:00.0 -- --devtype crypto_aesni_mb
--cipher-algo aes-cbc --cipher-key-sz 16 --cipher-iv-sz 16
--cipher-op encrypt --optype cipher-only --silent
--ptest latency --total-ops 10

Call application for verification test of single open ssl PMD
for cipher encryption aes-gcm and auth generation aes-gcm,ten operations
in silent mode, test vector provide in file “test_aes_gcm.data”
with packet verification:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_openssl -w 0000:00:00.0 --
--devtype crypto_openssl --aead-algo aes-gcm --aead-key-sz 16
--aead-iv-sz 16 --aead-op encrypt --aead-aad-sz 16 --digest-sz 16
--optype aead --silent --ptest verify --total-ops 10
--test-file test_aes_gcm.data

Test vector file for cipher algorithm aes cbc 256 with authorization sha:

Global Section
plaintext =
0xff, 0xca, 0xfb, 0xf1, 0x38, 0x20, 0x2f, 0x7b, 0x24, 0x98, 0x26, 0x7d, 0x1d, 0x9f, 0xb3, 0x93,
0xd9, 0xef, 0xbd, 0xad, 0x4e, 0x40, 0xbd, 0x60, 0xe9, 0x48, 0x59, 0x90, 0x67, 0xd7, 0x2b, 0x7b,
0x8a, 0xe0, 0x4d, 0xb0, 0x70, 0x38, 0xcc, 0x48, 0x61, 0x7d, 0xee, 0xd6, 0x35, 0x49, 0xae, 0xb4,
0xaf, 0x6b, 0xdd, 0xe6, 0x21, 0xc0, 0x60, 0xce, 0x0a, 0xf4, 0x1c, 0x2e, 0x1c, 0x8d, 0xe8, 0x7b
ciphertext =
0x77, 0xF9, 0xF7, 0x7A, 0xA3, 0xCB, 0x68, 0x1A, 0x11, 0x70, 0xD8, 0x7A, 0xB6, 0xE2, 0x37, 0x7E,
0xD1, 0x57, 0x1C, 0x8E, 0x85, 0xD8, 0x08, 0xBF, 0x57, 0x1F, 0x21, 0x6C, 0xAD, 0xAD, 0x47, 0x1E,
0x0D, 0x6B, 0x79, 0x39, 0x15, 0x4E, 0x5B, 0x59, 0x2D, 0x76, 0x87, 0xA6, 0xD6, 0x47, 0x8F, 0x82,
0xB8, 0x51, 0x91, 0x32, 0x60, 0xCB, 0x97, 0xDE, 0xBE, 0xF0, 0xAD, 0xFC, 0x23, 0x2E, 0x22, 0x02
cipher_key =
0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A,
0xd0, 0xe7, 0x4b, 0xfb, 0x5d, 0xe5, 0x0c, 0xe7, 0x6f, 0x21, 0xb5, 0x52, 0x2a, 0xbb, 0xc7, 0xf7
auth_key =
0xaf, 0x96, 0x42, 0xf1, 0x8c, 0x50, 0xdc, 0x67, 0x1a, 0x43, 0x47, 0x62, 0xc7, 0x04, 0xab, 0x05,
0xf5, 0x0c, 0xe7, 0xa2, 0xa6, 0x23, 0xd5, 0x3d, 0x95, 0xd8, 0xcd, 0x86, 0x79, 0xf5, 0x01, 0x47,
0x4f, 0xf9, 0x1d, 0x9d, 0x36, 0xf7, 0x68, 0x1a, 0x64, 0x44, 0x58, 0x5d, 0xe5, 0x81, 0x15, 0x2a,
0x41, 0xe4, 0x0e, 0xaa, 0x1f, 0x04, 0x21, 0xff, 0x2c, 0xf3, 0x73, 0x2b, 0x48, 0x1e, 0xd2, 0xf7
cipher_iv =
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
Section sha 1 hmac buff 32
[sha1_hmac_buff_32]
digest =
0x36, 0xCA, 0x49, 0x6A, 0xE3, 0x54, 0xD8, 0x4F, 0x0B, 0x76, 0xD8, 0xAA, 0x78, 0xEB, 0x9D, 0x65,
0x2C, 0xCA, 0x1F, 0x97
Section sha 256 hmac buff 32
[sha256_hmac_buff_32]
digest =
0x1C, 0xB2, 0x3D, 0xD1, 0xF9, 0xC7, 0x6C, 0x49, 0x2E, 0xDA, 0x94, 0x8B, 0xF1, 0xCF, 0x96, 0x43,
0x67, 0x50, 0x39, 0x76, 0xB5, 0xA1, 0xCE, 0xA1, 0xD7, 0x77, 0x10, 0x07, 0x43, 0x37, 0x05, 0xB4

7. dpdk-test-compress-perf Tool

The dpdk-test-compress-perf tool is a Data Plane Development Kit (DPDK)
utility that allows measuring performance parameters of PMDs available in the
compress tree. User can use multiple cores to run tests on but only
one type of compression PMD can be measured during single application
execution. The tool reads the data from a file (–input-file),
dumps all the file into a buffer and fills out the data of input mbufs,
which are passed to compress device with compression operations.
Then, the output buffers are fed into the decompression stage, and the resulting
data is compared against the original data (verification phase). After that,
a number of iterations are performed, compressing first and decompressing later,
to check the throughput rate (showing cycles/iteration, cycles/Byte and Gbps,
for compression and decompression).
Another option: pmd-cyclecount, gives the user the opportunity to measure
the number of cycles per operation for the 3 phases: setup, enqueue_burst and
dequeue_burst, for both compression and decompression. An optional delay can be
inserted between enqueue and dequeue so no cycles are wasted in retries while
waiting for a hardware device to finish. Although artificial, this allows
to measure the minimum offload cost which could be achieved in a perfectly
tuned system. Comparing the results of the two tests gives information about
the trade-off between throughput and cycle-count.

Note

if the max-num-sgl-segs x seg_sz > input size then segments number in
the chain will be lower than value passed into max-num-sgl-segs.

7.1. Limitations

	Stateful operation is not supported in this version.

7.2. EAL Options

The following are the EAL command-line options that can be used in conjunction
with the dpdk-test-compress-perf application.
See the DPDK Getting Started Guides for more information on these options.

	-c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a
list cores to use.

Note

One lcore is needed for process admin, tests are run on all other cores.
To run tests on two lcores, three lcores must be passed to the tool.

	-w <PCI>

Add a PCI device in white list.

	--vdev <driver><id>

Add a virtual device.

7.3. Application Options

--ptest [throughput/verify/pmd-cyclecount]: set test type (default: throughput)

--driver-name NAME: compress driver to use

--input-file NAME: file to compress and decompress

--extended-input-sz N: extend file data up to this size (default: no extension)

--seg-sz N: size of segment to store the data (default: 2048)

--burst-sz N: compress operation burst size

--pool-sz N: mempool size for compress operations/mbufs (default: 8192)

--max-num-sgl-segs N: maximum number of segments for each mbuf (default: 16)

--num-iter N: number of times the file will be compressed/decompressed (default: 10000)

--operation [comp/decomp/comp_and_decomp]: perform test on compression, decompression or both operations

--huffman-enc [fixed/dynamic/default]: Huffman encoding (default: dynamic)

--compress-level N: compression level, which could be a single value, list or range (default: range between 1 and 9)

--window-sz N: base two log value of compression window size (default: max supported by PMD)

--external-mbufs: allocate and use memzones as external buffers instead of keeping the data directly in mbuf areas

--cc-delay-us N: delay between enqueue and dequeue operations in microseconds, valid only for the cyclecount test (default: 500 us)

-h: prints this help

7.3.1. Compiling the Tool

Step 1: PMD setting

The dpdk-test-compress-perf tool depends on compression device drivers PMD which
can be disabled by default in the build configuration file common_base.
The compression device drivers PMD which should be tested can be enabled by setting e.g.:

CONFIG_RTE_LIBRTE_PMD_ISAL=y

7.3.2. Running the Tool

The tool has a number of command line options. Here is the sample command line:

./build/app/dpdk-test-compress-perf -l 4 -- --driver-name compress_qat --input-file test.txt --seg-sz 8192
 --compress-level 1:1:9 --num-iter 10 --extended-input-sz 1048576 --max-num-sgl-segs 16 --huffman-enc fixed

8. dpdk-test-eventdev Application

The dpdk-test-eventdev tool is a Data Plane Development Kit (DPDK)
application that allows exercising various eventdev use cases.
This application has a generic framework to add new eventdev based test cases to
verify functionality and measure the performance parameters of DPDK eventdev
devices.

8.1. Compiling the Application

Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-eventdev application.

Initially, the user must select a DPDK target to choose the correct target type
and compiler options to use when building the libraries.
The user must have all libraries, modules, updates and compilers installed
in the system prior to this,
as described in the earlier chapters in this Getting Started Guide.

8.2. Running the Application

The application has a number of command line options:

dpdk-test-eventdev [EAL Options] -- [application options]

8.2.1. EAL Options

The following are the EAL command-line options that can be used in conjunction
with the dpdk-test-eventdev application.
See the DPDK Getting Started Guides for more information on these options.

	-c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a
list of cores to use.

	--vdev <driver><id>

Add a virtual eventdev device.

8.2.2. Application Options

The following are the application command-line options:

	--verbose

Set verbose level. Default is 1. Value > 1 displays more details.

	--dev <n>

Set the device id of the event device.

	--test <name>

Set test name, where name is one of the following:

order_queue
order_atq
perf_queue
perf_atq
pipeline_atq
pipeline_queue

	--socket_id <n>

Set the socket id of the application resources.

	--pool-sz <n>

Set the number of mbufs to be allocated from the mempool.

	--plcores <CORELIST>

Set the list of cores to be used as producers.

	--wlcores <CORELIST>

Set the list of cores to be used as workers.

	--stlist <type_list>

Set the scheduled type of each stage where type_list size
determines the number of stages used in the test application.
Each type_list member can be one of the following:

P or p : Parallel schedule type
O or o : Ordered schedule type
A or a : Atomic schedule type

Application expects the type_list in comma separated form (i.e. --stlist o,a,a,a)

	--nb_flows <n>

Set the number of flows to produce.

	--nb_pkts <n>

Set the number of packets to produce. 0 implies no limit.

	--worker_deq_depth <n>

Set the dequeue depth of the worker.

	--fwd_latency

Perform forward latency measurement.

	--queue_priority

Enable queue priority.

	--prod_type_ethdev

Use ethernet device as producer.

	--prod_type_timerdev

Use event timer adapter as producer.

	--prod_type_timerdev_burst

Use burst mode event timer adapter as producer.

	--timer_tick_nsec

Used to dictate number of nano seconds between bucket traversal of the
event timer adapter. Refer rte_event_timer_adapter_conf.

	--max_tmo_nsec

Used to configure event timer adapter max arm timeout in nano seconds.

	--expiry_nsec

Dictate the number of nano seconds after which the event timer expires.

	--nb_timers

Number of event timers each producer core will generate.

	--nb_timer_adptrs

Number of event timer adapters to be used. Each adapter is used in
round robin manner by the producer cores.

	--deq_tmo_nsec

Global dequeue timeout for all the event ports if the provided dequeue
timeout is out of the supported range of event device it will be
adjusted to the highest/lowest supported dequeue timeout supported.

	--mbuf_sz

Set packet mbuf size. Can be used to configure Jumbo Frames. Only
applicable for pipeline_atq and pipeline_queue tests.

	--max_pkt_sz

Set max packet mbuf size. Can be used configure Rx/Tx scatter gather.
Only applicable for pipeline_atq and pipeline_queue tests.

8.3. Eventdev Tests

8.3.1. ORDER_QUEUE Test

This is a functional test case that aims at testing the following:

	Verify the ingress order maintenance.

	Verify the exclusive(atomic) access to given atomic flow per eventdev port.

Table 8.1 Order queue test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	2

	q0(ordered), q1(atomic)

	2

	nb_producers

	1

	

	3

	nb_workers

	>= 1

	

	4

	nb_ports

	nb_workers +
1

	Workers use port 0 to
port n-1. Producer uses
port n

[image: ../_images/eventdev_order_queue_test.svg]
Fig. 8.2 order queue test operation.

The order queue test configures the eventdev with two queues and an event
producer to inject the events to q0(ordered) queue. Both q0(ordered) and
q1(atomic) are linked to all the workers.

The event producer maintains a sequence number per flow and injects the events
to the ordered queue. The worker receives the events from ordered queue and
forwards to atomic queue. Since the events from an ordered queue can be
processed in parallel on the different workers, the ingress order of events
might have changed on the downstream atomic queue enqueue. On enqueue to the
atomic queue, the eventdev PMD driver reorders the event to the original
ingress order(i.e producer ingress order).

When the event is dequeued from the atomic queue by the worker, this test
verifies the expected sequence number of associated event per flow by comparing
the free running expected sequence number per flow.

8.3.1.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth
--deq_tmo_nsec

8.3.1.2. Example

Example command to run order queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
 --test=order_queue --plcores 1 --wlcores 2,3

8.3.2. ORDER_ATQ Test

This test verifies the same aspects of order_queue test, the difference is
the number of queues used, this test operates on a single all types queue(atq)
instead of two different queues for ordered and atomic.

Table 8.2 Order all types queue test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	1

	q0(all types queue)

	2

	nb_producers

	1

	

	3

	nb_workers

	>= 1

	

	4

	nb_ports

	nb_workers +
1

	Workers use port 0 to
port n-1.Producer uses
port n.

[image: ../_images/eventdev_order_atq_test.svg]
Fig. 8.3 order all types queue test operation.

8.3.2.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth
--deq_tmo_nsec

8.3.2.2. Example

Example command to run order all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
 --test=order_atq --plcores 1 --wlcores 2,3

8.3.3. PERF_QUEUE Test

This is a performance test case that aims at testing the following:

	Measure the number of events can be processed in a second.

	Measure the latency to forward an event.

Table 8.3 Perf queue test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	nb_producers *
nb_stages

	Queues will be configured based on the
user requested sched type list(–stlist)

	2

	nb_producers

	>= 1

	Selected through –plcores command line
argument.

	3

	nb_workers

	>= 1

	Selected through –wlcores command line
argument

	4

	nb_ports

	nb_workers +
nb_producers

	Workers use port 0 to port n-1.
Producers use port n to port p

[image: ../_images/eventdev_perf_queue_test.svg]
Fig. 8.4 perf queue test operation.

The perf queue test configures the eventdev with Q queues and P ports, where
Q and P is a function of the number of workers, the number of producers and
number of stages as mentioned in Table 8.3.

The user can choose the number of workers, the number of producers and number of
stages through the --wlcores, --plcores and the --stlist application
command line arguments respectively.

The producer(s) injects the events to eventdev based the first stage sched type
list requested by the user through --stlist the command line argument.

Based on the number of stages to process(selected through --stlist),
The application forwards the event to next upstream queue and terminates when it
reaches the last stage in the pipeline. On event termination, application
increments the number events processed and print periodically in one second
to get the number of events processed in one second.

When --fwd_latency command line option selected, the application inserts
the timestamp in the event on the first stage and then on termination, it
updates the number of cycles to forward a packet. The application uses this
value to compute the average latency to a forward packet.

When --prod_type_ethdev command line option is selected, the application
uses the probed ethernet devices as producers by configuring them as Rx
adapters instead of using synthetic producers.

8.3.3.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--queue_priority
--prod_type_ethdev
--prod_type_timerdev_burst
--prod_type_timerdev
--timer_tick_nsec
--max_tmo_nsec
--expiry_nsec
--nb_timers
--nb_timer_adptrs
--deq_tmo_nsec

8.3.3.2. Example

Example command to run perf queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x1 --vdev=event_sw0 -- \
 --test=perf_queue --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

Example command to run perf queue test with ethernet ports:

sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
 --test=perf_queue --plcores=2 --wlcore=3 --stlist=p --prod_type_ethdev

Example command to run perf queue test with event timer adapter:

sudo build/app/dpdk-test-eventdev --vdev="event_octeontx" -- \
 --wlcores 4 --plcores 12 --test perf_queue --stlist=a \
 --prod_type_timerdev --fwd_latency

8.3.4. PERF_ATQ Test

This is a performance test case that aims at testing the following with
all types queue eventdev scheme.

	Measure the number of events can be processed in a second.

	Measure the latency to forward an event.

Table 8.4 Perf all types queue test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	nb_producers

	Queues will be configured based on the
user requested sched type list(–stlist)

	2

	nb_producers

	>= 1

	Selected through –plcores command line
argument.

	3

	nb_workers

	>= 1

	Selected through –wlcores command line
argument

	4

	nb_ports

	nb_workers +
nb_producers

	Workers use port 0 to port n-1.
Producers use port n to port p

[image: ../_images/eventdev_perf_atq_test.svg]
Fig. 8.5 perf all types queue test operation.

The all types queues(atq) perf test configures the eventdev with Q queues
and P ports, where Q and P is a function of the number of workers and number of
producers as mentioned in Table 8.4.

The atq queue test functions as same as perf_queue test. The difference
is, It uses, all type queue scheme instead of separate queues for each
stage and thus reduces the number of queues required to realize the use case
and enables flow pinning as the event does not move to the next queue.

8.3.4.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--prod_type_ethdev
--prod_type_timerdev_burst
--prod_type_timerdev
--timer_tick_nsec
--max_tmo_nsec
--expiry_nsec
--nb_timers
--nb_timer_adptrs
--deq_tmo_nsec

8.3.4.2. Example

Example command to run perf all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
 --test=perf_atq --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

Example command to run perf all types queue test with event timer adapter:

sudo build/app/dpdk-test-eventdev --vdev="event_octeontx" -- \
 --wlcores 4 --plcores 12 --test perf_atq --verbose 20 \
 --stlist=a --prod_type_timerdev --fwd_latency

8.3.5. PIPELINE_QUEUE Test

This is a pipeline test case that aims at testing the following:

	Measure the end-to-end performance of an event dev with a ethernet dev.

	Maintain packet ordering from Rx to Tx.

Table 8.5 Pipeline queue test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	(nb_producers
* nb_stages) +
nb_producers

	Queues will be configured based on the
user requested sched type list(–stlist)
At the last stage of the schedule list
the event is enqueued onto per port
unique queue which is then Transmitted.

	2

	nb_producers

	>= 1

	Producers will be configured based on
the number of detected ethernet devices.
Each ethdev will be configured as an Rx
adapter.

	3

	nb_workers

	>= 1

	Selected through –wlcores command line
argument

	4

	nb_ports

	nb_workers +
(nb_produces *
2)

	Workers use port 0 to port n.
Producers use port n+1 to port n+m,
depending on the Rx adapter capability.
Consumers use port n+m+1 to port n+o
depending on the Tx adapter capability.

[image: ../_images/eventdev_pipeline_queue_test_generic.svg]

[image: ../_images/eventdev_pipeline_queue_test_internal_port.svg]
Fig. 8.6 pipeline queue test operation.

The pipeline queue test configures the eventdev with Q queues and P ports,
where Q and P is a function of the number of workers, the number of producers
and number of stages as mentioned in Table 8.5.

The user can choose the number of workers and number of stages through the
--wlcores and the --stlist application command line arguments
respectively.

The number of producers depends on the number of ethernet devices detected and
each ethernet device is configured as a event_eth_rx_adapter that acts as a
producer.

The producer(s) injects the events to eventdev based the first stage sched type
list requested by the user through --stlist the command line argument.

Based on the number of stages to process(selected through --stlist),
The application forwards the event to next upstream queue and when it reaches
the last stage in the pipeline if the event type is atomic it is enqueued
onto ethdev Tx queue else to maintain ordering the event type is set to
atomic and enqueued onto the last stage queue.

If the ethdev and eventdev pair have RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT
capability then the worker cores enqueue the packets to the eventdev directly
using rte_event_eth_tx_adapter_enqueue else the worker cores enqueue the
packet onto the SINGLE_LINK_QUEUE that is managed by the Tx adapter.
The Tx adapter dequeues the packet and transmits it.

On packet Tx, application increments the number events processed and print
periodically in one second to get the number of events processed in one
second.

8.3.5.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--wlcores
--stlist
--worker_deq_depth
--prod_type_ethdev
--deq_tmo_nsec

Note

	The --prod_type_ethdev is mandatory for running this test.

8.3.5.2. Example

Example command to run pipeline queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x8 --vdev=event_sw0 -- \
 --test=pipeline_queue --wlcore=1 --prod_type_ethdev --stlist=a

8.3.6. PIPELINE_ATQ Test

This is a pipeline test case that aims at testing the following with
all types queue eventdev scheme.

	Measure the end-to-end performance of an event dev with a ethernet dev.

	Maintain packet ordering from Rx to Tx.

Table 8.6 Pipeline atq test eventdev configuration.

	#

	Items

	Value

	Comments

	1

	nb_queues

	nb_producers +
x

	Queues will be configured based on the
user requested sched type list(–stlist)
where x = nb_producers in generic
pipeline and 0 if all the ethdev
being used have Internal port capability

	2

	nb_producers

	>= 1

	Producers will be configured based on
the number of detected ethernet devices.
Each ethdev will be configured as an Rx
adapter.

	3

	nb_workers

	>= 1

	Selected through –wlcores command line
argument

	4

	nb_ports

	nb_workers +
nb_producers +
x

	Workers use port 0 to port n.
Producers use port n+1 to port n+m,
depending on the Rx adapter capability.
x = nb_producers in generic pipeline and
0 if all the ethdev being used have
Internal port capability.
Consumers may use port n+m+1 to port n+o
depending on the Tx adapter capability.

[image: ../_images/eventdev_pipeline_atq_test_generic.svg]

[image: ../_images/eventdev_pipeline_atq_test_internal_port.svg]
Fig. 8.7 pipeline atq test operation.

The pipeline atq test configures the eventdev with Q queues and P ports,
where Q and P is a function of the number of workers, the number of producers
and number of stages as mentioned in Table 8.6.

The atq queue test functions as same as pipeline_queue test. The difference
is, It uses, all type queue scheme instead of separate queues for each
stage and thus reduces the number of queues required to realize the use case.

8.3.6.1. Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--wlcores
--stlist
--worker_deq_depth
--prod_type_ethdev
--deq_tmo_nsec

Note

	The --prod_type_ethdev is mandatory for running this test.

8.3.6.2. Example

Example command to run pipeline queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x8 --vdev=event_sw0 -- \
 --test=pipeline_atq --wlcore=1 --prod_type_ethdev --stlist=a

Testpmd Application User Guide

	1. Introduction

	2. Compiling the Application

	3. Running the Application
	3.1. EAL Command-line Options

	3.2. Testpmd Command-line Options

	4. Testpmd Runtime Functions
	4.1. Help Functions

	4.2. Command File Functions

	4.3. Control Functions
	4.3.1. start

	4.3.2. start tx_first

	4.3.3. stop

	4.3.4. quit

	4.4. Display Functions
	4.4.1. show port

	4.4.2. show port rss reta

	4.4.3. show port rss-hash

	4.4.4. clear port

	4.4.5. show (rxq|txq)

	4.4.6. show desc status(rxq|txq)

	4.4.7. show config

	4.4.8. set fwd

	4.4.9. show fwd

	4.4.10. clear fwd

	4.4.11. read rxd

	4.4.12. read txd

	4.4.13. ddp get list

	4.4.14. ddp get info

	4.4.15. show vf stats

	4.4.16. clear vf stats

	4.4.17. show port pctype mapping

	4.4.18. show rx offloading capabilities

	4.4.19. show rx offloading configuration

	4.4.20. show tx offloading capabilities

	4.4.21. show tx offloading configuration

	4.4.22. show tx metadata setting

	4.4.23. show port supported ptypes

	4.4.24. set port supported ptypes

	4.4.25. show port mac addresses info

	4.4.26. show port multicast mac addresses info

	4.4.27. show device info

	4.4.28. dump physmem

	4.4.29. dump memzone

	4.4.30. dump socket memory

	4.4.31. dump struct size

	4.4.32. dump ring

	4.4.33. dump mempool

	4.4.34. dump devargs

	4.4.35. dump log types

	4.4.36. show (raw_encap|raw_decap)

	4.5. Configuration Functions
	4.5.1. set default

	4.5.2. set verbose

	4.5.3. set log

	4.5.4. set nbport

	4.5.5. set nbcore

	4.5.6. set coremask

	4.5.7. set portmask

	4.5.8. set burst

	4.5.9. set txpkts

	4.5.10. set txsplit

	4.5.11. set corelist

	4.5.12. set portlist

	4.5.13. set port setup on

	4.5.14. set tx loopback

	4.5.15. set drop enable

	4.5.16. set split drop enable (for VF)

	4.5.17. set mac antispoof (for VF)

	4.5.18. set macsec offload

	4.5.19. set macsec sc

	4.5.20. set macsec sa

	4.5.21. set broadcast mode (for VF)

	4.5.22. vlan set stripq

	4.5.23. vlan set stripq (for VF)

	4.5.24. vlan set insert (for VF)

	4.5.25. vlan set tag (for VF)

	4.5.26. vlan set antispoof (for VF)

	4.5.27. vlan set (strip|filter|qinq_strip|extend)

	4.5.28. vlan set tpid

	4.5.29. rx_vlan add

	4.5.30. rx_vlan rm

	4.5.31. rx_vlan add (for VF)

	4.5.32. rx_vlan rm (for VF)

	4.5.33. tunnel_filter add

	4.5.34. tunnel_filter remove

	4.5.35. rx_vxlan_port add

	4.5.36. rx_vxlan_port remove

	4.5.37. tx_vlan set

	4.5.38. tx_vlan set pvid

	4.5.39. tx_vlan reset

	4.5.40. csum set

	4.5.41. RSS queue region

	4.5.42. csum parse-tunnel

	4.5.43. csum show

	4.5.44. tso set

	4.5.45. tso show

	4.5.46. tunnel tso set

	4.5.47. tunnel tso show

	4.5.48. set port - gro

	4.5.49. show port - gro

	4.5.50. set gro flush

	4.5.51. set port - gso

	4.5.52. set gso segsz

	4.5.53. show port - gso

	4.5.54. mac_addr add

	4.5.55. mac_addr remove

	4.5.56. mcast_addr add

	4.5.57. mcast_addr remove

	4.5.58. mac_addr add (for VF)

	4.5.59. mac_addr set

	4.5.60. mac_addr set (for VF)

	4.5.61. set eth-peer

	4.5.62. set port-uta

	4.5.63. set promisc

	4.5.64. set allmulti

	4.5.65. set promisc (for VF)

	4.5.66. set allmulticast (for VF)

	4.5.67. set tx max bandwidth (for VF)

	4.5.68. set tc tx min bandwidth (for VF)

	4.5.69. set tc tx max bandwidth (for VF)

	4.5.70. set tc strict link priority mode

	4.5.71. set tc tx min bandwidth

	4.5.72. set flow_ctrl rx

	4.5.73. set pfc_ctrl rx

	4.5.74. set stat_qmap

	4.5.75. set xstats-hide-zero

	4.5.76. set port - rx/tx (for VF)

	4.5.77. set port - mac address filter (for VF)

	4.5.78. set port - rx mode(for VF)

	4.5.79. set port - tx_rate (for Queue)

	4.5.80. set port - tx_rate (for VF)

	4.5.81. set port - mirror rule

	4.5.82. reset port - mirror rule

	4.5.83. set flush_rx

	4.5.84. set bypass mode

	4.5.85. set bypass event

	4.5.86. set bypass timeout

	4.5.87. show bypass config

	4.5.88. set link up

	4.5.89. set link down

	4.5.90. E-tag set

	4.5.91. ddp add

	4.5.92. ddp del

	4.5.93. ptype mapping

	4.5.94. config per port Rx offloading

	4.5.95. config per queue Rx offloading

	4.5.96. config per port Tx offloading

	4.5.97. config per queue Tx offloading

	4.5.98. Config VXLAN Encap outer layers

	4.5.99. Config NVGRE Encap outer layers

	4.5.100. Config L2 Encap

	4.5.101. Config L2 Decap

	4.5.102. Config MPLSoGRE Encap outer layers

	4.5.103. Config MPLSoGRE Decap outer layers

	4.5.104. Config MPLSoUDP Encap outer layers

	4.5.105. Config MPLSoUDP Decap outer layers

	4.5.106. Config Raw Encapsulation

	4.5.107. Config Raw Decapsulation

	4.6. Port Functions
	4.6.1. port attach

	4.6.2. port detach

	4.6.3. port start

	4.6.4. port stop

	4.6.5. port close

	4.6.6. port reset

	4.6.7. port config - queue ring size

	4.6.8. port start/stop queue

	4.6.9. port config - queue deferred start

	4.6.10. port setup queue

	4.6.11. port config - speed

	4.6.12. port config - queues/descriptors

	4.6.13. port config - max-pkt-len

	4.6.14. port config - max-lro-pkt-size

	4.6.15. port config - Drop Packets

	4.6.16. port config - RSS

	4.6.17. port config - RSS Reta

	4.6.18. port config - DCB

	4.6.19. port config - Burst

	4.6.20. port config - Threshold

	4.6.21. port config - E-tag

	4.6.22. port config pctype mapping

	4.6.23. port config input set

	4.6.24. port config udp_tunnel_port

	4.6.25. port config tx_metadata

	4.6.26. port config dynf

	4.6.27. port config mtu

	4.6.28. port config rss hash key

	4.7. Device Functions
	4.7.1. device detach

	4.8. Link Bonding Functions
	4.8.1. create bonded device

	4.8.2. add bonding slave

	4.8.3. remove bonding slave

	4.8.4. set bonding mode

	4.8.5. set bonding primary

	4.8.6. set bonding mac

	4.8.7. set bonding xmit_balance_policy

	4.8.8. set bonding mon_period

	4.8.9. set bonding lacp dedicated_queue

	4.8.10. set bonding agg_mode

	4.8.11. show bonding config

	4.9. Register Functions
	4.9.1. read reg

	4.9.2. read regfield

	4.9.3. read regbit

	4.9.4. write reg

	4.9.5. write regfield

	4.9.6. write regbit

	4.10. Traffic Metering and Policing
	4.10.1. show port traffic management capability

	4.10.2. add port meter profile (srTCM rfc2967)

	4.10.3. add port meter profile (trTCM rfc2968)

	4.10.4. add port meter profile (trTCM rfc4115)

	4.10.5. delete port meter profile

	4.10.6. create port meter

	4.10.7. enable port meter

	4.10.8. disable port meter

	4.10.9. delete port meter

	4.10.10. Set port meter profile

	4.10.11. set port meter dscp table

	4.10.12. set port meter policer action

	4.10.13. set port meter stats mask

	4.10.14. show port meter stats

	4.11. Traffic Management
	4.11.1. show port traffic management capability

	4.11.2. show port traffic management capability (hierarchy level)

	4.11.3. show port traffic management capability (hierarchy node level)

	4.11.4. show port traffic management hierarchy node type

	4.11.5. show port traffic management hierarchy node stats

	4.11.6. Add port traffic management private shaper profile

	4.11.7. Delete port traffic management private shaper profile

	4.11.8. Add port traffic management shared shaper

	4.11.9. Set port traffic management shared shaper

	4.11.10. Delete port traffic management shared shaper

	4.11.11. Set port traffic management hierarchy node private shaper

	4.11.12. Add port traffic management WRED profile

	4.11.13. Delete port traffic management WRED profile

	4.11.14. Add port traffic management hierarchy nonleaf node

	4.11.15. Add port traffic management hierarchy leaf node

	4.11.16. Delete port traffic management hierarchy node

	4.11.17. Update port traffic management hierarchy parent node

	4.11.18. Suspend port traffic management hierarchy node

	4.11.19. Resume port traffic management hierarchy node

	4.11.20. Commit port traffic management hierarchy

	4.11.21. Set port traffic management mark VLAN dei

	4.11.22. Set port traffic management mark IP dscp

	4.11.23. Set port traffic management mark IP ecn

	4.11.24. Set port traffic management default hierarchy (softnic forwarding mode)

	4.12. Filter Functions
	4.12.1. ethertype_filter

	4.12.2. 2tuple_filter

	4.12.3. 5tuple_filter

	4.12.4. syn_filter

	4.12.5. flex_filter

	4.12.6. flow_director_filter

	4.12.7. flush_flow_director

	4.12.8. flow_director_mask

	4.12.9. flow_director_flex_mask

	4.12.10. flow_director_flex_payload

	4.12.11. get_sym_hash_ena_per_port

	4.12.12. set_sym_hash_ena_per_port

	4.12.13. get_hash_global_config

	4.12.14. set_hash_global_config

	4.12.15. set_hash_input_set

	4.12.16. set_fdir_input_set

	4.12.17. global_config

	4.13. Flow rules management
	4.13.1. flow syntax

	4.13.2. Validating flow rules

	4.13.3. Creating flow rules

	4.13.4. Destroying flow rules

	4.13.5. Querying flow rules

	4.13.6. Listing flow rules

	4.13.7. Toggling isolated mode

	4.13.8. Dumping HW internal information

	4.13.9. Listing and destroying aged flow rules

	4.13.10. Sample QinQ flow rules

	4.13.11. Sample VXLAN encapsulation rule

	4.13.12. Sample NVGRE encapsulation rule

	4.13.13. Sample L2 encapsulation rule

	4.13.14. Sample L2 decapsulation rule

	4.13.15. Sample MPLSoGRE encapsulation rule

	4.13.16. Sample MPLSoGRE decapsulation rule

	4.13.17. Sample MPLSoUDP encapsulation rule

	4.13.18. Sample MPLSoUDP decapsulation rule

	4.13.19. Sample Raw encapsulation rule

	4.13.20. Sample Raw decapsulation rule

	4.13.21. Sample ESP rules

	4.13.22. Sample AH rules

	4.13.23. Sample PFCP rules

	4.14. BPF Functions
	4.14.1. bpf-load

	4.14.2. bpf-unload

1. Introduction

This document is a user guide for the testpmd example application that is shipped as part of the Data Plane Development Kit.

The testpmd application can be used to test the DPDK in a packet forwarding mode
and also to access NIC hardware features such as Flow Director.
It also serves as a example of how to build a more fully-featured application using the DPDK SDK.

The guide shows how to build and run the testpmd application and
how to configure the application from the command line and the run-time environment.

2. Compiling the Application

The testpmd application is compiled as part of the main compilation of the DPDK libraries and tools.
Refer to the DPDK Getting Started Guides for details.
The basic compilation steps are:

	Set the required environmental variables and go to the source directory:

export RTE_SDK=/path/to/rte_sdk
cd $RTE_SDK

	Set the compilation target. For example:

export RTE_TARGET=x86_64-native-linux-gcc

	Build the application:

make install T=$RTE_TARGET

The compiled application will be located at:

$RTE_SDK/$RTE_TARGET/app/testpmd

3. Running the Application

3.1. EAL Command-line Options

Please refer to EAL parameters (Linux)
or EAL parameters (FreeBSD) for
a list of available EAL command-line options.

3.2. Testpmd Command-line Options

The following are the command-line options for the testpmd applications.
They must be separated from the EAL options, shown in the previous section, with a -- separator:

sudo ./testpmd -l 0-3 -n 4 -- -i --portmask=0x1 --nb-cores=2

The command line options are:

	-i, --interactive

Run testpmd in interactive mode.
In this mode, the testpmd starts with a prompt that can be used to start and stop forwarding,
configure the application and display stats on the current packet processing session.
See Testpmd Runtime Functions for more details.

In non-interactive mode,
the application starts with the configuration specified on the command-line and
immediately enters forwarding mode.

	-h, --help

Display a help message and quit.

	-a, --auto-start

Start forwarding on initialization.

	--tx-first

Start forwarding, after sending a burst of packets first.

Note

This flag should be only used in non-interactive mode.

	--stats-period PERIOD

Display statistics every PERIOD seconds, if interactive mode is disabled.
The default value is 0, which means that the statistics will not be displayed.

	--nb-cores=N

Set the number of forwarding cores,
where 1 <= N <= “number of cores” or CONFIG_RTE_MAX_LCORE from the configuration file.
The default value is 1.

	--nb-ports=N

Set the number of forwarding ports,
where 1 <= N <= “number of ports” on the board or CONFIG_RTE_MAX_ETHPORTS from the configuration file.
The default value is the number of ports on the board.

	--coremask=0xXX

Set the hexadecimal bitmask of the cores running the packet forwarding test.
The master lcore is reserved for command line parsing only and cannot be masked on for packet forwarding.

	--portmask=0xXX

Set the hexadecimal bitmask of the ports used by the packet forwarding test.

	--portlist=X

Set the forwarding ports based on the user input used by the packet forwarding test.
‘-’ denotes a range of ports to set including the two specified port IDs
‘,’ separates multiple port values.
Possible examples like –portlist=0,1 or –portlist=0-2 or –portlist=0,1-2 etc

	--numa

Enable NUMA-aware allocation of RX/TX rings and of RX memory buffers
(mbufs). [Default setting]

	--no-numa

Disable NUMA-aware allocation of RX/TX rings and of RX memory buffers (mbufs).

	--port-numa-config=(port,socket)[,(port,socket)]

Specify the socket on which the memory pool to be used by the port will be allocated.

	--ring-numa-config=(port,flag,socket)[,(port,flag,socket)]

Specify the socket on which the TX/RX rings for the port will be allocated.
Where flag is 1 for RX, 2 for TX, and 3 for RX and TX.

	--socket-num=N

Set the socket from which all memory is allocated in NUMA mode,
where 0 <= N < number of sockets on the board.

	--mbuf-size=N

Set the data size of the mbufs used to N bytes, where N < 65536. The default value is 2048.

	--total-num-mbufs=N

Set the number of mbufs to be allocated in the mbuf pools, where N > 1024.

	--max-pkt-len=N

Set the maximum packet size to N bytes, where N >= 64. The default value is 1518.

	--max-lro-pkt-size=N

Set the maximum LRO aggregated packet size to N bytes, where N >= 64.

	--eth-peers-configfile=name

Use a configuration file containing the Ethernet addresses of the peer ports.
The configuration file should contain the Ethernet addresses on separate lines:

XX:XX:XX:XX:XX:01
XX:XX:XX:XX:XX:02
...

	--eth-peer=N,XX:XX:XX:XX:XX:XX

Set the MAC address XX:XX:XX:XX:XX:XX of the peer port N,
where 0 <= N < CONFIG_RTE_MAX_ETHPORTS from the configuration file.

	--tx-ip=SRC,DST

Set the source and destination IP address used when doing transmit only test.
The defaults address values are source 198.18.0.1 and
destination 198.18.0.2. These are special purpose addresses
reserved for benchmarking (RFC 5735).

	--tx-udp=SRC[,DST]

Set the source and destination UDP port number for transmit test only test.
The default port is the port 9 which is defined for the discard protocol
(RFC 863).

	--pkt-filter-mode=mode

Set Flow Director mode where mode is either none (the default), signature or perfect.
See flow_director_filter for more details.

	--pkt-filter-report-hash=mode

Set Flow Director hash match reporting mode where mode is none, match (the default) or always.

	--pkt-filter-size=N

Set Flow Director allocated memory size, where N is 64K, 128K or 256K.
Sizes are in kilobytes. The default is 64.

	--pkt-filter-flexbytes-offset=N

Set the flexbytes offset.
The offset is defined in words (not bytes) counted from the first byte of the destination Ethernet MAC address,
where N is 0 <= N <= 32.
The default value is 0x6.

	--pkt-filter-drop-queue=N

Set the drop-queue.
In perfect filter mode, when a rule is added with queue = -1, the packet will be enqueued into the RX drop-queue.
If the drop-queue does not exist, the packet is dropped. The default value is N=127.

	--disable-crc-strip

Disable hardware CRC stripping.

	--enable-lro

Enable large receive offload.

	--enable-rx-cksum

Enable hardware RX checksum offload.

	--enable-scatter

Enable scatter (multi-segment) RX.

	--enable-hw-vlan

Enable hardware VLAN.

	--enable-hw-vlan-filter

Enable hardware VLAN filter.

	--enable-hw-vlan-strip

Enable hardware VLAN strip.

	--enable-hw-vlan-extend

Enable hardware VLAN extend.

	--enable-hw-qinq-strip

Enable hardware QINQ strip.

	--enable-drop-en

Enable per-queue packet drop for packets with no descriptors.

	--disable-rss

Disable RSS (Receive Side Scaling).

	--port-topology=mode

Set port topology, where mode is paired (the default), chained or loop.

In paired mode, the forwarding is between pairs of ports, for example: (0,1), (2,3), (4,5).

In chained mode, the forwarding is to the next available port in the port mask, for example: (0,1), (1,2), (2,0).

The ordering of the ports can be changed using the portlist testpmd runtime function.

In loop mode, ingress traffic is simply transmitted back on the same interface.

	--forward-mode=mode

Set the forwarding mode where mode is one of the following:

io (the default)
mac
macswap
flowgen
rxonly
txonly
csum
icmpecho
ieee1588
tm
noisy

	--rss-ip

Set RSS functions for IPv4/IPv6 only.

	--rss-udp

Set RSS functions for IPv4/IPv6 and UDP.

	--rxq=N

Set the number of RX queues per port to N, where 1 <= N <= 65535.
The default value is 1.

	--rxd=N

Set the number of descriptors in the RX rings to N, where N > 0.
The default value is 128.

	--txq=N

Set the number of TX queues per port to N, where 1 <= N <= 65535.
The default value is 1.

	--txd=N

Set the number of descriptors in the TX rings to N, where N > 0.
The default value is 512.

	--hairpinq=N

Set the number of hairpin queues per port to N, where 1 <= N <= 65535.
The default value is 0. The number of hairpin queues are added to the
number of TX queues and to the number of RX queues. then the first
RX hairpin is binded to the first TX hairpin, the second RX hairpin is
binded to the second TX hairpin and so on. The index of the first
RX hairpin queue is the number of RX queues as configured using –rxq.
The index of the first TX hairpin queue is the number of TX queues
as configured using –txq.

	--burst=N

Set the number of packets per burst to N, where 1 <= N <= 512.
The default value is 32.
If set to 0, driver default is used if defined. Else, if driver
default is not defined, default of 32 is used.

	--mbcache=N

Set the cache of mbuf memory pools to N, where 0 <= N <= 512.
The default value is 16.

	--rxpt=N

Set the prefetch threshold register of RX rings to N, where N >= 0.
The default value is 8.

	--rxht=N

Set the host threshold register of RX rings to N, where N >= 0.
The default value is 8.

	--rxfreet=N

Set the free threshold of RX descriptors to N, where 0 <= N < value of –rxd.
The default value is 0.

	--rxwt=N

Set the write-back threshold register of RX rings to N, where N >= 0.
The default value is 4.

	--txpt=N

Set the prefetch threshold register of TX rings to N, where N >= 0.
The default value is 36.

	--txht=N

Set the host threshold register of TX rings to N, where N >= 0.
The default value is 0.

	--txwt=N

Set the write-back threshold register of TX rings to N, where N >= 0.
The default value is 0.

	--txfreet=N

Set the transmit free threshold of TX rings to N, where 0 <= N <= value of --txd.
The default value is 0.

	--txrst=N

Set the transmit RS bit threshold of TX rings to N, where 0 <= N <= value of --txd.
The default value is 0.

	--rx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the RX queues statistics counters mapping 0 <= mapping <= 15.

	--tx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the TX queues statistics counters mapping 0 <= mapping <= 15.

	--no-flush-rx

Don’t flush the RX streams before starting forwarding. Used mainly with the PCAP PMD.

	--txpkts=X[,Y]

Set TX segment sizes or total packet length. Valid for tx-only
and flowgen forwarding modes.

	--txonly-multi-flow

Generate multiple flows in txonly mode.

	--disable-link-check

Disable check on link status when starting/stopping ports.

	--disable-device-start

Do not automatically start all ports. This allows testing
configuration of rx and tx queues before device is started
for the first time.

	--no-lsc-interrupt

Disable LSC interrupts for all ports, even those supporting it.

	--no-rmv-interrupt

Disable RMV interrupts for all ports, even those supporting it.

	--bitrate-stats=N

Set the logical core N to perform bitrate calculation.

	--print-event <unknown|intr_lsc|queue_state|intr_reset|vf_mbox|macsec|intr_rmv|dev_probed|dev_released|flow_aged|all>

Enable printing the occurrence of the designated event. Using all will
enable all of them.

	--mask-event <unknown|intr_lsc|queue_state|intr_reset|vf_mbox|macsec|intr_rmv|dev_probed|dev_released|flow_aged|all>

Disable printing the occurrence of the designated event. Using all will
disable all of them.

	--flow-isolate-all

Providing this parameter requests flow API isolated mode on all ports at
initialization time. It ensures all traffic is received through the
configured flow rules only (see flow command).

Ports that do not support this mode are automatically discarded.

	--tx-offloads=0xXXXXXXXX

Set the hexadecimal bitmask of TX queue offloads.
The default value is 0.

	--rx-offloads=0xXXXXXXXX

Set the hexadecimal bitmask of RX queue offloads.
The default value is 0.

	--hot-plug

Enable device event monitor mechanism for hotplug.

	--vxlan-gpe-port=N

Set the UDP port number of tunnel VXLAN-GPE to N.
The default value is 4790.

	--mlockall

Enable locking all memory.

	--no-mlockall

Disable locking all memory.

	--mp-alloc <native|anon|xmem|xmemhuge>

Select mempool allocation mode:

	native: create and populate mempool using native DPDK memory

	anon: create mempool using native DPDK memory, but populate using
anonymous memory

	xmem: create and populate mempool using externally and anonymously
allocated area

	xmemhuge: create and populate mempool using externally and anonymously
allocated hugepage area

	--noisy-tx-sw-buffer-size

Set the number of maximum elements of the FIFO queue to be created
for buffering packets. Only available with the noisy forwarding mode.
The default value is 0.

	--noisy-tx-sw-buffer-flushtime=N

Set the time before packets in the FIFO queue is flushed.
Only available with the noisy forwarding mode. The default value is 0.

	--noisy-lkup-memory=N

Set the size of the noisy neighbor simulation memory buffer in MB to N.
Only available with the noisy forwarding mode. The default value is 0.

	--noisy-lkup-num-reads=N

Set the number of reads to be done in noisy neighbor simulation memory buffer to N.
Only available with the noisy forwarding mode. The default value is 0.

	--noisy-lkup-num-writes=N

Set the number of writes to be done in noisy neighbor simulation memory buffer to N.
Only available with the noisy forwarding mode. The default value is 0.

	--noisy-lkup-num-reads-writes=N

Set the number of r/w accesses to be done in noisy neighbor simulation memory buffer to N.
Only available with the noisy forwarding mode. The default value is 0.

	--no-iova-contig

Enable to create mempool which is not IOVA contiguous. Valid only with –mp-alloc=anon.
The default value is 0.

	--rx-mq-mode

Set the hexadecimal bitmask of RX multi queue mode which can be enabled.
The default value is 0x7:

ETH_MQ_RX_RSS_FLAG | ETH_MQ_RX_DCB_FLAG | ETH_MQ_RX_VMDQ_FLAG

4. Testpmd Runtime Functions

Where the testpmd application is started in interactive mode, (-i|--interactive),
it displays a prompt that can be used to start and stop forwarding,
configure the application, display statistics (including the extended NIC
statistics aka xstats) , set the Flow Director and other tasks:

testpmd>

The testpmd prompt has some, limited, readline support.
Common bash command-line functions such as Ctrl+a and Ctrl+e to go to the start and end of the prompt line are supported
as well as access to the command history via the up-arrow.

There is also support for tab completion.
If you type a partial command and hit <TAB> you get a list of the available completions:

testpmd> show port <TAB>

 info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap X
 info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap all
 stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap X
 stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap all
 ...

Note

Some examples in this document are too long to fit on one line are shown wrapped at “\” for display purposes:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
 (pause_time) (send_xon) (port_id)

In the real testpmd> prompt these commands should be on a single line.

4.1. Help Functions

The testpmd has on-line help for the functions that are available at runtime.
These are divided into sections and can be accessed using help, help section or help all:

testpmd> help

 help control : Start and stop forwarding.
 help display : Displaying port, stats and config information.
 help config : Configuration information.
 help ports : Configuring ports.
 help registers : Reading and setting port registers.
 help filters : Filters configuration help.
 help all : All of the above sections.

4.2. Command File Functions

To facilitate loading large number of commands or to avoid cutting and pasting where not
practical or possible testpmd supports alternative methods for executing commands.

	If started with the --cmdline-file=FILENAME command line argument testpmd
will execute all CLI commands contained within the file immediately before
starting packet forwarding or entering interactive mode.

./testpmd -n4 -r2 ... -- -i --cmdline-file=/home/ubuntu/flow-create-commands.txt
Interactive-mode selected
CLI commands to be read from /home/ubuntu/flow-create-commands.txt
Configuring Port 0 (socket 0)
Port 0: 7C:FE:90:CB:74:CE
Configuring Port 1 (socket 0)
Port 1: 7C:FE:90:CB:74:CA
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>

	At run-time additional commands can be loaded in bulk by invoking the load FILENAME
command.

testpmd> load /home/ubuntu/flow-create-commands.txt
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>

In all cases output from any included command will be displayed as standard output.
Execution will continue until the end of the file is reached regardless of
whether any errors occur. The end user must examine the output to determine if
any failures occurred.

4.3. Control Functions

4.3.1. start

Start packet forwarding with current configuration:

testpmd> start

4.3.2. start tx_first

Start packet forwarding with current configuration after sending specified number of bursts of packets:

testpmd> start tx_first (""|burst_num)

The default burst number is 1 when burst_num not presented.

4.3.3. stop

Stop packet forwarding, and display accumulated statistics:

testpmd> stop

4.3.4. quit

Quit to prompt:

testpmd> quit

4.4. Display Functions

The functions in the following sections are used to display information about the
testpmd configuration or the NIC status.

4.4.1. show port

Display information for a given port or all ports:

testpmd> show port (info|summary|stats|xstats|fdir|stat_qmap|dcb_tc|cap) (port_id|all)

The available information categories are:

	info: General port information such as MAC address.

	summary: Brief port summary such as Device Name, Driver Name etc.

	stats: RX/TX statistics.

	xstats: RX/TX extended NIC statistics.

	fdir: Flow Director information and statistics.

	stat_qmap: Queue statistics mapping.

	dcb_tc: DCB information such as TC mapping.

	cap: Supported offload capabilities.

For example:

testpmd> show port info 0

********************* Infos for port 0 *********************

MAC address: XX:XX:XX:XX:XX:XX
Connect to socket: 0
memory allocation on the socket: 0
Link status: up
Link speed: 40000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 64
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
 strip on, filter on, extend off, qinq strip off
Redirection table size: 512
Supported flow types:
 ipv4-frag
 ipv4-tcp
 ipv4-udp
 ipv4-sctp
 ipv4-other
 ipv6-frag
 ipv6-tcp
 ipv6-udp
 ipv6-sctp
 ipv6-other
 l2_payload
 port
 vxlan
 geneve
 nvgre
 vxlan-gpe

4.4.2. show port rss reta

Display the rss redirection table entry indicated by masks on port X:

testpmd> show port (port_id) rss reta (size) (mask0, mask1...)

size is used to indicate the hardware supported reta size

4.4.3. show port rss-hash

Display the RSS hash functions and RSS hash key of a port:

testpmd> show port (port_id) rss-hash [key]

4.4.4. clear port

Clear the port statistics and forward engine statistics for a given port or for all ports:

testpmd> clear port (info|stats|xstats|fdir|stat_qmap) (port_id|all)

For example:

testpmd> clear port stats all

4.4.5. show (rxq|txq)

Display information for a given port’s RX/TX queue:

testpmd> show (rxq|txq) info (port_id) (queue_id)

4.4.6. show desc status(rxq|txq)

Display information for a given port’s RX/TX descriptor status:

testpmd> show port (port_id) (rxq|txq) (queue_id) desc (desc_id) status

4.4.7. show config

Displays the configuration of the application.
The configuration comes from the command-line, the runtime or the application defaults:

testpmd> show config (rxtx|cores|fwd|txpkts)

The available information categories are:

	rxtx: RX/TX configuration items.

	cores: List of forwarding cores.

	fwd: Packet forwarding configuration.

	txpkts: Packets to TX configuration.

For example:

testpmd> show config rxtx

io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=2 - nb forwarding ports=1
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

4.4.8. set fwd

Set the packet forwarding mode:

testpmd> set fwd (io|mac|macswap|flowgen| \
 rxonly|txonly|csum|icmpecho|noisy) (""|retry)

retry can be specified for forwarding engines except rx_only.

The available information categories are:

	io: Forwards packets “as-is” in I/O mode.
This is the fastest possible forwarding operation as it does not access packets data.
This is the default mode.

	mac: Changes the source and the destination Ethernet addresses of packets before forwarding them.
Default application behavior is to set source Ethernet address to that of the transmitting interface, and destination
address to a dummy value (set during init). The user may specify a target destination Ethernet address via the ‘eth-peer’ or
‘eth-peers-configfile’ command-line options. It is not currently possible to specify a specific source Ethernet address.

	macswap: MAC swap forwarding mode.
Swaps the source and the destination Ethernet addresses of packets before forwarding them.

	flowgen: Multi-flow generation mode.
Originates a number of flows (with varying destination IP addresses), and terminate receive traffic.

	rxonly: Receives packets but doesn’t transmit them.

	txonly: Generates and transmits packets without receiving any.

	csum: Changes the checksum field with hardware or software methods depending on the offload flags on the packet.

	icmpecho: Receives a burst of packets, lookup for ICMP echo requests and, if any, send back ICMP echo replies.

	ieee1588: Demonstrate L2 IEEE1588 V2 PTP timestamping for RX and TX. Requires CONFIG_RTE_LIBRTE_IEEE1588=y.

	softnic: Demonstrates the softnic forwarding operation. In this mode, packet forwarding is
similar to I/O mode except for the fact that packets are loopback to the softnic ports only. Therefore, portmask parameter should be set to softnic port only. The various software based custom NIC pipelines specified through the softnic firmware (DPDK packet framework script) can be tested in this mode. Furthermore, it allows to build 5-level hierarchical QoS scheduler as a default option that can be enabled through CLI once testpmd application is initialised. The user can modify the default scheduler hierarchy or can specify the new QoS Scheduler hierarchy through CLI. Requires CONFIG_RTE_LIBRTE_PMD_SOFTNIC=y.

	noisy: Noisy neighbor simulation.
Simulate more realistic behavior of a guest machine engaged in receiving
and sending packets performing Virtual Network Function (VNF).

Example:

testpmd> set fwd rxonly

Set rxonly packet forwarding mode

4.4.9. show fwd

When running, forwarding engines maintain statistics from the time they have been started.
Example for the io forwarding engine, with some packet drops on the tx side:

testpmd> show fwd stats all

 ------- Forward Stats for RX Port= 0/Queue= 0 -> TX Port= 1/Queue= 0 -------
 RX-packets: 274293770 TX-packets: 274293642 TX-dropped: 128

 ------- Forward Stats for RX Port= 1/Queue= 0 -> TX Port= 0/Queue= 0 -------
 RX-packets: 274301850 TX-packets: 274301850 TX-dropped: 0

 ---------------------- Forward statistics for port 0 ----------------------
 RX-packets: 274293802 RX-dropped: 0 RX-total: 274293802
 TX-packets: 274301862 TX-dropped: 0 TX-total: 274301862
 --

 ---------------------- Forward statistics for port 1 ----------------------
 RX-packets: 274301894 RX-dropped: 0 RX-total: 274301894
 TX-packets: 274293706 TX-dropped: 128 TX-total: 274293834
 --

 +++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
 RX-packets: 548595696 RX-dropped: 0 RX-total: 548595696
 TX-packets: 548595568 TX-dropped: 128 TX-total: 548595696
 ++

Note

Enabling CONFIG_RTE_TEST_PMD_RECORD_CORE_CYCLES appends “CPU cycles/packet” stats, like:

CPU cycles/packet=xx.dd (total cycles=xxxx / total RX packets=xxxx) at xxx MHz clock

4.4.10. clear fwd

Clear the forwarding engines statistics:

testpmd> clear fwd stats all

4.4.11. read rxd

Display an RX descriptor for a port RX queue:

testpmd> read rxd (port_id) (queue_id) (rxd_id)

For example:

testpmd> read rxd 0 0 4
 0x0000000B - 0x001D0180 / 0x0000000B - 0x001D0180

4.4.12. read txd

Display a TX descriptor for a port TX queue:

testpmd> read txd (port_id) (queue_id) (txd_id)

For example:

testpmd> read txd 0 0 4
 0x00000001 - 0x24C3C440 / 0x000F0000 - 0x2330003C

4.4.13. ddp get list

Get loaded dynamic device personalization (DDP) package info list:

testpmd> ddp get list (port_id)

4.4.14. ddp get info

Display information about dynamic device personalization (DDP) profile:

testpmd> ddp get info (profile_path)

4.4.15. show vf stats

Display VF statistics:

testpmd> show vf stats (port_id) (vf_id)

4.4.16. clear vf stats

Reset VF statistics:

testpmd> clear vf stats (port_id) (vf_id)

4.4.17. show port pctype mapping

List all items from the pctype mapping table:

testpmd> show port (port_id) pctype mapping

4.4.18. show rx offloading capabilities

List all per queue and per port Rx offloading capabilities of a port:

testpmd> show port (port_id) rx_offload capabilities

4.4.19. show rx offloading configuration

List port level and all queue level Rx offloading configuration:

testpmd> show port (port_id) rx_offload configuration

4.4.20. show tx offloading capabilities

List all per queue and per port Tx offloading capabilities of a port:

testpmd> show port (port_id) tx_offload capabilities

4.4.21. show tx offloading configuration

List port level and all queue level Tx offloading configuration:

testpmd> show port (port_id) tx_offload configuration

4.4.22. show tx metadata setting

Show Tx metadata value set for a specific port:

testpmd> show port (port_id) tx_metadata

4.4.23. show port supported ptypes

Show ptypes supported for a specific port:

testpmd> show port (port_id) ptypes

4.4.24. set port supported ptypes

set packet types classification for a specific port:

testpmd> set port (port_id) ptypes_mask (mask)

4.4.25. show port mac addresses info

Show mac addresses added for a specific port:

testpmd> show port (port_id) macs

4.4.26. show port multicast mac addresses info

Show multicast mac addresses added for a specific port:

testpmd> show port (port_id) mcast_macs

4.4.27. show device info

Show general information about devices probed:

testpmd> show device info (<identifier>|all)

For example:

testpmd> show device info net_pcap0

********************* Infos for device net_pcap0 *********************
Bus name: vdev
Driver name: net_pcap
Devargs: iface=enP2p6s0,phy_mac=1
Connect to socket: -1

 Port id: 2
 MAC address: 1E:37:93:28:04:B8
 Device name: net_pcap0

4.4.28. dump physmem

Dumps all physical memory segment layouts:

testpmd> dump_physmem

4.4.29. dump memzone

Dumps the layout of all memory zones:

testpmd> dump_memzone

4.4.30. dump socket memory

Dumps the memory usage of all sockets:

testpmd> dump_socket_mem

4.4.31. dump struct size

Dumps the size of all memory structures:

testpmd> dump_struct_sizes

4.4.32. dump ring

Dumps the status of all or specific element in DPDK rings:

testpmd> dump_ring [ring_name]

4.4.33. dump mempool

Dumps the statistics of all or specific memory pool:

testpmd> dump_mempool [mempool_name]

4.4.34. dump devargs

Dumps the user device list:

testpmd> dump_devargs

4.4.35. dump log types

Dumps the log level for all the dpdk modules:

testpmd> dump_log_types

4.4.36. show (raw_encap|raw_decap)

Display content of raw_encap/raw_decap buffers in hex:

testpmd> show <raw_encap|raw_decap> <index>
testpmd> show <raw_encap|raw_decap> all

For example:

testpmd> show raw_encap 6

index: 6 at [0x1c565b0], len=50
00000000: 00 00 00 00 00 00 16 26 36 46 56 66 08 00 45 00 |&6FVf..E.
00000010: 00 00 00 00 00 00 00 11 00 00 C0 A8 01 06 C0 A8 |
00000020: 03 06 00 00 00 FA 00 00 00 00 08 00 00 00 00 00 |
00000030: 06 00 | ..

4.5. Configuration Functions

The testpmd application can be configured from the runtime as well as from the command-line.

This section details the available configuration functions that are available.

Note

Configuration changes only become active when forwarding is started/restarted.

4.5.1. set default

Reset forwarding to the default configuration:

testpmd> set default

4.5.2. set verbose

Set the debug verbosity level:

testpmd> set verbose (level)

Available levels are as following:

	0 silent except for error.

	1 fully verbose except for Tx packets.

	2 fully verbose except for Rx packets.

	> 2 fully verbose.

4.5.3. set log

Set the log level for a log type:

testpmd> set log global|(type) (level)

Where:

	type is the log name.

	level is the log level.

For example, to change the global log level:

testpmd> set log global (level)

Regexes can also be used for type. To change log level of user1, user2 and user3:

testpmd> set log user[1-3] (level)

4.5.4. set nbport

Set the number of ports used by the application:

set nbport (num)

This is equivalent to the --nb-ports command-line option.

4.5.5. set nbcore

Set the number of cores used by the application:

testpmd> set nbcore (num)

This is equivalent to the --nb-cores command-line option.

Note

The number of cores used must not be greater than number of ports used multiplied by the number of queues per port.

4.5.6. set coremask

Set the forwarding cores hexadecimal mask:

testpmd> set coremask (mask)

This is equivalent to the --coremask command-line option.

Note

The master lcore is reserved for command line parsing only and cannot be masked on for packet forwarding.

4.5.7. set portmask

Set the forwarding ports hexadecimal mask:

testpmd> set portmask (mask)

This is equivalent to the --portmask command-line option.

4.5.8. set burst

Set number of packets per burst:

testpmd> set burst (num)

This is equivalent to the --burst command-line option.

When retry is enabled, the transmit delay time and number of retries can also be set:

testpmd> set burst tx delay (microseconds) retry (num)

4.5.9. set txpkts

Set the length of each segment of the TX-ONLY packets or length of packet for FLOWGEN mode:

testpmd> set txpkts (x[,y]*)

Where x[,y]* represents a CSV list of values, without white space.

4.5.10. set txsplit

Set the split policy for the TX packets, applicable for TX-ONLY and CSUM forwarding modes:

testpmd> set txsplit (off|on|rand)

Where:

	off disable packet copy & split for CSUM mode.

	on split outgoing packet into multiple segments. Size of each segment
and number of segments per packet is determined by set txpkts command
(see above).

	rand same as ‘on’, but number of segments per each packet is a random value between 1 and total number of segments.

4.5.11. set corelist

Set the list of forwarding cores:

testpmd> set corelist (x[,y]*)

For example, to change the forwarding cores:

testpmd> set corelist 3,1
testpmd> show config fwd

io packet forwarding - ports=2 - cores=2 - streams=2 - NUMA support disabled
Logical Core 3 (socket 0) forwards packets on 1 streams:
RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

Note

The cores are used in the same order as specified on the command line.

4.5.12. set portlist

Set the list of forwarding ports:

testpmd> set portlist (x[,y]*)

For example, to change the port forwarding:

testpmd> set portlist 0,2,1,3
testpmd> show config fwd

io packet forwarding - ports=4 - cores=1 - streams=4
Logical Core 3 (socket 0) forwards packets on 4 streams:
RX P=0/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:01
RX P=2/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
RX P=1/Q=0 (socket 0) -> TX P=3/Q=0 (socket 0) peer=02:00:00:00:00:03
RX P=3/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:02

4.5.13. set port setup on

Select how to retrieve new ports created after “port attach” command:

testpmd> set port setup on (iterator|event)

For each new port, a setup is done.
It will find the probed ports via RTE_ETH_FOREACH_MATCHING_DEV loop
in iterator mode, or via RTE_ETH_EVENT_NEW in event mode.

4.5.14. set tx loopback

Enable/disable tx loopback:

testpmd> set tx loopback (port_id) (on|off)

4.5.15. set drop enable

set drop enable bit for all queues:

testpmd> set all queues drop (port_id) (on|off)

4.5.16. set split drop enable (for VF)

set split drop enable bit for VF from PF:

testpmd> set vf split drop (port_id) (vf_id) (on|off)

4.5.17. set mac antispoof (for VF)

Set mac antispoof for a VF from the PF:

testpmd> set vf mac antispoof (port_id) (vf_id) (on|off)

4.5.18. set macsec offload

Enable/disable MACsec offload:

testpmd> set macsec offload (port_id) on encrypt (on|off) replay-protect (on|off)
testpmd> set macsec offload (port_id) off

4.5.19. set macsec sc

Configure MACsec secure connection (SC):

testpmd> set macsec sc (tx|rx) (port_id) (mac) (pi)

Note

The pi argument is ignored for tx.
Check the NIC Datasheet for hardware limits.

4.5.20. set macsec sa

Configure MACsec secure association (SA):

testpmd> set macsec sa (tx|rx) (port_id) (idx) (an) (pn) (key)

Note

The IDX value must be 0 or 1.
Check the NIC Datasheet for hardware limits.

4.5.21. set broadcast mode (for VF)

Set broadcast mode for a VF from the PF:

testpmd> set vf broadcast (port_id) (vf_id) (on|off)

4.5.22. vlan set stripq

Set the VLAN strip for a queue on a port:

testpmd> vlan set stripq (on|off) (port_id,queue_id)

4.5.23. vlan set stripq (for VF)

Set VLAN strip for all queues in a pool for a VF from the PF:

testpmd> set vf vlan stripq (port_id) (vf_id) (on|off)

4.5.24. vlan set insert (for VF)

Set VLAN insert for a VF from the PF:

testpmd> set vf vlan insert (port_id) (vf_id) (vlan_id)

4.5.25. vlan set tag (for VF)

Set VLAN tag for a VF from the PF:

testpmd> set vf vlan tag (port_id) (vf_id) (on|off)

4.5.26. vlan set antispoof (for VF)

Set VLAN antispoof for a VF from the PF:

testpmd> set vf vlan antispoof (port_id) (vf_id) (on|off)

4.5.27. vlan set (strip|filter|qinq_strip|extend)

Set the VLAN strip/filter/QinQ strip/extend on for a port:

testpmd> vlan set (strip|filter|qinq_strip|extend) (on|off) (port_id)

4.5.28. vlan set tpid

Set the inner or outer VLAN TPID for packet filtering on a port:

testpmd> vlan set (inner|outer) tpid (value) (port_id)

Note

TPID value must be a 16-bit number (value <= 65536).

4.5.29. rx_vlan add

Add a VLAN ID, or all identifiers, to the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan add (vlan_id|all) (port_id)

Note

VLAN filter must be set on that port. VLAN ID < 4096.
Depending on the NIC used, number of vlan_ids may be limited to the maximum entries
in VFTA table. This is important if enabling all vlan_ids.

4.5.30. rx_vlan rm

Remove a VLAN ID, or all identifiers, from the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan rm (vlan_id|all) (port_id)

4.5.31. rx_vlan add (for VF)

Add a VLAN ID, to the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan add (vlan_id) port (port_id) vf (vf_mask)

4.5.32. rx_vlan rm (for VF)

Remove a VLAN ID, from the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan rm (vlan_id) port (port_id) vf (vf_mask)

4.5.33. tunnel_filter add

Add a tunnel filter on a port:

testpmd> tunnel_filter add (port_id) (outer_mac) (inner_mac) (ip_addr) \
 (inner_vlan) (vxlan|nvgre|ipingre|vxlan-gpe) (imac-ivlan|imac-ivlan-tenid|\
 imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

The available information categories are:

	vxlan: Set tunnel type as VXLAN.

	nvgre: Set tunnel type as NVGRE.

	ipingre: Set tunnel type as IP-in-GRE.

	vxlan-gpe: Set tunnel type as VXLAN-GPE

	imac-ivlan: Set filter type as Inner MAC and VLAN.

	imac-ivlan-tenid: Set filter type as Inner MAC, VLAN and tenant ID.

	imac-tenid: Set filter type as Inner MAC and tenant ID.

	imac: Set filter type as Inner MAC.

	omac-imac-tenid: Set filter type as Outer MAC, Inner MAC and tenant ID.

	oip: Set filter type as Outer IP.

	iip: Set filter type as Inner IP.

Example:

testpmd> tunnel_filter add 0 68:05:CA:28:09:82 00:00:00:00:00:00 \
 192.168.2.2 0 ipingre oip 1 1

Set an IP-in-GRE tunnel on port 0, and the filter type is Outer IP.

4.5.34. tunnel_filter remove

Remove a tunnel filter on a port:

testpmd> tunnel_filter rm (port_id) (outer_mac) (inner_mac) (ip_addr) \
 (inner_vlan) (vxlan|nvgre|ipingre|vxlan-gpe) (imac-ivlan|imac-ivlan-tenid|\
 imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

4.5.35. rx_vxlan_port add

Add an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port add (udp_port) (port_id)

4.5.36. rx_vxlan_port remove

Remove an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port rm (udp_port) (port_id)

4.5.37. tx_vlan set

Set hardware insertion of VLAN IDs in packets sent on a port:

testpmd> tx_vlan set (port_id) vlan_id[, vlan_id_outer]

For example, set a single VLAN ID (5) insertion on port 0:

tx_vlan set 0 5

Or, set double VLAN ID (inner: 2, outer: 3) insertion on port 1:

tx_vlan set 1 2 3

4.5.38. tx_vlan set pvid

Set port based hardware insertion of VLAN ID in packets sent on a port:

testpmd> tx_vlan set pvid (port_id) (vlan_id) (on|off)

4.5.39. tx_vlan reset

Disable hardware insertion of a VLAN header in packets sent on a port:

testpmd> tx_vlan reset (port_id)

4.5.40. csum set

Select hardware or software calculation of the checksum when
transmitting a packet using the csum forwarding engine:

testpmd> csum set (ip|udp|tcp|sctp|outer-ip|outer-udp) (hw|sw) (port_id)

Where:

	ip|udp|tcp|sctp always relate to the inner layer.

	outer-ip relates to the outer IP layer (only for IPv4) in the case where the packet is recognized
as a tunnel packet by the forwarding engine (vxlan, gre and ipip are
supported). See also the csum parse-tunnel command.

	outer-udp relates to the outer UDP layer in the case where the packet is recognized
as a tunnel packet by the forwarding engine (vxlan, vxlan-gpe are
supported). See also the csum parse-tunnel command.

Note

Check the NIC Datasheet for hardware limits.

4.5.41. RSS queue region

Set RSS queue region span on a port:

testpmd> set port (port_id) queue-region region_id (value) \
 queue_start_index (value) queue_num (value)

Set flowtype mapping on a RSS queue region on a port:

testpmd> set port (port_id) queue-region region_id (value) flowtype (value)

where:

	For the flowtype(pctype) of packet,the specific index for each type has
been defined in file i40e_type.h as enum i40e_filter_pctype.

Set user priority mapping on a RSS queue region on a port:

testpmd> set port (port_id) queue-region UP (value) region_id (value)

Flush all queue region related configuration on a port:

testpmd> set port (port_id) queue-region flush (on|off)

where:

	on: is just an enable function which server for other configuration,
it is for all configuration about queue region from up layer,
at first will only keep in DPDK software stored in driver,
only after “flush on”, it commit all configuration to HW.

	"off: is just clean all configuration about queue region just now,
and restore all to DPDK i40e driver default config when start up.

Show all queue region related configuration info on a port:

testpmd> show port (port_id) queue-region

Note

Queue region only support on PF by now, so these command is
only for configuration of queue region on PF port.

4.5.42. csum parse-tunnel

Define how tunneled packets should be handled by the csum forward
engine:

testpmd> csum parse-tunnel (on|off) (tx_port_id)

If enabled, the csum forward engine will try to recognize supported
tunnel headers (vxlan, gre, ipip).

If disabled, treat tunnel packets as non-tunneled packets (a inner
header is handled as a packet payload).

Note

The port argument is the TX port like in the csum set command.

Example:

Consider a packet in packet like the following:

eth_out/ipv4_out/udp_out/vxlan/eth_in/ipv4_in/tcp_in

	If parse-tunnel is enabled, the ip|udp|tcp|sctp parameters of csum set
command relate to the inner headers (here ipv4_in and tcp_in), and the
outer-ip|outer-udp parameter relates to the outer headers (here ipv4_out and udp_out).

	
	If parse-tunnel is disabled, the ip|udp|tcp|sctp parameters of csum set
	command relate to the outer headers, here ipv4_out and udp_out.

4.5.43. csum show

Display tx checksum offload configuration:

testpmd> csum show (port_id)

4.5.44. tso set

Enable TCP Segmentation Offload (TSO) in the csum forwarding engine:

testpmd> tso set (segsize) (port_id)

Note

Check the NIC datasheet for hardware limits.

4.5.45. tso show

Display the status of TCP Segmentation Offload:

testpmd> tso show (port_id)

4.5.46. tunnel tso set

Set tso segment size of tunneled packets for a port in csum engine:

testpmd> tunnel_tso set (tso_segsz) (port_id)

4.5.47. tunnel tso show

Display the status of tunneled TCP Segmentation Offload for a port:

testpmd> tunnel_tso show (port_id)

4.5.48. set port - gro

Enable or disable GRO in csum forwarding engine:

testpmd> set port <port_id> gro on|off

If enabled, the csum forwarding engine will perform GRO on the TCP/IPv4
packets received from the given port.

If disabled, packets received from the given port won’t be performed
GRO. By default, GRO is disabled for all ports.

Note

When enable GRO for a port, TCP/IPv4 packets received from the port
will be performed GRO. After GRO, all merged packets have bad
checksums, since the GRO library doesn’t re-calculate checksums for
the merged packets. Therefore, if users want the merged packets to
have correct checksums, please select HW IP checksum calculation and
HW TCP checksum calculation for the port which the merged packets are
transmitted to.

4.5.49. show port - gro

Display GRO configuration for a given port:

testpmd> show port <port_id> gro

4.5.50. set gro flush

Set the cycle to flush the GROed packets from reassembly tables:

testpmd> set gro flush <cycles>

When enable GRO, the csum forwarding engine performs GRO on received
packets, and the GROed packets are stored in reassembly tables. Users
can use this command to determine when the GROed packets are flushed
from the reassembly tables.

The cycles is measured in GRO operation times. The csum forwarding
engine flushes the GROed packets from the tables every cycles GRO
operations.

By default, the value of cycles is 1, which means flush GROed packets
from the reassembly tables as soon as one GRO operation finishes. The value
of cycles should be in the range of 1 to GRO_MAX_FLUSH_CYCLES.

Please note that the large value of cycles may cause the poor TCP/IP
stack performance. Because the GROed packets are delayed to arrive the
stack, thus causing more duplicated ACKs and TCP retransmissions.

4.5.51. set port - gso

Toggle per-port GSO support in csum forwarding engine:

testpmd> set port <port_id> gso on|off

If enabled, the csum forwarding engine will perform GSO on supported IPv4
packets, transmitted on the given port.

If disabled, packets transmitted on the given port will not undergo GSO.
By default, GSO is disabled for all ports.

Note

When GSO is enabled on a port, supported IPv4 packets transmitted on that
port undergo GSO. Afterwards, the segmented packets are represented by
multi-segment mbufs; however, the csum forwarding engine doesn’t calculation
of checksums for GSO’d segments in SW. As a result, if users want correct
checksums in GSO segments, they should enable HW checksum calculation for
GSO-enabled ports.

For example, HW checksum calculation for VxLAN GSO’d packets may be enabled
by setting the following options in the csum forwarding engine:

testpmd> csum set outer_ip hw <port_id>

testpmd> csum set ip hw <port_id>

testpmd> csum set tcp hw <port_id>

UDP GSO is the same as IP fragmentation, which treats the UDP header
as the payload and does not modify it during segmentation. That is,
after UDP GSO, only the first output fragment has the original UDP
header. Therefore, users need to enable HW IP checksum calculation
and SW UDP checksum calculation for GSO-enabled ports, if they want
correct checksums for UDP/IPv4 packets.

4.5.52. set gso segsz

Set the maximum GSO segment size (measured in bytes), which includes the
packet header and the packet payload for GSO-enabled ports (global):

testpmd> set gso segsz <length>

4.5.53. show port - gso

Display the status of Generic Segmentation Offload for a given port:

testpmd> show port <port_id> gso

4.5.54. mac_addr add

Add an alternative MAC address to a port:

testpmd> mac_addr add (port_id) (XX:XX:XX:XX:XX:XX)

4.5.55. mac_addr remove

Remove a MAC address from a port:

testpmd> mac_addr remove (port_id) (XX:XX:XX:XX:XX:XX)

4.5.56. mcast_addr add

To add the multicast MAC address to/from the set of multicast addresses
filtered by port:

testpmd> mcast_addr add (port_id) (mcast_addr)

4.5.57. mcast_addr remove

To remove the multicast MAC address to/from the set of multicast addresses
filtered by port:

testpmd> mcast_addr remove (port_id) (mcast_addr)

4.5.58. mac_addr add (for VF)

Add an alternative MAC address for a VF to a port:

testpmd> mac_add add port (port_id) vf (vf_id) (XX:XX:XX:XX:XX:XX)

4.5.59. mac_addr set

Set the default MAC address for a port:

testpmd> mac_addr set (port_id) (XX:XX:XX:XX:XX:XX)

4.5.60. mac_addr set (for VF)

Set the MAC address for a VF from the PF:

testpmd> set vf mac addr (port_id) (vf_id) (XX:XX:XX:XX:XX:XX)

4.5.61. set eth-peer

Set the forwarding peer address for certain port:

testpmd> set eth-peer (port_id) (peer_addr)

This is equivalent to the --eth-peer command-line option.

4.5.62. set port-uta

Set the unicast hash filter(s) on/off for a port:

testpmd> set port (port_id) uta (XX:XX:XX:XX:XX:XX|all) (on|off)

4.5.63. set promisc

Set the promiscuous mode on for a port or for all ports.
In promiscuous mode packets are not dropped if they aren’t for the specified MAC address:

testpmd> set promisc (port_id|all) (on|off)

4.5.64. set allmulti

Set the allmulti mode for a port or for all ports:

testpmd> set allmulti (port_id|all) (on|off)

Same as the ifconfig (8) option. Controls how multicast packets are handled.

4.5.65. set promisc (for VF)

Set the unicast promiscuous mode for a VF from PF.
It’s supported by Intel i40e NICs now.
In promiscuous mode packets are not dropped if they aren’t for the specified MAC address:

testpmd> set vf promisc (port_id) (vf_id) (on|off)

4.5.66. set allmulticast (for VF)

Set the multicast promiscuous mode for a VF from PF.
It’s supported by Intel i40e NICs now.
In promiscuous mode packets are not dropped if they aren’t for the specified MAC address:

testpmd> set vf allmulti (port_id) (vf_id) (on|off)

4.5.67. set tx max bandwidth (for VF)

Set TX max absolute bandwidth (Mbps) for a VF from PF:

testpmd> set vf tx max-bandwidth (port_id) (vf_id) (max_bandwidth)

4.5.68. set tc tx min bandwidth (for VF)

Set all TCs’ TX min relative bandwidth (%) for a VF from PF:

testpmd> set vf tc tx min-bandwidth (port_id) (vf_id) (bw1, bw2, ...)

4.5.69. set tc tx max bandwidth (for VF)

Set a TC’s TX max absolute bandwidth (Mbps) for a VF from PF:

testpmd> set vf tc tx max-bandwidth (port_id) (vf_id) (tc_no) (max_bandwidth)

4.5.70. set tc strict link priority mode

Set some TCs’ strict link priority mode on a physical port:

testpmd> set tx strict-link-priority (port_id) (tc_bitmap)

4.5.71. set tc tx min bandwidth

Set all TCs’ TX min relative bandwidth (%) globally for all PF and VFs:

testpmd> set tc tx min-bandwidth (port_id) (bw1, bw2, ...)

4.5.72. set flow_ctrl rx

Set the link flow control parameter on a port:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
 (pause_time) (send_xon) mac_ctrl_frame_fwd (on|off) \
 autoneg (on|off) (port_id)

Where:

	high_water (integer): High threshold value to trigger XOFF.

	low_water (integer): Low threshold value to trigger XON.

	pause_time (integer): Pause quota in the Pause frame.

	send_xon (0/1): Send XON frame.

	mac_ctrl_frame_fwd: Enable receiving MAC control frames.

	autoneg: Change the auto-negotiation parameter.

4.5.73. set pfc_ctrl rx

Set the priority flow control parameter on a port:

testpmd> set pfc_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
 (pause_time) (priority) (port_id)

Where:

	high_water (integer): High threshold value.

	low_water (integer): Low threshold value.

	pause_time (integer): Pause quota in the Pause frame.

	priority (0-7): VLAN User Priority.

4.5.74. set stat_qmap

Set statistics mapping (qmapping 0..15) for RX/TX queue on port:

testpmd> set stat_qmap (tx|rx) (port_id) (queue_id) (qmapping)

For example, to set rx queue 2 on port 0 to mapping 5:

testpmd>set stat_qmap rx 0 2 5

4.5.75. set xstats-hide-zero

Set the option to hide zero values for xstats display:

testpmd> set xstats-hide-zero on|off

Note

By default, the zero values are displayed for xstats.

4.5.76. set port - rx/tx (for VF)

Set VF receive/transmit from a port:

testpmd> set port (port_id) vf (vf_id) (rx|tx) (on|off)

4.5.77. set port - mac address filter (for VF)

Add/Remove unicast or multicast MAC addr filter for a VF:

testpmd> set port (port_id) vf (vf_id) (mac_addr) \
 (exact-mac|exact-mac-vlan|hashmac|hashmac-vlan) (on|off)

4.5.78. set port - rx mode(for VF)

Set the VF receive mode of a port:

testpmd> set port (port_id) vf (vf_id) \
 rxmode (AUPE|ROPE|BAM|MPE) (on|off)

The available receive modes are:

	AUPE: Accepts untagged VLAN.

	ROPE: Accepts unicast hash.

	BAM: Accepts broadcast packets.

	MPE: Accepts all multicast packets.

4.5.79. set port - tx_rate (for Queue)

Set TX rate limitation for a queue on a port:

testpmd> set port (port_id) queue (queue_id) rate (rate_value)

4.5.80. set port - tx_rate (for VF)

Set TX rate limitation for queues in VF on a port:

testpmd> set port (port_id) vf (vf_id) rate (rate_value) queue_mask (queue_mask)

4.5.81. set port - mirror rule

Set pool or vlan type mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
 (pool-mirror-up|pool-mirror-down|vlan-mirror) \
 (poolmask|vlanid[,vlanid]*) dst-pool (pool_id) (on|off)

Set link mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
 (uplink-mirror|downlink-mirror) dst-pool (pool_id) (on|off)

For example to enable mirror traffic with vlan 0,1 to pool 0:

set port 0 mirror-rule 0 vlan-mirror 0,1 dst-pool 0 on

4.5.82. reset port - mirror rule

Reset a mirror rule for a port:

testpmd> reset port (port_id) mirror-rule (rule_id)

4.5.83. set flush_rx

Set the flush on RX streams before forwarding.
The default is flush on.
Mainly used with PCAP drivers to turn off the default behavior of flushing the first 512 packets on RX streams:

testpmd> set flush_rx off

4.5.84. set bypass mode

Set the bypass mode for the lowest port on bypass enabled NIC:

testpmd> set bypass mode (normal|bypass|isolate) (port_id)

4.5.85. set bypass event

Set the event required to initiate specified bypass mode for the lowest port on a bypass enabled:

testpmd> set bypass event (timeout|os_on|os_off|power_on|power_off) \
 mode (normal|bypass|isolate) (port_id)

Where:

	timeout: Enable bypass after watchdog timeout.

	os_on: Enable bypass when OS/board is powered on.

	os_off: Enable bypass when OS/board is powered off.

	power_on: Enable bypass when power supply is turned on.

	power_off: Enable bypass when power supply is turned off.

4.5.86. set bypass timeout

Set the bypass watchdog timeout to n seconds where 0 = instant:

testpmd> set bypass timeout (0|1.5|2|3|4|8|16|32)

4.5.87. show bypass config

Show the bypass configuration for a bypass enabled NIC using the lowest port on the NIC:

testpmd> show bypass config (port_id)

4.5.88. set link up

Set link up for a port:

testpmd> set link-up port (port id)

4.5.89. set link down

Set link down for a port:

testpmd> set link-down port (port id)

4.5.90. E-tag set

Enable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion on port-tag-id (value) port (port_id) vf (vf_id)

Disable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion off port (port_id) vf (vf_id)

Enable/disable E-tag stripping on a port:

testpmd> E-tag set stripping (on|off) port (port_id)

Enable/disable E-tag based forwarding on a port:

testpmd> E-tag set forwarding (on|off) port (port_id)

Add an E-tag forwarding filter on a port:

testpmd> E-tag set filter add e-tag-id (value) dst-pool (pool_id) port (port_id)

	Delete an E-tag forwarding filter on a port::
	testpmd> E-tag set filter del e-tag-id (value) port (port_id)

4.5.91. ddp add

Load a dynamic device personalization (DDP) profile and store backup profile:

testpmd> ddp add (port_id) (profile_path[,backup_profile_path])

4.5.92. ddp del

Delete a dynamic device personalization profile and restore backup profile:

testpmd> ddp del (port_id) (backup_profile_path)

4.5.93. ptype mapping

List all items from the ptype mapping table:

testpmd> ptype mapping get (port_id) (valid_only)

Where:

	valid_only: A flag indicates if only list valid items(=1) or all itemss(=0).

Replace a specific or a group of software defined ptype with a new one:

testpmd> ptype mapping replace (port_id) (target) (mask) (pkt_type)

where:

	target: A specific software ptype or a mask to represent a group of software ptypes.

	mask: A flag indicate if “target” is a specific software ptype(=0) or a ptype mask(=1).

	pkt_type: The new software ptype to replace the old ones.

Update hardware defined ptype to software defined packet type mapping table:

testpmd> ptype mapping update (port_id) (hw_ptype) (sw_ptype)

where:

	hw_ptype: hardware ptype as the index of the ptype mapping table.

	sw_ptype: software ptype as the value of the ptype mapping table.

Reset ptype mapping table:

testpmd> ptype mapping reset (port_id)

4.5.94. config per port Rx offloading

Enable or disable a per port Rx offloading on all Rx queues of a port:

testpmd> port config (port_id) rx_offload (offloading) on|off

	
	offloading: can be any of these offloading capability:
	vlan_strip, ipv4_cksum, udp_cksum, tcp_cksum, tcp_lro,
qinq_strip, outer_ipv4_cksum, macsec_strip,
header_split, vlan_filter, vlan_extend, jumbo_frame,
scatter, timestamp, security, keep_crc, rss_hash

This command should be run when the port is stopped, or else it will fail.

4.5.95. config per queue Rx offloading

Enable or disable a per queue Rx offloading only on a specific Rx queue:

testpmd> port (port_id) rxq (queue_id) rx_offload (offloading) on|off

	
	offloading: can be any of these offloading capability:
	vlan_strip, ipv4_cksum, udp_cksum, tcp_cksum, tcp_lro,
qinq_strip, outer_ipv4_cksum, macsec_strip,
header_split, vlan_filter, vlan_extend, jumbo_frame,
scatter, timestamp, security, keep_crc

This command should be run when the port is stopped, or else it will fail.

4.5.96. config per port Tx offloading

Enable or disable a per port Tx offloading on all Tx queues of a port:

testpmd> port config (port_id) tx_offload (offloading) on|off

	
	offloading: can be any of these offloading capability:
	vlan_insert, ipv4_cksum, udp_cksum, tcp_cksum,
sctp_cksum, tcp_tso, udp_tso, outer_ipv4_cksum,
qinq_insert, vxlan_tnl_tso, gre_tnl_tso,
ipip_tnl_tso, geneve_tnl_tso, macsec_insert,
mt_lockfree, multi_segs, mbuf_fast_free, security

This command should be run when the port is stopped, or else it will fail.

4.5.97. config per queue Tx offloading

Enable or disable a per queue Tx offloading only on a specific Tx queue:

testpmd> port (port_id) txq (queue_id) tx_offload (offloading) on|off

	
	offloading: can be any of these offloading capability:
	vlan_insert, ipv4_cksum, udp_cksum, tcp_cksum,
sctp_cksum, tcp_tso, udp_tso, outer_ipv4_cksum,
qinq_insert, vxlan_tnl_tso, gre_tnl_tso,
ipip_tnl_tso, geneve_tnl_tso, macsec_insert,
mt_lockfree, multi_segs, mbuf_fast_free, security

This command should be run when the port is stopped, or else it will fail.

4.5.98. Config VXLAN Encap outer layers

Configure the outer layer to encapsulate a packet inside a VXLAN tunnel:

set vxlan ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) eth-src (eth-src) \
eth-dst (eth-dst)

set vxlan-with-vlan ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) vlan-tci (vlan-tci) \
eth-src (eth-src) eth-dst (eth-dst)

set vxlan-tos-ttl ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-tos (ip-tos) ip-ttl (ip-ttl) ip-src (ip-src) \
ip-dst (ip-dst) eth-src (eth-src) eth-dst (eth-dst)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action vxlan_encap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.99. Config NVGRE Encap outer layers

Configure the outer layer to encapsulate a packet inside a NVGRE tunnel:

set nvgre ip-version (ipv4|ipv6) tni (tni) ip-src (ip-src) ip-dst (ip-dst) \
 eth-src (eth-src) eth-dst (eth-dst)
set nvgre-with-vlan ip-version (ipv4|ipv6) tni (tni) ip-src (ip-src) \
 ip-dst (ip-dst) vlan-tci (vlan-tci) eth-src (eth-src) eth-dst (eth-dst)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action nvgre_encap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.100. Config L2 Encap

Configure the l2 to be used when encapsulating a packet with L2:

set l2_encap ip-version (ipv4|ipv6) eth-src (eth-src) eth-dst (eth-dst)
set l2_encap-with-vlan ip-version (ipv4|ipv6) vlan-tci (vlan-tci) \
 eth-src (eth-src) eth-dst (eth-dst)

Those commands will set an internal configuration inside testpmd, any following
flow rule using the action l2_encap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.101. Config L2 Decap

Configure the l2 to be removed when decapsulating a packet with L2:

set l2_decap ip-version (ipv4|ipv6)
set l2_decap-with-vlan ip-version (ipv4|ipv6)

Those commands will set an internal configuration inside testpmd, any following
flow rule using the action l2_decap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.102. Config MPLSoGRE Encap outer layers

Configure the outer layer to encapsulate a packet inside a MPLSoGRE tunnel:

set mplsogre_encap ip-version (ipv4|ipv6) label (label) \
 ip-src (ip-src) ip-dst (ip-dst) eth-src (eth-src) eth-dst (eth-dst)
set mplsogre_encap-with-vlan ip-version (ipv4|ipv6) label (label) \
 ip-src (ip-src) ip-dst (ip-dst) vlan-tci (vlan-tci) \
 eth-src (eth-src) eth-dst (eth-dst)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action mplsogre_encap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.103. Config MPLSoGRE Decap outer layers

Configure the outer layer to decapsulate MPLSoGRE packet:

set mplsogre_decap ip-version (ipv4|ipv6)
set mplsogre_decap-with-vlan ip-version (ipv4|ipv6)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action mplsogre_decap will use the last configuration set.
To have a different decapsulation header, one of those commands must be called
before the flow rule creation.

4.5.104. Config MPLSoUDP Encap outer layers

Configure the outer layer to encapsulate a packet inside a MPLSoUDP tunnel:

set mplsoudp_encap ip-version (ipv4|ipv6) label (label) udp-src (udp-src) \
 udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) \
 eth-src (eth-src) eth-dst (eth-dst)
set mplsoudp_encap-with-vlan ip-version (ipv4|ipv6) label (label) \
 udp-src (udp-src) udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) \
 vlan-tci (vlan-tci) eth-src (eth-src) eth-dst (eth-dst)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action mplsoudp_encap will use the last configuration set.
To have a different encapsulation header, one of those commands must be called
before the flow rule creation.

4.5.105. Config MPLSoUDP Decap outer layers

Configure the outer layer to decapsulate MPLSoUDP packet:

set mplsoudp_decap ip-version (ipv4|ipv6)
set mplsoudp_decap-with-vlan ip-version (ipv4|ipv6)

These commands will set an internal configuration inside testpmd, any following
flow rule using the action mplsoudp_decap will use the last configuration set.
To have a different decapsulation header, one of those commands must be called
before the flow rule creation.

4.5.106. Config Raw Encapsulation

Configure the raw data to be used when encapsulating a packet by
rte_flow_action_raw_encap:

set raw_encap {index} {item} [/ {item} [...]] / end_set

There are multiple global buffers for raw_encap, this command will set one
internal buffer index by {index}.
If there is no {index} specified:

set raw_encap {item} [/ {item} [...]] / end_set

the default index 0 is used.
In order to use different encapsulating header, index must be specified
during the flow rule creation:

testpmd> flow create 0 egress pattern eth / ipv4 / end actions
 raw_encap index 2 / end

Otherwise the default index 0 is used.

4.5.107. Config Raw Decapsulation

Configure the raw data to be used when decapsulating a packet by
rte_flow_action_raw_decap:

set raw_decap {index} {item} [/ {item} [...]] / end_set

There are multiple global buffers for raw_decap, this command will set
one internal buffer index by {index}.
If there is no {index} specified:

set raw_decap {item} [/ {item} [...]] / end_set

the default index 0 is used.
In order to use different decapsulating header, index must be specified
during the flow rule creation:

testpmd> flow create 0 egress pattern eth / ipv4 / end actions
 raw_encap index 3 / end

Otherwise the default index 0 is used.

4.6. Port Functions

The following sections show functions for configuring ports.

Note

Port configuration changes only become active when forwarding is started/restarted.

4.6.1. port attach

Attach a port specified by pci address or virtual device args:

testpmd> port attach (identifier)

To attach a new pci device, the device should be recognized by kernel first.
Then it should be moved under DPDK management.
Finally the port can be attached to testpmd.

For example, to move a pci device using ixgbe under DPDK management:

Check the status of the available devices.
./usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo ./usertools/dpdk-devbind.py -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
./usertools/dpdk-devbind.py --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

To attach a port created by virtual device, above steps are not needed.

For example, to attach a port whose pci address is 0000:0a:00.0.

testpmd> port attach 0000:0a:00.0
Attaching a new port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x7f83bfa00000
EAL: PCI memory mapped at 0x7f83bfa80000
PMD: eth_ixgbe_dev_init(): MAC: 2, PHY: 18, SFP+: 5
PMD: eth_ixgbe_dev_init(): port 0 vendorID=0x8086 deviceID=0x10fb
Port 0 is attached. Now total ports is 1
Done

For example, to attach a port created by pcap PMD.

testpmd> port attach net_pcap0
Attaching a new port...
PMD: Initializing pmd_pcap for net_pcap0
PMD: Creating pcap-backed ethdev on numa socket 0
Port 0 is attached. Now total ports is 1
Done

In this case, identifier is net_pcap0.
This identifier format is the same as --vdev format of DPDK applications.

For example, to re-attach a bonded port which has been previously detached,
the mode and slave parameters must be given.

testpmd> port attach net_bond_0,mode=0,slave=1
Attaching a new port...
EAL: Initializing pmd_bond for net_bond_0
EAL: Create bonded device net_bond_0 on port 0 in mode 0 on socket 0.
Port 0 is attached. Now total ports is 1
Done

4.6.2. port detach

Detach a specific port:

testpmd> port detach (port_id)

Before detaching a port, the port should be stopped and closed.

For example, to detach a pci device port 0.

testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: remove driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory unmapped at 0x7f83bfa00000
EAL: PCI memory unmapped at 0x7f83bfa80000
Done

For example, to detach a virtual device port 0.

testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
PMD: Closing pcap ethdev on numa socket 0
Port 'net_pcap0' is detached. Now total ports is 0
Done

To remove a pci device completely from the system, first detach the port from testpmd.
Then the device should be moved under kernel management.
Finally the device can be removed using kernel pci hotplug functionality.

For example, to move a pci device under kernel management:

sudo ./usertools/dpdk-devbind.py -b ixgbe 0000:0a:00.0

./usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=igb_uio

To remove a port created by a virtual device, above steps are not needed.

4.6.3. port start

Start all ports or a specific port:

testpmd> port start (port_id|all)

4.6.4. port stop

Stop all ports or a specific port:

testpmd> port stop (port_id|all)

4.6.5. port close

Close all ports or a specific port:

testpmd> port close (port_id|all)

4.6.6. port reset

Reset all ports or a specific port:

testpmd> port reset (port_id|all)

User should stop port(s) before resetting and (re-)start after reset.

4.6.7. port config - queue ring size

Configure a rx/tx queue ring size:

testpmd> port (port_id) (rxq|txq) (queue_id) ring_size (value)

Only take effect after command that (re-)start the port or command that setup specific queue.

4.6.8. port start/stop queue

Start/stop a rx/tx queue on a specific port:

testpmd> port (port_id) (rxq|txq) (queue_id) (start|stop)

4.6.9. port config - queue deferred start

Switch on/off deferred start of a specific port queue:

testpmd> port (port_id) (rxq|txq) (queue_id) deferred_start (on|off)

4.6.10. port setup queue

Setup a rx/tx queue on a specific port:

testpmd> port (port_id) (rxq|txq) (queue_id) setup

Only take effect when port is started.

4.6.11. port config - speed

Set the speed and duplex mode for all ports or a specific port:

testpmd> port config (port_id|all) speed (10|100|1000|10000|25000|40000|50000|100000|200000|auto) \
 duplex (half|full|auto)

4.6.12. port config - queues/descriptors

Set number of queues/descriptors for rxq, txq, rxd and txd:

testpmd> port config all (rxq|txq|rxd|txd) (value)

This is equivalent to the --rxq, --txq, --rxd and --txd command-line options.

4.6.13. port config - max-pkt-len

Set the maximum packet length:

testpmd> port config all max-pkt-len (value)

This is equivalent to the --max-pkt-len command-line option.

4.6.14. port config - max-lro-pkt-size

Set the maximum LRO aggregated packet size:

testpmd> port config all max-lro-pkt-size (value)

This is equivalent to the --max-lro-pkt-size command-line option.

4.6.15. port config - Drop Packets

Enable or disable packet drop on all RX queues of all ports when no receive buffers available:

testpmd> port config all drop-en (on|off)

Packet dropping when no receive buffers available is off by default.

The on option is equivalent to the --enable-drop-en command-line option.

4.6.16. port config - RSS

Set the RSS (Receive Side Scaling) mode on or off:

testpmd> port config all rss (all|default|eth|vlan|ip|tcp|udp|sctp|ether|port|vxlan|geneve|nvgre|vxlan-gpe|l2tpv3|esp|ah|pfcp|none)

RSS is on by default.

The all option is equivalent to eth|vlan|ip|tcp|udp|sctp|ether|l2tpv3|esp|ah|pfcp.

The default option enables all supported RSS types reported by device info.

The none option is equivalent to the --disable-rss command-line option.

4.6.17. port config - RSS Reta

Set the RSS (Receive Side Scaling) redirection table:

testpmd> port config all rss reta (hash,queue)[,(hash,queue)]

4.6.18. port config - DCB

Set the DCB mode for an individual port:

testpmd> port config (port_id) dcb vt (on|off) (traffic_class) pfc (on|off)

The traffic class should be 4 or 8.

4.6.19. port config - Burst

Set the number of packets per burst:

testpmd> port config all burst (value)

This is equivalent to the --burst command-line option.

4.6.20. port config - Threshold

Set thresholds for TX/RX queues:

testpmd> port config all (threshold) (value)

Where the threshold type can be:

	txpt: Set the prefetch threshold register of the TX rings, 0 <= value <= 255.

	txht: Set the host threshold register of the TX rings, 0 <= value <= 255.

	txwt: Set the write-back threshold register of the TX rings, 0 <= value <= 255.

	rxpt: Set the prefetch threshold register of the RX rings, 0 <= value <= 255.

	rxht: Set the host threshold register of the RX rings, 0 <= value <= 255.

	rxwt: Set the write-back threshold register of the RX rings, 0 <= value <= 255.

	txfreet: Set the transmit free threshold of the TX rings, 0 <= value <= txd.

	rxfreet: Set the transmit free threshold of the RX rings, 0 <= value <= rxd.

	txrst: Set the transmit RS bit threshold of TX rings, 0 <= value <= txd.

These threshold options are also available from the command-line.

4.6.21. port config - E-tag

Set the value of ether-type for E-tag:

testpmd> port config (port_id|all) l2-tunnel E-tag ether-type (value)

Enable/disable the E-tag support:

testpmd> port config (port_id|all) l2-tunnel E-tag (enable|disable)

4.6.22. port config pctype mapping

Reset pctype mapping table:

testpmd> port config (port_id) pctype mapping reset

Update hardware defined pctype to software defined flow type mapping table:

testpmd> port config (port_id) pctype mapping update (pctype_id_0[,pctype_id_1]*) (flow_type_id)

where:

	pctype_id_x: hardware pctype id as index of bit in bitmask value of the pctype mapping table.

	flow_type_id: software flow type id as the index of the pctype mapping table.

4.6.23. port config input set

Config RSS/FDIR/FDIR flexible payload input set for some pctype:

testpmd> port config (port_id) pctype (pctype_id) \
 (hash_inset|fdir_inset|fdir_flx_inset) \
 (get|set|clear) field (field_idx)

Clear RSS/FDIR/FDIR flexible payload input set for some pctype:

testpmd> port config (port_id) pctype (pctype_id) \
 (hash_inset|fdir_inset|fdir_flx_inset) clear all

where:

	pctype_id: hardware packet classification types.

	field_idx: hardware field index.

4.6.24. port config udp_tunnel_port

Add/remove UDP tunnel port for VXLAN/GENEVE tunneling protocols:

testpmd> port config (port_id) udp_tunnel_port add|rm vxlan|geneve|vxlan-gpe (udp_port)

4.6.25. port config tx_metadata

Set Tx metadata value per port.
testpmd will add this value to any Tx packet sent from this port:

testpmd> port config (port_id) tx_metadata (value)

4.6.26. port config dynf

Set/clear dynamic flag per port.
testpmd will register this flag in the mbuf (same registration
for both Tx and Rx). Then set/clear this flag for each Tx
packet sent from this port. The set bit only works for Tx packet:

testpmd> port config (port_id) dynf (name) (set|clear)

4.6.27. port config mtu

To configure MTU(Maximum Transmission Unit) on devices using testpmd:

testpmd> port config mtu (port_id) (value)

4.6.28. port config rss hash key

To configure the RSS hash key used to compute the RSS
hash of input [IP] packets received on port:

testpmd> port config <port_id> rss-hash-key (ipv4|ipv4-frag|\
 ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|\
 ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|\
 ipv6-other|l2-payload|ipv6-ex|ipv6-tcp-ex|\
 ipv6-udp-ex <string of hex digits \
 (variable length, NIC dependent)>)

4.7. Device Functions

The following sections show functions for device operations.

4.7.1. device detach

Detach a device specified by pci address or virtual device args:

testpmd> device detach (identifier)

Before detaching a device associated with ports, the ports should be stopped and closed.

For example, to detach a pci device whose address is 0002:03:00.0.

testpmd> device detach 0002:03:00.0
Removing a device...
Port 1 is now closed
EAL: Releasing pci mapped resource for 0002:03:00.0
EAL: Calling pci_unmap_resource for 0002:03:00.0 at 0x218a050000
EAL: Calling pci_unmap_resource for 0002:03:00.0 at 0x218c050000
Device 0002:03:00.0 is detached
Now total ports is 1

For example, to detach a port created by pcap PMD.

testpmd> device detach net_pcap0
Removing a device...
Port 0 is now closed
Device net_pcap0 is detached
Now total ports is 0
Done

In this case, identifier is net_pcap0.
This identifier format is the same as --vdev format of DPDK applications.

4.8. Link Bonding Functions

The Link Bonding functions make it possible to dynamically create and
manage link bonding devices from within testpmd interactive prompt.

4.8.1. create bonded device

Create a new bonding device:

testpmd> create bonded device (mode) (socket)

For example, to create a bonded device in mode 1 on socket 0:

testpmd> create bonded device 1 0
created new bonded device (port X)

4.8.2. add bonding slave

Adds Ethernet device to a Link Bonding device:

testpmd> add bonding slave (slave id) (port id)

For example, to add Ethernet device (port 6) to a Link Bonding device (port 10):

testpmd> add bonding slave 6 10

4.8.3. remove bonding slave

Removes an Ethernet slave device from a Link Bonding device:

testpmd> remove bonding slave (slave id) (port id)

For example, to remove Ethernet slave device (port 6) to a Link Bonding device (port 10):

testpmd> remove bonding slave 6 10

4.8.4. set bonding mode

Set the Link Bonding mode of a Link Bonding device:

testpmd> set bonding mode (value) (port id)

For example, to set the bonding mode of a Link Bonding device (port 10) to broadcast (mode 3):

testpmd> set bonding mode 3 10

4.8.5. set bonding primary

Set an Ethernet slave device as the primary device on a Link Bonding device:

testpmd> set bonding primary (slave id) (port id)

For example, to set the Ethernet slave device (port 6) as the primary port of a Link Bonding device (port 10):

testpmd> set bonding primary 6 10

4.8.6. set bonding mac

Set the MAC address of a Link Bonding device:

testpmd> set bonding mac (port id) (mac)

For example, to set the MAC address of a Link Bonding device (port 10) to 00:00:00:00:00:01:

testpmd> set bonding mac 10 00:00:00:00:00:01

4.8.7. set bonding xmit_balance_policy

Set the transmission policy for a Link Bonding device when it is in Balance XOR mode:

testpmd> set bonding xmit_balance_policy (port_id) (l2|l23|l34)

For example, set a Link Bonding device (port 10) to use a balance policy of layer 3+4 (IP addresses & UDP ports):

testpmd> set bonding xmit_balance_policy 10 l34

4.8.8. set bonding mon_period

Set the link status monitoring polling period in milliseconds for a bonding device.

This adds support for PMD slave devices which do not support link status interrupts.
When the mon_period is set to a value greater than 0 then all PMD’s which do not support
link status ISR will be queried every polling interval to check if their link status has changed:

testpmd> set bonding mon_period (port_id) (value)

For example, to set the link status monitoring polling period of bonded device (port 5) to 150ms:

testpmd> set bonding mon_period 5 150

4.8.9. set bonding lacp dedicated_queue

Enable dedicated tx/rx queues on bonding devices slaves to handle LACP control plane traffic
when in mode 4 (link-aggregation-802.3ad):

testpmd> set bonding lacp dedicated_queues (port_id) (enable|disable)

4.8.10. set bonding agg_mode

Enable one of the specific aggregators mode when in mode 4 (link-aggregation-802.3ad):

testpmd> set bonding agg_mode (port_id) (bandwidth|count|stable)

4.8.11. show bonding config

Show the current configuration of a Link Bonding device:

testpmd> show bonding config (port id)

For example,
to show the configuration a Link Bonding device (port 9) with 3 slave devices (1, 3, 4)
in balance mode with a transmission policy of layer 2+3:

testpmd> show bonding config 9
 Bonding mode: 2
 Balance Xmit Policy: BALANCE_XMIT_POLICY_LAYER23
 Slaves (3): [1 3 4]
 Active Slaves (3): [1 3 4]
 Primary: [3]

4.9. Register Functions

The Register Functions can be used to read from and write to registers on the network card referenced by a port number.
This is mainly useful for debugging purposes.
Reference should be made to the appropriate datasheet for the network card for details on the register addresses
and fields that can be accessed.

4.9.1. read reg

Display the value of a port register:

testpmd> read reg (port_id) (address)

For example, to examine the Flow Director control register (FDIRCTL, 0x0000EE000) on an Intel 82599 10 GbE Controller:

testpmd> read reg 0 0xEE00
port 0 PCI register at offset 0xEE00: 0x4A060029 (1241907241)

4.9.2. read regfield

Display a port register bit field:

testpmd> read regfield (port_id) (address) (bit_x) (bit_y)

For example, reading the lowest two bits from the register in the example above:

testpmd> read regfield 0 0xEE00 0 1
port 0 PCI register at offset 0xEE00: bits[0, 1]=0x1 (1)

4.9.3. read regbit

Display a single port register bit:

testpmd> read regbit (port_id) (address) (bit_x)

For example, reading the lowest bit from the register in the example above:

testpmd> read regbit 0 0xEE00 0
port 0 PCI register at offset 0xEE00: bit 0=1

4.9.4. write reg

Set the value of a port register:

testpmd> write reg (port_id) (address) (value)

For example, to clear a register:

testpmd> write reg 0 0xEE00 0x0
port 0 PCI register at offset 0xEE00: 0x00000000 (0)

4.9.5. write regfield

Set bit field of a port register:

testpmd> write regfield (port_id) (address) (bit_x) (bit_y) (value)

For example, writing to the register cleared in the example above:

testpmd> write regfield 0 0xEE00 0 1 2
port 0 PCI register at offset 0xEE00: 0x00000002 (2)

4.9.6. write regbit

Set single bit value of a port register:

testpmd> write regbit (port_id) (address) (bit_x) (value)

For example, to set the high bit in the register from the example above:

testpmd> write regbit 0 0xEE00 31 1
port 0 PCI register at offset 0xEE00: 0x8000000A (2147483658)

4.10. Traffic Metering and Policing

The following section shows functions for configuring traffic metering and
policing on the ethernet device through the use of generic ethdev API.

4.10.1. show port traffic management capability

Show traffic metering and policing capability of the port:

testpmd> show port meter cap (port_id)

4.10.2. add port meter profile (srTCM rfc2967)

Add meter profile (srTCM rfc2697) to the ethernet device:

testpmd> add port meter profile srtcm_rfc2697 (port_id) (profile_id) \
(cir) (cbs) (ebs)

where:

	profile_id: ID for the meter profile.

	cir: Committed Information Rate (CIR) (bytes/second).

	cbs: Committed Burst Size (CBS) (bytes).

	ebs: Excess Burst Size (EBS) (bytes).

4.10.3. add port meter profile (trTCM rfc2968)

Add meter profile (srTCM rfc2698) to the ethernet device:

testpmd> add port meter profile trtcm_rfc2698 (port_id) (profile_id) \
(cir) (pir) (cbs) (pbs)

where:

	profile_id: ID for the meter profile.

	cir: Committed information rate (bytes/second).

	pir: Peak information rate (bytes/second).

	cbs: Committed burst size (bytes).

	pbs: Peak burst size (bytes).

4.10.4. add port meter profile (trTCM rfc4115)

Add meter profile (trTCM rfc4115) to the ethernet device:

testpmd> add port meter profile trtcm_rfc4115 (port_id) (profile_id) \
(cir) (eir) (cbs) (ebs)

where:

	profile_id: ID for the meter profile.

	cir: Committed information rate (bytes/second).

	eir: Excess information rate (bytes/second).

	cbs: Committed burst size (bytes).

	ebs: Excess burst size (bytes).

4.10.5. delete port meter profile

Delete meter profile from the ethernet device:

testpmd> del port meter profile (port_id) (profile_id)

4.10.6. create port meter

Create new meter object for the ethernet device:

testpmd> create port meter (port_id) (mtr_id) (profile_id) \
(meter_enable) (g_action) (y_action) (r_action) (stats_mask) (shared) \
(use_pre_meter_color) [(dscp_tbl_entry0) (dscp_tbl_entry1)...\
(dscp_tbl_entry63)]

where:

	mtr_id: meter object ID.

	profile_id: ID for the meter profile.

	meter_enable: When this parameter has a non-zero value, the meter object
gets enabled at the time of creation, otherwise remains disabled.

	g_action: Policer action for the packet with green color.

	y_action: Policer action for the packet with yellow color.

	r_action: Policer action for the packet with red color.

	stats_mask: Mask of statistics counter types to be enabled for the
meter object.

	shared: When this parameter has a non-zero value, the meter object is
shared by multiple flows. Otherwise, meter object is used by single flow.

	use_pre_meter_color: When this parameter has a non-zero value, the
input color for the current meter object is determined by the latest meter
object in the same flow. Otherwise, the current meter object uses the
dscp_table to determine the input color.

	dscp_tbl_entryx: DSCP table entry x providing meter providing input
color, 0 <= x <= 63.

4.10.7. enable port meter

Enable meter for the ethernet device:

testpmd> enable port meter (port_id) (mtr_id)

4.10.8. disable port meter

Disable meter for the ethernet device:

testpmd> disable port meter (port_id) (mtr_id)

4.10.9. delete port meter

Delete meter for the ethernet device:

testpmd> del port meter (port_id) (mtr_id)

4.10.10. Set port meter profile

Set meter profile for the ethernet device:

testpmd> set port meter profile (port_id) (mtr_id) (profile_id)

4.10.11. set port meter dscp table

Set meter dscp table for the ethernet device:

testpmd> set port meter dscp table (port_id) (mtr_id) [(dscp_tbl_entry0) \
(dscp_tbl_entry1)...(dscp_tbl_entry63)]

4.10.12. set port meter policer action

Set meter policer action for the ethernet device:

testpmd> set port meter policer action (port_id) (mtr_id) (action_mask) \
(action0) [(action1) (action1)]

where:

	action_mask: Bit mask indicating which policer actions need to be
updated. One or more policer actions can be updated in a single function
invocation. To update the policer action associated with color C, bit
(1 << C) needs to be set in action_mask and element at position C
in the actions array needs to be valid.

	actionx: Policer action for the color x,
RTE_MTR_GREEN <= x < RTE_MTR_COLORS

4.10.13. set port meter stats mask

Set meter stats mask for the ethernet device:

testpmd> set port meter stats mask (port_id) (mtr_id) (stats_mask)

where:

	stats_mask: Bit mask indicating statistics counter types to be enabled.

4.10.14. show port meter stats

Show meter stats of the ethernet device:

testpmd> show port meter stats (port_id) (mtr_id) (clear)

where:

	clear: Flag that indicates whether the statistics counters should
be cleared (i.e. set to zero) immediately after they have been read or not.

4.11. Traffic Management

The following section shows functions for configuring traffic management on
the ethernet device through the use of generic TM API.

4.11.1. show port traffic management capability

Show traffic management capability of the port:

testpmd> show port tm cap (port_id)

4.11.2. show port traffic management capability (hierarchy level)

Show traffic management hierarchy level capability of the port:

testpmd> show port tm level cap (port_id) (level_id)

4.11.3. show port traffic management capability (hierarchy node level)

Show the traffic management hierarchy node capability of the port:

testpmd> show port tm node cap (port_id) (node_id)

4.11.4. show port traffic management hierarchy node type

Show the port traffic management hierarchy node type:

testpmd> show port tm node type (port_id) (node_id)

4.11.5. show port traffic management hierarchy node stats

Show the port traffic management hierarchy node statistics:

testpmd> show port tm node stats (port_id) (node_id) (clear)

where:

	clear: When this parameter has a non-zero value, the statistics counters
are cleared (i.e. set to zero) immediately after they have been read,
otherwise the statistics counters are left untouched.

4.11.6. Add port traffic management private shaper profile

Add the port traffic management private shaper profile:

testpmd> add port tm node shaper profile (port_id) (shaper_profile_id) \
(cmit_tb_rate) (cmit_tb_size) (peak_tb_rate) (peak_tb_size) \
(packet_length_adjust)

where:

	shaper_profile id: Shaper profile ID for the new profile.

	cmit_tb_rate: Committed token bucket rate (bytes per second).

	cmit_tb_size: Committed token bucket size (bytes).

	peak_tb_rate: Peak token bucket rate (bytes per second).

	peak_tb_size: Peak token bucket size (bytes).

	packet_length_adjust: The value (bytes) to be added to the length of
each packet for the purpose of shaping. This parameter value can be used to
correct the packet length with the framing overhead bytes that are consumed
on the wire.

4.11.7. Delete port traffic management private shaper profile

Delete the port traffic management private shaper:

testpmd> del port tm node shaper profile (port_id) (shaper_profile_id)

where:

	shaper_profile id: Shaper profile ID that needs to be deleted.

4.11.8. Add port traffic management shared shaper

Create the port traffic management shared shaper:

testpmd> add port tm node shared shaper (port_id) (shared_shaper_id) \
(shaper_profile_id)

where:

	shared_shaper_id: Shared shaper ID to be created.

	shaper_profile id: Shaper profile ID for shared shaper.

4.11.9. Set port traffic management shared shaper

Update the port traffic management shared shaper:

testpmd> set port tm node shared shaper (port_id) (shared_shaper_id) \
(shaper_profile_id)

where:

	shared_shaper_id: Shared shaper ID to be update.

	shaper_profile id: Shaper profile ID for shared shaper.

4.11.10. Delete port traffic management shared shaper

Delete the port traffic management shared shaper:

testpmd> del port tm node shared shaper (port_id) (shared_shaper_id)

where:

	shared_shaper_id: Shared shaper ID to be deleted.

4.11.11. Set port traffic management hierarchy node private shaper

set the port traffic management hierarchy node private shaper:

testpmd> set port tm node shaper profile (port_id) (node_id) \
(shaper_profile_id)

where:

	shaper_profile id: Private shaper profile ID to be enabled on the
hierarchy node.

4.11.12. Add port traffic management WRED profile

Create a new WRED profile:

testpmd> add port tm node wred profile (port_id) (wred_profile_id) \
(color_g) (min_th_g) (max_th_g) (maxp_inv_g) (wq_log2_g) \
(color_y) (min_th_y) (max_th_y) (maxp_inv_y) (wq_log2_y) \
(color_r) (min_th_r) (max_th_r) (maxp_inv_r) (wq_log2_r)

where:

	wred_profile id: Identifier for the newly create WRED profile

	color_g: Packet color (green)

	min_th_g: Minimum queue threshold for packet with green color

	max_th_g: Minimum queue threshold for packet with green color

	maxp_inv_g: Inverse of packet marking probability maximum value (maxp)

	wq_log2_g: Negated log2 of queue weight (wq)

	color_y: Packet color (yellow)

	min_th_y: Minimum queue threshold for packet with yellow color

	max_th_y: Minimum queue threshold for packet with yellow color

	maxp_inv_y: Inverse of packet marking probability maximum value (maxp)

	wq_log2_y: Negated log2 of queue weight (wq)

	color_r: Packet color (red)

	min_th_r: Minimum queue threshold for packet with yellow color

	max_th_r: Minimum queue threshold for packet with yellow color

	maxp_inv_r: Inverse of packet marking probability maximum value (maxp)

	wq_log2_r: Negated log2 of queue weight (wq)

4.11.13. Delete port traffic management WRED profile

Delete the WRED profile:

testpmd> del port tm node wred profile (port_id) (wred_profile_id)

4.11.14. Add port traffic management hierarchy nonleaf node

Add nonleaf node to port traffic management hierarchy:

testpmd> add port tm nonleaf node (port_id) (node_id) (parent_node_id) \
(priority) (weight) (level_id) (shaper_profile_id) \
(n_sp_priorities) (stats_mask) (n_shared_shapers) \
[(shared_shaper_0) (shared_shaper_1) ...] \

where:

	parent_node_id: Node ID of the parent.

	priority: Node priority (highest node priority is zero). This is used by
the SP algorithm running on the parent node for scheduling this node.

	weight: Node weight (lowest weight is one). The node weight is relative
to the weight sum of all siblings that have the same priority. It is used by
the WFQ algorithm running on the parent node for scheduling this node.

	level_id: Hierarchy level of the node.

	shaper_profile_id: Shaper profile ID of the private shaper to be used by
the node.

	n_sp_priorities: Number of strict priorities.

	stats_mask: Mask of statistics counter types to be enabled for this node.

	n_shared_shapers: Number of shared shapers.

	shared_shaper_id: Shared shaper id.

4.11.15. Add port traffic management hierarchy leaf node

Add leaf node to port traffic management hierarchy:

testpmd> add port tm leaf node (port_id) (node_id) (parent_node_id) \
(priority) (weight) (level_id) (shaper_profile_id) \
(cman_mode) (wred_profile_id) (stats_mask) (n_shared_shapers) \
[(shared_shaper_id) (shared_shaper_id) ...] \

where:

	parent_node_id: Node ID of the parent.

	priority: Node priority (highest node priority is zero). This is used by
the SP algorithm running on the parent node for scheduling this node.

	weight: Node weight (lowest weight is one). The node weight is relative
to the weight sum of all siblings that have the same priority. It is used by
the WFQ algorithm running on the parent node for scheduling this node.

	level_id: Hierarchy level of the node.

	shaper_profile_id: Shaper profile ID of the private shaper to be used by
the node.

	cman_mode: Congestion management mode to be enabled for this node.

	wred_profile_id: WRED profile id to be enabled for this node.

	stats_mask: Mask of statistics counter types to be enabled for this node.

	n_shared_shapers: Number of shared shapers.

	shared_shaper_id: Shared shaper id.

4.11.16. Delete port traffic management hierarchy node

Delete node from port traffic management hierarchy:

testpmd> del port tm node (port_id) (node_id)

4.11.17. Update port traffic management hierarchy parent node

Update port traffic management hierarchy parent node:

testpmd> set port tm node parent (port_id) (node_id) (parent_node_id) \
(priority) (weight)

This function can only be called after the hierarchy commit invocation. Its
success depends on the port support for this operation, as advertised through
the port capability set. This function is valid for all nodes of the traffic
management hierarchy except root node.

4.11.18. Suspend port traffic management hierarchy node

testpmd> suspend port tm node (port_id) (node_id)

4.11.19. Resume port traffic management hierarchy node

testpmd> resume port tm node (port_id) (node_id)

4.11.20. Commit port traffic management hierarchy

Commit the traffic management hierarchy on the port:

testpmd> port tm hierarchy commit (port_id) (clean_on_fail)

where:

	clean_on_fail: When set to non-zero, hierarchy is cleared on function
call failure. On the other hand, hierarchy is preserved when this parameter
is equal to zero.

4.11.21. Set port traffic management mark VLAN dei

Enables/Disables the traffic management marking on the port for VLAN packets:

testpmd> set port tm mark vlan_dei <port_id> <green> <yellow> <red>

where:

	port_id: The port which on which VLAN packets marked as green or
yellow or red will have dei bit enabled

	green enable 1, disable 0 marking for dei bit of VLAN packets marked as green

	yellow enable 1, disable 0 marking for dei bit of VLAN packets marked as yellow

	red enable 1, disable 0 marking for dei bit of VLAN packets marked as red

4.11.22. Set port traffic management mark IP dscp

Enables/Disables the traffic management marking on the port for IP dscp packets:

testpmd> set port tm mark ip_dscp <port_id> <green> <yellow> <red>

where:

	port_id: The port which on which IP packets marked as green or
yellow or red will have IP dscp bits updated

	green enable 1, disable 0 marking IP dscp to low drop precedence for green packets

	yellow enable 1, disable 0 marking IP dscp to medium drop precedence for yellow packets

	red enable 1, disable 0 marking IP dscp to high drop precedence for red packets

4.11.23. Set port traffic management mark IP ecn

Enables/Disables the traffic management marking on the port for IP ecn packets:

testpmd> set port tm mark ip_ecn <port_id> <green> <yellow> <red>

where:

	port_id: The port which on which IP packets marked as green or
yellow or red will have IP ecn bits updated

	green enable 1, disable 0 marking IP ecn for green marked packets with ecn of 2’b01 or 2’b10
to ecn of 2’b11 when IP is caring TCP or SCTP

	yellow enable 1, disable 0 marking IP ecn for yellow marked packets with ecn of 2’b01 or 2’b10
to ecn of 2’b11 when IP is caring TCP or SCTP

	red enable 1, disable 0 marking IP ecn for yellow marked packets with ecn of 2’b01 or 2’b10
to ecn of 2’b11 when IP is caring TCP or SCTP

4.11.24. Set port traffic management default hierarchy (softnic forwarding mode)

set the traffic management default hierarchy on the port:

testpmd> set port tm hierarchy default (port_id)

4.12. Filter Functions

This section details the available filter functions that are available.

Note these functions interface the deprecated legacy filtering framework,
superseded by rte_flow. See Flow rules management.

4.12.1. ethertype_filter

Add or delete a L2 Ethertype filter, which identify packets by their L2 Ethertype mainly assign them to a receive queue:

ethertype_filter (port_id) (add|del) (mac_addr|mac_ignr) (mac_address) \
 ethertype (ether_type) (drop|fwd) queue (queue_id)

The available information parameters are:

	port_id: The port which the Ethertype filter assigned on.

	mac_addr: Compare destination mac address.

	mac_ignr: Ignore destination mac address match.

	mac_address: Destination mac address to match.

	ether_type: The EtherType value want to match,
for example 0x0806 for ARP packet. 0x0800 (IPv4) and 0x86DD (IPv6) are invalid.

	queue_id: The receive queue associated with this EtherType filter.
It is meaningless when deleting or dropping.

Example, to add/remove an ethertype filter rule:

testpmd> ethertype_filter 0 add mac_ignr 00:11:22:33:44:55 \
 ethertype 0x0806 fwd queue 3

testpmd> ethertype_filter 0 del mac_ignr 00:11:22:33:44:55 \
 ethertype 0x0806 fwd queue 3

4.12.2. 2tuple_filter

Add or delete a 2-tuple filter,
which identifies packets by specific protocol and destination TCP/UDP port
and forwards packets into one of the receive queues:

2tuple_filter (port_id) (add|del) dst_port (dst_port_value) \
 protocol (protocol_value) mask (mask_value) \
 tcp_flags (tcp_flags_value) priority (prio_value) \
 queue (queue_id)

The available information parameters are:

	port_id: The port which the 2-tuple filter assigned on.

	dst_port_value: Destination port in L4.

	protocol_value: IP L4 protocol.

	mask_value: Participates in the match or not by bit for field above, 1b means participate.

	tcp_flags_value: TCP control bits. The non-zero value is invalid, when the pro_value is not set to 0x06 (TCP).

	prio_value: Priority of this filter.

	queue_id: The receive queue associated with this 2-tuple filter.

Example, to add/remove an 2tuple filter rule:

testpmd> 2tuple_filter 0 add dst_port 32 protocol 0x06 mask 0x03 \
 tcp_flags 0x02 priority 3 queue 3

testpmd> 2tuple_filter 0 del dst_port 32 protocol 0x06 mask 0x03 \
 tcp_flags 0x02 priority 3 queue 3

4.12.3. 5tuple_filter

Add or delete a 5-tuple filter,
which consists of a 5-tuple (protocol, source and destination IP addresses, source and destination TCP/UDP/SCTP port)
and routes packets into one of the receive queues:

5tuple_filter (port_id) (add|del) dst_ip (dst_address) src_ip \
 (src_address) dst_port (dst_port_value) \
 src_port (src_port_value) protocol (protocol_value) \
 mask (mask_value) tcp_flags (tcp_flags_value) \
 priority (prio_value) queue (queue_id)

The available information parameters are:

	port_id: The port which the 5-tuple filter assigned on.

	dst_address: Destination IP address.

	src_address: Source IP address.

	dst_port_value: TCP/UDP destination port.

	src_port_value: TCP/UDP source port.

	protocol_value: L4 protocol.

	mask_value: Participates in the match or not by bit for field above, 1b means participate

	tcp_flags_value: TCP control bits. The non-zero value is invalid, when the protocol_value is not set to 0x06 (TCP).

	prio_value: The priority of this filter.

	queue_id: The receive queue associated with this 5-tuple filter.

Example, to add/remove an 5tuple filter rule:

testpmd> 5tuple_filter 0 add dst_ip 2.2.2.5 src_ip 2.2.2.4 \
 dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
 flags 0x0 priority 3 queue 3

testpmd> 5tuple_filter 0 del dst_ip 2.2.2.5 src_ip 2.2.2.4 \
 dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
 flags 0x0 priority 3 queue 3

4.12.4. syn_filter

Using the SYN filter, TCP packets whose SYN flag is set can be forwarded to a separate queue:

syn_filter (port_id) (add|del) priority (high|low) queue (queue_id)

The available information parameters are:

	port_id: The port which the SYN filter assigned on.

	high: This SYN filter has higher priority than other filters.

	low: This SYN filter has lower priority than other filters.

	queue_id: The receive queue associated with this SYN filter

Example:

testpmd> syn_filter 0 add priority high queue 3

4.12.5. flex_filter

With flex filter, packets can be recognized by any arbitrary pattern within the first 128 bytes of the packet
and routed into one of the receive queues:

flex_filter (port_id) (add|del) len (len_value) bytes (bytes_value) \
 mask (mask_value) priority (prio_value) queue (queue_id)

The available information parameters are:

	port_id: The port which the Flex filter is assigned on.

	len_value: Filter length in bytes, no greater than 128.

	bytes_value: A string in hexadecimal, means the value the flex filter needs to match.

	mask_value: A string in hexadecimal, bit 1 means corresponding byte participates in the match.

	prio_value: The priority of this filter.

	queue_id: The receive queue associated with this Flex filter.

Example:

testpmd> flex_filter 0 add len 16 bytes 0x00000000000000000000000008060000 \
 mask 000C priority 3 queue 3

testpmd> flex_filter 0 del len 16 bytes 0x00000000000000000000000008060000 \
 mask 000C priority 3 queue 3

4.12.6. flow_director_filter

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to specific queues.

Four types of filtering are supported which are referred to as Perfect Match, Signature, Perfect-mac-vlan and
Perfect-tunnel filters, the match mode is set by the --pkt-filter-mode command-line parameter:

	Perfect match filters.
The hardware checks a match between the masked fields of the received packets and the programmed filters.
The masked fields are for IP flow.

	Signature filters.
The hardware checks a match between a hash-based signature of the masked fields of the received packet.

	Perfect-mac-vlan match filters.
The hardware checks a match between the masked fields of the received packets and the programmed filters.
The masked fields are for MAC VLAN flow.

	Perfect-tunnel match filters.
The hardware checks a match between the masked fields of the received packets and the programmed filters.
The masked fields are for tunnel flow.

	Perfect-raw-flow-type match filters.
The hardware checks a match between the masked fields of the received packets and pre-loaded raw (template) packet.
The masked fields are specified by input sets.

The Flow Director filters can match the different fields for different type of packet: flow type, specific input set
per flow type and the flexible payload.

The Flow Director can also mask out parts of all of these fields so that filters
are only applied to certain fields or parts of the fields.

Note that for raw flow type mode the source and destination fields in the
raw packet buffer need to be presented in a reversed order with respect
to the expected received packets.
For example: IP source and destination addresses or TCP/UDP/SCTP
source and destination ports

Different NICs may have different capabilities, command show port fdir (port_id) can be used to acquire the information.

Commands to add flow director filters of different flow types:

flow_director_filter (port_id) mode IP (add|del|update) \
 flow (ipv4-other|ipv4-frag|ipv6-other|ipv6-frag) \
 src (src_ip_address) dst (dst_ip_address) \
 tos (tos_value) proto (proto_value) ttl (ttl_value) \
 vlan (vlan_value) flexbytes (flexbytes_value) \
 (drop|fwd) pf|vf(vf_id) queue (queue_id) \
 fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
 flow (ipv4-tcp|ipv4-udp|ipv6-tcp|ipv6-udp) \
 src (src_ip_address) (src_port) \
 dst (dst_ip_address) (dst_port) \
 tos (tos_value) ttl (ttl_value) \
 vlan (vlan_value) flexbytes (flexbytes_value) \
 (drop|fwd) queue pf|vf(vf_id) (queue_id) \
 fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
 flow (ipv4-sctp|ipv6-sctp) \
 src (src_ip_address) (src_port) \
 dst (dst_ip_address) (dst_port) \
 tos (tos_value) ttl (ttl_value) \
 tag (verification_tag) vlan (vlan_value) \
 flexbytes (flexbytes_value) (drop|fwd) \
 pf|vf(vf_id) queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) flow l2_payload \
 ether (ethertype) flexbytes (flexbytes_value) \
 (drop|fwd) pf|vf(vf_id) queue (queue_id)
 fd_id (fd_id_value)

flow_director_filter (port_id) mode MAC-VLAN (add|del|update) \
 mac (mac_address) vlan (vlan_value) \
 flexbytes (flexbytes_value) (drop|fwd) \
 queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode Tunnel (add|del|update) \
 mac (mac_address) vlan (vlan_value) \
 tunnel (NVGRE|VxLAN) tunnel-id (tunnel_id_value) \
 flexbytes (flexbytes_value) (drop|fwd) \
 queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode raw (add|del|update) flow (flow_id) \
 (drop|fwd) queue (queue_id) fd_id (fd_id_value) \
 packet (packet file name)

For example, to add an ipv4-udp flow type filter:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp src 2.2.2.3 32 \
 dst 2.2.2.5 33 tos 2 ttl 40 vlan 0x1 flexbytes (0x88,0x48) \
 fwd pf queue 1 fd_id 1

For example, add an ipv4-other flow type filter:

testpmd> flow_director_filter 0 mode IP add flow ipv4-other src 2.2.2.3 \
 dst 2.2.2.5 tos 2 proto 20 ttl 40 vlan 0x1 \
 flexbytes (0x88,0x48) fwd pf queue 1 fd_id 1

4.12.7. flush_flow_director

Flush all flow director filters on a device:

testpmd> flush_flow_director (port_id)

Example, to flush all flow director filter on port 0:

testpmd> flush_flow_director 0

4.12.8. flow_director_mask

Set flow director’s input masks:

flow_director_mask (port_id) mode IP vlan (vlan_value) \
 src_mask (ipv4_src) (ipv6_src) (src_port) \
 dst_mask (ipv4_dst) (ipv6_dst) (dst_port)

flow_director_mask (port_id) mode MAC-VLAN vlan (vlan_value)

flow_director_mask (port_id) mode Tunnel vlan (vlan_value) \
 mac (mac_value) tunnel-type (tunnel_type_value) \
 tunnel-id (tunnel_id_value)

Example, to set flow director mask on port 0:

testpmd> flow_director_mask 0 mode IP vlan 0xefff \
 src_mask 255.255.255.255 \
 FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF \
 dst_mask 255.255.255.255 \
 FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF

4.12.9. flow_director_flex_mask

set masks of flow director’s flexible payload based on certain flow type:

testpmd> flow_director_flex_mask (port_id) \
 flow (none|ipv4-other|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
 ipv6-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp| \
 l2_payload|all) (mask)

Example, to set flow director’s flex mask for all flow type on port 0:

testpmd> flow_director_flex_mask 0 flow all \
 (0xff,0xff,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

4.12.10. flow_director_flex_payload

Configure flexible payload selection:

flow_director_flex_payload (port_id) (raw|l2|l3|l4) (config)

For example, to select the first 16 bytes from the offset 4 (bytes) of packet’s payload as flexible payload:

testpmd> flow_director_flex_payload 0 l4 \
 (4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

4.12.11. get_sym_hash_ena_per_port

Get symmetric hash enable configuration per port:

get_sym_hash_ena_per_port (port_id)

For example, to get symmetric hash enable configuration of port 1:

testpmd> get_sym_hash_ena_per_port 1

4.12.12. set_sym_hash_ena_per_port

Set symmetric hash enable configuration per port to enable or disable:

set_sym_hash_ena_per_port (port_id) (enable|disable)

For example, to set symmetric hash enable configuration of port 1 to enable:

testpmd> set_sym_hash_ena_per_port 1 enable

4.12.13. get_hash_global_config

Get the global configurations of hash filters:

get_hash_global_config (port_id)

For example, to get the global configurations of hash filters of port 1:

testpmd> get_hash_global_config 1

4.12.14. set_hash_global_config

Set the global configurations of hash filters:

set_hash_global_config (port_id) (toeplitz|simple_xor|symmetric_toeplitz|default) \
(ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag| \
ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2_payload|<flow_id>) \
(enable|disable)

For example, to enable simple_xor for flow type of ipv6 on port 2:

testpmd> set_hash_global_config 2 simple_xor ipv6 enable

4.12.15. set_hash_input_set

Set the input set for hash:

set_hash_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload|<flow_id>) (ovlan|ivlan|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6| \
ipv4-tos|ipv4-proto|ipv6-tc|ipv6-next-header|udp-src-port|udp-dst-port| \
tcp-src-port|tcp-dst-port|sctp-src-port|sctp-dst-port|sctp-veri-tag| \
udp-key|gre-key|fld-1st|fld-2nd|fld-3rd|fld-4th|fld-5th|fld-6th|fld-7th| \
fld-8th|none) (select|add)

For example, to add source IP to hash input set for flow type of ipv4-udp on port 0:

testpmd> set_hash_input_set 0 ipv4-udp src-ipv4 add

4.12.16. set_fdir_input_set

The Flow Director filters can match the different fields for different type of packet, i.e. specific input set
on per flow type and the flexible payload. This command can be used to change input set for each flow type.

Set the input set for flow director:

set_fdir_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload|<flow_id>) (ivlan|ethertype|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6| \
ipv4-tos|ipv4-proto|ipv4-ttl|ipv6-tc|ipv6-next-header|ipv6-hop-limits| \
tudp-src-port|udp-dst-port|cp-src-port|tcp-dst-port|sctp-src-port| \
sctp-dst-port|sctp-veri-tag|none) (select|add)

For example to add source IP to FD input set for flow type of ipv4-udp on port 0:

testpmd> set_fdir_input_set 0 ipv4-udp src-ipv4 add

4.12.17. global_config

Set different GRE key length for input set:

global_config (port_id) gre-key-len (number in bytes)

For example to set GRE key length for input set to 4 bytes on port 0:

testpmd> global_config 0 gre-key-len 4

4.13. Flow rules management

Control of the generic flow API (rte_flow) is fully exposed through the
flow command (validation, creation, destruction, queries and operation
modes).

Considering rte_flow overlaps with all Filter Functions, using both
features simultaneously may cause undefined side-effects and is therefore
not recommended.

4.13.1. flow syntax

Because the flow command uses dynamic tokens to handle the large number
of possible flow rules combinations, its behavior differs slightly from
other commands, in particular:

	Pressing ? or the <tab> key displays contextual help for the current
token, not that of the entire command.

	Optional and repeated parameters are supported (provided they are listed
in the contextual help).

The first parameter stands for the operation mode. Possible operations and
their general syntax are described below. They are covered in detail in the
following sections.

	Check whether a flow rule can be created:

flow validate {port_id}
 [group {group_id}] [priority {level}] [ingress] [egress] [transfer]
 pattern {item} [/ {item} [...]] / end
 actions {action} [/ {action} [...]] / end

	Create a flow rule:

flow create {port_id}
 [group {group_id}] [priority {level}] [ingress] [egress] [transfer]
 pattern {item} [/ {item} [...]] / end
 actions {action} [/ {action} [...]] / end

	Destroy specific flow rules:

flow destroy {port_id} rule {rule_id} [...]

	Destroy all flow rules:

flow flush {port_id}

	Query an existing flow rule:

flow query {port_id} {rule_id} {action}

	List existing flow rules sorted by priority, filtered by group
identifiers:

flow list {port_id} [group {group_id}] [...]

	Restrict ingress traffic to the defined flow rules:

flow isolate {port_id} {boolean}

	Dump internal representation information of all flows in hardware:

flow dump {port_id} {output_file}

	List and destroy aged flow rules:

flow aged {port_id} [destroy]

4.13.2. Validating flow rules

flow validate reports whether a flow rule would be accepted by the
underlying device in its current state but stops short of creating it. It is
bound to rte_flow_validate():

flow validate {port_id}
 [group {group_id}] [priority {level}] [ingress] [egress] [transfer]
 pattern {item} [/ {item} [...]] / end
 actions {action} [/ {action} [...]] / end

If successful, it will show:

Flow rule validated

Otherwise it will show an error message of the form:

Caught error type [...] ([...]): [...]

This command uses the same parameters as flow create, their format is
described in Creating flow rules.

Check whether redirecting any Ethernet packet received on port 0 to RX queue
index 6 is supported:

testpmd> flow validate 0 ingress pattern eth / end
 actions queue index 6 / end
Flow rule validated
testpmd>

Port 0 does not support TCPv6 rules:

testpmd> flow validate 0 ingress pattern eth / ipv6 / tcp / end
 actions drop / end
Caught error type 9 (specific pattern item): Invalid argument
testpmd>

4.13.3. Creating flow rules

flow create validates and creates the specified flow rule. It is bound
to rte_flow_create():

flow create {port_id}
 [group {group_id}] [priority {level}] [ingress] [egress] [transfer]
 pattern {item} [/ {item} [...]] / end
 actions {action} [/ {action} [...]] / end

If successful, it will return a flow rule ID usable with other commands:

Flow rule #[...] created

Otherwise it will show an error message of the form:

Caught error type [...] ([...]): [...]

Parameters describe in the following order:

	Attributes (group, priority, ingress, egress, transfer tokens).

	A matching pattern, starting with the pattern token and terminated by an
end pattern item.

	Actions, starting with the actions token and terminated by an end
action.

These translate directly to rte_flow objects provided as-is to the
underlying functions.

The shortest valid definition only comprises mandatory tokens:

testpmd> flow create 0 pattern end actions end

Note that PMDs may refuse rules that essentially do nothing such as this
one.

All unspecified object values are automatically initialized to 0.

4.13.3.1. Attributes

These tokens affect flow rule attributes (struct rte_flow_attr) and are
specified before the pattern token.

	group {group id}: priority group.

	priority {level}: priority level within group.

	ingress: rule applies to ingress traffic.

	egress: rule applies to egress traffic.

	transfer: apply rule directly to endpoints found in pattern.

Each instance of an attribute specified several times overrides the previous
value as shown below (group 4 is used):

testpmd> flow create 0 group 42 group 24 group 4 [...]

Note that once enabled, ingress and egress cannot be disabled.

While not specifying a direction is an error, some rules may allow both
simultaneously.

Most rules affect RX therefore contain the ingress token:

testpmd> flow create 0 ingress pattern [...]

4.13.3.2. Matching pattern

A matching pattern starts after the pattern token. It is made of pattern
items and is terminated by a mandatory end item.

Items are named after their type (RTE_FLOW_ITEM_TYPE_ from enum
rte_flow_item_type).

The / token is used as a separator between pattern items as shown
below:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end [...]

Note that protocol items like these must be stacked from lowest to highest
layer to make sense. For instance, the following rule is either invalid or
unlikely to match any packet:

testpmd> flow create 0 ingress pattern eth / udp / ipv4 / end [...]

More information on these restrictions can be found in the rte_flow
documentation.

Several items support additional specification structures, for example
ipv4 allows specifying source and destination addresses as follows:

testpmd> flow create 0 ingress pattern eth / ipv4 src is 10.1.1.1
 dst is 10.2.0.0 / end [...]

This rule matches all IPv4 traffic with the specified properties.

In this example, src and dst are field names of the underlying
struct rte_flow_item_ipv4 object. All item properties can be specified
in a similar fashion.

The is token means that the subsequent value must be matched exactly,
and assigns spec and mask fields in struct rte_flow_item
accordingly. Possible assignment tokens are:

	is: match value perfectly (with full bit-mask).

	spec: match value according to configured bit-mask.

	last: specify upper bound to establish a range.

	mask: specify bit-mask with relevant bits set to one.

	prefix: generate bit-mask with <prefix-length> most-significant bits set to one.

These yield identical results:

ipv4 src is 10.1.1.1

ipv4 src spec 10.1.1.1 src mask 255.255.255.255

ipv4 src spec 10.1.1.1 src prefix 32

ipv4 src is 10.1.1.1 src last 10.1.1.1 # range with a single value

ipv4 src is 10.1.1.1 src last 0 # 0 disables range

Inclusive ranges can be defined with last:

ipv4 src is 10.1.1.1 src last 10.2.3.4 # 10.1.1.1 to 10.2.3.4

Note that mask affects both spec and last:

ipv4 src is 10.1.1.1 src last 10.2.3.4 src mask 255.255.0.0
 # matches 10.1.0.0 to 10.2.255.255

Properties can be modified multiple times:

ipv4 src is 10.1.1.1 src is 10.1.2.3 src is 10.2.3.4 # matches 10.2.3.4

ipv4 src is 10.1.1.1 src prefix 24 src prefix 16 # matches 10.1.0.0/16

4.13.3.3. Pattern items

This section lists supported pattern items and their attributes, if any.

	end: end list of pattern items.

	void: no-op pattern item.

	invert: perform actions when pattern does not match.

	any: match any protocol for the current layer.

	num {unsigned}: number of layers covered.

	pf: match traffic from/to the physical function.

	vf: match traffic from/to a virtual function ID.

	id {unsigned}: VF ID.

	phy_port: match traffic from/to a specific physical port.

	index {unsigned}: physical port index.

	port_id: match traffic from/to a given DPDK port ID.

	id {unsigned}: DPDK port ID.

	mark: match value set in previously matched flow rule using the mark action.

	id {unsigned}: arbitrary integer value.

	raw: match an arbitrary byte string.

	relative {boolean}: look for pattern after the previous item.

	search {boolean}: search pattern from offset (see also limit).

	offset {integer}: absolute or relative offset for pattern.

	limit {unsigned}: search area limit for start of pattern.

	pattern {string}: byte string to look for.

	eth: match Ethernet header.

	dst {MAC-48}: destination MAC.

	src {MAC-48}: source MAC.

	type {unsigned}: EtherType or TPID.

	vlan: match 802.1Q/ad VLAN tag.

	tci {unsigned}: tag control information.

	pcp {unsigned}: priority code point.

	dei {unsigned}: drop eligible indicator.

	vid {unsigned}: VLAN identifier.

	inner_type {unsigned}: inner EtherType or TPID.

	ipv4: match IPv4 header.

	tos {unsigned}: type of service.

	ttl {unsigned}: time to live.

	proto {unsigned}: next protocol ID.

	src {ipv4 address}: source address.

	dst {ipv4 address}: destination address.

	ipv6: match IPv6 header.

	tc {unsigned}: traffic class.

	flow {unsigned}: flow label.

	proto {unsigned}: protocol (next header).

	hop {unsigned}: hop limit.

	src {ipv6 address}: source address.

	dst {ipv6 address}: destination address.

	icmp: match ICMP header.

	type {unsigned}: ICMP packet type.

	code {unsigned}: ICMP packet code.

	udp: match UDP header.

	src {unsigned}: UDP source port.

	dst {unsigned}: UDP destination port.

	tcp: match TCP header.

	src {unsigned}: TCP source port.

	dst {unsigned}: TCP destination port.

	sctp: match SCTP header.

	src {unsigned}: SCTP source port.

	dst {unsigned}: SCTP destination port.

	tag {unsigned}: validation tag.

	cksum {unsigned}: checksum.

	vxlan: match VXLAN header.

	vni {unsigned}: VXLAN identifier.

	e_tag: match IEEE 802.1BR E-Tag header.

	grp_ecid_b {unsigned}: GRP and E-CID base.

	nvgre: match NVGRE header.

	tni {unsigned}: virtual subnet ID.

	mpls: match MPLS header.

	label {unsigned}: MPLS label.

	gre: match GRE header.

	protocol {unsigned}: protocol type.

	gre_key: match GRE optional key field.

	value {unsigned}: key value.

	fuzzy: fuzzy pattern match, expect faster than default.

	thresh {unsigned}: accuracy threshold.

	gtp, gtpc, gtpu: match GTPv1 header.

	teid {unsigned}: tunnel endpoint identifier.

	geneve: match GENEVE header.

	vni {unsigned}: virtual network identifier.

	protocol {unsigned}: protocol type.

	vxlan-gpe: match VXLAN-GPE header.

	vni {unsigned}: VXLAN-GPE identifier.

	arp_eth_ipv4: match ARP header for Ethernet/IPv4.

	sha {MAC-48}: sender hardware address.

	spa {ipv4 address}: sender IPv4 address.

	tha {MAC-48}: target hardware address.

	tpa {ipv4 address}: target IPv4 address.

	ipv6_ext: match presence of any IPv6 extension header.

	next_hdr {unsigned}: next header.

	icmp6: match any ICMPv6 header.

	type {unsigned}: ICMPv6 type.

	code {unsigned}: ICMPv6 code.

	icmp6_nd_ns: match ICMPv6 neighbor discovery solicitation.

	target_addr {ipv6 address}: target address.

	icmp6_nd_na: match ICMPv6 neighbor discovery advertisement.

	target_addr {ipv6 address}: target address.

	icmp6_nd_opt: match presence of any ICMPv6 neighbor discovery option.

	type {unsigned}: ND option type.

	icmp6_nd_opt_sla_eth: match ICMPv6 neighbor discovery source Ethernet
link-layer address option.

	sla {MAC-48}: source Ethernet LLA.

	icmp6_nd_opt_tla_eth: match ICMPv6 neighbor discovery target Ethernet
link-layer address option.

	tla {MAC-48}: target Ethernet LLA.

	meta: match application specific metadata.

	data {unsigned}: metadata value.

	gtp_psc: match GTP PDU extension header with type 0x85.

	pdu_type {unsigned}: PDU type.

	qfi {unsigned}: QoS flow identifier.

	pppoes, pppoed: match PPPoE header.

	session_id {unsigned}: session identifier.

	pppoe_proto_id: match PPPoE session protocol identifier.

	proto_id {unsigned}: PPP protocol identifier.

	l2tpv3oip: match L2TPv3 over IP header.

	session_id {unsigned}: L2TPv3 over IP session identifier.

	ah: match AH header.

	spi {unsigned}: security parameters index.

	pfcp: match PFCP header.

	s_field {unsigned}: S field.

	seid {unsigned}: session endpoint identifier.

4.13.3.4. Actions list

A list of actions starts after the actions token in the same fashion as
Matching pattern; actions are separated by / tokens and the list is
terminated by a mandatory end action.

Actions are named after their type (RTE_FLOW_ACTION_TYPE_ from enum
rte_flow_action_type).

Dropping all incoming UDPv4 packets can be expressed as follows:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
 actions drop / end

Several actions have configurable properties which must be specified when
there is no valid default value. For example, queue requires a target
queue index.

This rule redirects incoming UDPv4 traffic to queue index 6:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
 actions queue index 6 / end

While this one could be rejected by PMDs (unspecified queue index):

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
 actions queue / end

As defined by rte_flow, the list is not ordered, all actions of a given
rule are performed simultaneously. These are equivalent:

queue index 6 / void / mark id 42 / end

void / mark id 42 / queue index 6 / end

All actions in a list should have different types, otherwise only the last
action of a given type is taken into account:

queue index 4 / queue index 5 / queue index 6 / end # will use queue 6

drop / drop / drop / end # drop is performed only once

mark id 42 / queue index 3 / mark id 24 / end # mark will be 24

Considering they are performed simultaneously, opposite and overlapping
actions can sometimes be combined when the end result is unambiguous:

drop / queue index 6 / end # drop has no effect

queue index 6 / rss queues 6 7 8 / end # queue has no effect

drop / passthru / end # drop has no effect

Note that PMDs may still refuse such combinations.

4.13.3.5. Actions

This section lists supported actions and their attributes, if any.

	end: end list of actions.

	void: no-op action.

	passthru: let subsequent rule process matched packets.

	jump: redirect traffic to group on device.

	group {unsigned}: group to redirect to.

	mark: attach 32 bit value to packets.

	id {unsigned}: 32 bit value to return with packets.

	flag: flag packets.

	queue: assign packets to a given queue index.

	index {unsigned}: queue index to use.

	drop: drop packets (note: passthru has priority).

	count: enable counters for this rule.

	rss: spread packets among several queues.

	func {hash function}: RSS hash function to apply, allowed tokens are
the same as set_hash_global_config.

	level {unsigned}: encapsulation level for types.

	types [{RSS hash type} [...]] end: specific RSS hash types, allowed
tokens are the same as set_hash_input_set, except that an empty list
does not disable RSS but instead requests unspecified “best-effort”
settings.

	key {string}: RSS hash key, overrides key_len.

	key_len {unsigned}: RSS hash key length in bytes, can be used in
conjunction with key to pad or truncate it.

	queues [{unsigned} [...]] end: queue indices to use.

	pf: direct traffic to physical function.

	vf: direct traffic to a virtual function ID.

	original {boolean}: use original VF ID if possible.

	id {unsigned}: VF ID.

	phy_port: direct packets to physical port index.

	original {boolean}: use original port index if possible.

	index {unsigned}: physical port index.

	port_id: direct matching traffic to a given DPDK port ID.

	original {boolean}: use original DPDK port ID if possible.

	id {unsigned}: DPDK port ID.

	of_set_mpls_ttl: OpenFlow’s OFPAT_SET_MPLS_TTL.

	mpls_ttl: MPLS TTL.

	of_dec_mpls_ttl: OpenFlow’s OFPAT_DEC_MPLS_TTL.

	of_set_nw_ttl: OpenFlow’s OFPAT_SET_NW_TTL.

	nw_ttl: IP TTL.

	of_dec_nw_ttl: OpenFlow’s OFPAT_DEC_NW_TTL.

	of_copy_ttl_out: OpenFlow’s OFPAT_COPY_TTL_OUT.

	of_copy_ttl_in: OpenFlow’s OFPAT_COPY_TTL_IN.

	of_pop_vlan: OpenFlow’s OFPAT_POP_VLAN.

	of_push_vlan: OpenFlow’s OFPAT_PUSH_VLAN.

	ethertype: Ethertype.

	of_set_vlan_vid: OpenFlow’s OFPAT_SET_VLAN_VID.

	vlan_vid: VLAN id.

	of_set_vlan_pcp: OpenFlow’s OFPAT_SET_VLAN_PCP.

	vlan_pcp: VLAN priority.

	of_pop_mpls: OpenFlow’s OFPAT_POP_MPLS.

	ethertype: Ethertype.

	of_push_mpls: OpenFlow’s OFPAT_PUSH_MPLS.

	ethertype: Ethertype.

	vxlan_encap: Performs a VXLAN encapsulation, outer layer configuration
is done through Config VXLAN Encap outer layers.

	vxlan_decap: Performs a decapsulation action by stripping all headers of
the VXLAN tunnel network overlay from the matched flow.

	nvgre_encap: Performs a NVGRE encapsulation, outer layer configuration
is done through Config NVGRE Encap outer layers.

	nvgre_decap: Performs a decapsulation action by stripping all headers of
the NVGRE tunnel network overlay from the matched flow.

	l2_encap: Performs a L2 encapsulation, L2 configuration
is done through Config L2 Encap.

	l2_decap: Performs a L2 decapsulation, L2 configuration
is done through Config L2 Decap.

	mplsogre_encap: Performs a MPLSoGRE encapsulation, outer layer
configuration is done through Config MPLSoGRE Encap outer layers.

	mplsogre_decap: Performs a MPLSoGRE decapsulation, outer layer
configuration is done through Config MPLSoGRE Decap outer layers.

	mplsoudp_encap: Performs a MPLSoUDP encapsulation, outer layer
configuration is done through Config MPLSoUDP Encap outer layers.

	mplsoudp_decap: Performs a MPLSoUDP decapsulation, outer layer
configuration is done through Config MPLSoUDP Decap outer layers.

	set_ipv4_src: Set a new IPv4 source address in the outermost IPv4 header.

	ipv4_addr: New IPv4 source address.

	set_ipv4_dst: Set a new IPv4 destination address in the outermost IPv4
header.

	ipv4_addr: New IPv4 destination address.

	set_ipv6_src: Set a new IPv6 source address in the outermost IPv6 header.

	ipv6_addr: New IPv6 source address.

	set_ipv6_dst: Set a new IPv6 destination address in the outermost IPv6
header.

	ipv6_addr: New IPv6 destination address.

	set_tp_src: Set a new source port number in the outermost TCP/UDP
header.

	port: New TCP/UDP source port number.

	set_tp_dst: Set a new destination port number in the outermost TCP/UDP
header.

	port: New TCP/UDP destination port number.

	mac_swap: Swap the source and destination MAC addresses in the outermost
Ethernet header.

	dec_ttl: Performs a decrease TTL value action

	set_ttl: Set TTL value with specified value
- ttl_value {unsigned}: The new TTL value to be set

	set_mac_src: set source MAC address

	mac_addr {MAC-48}: new source MAC address

	set_mac_dst: set destination MAC address

	mac_addr {MAC-48}: new destination MAC address

	inc_tcp_seq: Increase sequence number in the outermost TCP header.

	value {unsigned}: Value to increase TCP sequence number by.

	dec_tcp_seq: Decrease sequence number in the outermost TCP header.

	value {unsigned}: Value to decrease TCP sequence number by.

	inc_tcp_ack: Increase acknowledgment number in the outermost TCP header.

	value {unsigned}: Value to increase TCP acknowledgment number by.

	dec_tcp_ack: Decrease acknowledgment number in the outermost TCP header.

	value {unsigned}: Value to decrease TCP acknowledgment number by.

	set_ipv4_dscp: Set IPv4 DSCP value with specified value

	dscp_value {unsigned}: The new DSCP value to be set

	set_ipv6_dscp: Set IPv6 DSCP value with specified value

	dscp_value {unsigned}: The new DSCP value to be set

4.13.4. Destroying flow rules

flow destroy destroys one or more rules from their rule ID (as returned
by flow create), this command calls rte_flow_destroy() as many
times as necessary:

flow destroy {port_id} rule {rule_id} [...]

If successful, it will show:

Flow rule #[...] destroyed

It does not report anything for rule IDs that do not exist. The usual error
message is shown when a rule cannot be destroyed:

Caught error type [...] ([...]): [...]

flow flush destroys all rules on a device and does not take extra
arguments. It is bound to rte_flow_flush():

flow flush {port_id}

Any errors are reported as above.

Creating several rules and destroying them:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
 actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
 actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 0 rule 1
Flow rule #1 destroyed
Flow rule #0 destroyed
testpmd>

The same result can be achieved using flow flush:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
 actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
 actions queue index 3 / end
Flow rule #1 created
testpmd> flow flush 0
testpmd>

Non-existent rule IDs are ignored:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
 actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
 actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 42 rule 10 rule 2
testpmd>
testpmd> flow destroy 0 rule 0
Flow rule #0 destroyed
testpmd>

4.13.5. Querying flow rules

flow query queries a specific action of a flow rule having that
ability. Such actions collect information that can be reported using this
command. It is bound to rte_flow_query():

flow query {port_id} {rule_id} {action}

If successful, it will display either the retrieved data for known actions
or the following message:

Cannot display result for action type [...] ([...])

Otherwise, it will complain either that the rule does not exist or that some
error occurred:

Flow rule #[...] not found

Caught error type [...] ([...]): [...]

Currently only the count action is supported. This action reports the
number of packets that hit the flow rule and the total number of bytes. Its
output has the following format:

count:
 hits_set: [...] # whether "hits" contains a valid value
 bytes_set: [...] # whether "bytes" contains a valid value
 hits: [...] # number of packets
 bytes: [...] # number of bytes

Querying counters for TCPv6 packets redirected to queue 6:

testpmd> flow create 0 ingress pattern eth / ipv6 / tcp / end
 actions queue index 6 / count / end
Flow rule #4 created
testpmd> flow query 0 4 count
count:
 hits_set: 1
 bytes_set: 0
 hits: 386446
 bytes: 0
testpmd>

4.13.6. Listing flow rules

flow list lists existing flow rules sorted by priority and optionally
filtered by group identifiers:

flow list {port_id} [group {group_id}] [...]

This command only fails with the following message if the device does not
exist:

Invalid port [...]

Output consists of a header line followed by a short description of each
flow rule, one per line. There is no output at all when no flow rules are
configured on the device:

ID Group Prio Attr Rule
[...] [...] [...] [...] [...]

Attr column flags:

	i for ingress.

	e for egress.

Creating several flow rules and listing them:

testpmd> flow create 0 ingress pattern eth / ipv4 / end
 actions queue index 6 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv6 / end
 actions queue index 2 / end
Flow rule #1 created
testpmd> flow create 0 priority 5 ingress pattern eth / ipv4 / udp / end
 actions rss queues 6 7 8 end / end
Flow rule #2 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH IPV4 => QUEUE
1 0 0 i- ETH IPV6 => QUEUE
2 0 5 i- ETH IPV4 UDP => RSS
testpmd>

Rules are sorted by priority (i.e. group ID first, then priority level):

testpmd> flow list 1
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
1 24 0 i- ETH IPV4 UDP => QUEUE
4 24 10 i- ETH IPV4 TCP => DROP
3 24 20 i- ETH IPV4 => DROP
2 24 42 i- ETH IPV4 UDP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>

Output can be limited to specific groups:

testpmd> flow list 1 group 0 group 63
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>

4.13.7. Toggling isolated mode

flow isolate can be used to tell the underlying PMD that ingress traffic
must only be injected from the defined flow rules; that no default traffic
is expected outside those rules and the driver is free to assign more
resources to handle them. It is bound to rte_flow_isolate():

flow isolate {port_id} {boolean}

If successful, enabling or disabling isolated mode shows either:

Ingress traffic on port [...]
 is now restricted to the defined flow rules

Or:

Ingress traffic on port [...]
 is not restricted anymore to the defined flow rules

Otherwise, in case of error:

Caught error type [...] ([...]): [...]

Mainly due to its side effects, PMDs supporting this mode may not have the
ability to toggle it more than once without reinitializing affected ports
first (e.g. by exiting testpmd).

Enabling isolated mode:

testpmd> flow isolate 0 true
Ingress traffic on port 0 is now restricted to the defined flow rules
testpmd>

Disabling isolated mode:

testpmd> flow isolate 0 false
Ingress traffic on port 0 is not restricted anymore to the defined flow rules
testpmd>

4.13.8. Dumping HW internal information

flow dump dumps the hardware’s internal representation information of
all flows. It is bound to rte_flow_dev_dump():

flow dump {port_id} {output_file}

If successful, it will show:

Flow dump finished

Otherwise, it will complain error occurred:

Caught error type [...] ([...]): [...]

4.13.9. Listing and destroying aged flow rules

flow aged simply lists aged flow rules be get from api rte_flow_get_aged_flows,
and destroy parameter can be used to destroy those flow rules in PMD.

flow aged {port_id} [destroy]

Listing current aged flow rules:

testpmd> flow aged 0
Port 0 total aged flows: 0
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.14 / end
 actions age timeout 5 / queue index 0 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.15 / end
 actions age timeout 4 / queue index 0 / end
Flow rule #1 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.16 / end
 actions age timeout 2 / queue index 0 / end
Flow rule #2 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.17 / end
 actions age timeout 3 / queue index 0 / end
Flow rule #3 created

Aged Rules are simply list as command flow list {port_id}, but strip the detail rule
information, all the aged flows are sorted by the longest timeout time. For example, if
those rules be configured in the same time, ID 2 will be the first aged out rule, the next
will be ID 3, ID 1, ID 0:

testpmd> flow aged 0
Port 0 total aged flows: 4
ID Group Prio Attr
2 0 0 i--
3 0 0 i--
1 0 0 i--
0 0 0 i--

If attach destroy parameter, the command will destroy all the list aged flow rules.

testpmd> flow aged 0 destroy
Port 0 total aged flows: 4
ID Group Prio Attr
2 0 0 i–
3 0 0 i–
1 0 0 i–
0 0 0 i–

Flow rule #2 destroyed
Flow rule #3 destroyed
Flow rule #1 destroyed
Flow rule #0 destroyed
4 flows be destroyed
testpmd> flow aged 0
Port 0 total aged flows: 0

4.13.10. Sample QinQ flow rules

Before creating QinQ rule(s) the following commands should be issued to enable QinQ:

testpmd> port stop 0
testpmd> vlan set qinq_strip on 0

The above command sets the inner and outer TPID’s to 0x8100.

To change the TPID’s the following commands should be used:

testpmd> vlan set outer tpid 0xa100 0
testpmd> vlan set inner tpid 0x9100 0
testpmd> port start 0

Validate and create a QinQ rule on port 0 to steer traffic to a VF queue in a VM.

testpmd> flow validate 0 ingress pattern eth / vlan tci is 123 /
 vlan tci is 456 / end actions vf id 1 / queue index 0 / end
Flow rule #0 validated

testpmd> flow create 0 ingress pattern eth / vlan tci is 4 /
 vlan tci is 456 / end actions vf id 123 / queue index 0 / end
Flow rule #0 created

testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE

Validate and create a QinQ rule on port 0 to steer traffic to a queue on the host.

testpmd> flow validate 0 ingress pattern eth / vlan tci is 321 /
 vlan tci is 654 / end actions pf / queue index 0 / end
Flow rule #1 validated

testpmd> flow create 0 ingress pattern eth / vlan tci is 321 /
 vlan tci is 654 / end actions pf / queue index 1 / end
Flow rule #1 created

testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE
1 0 0 i- ETH VLAN VLAN=>PF QUEUE

4.13.11. Sample VXLAN encapsulation rule

VXLAN encapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 VXLAN outer header:

testpmd> set vxlan ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-src 127.0.0.1
 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

testpmd> set vxlan-with-vlan ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-src
 127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

testpmd> set vxlan-tos-ttl ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-tos 0
 ip-ttl 255 ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

IPv6 VXLAN outer header:

testpmd> set vxlan ip-version ipv6 vni 4 udp-src 4 udp-dst 4 ip-src ::1
 ip-dst ::2222 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

testpmd> set vxlan-with-vlan ip-version ipv6 vni 4 udp-src 4 udp-dst 4
 ip-src ::1 ip-dst ::2222 vlan-tci 34 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

testpmd> set vxlan-tos-ttl ip-version ipv6 vni 4 udp-src 4 udp-dst 4
 ip-tos 0 ip-ttl 255 ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
 queue index 0 / end

4.13.12. Sample NVGRE encapsulation rule

NVGRE encapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 NVGRE outer header:

testpmd> set nvgre ip-version ipv4 tni 4 ip-src 127.0.0.1 ip-dst 128.0.0.1
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
 queue index 0 / end

testpmd> set nvgre-with-vlan ip-version ipv4 tni 4 ip-src 127.0.0.1
 ip-dst 128.0.0.1 vlan-tci 34 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
 queue index 0 / end

IPv6 NVGRE outer header:

testpmd> set nvgre ip-version ipv6 tni 4 ip-src ::1 ip-dst ::2222
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
 queue index 0 / end

testpmd> set nvgre-with-vlan ip-version ipv6 tni 4 ip-src ::1 ip-dst ::2222
 vlan-tci 34 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
 queue index 0 / end

4.13.13. Sample L2 encapsulation rule

L2 encapsulation has default value pre-configured in testpmd
source code, those can be changed by using the following commands

L2 header:

testpmd> set l2_encap ip-version ipv4
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
 mplsoudp_decap / l2_encap / end

L2 with VXLAN header:

testpmd> set l2_encap-with-vlan ip-version ipv4 vlan-tci 34
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
 mplsoudp_decap / l2_encap / end

4.13.14. Sample L2 decapsulation rule

L2 decapsulation has default value pre-configured in testpmd
source code, those can be changed by using the following commands

L2 header:

testpmd> set l2_decap
testpmd> flow create 0 egress pattern eth / end actions l2_decap / mplsoudp_encap /
 queue index 0 / end

L2 with VXLAN header:

testpmd> set l2_encap-with-vlan
testpmd> flow create 0 egress pattern eth / end actions l2_encap / mplsoudp_encap /
 queue index 0 / end

4.13.15. Sample MPLSoGRE encapsulation rule

MPLSoGRE encapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 MPLSoGRE outer header:

testpmd> set mplsogre_encap ip-version ipv4 label 4
 ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsogre_encap / end

IPv4 MPLSoGRE with VLAN outer header:

testpmd> set mplsogre_encap-with-vlan ip-version ipv4 label 4
 ip-src 127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsogre_encap / end

IPv6 MPLSoGRE outer header:

testpmd> set mplsogre_encap ip-version ipv6 mask 4
 ip-src ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsogre_encap / end

IPv6 MPLSoGRE with VLAN outer header:

testpmd> set mplsogre_encap-with-vlan ip-version ipv6 mask 4
 ip-src ::1 ip-dst ::2222 vlan-tci 34
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsogre_encap / end

4.13.16. Sample MPLSoGRE decapsulation rule

MPLSoGRE decapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 MPLSoGRE outer header:

testpmd> set mplsogre_decap ip-version ipv4
testpmd> flow create 0 ingress pattern eth / ipv4 / gre / mpls / end actions
 mplsogre_decap / l2_encap / end

IPv4 MPLSoGRE with VLAN outer header:

testpmd> set mplsogre_decap-with-vlan ip-version ipv4
testpmd> flow create 0 ingress pattern eth / vlan / ipv4 / gre / mpls / end
 actions mplsogre_decap / l2_encap / end

IPv6 MPLSoGRE outer header:

testpmd> set mplsogre_decap ip-version ipv6
testpmd> flow create 0 ingress pattern eth / ipv6 / gre / mpls / end
 actions mplsogre_decap / l2_encap / end

IPv6 MPLSoGRE with VLAN outer header:

testpmd> set mplsogre_decap-with-vlan ip-version ipv6
testpmd> flow create 0 ingress pattern eth / vlan / ipv6 / gre / mpls / end
 actions mplsogre_decap / l2_encap / end

4.13.17. Sample MPLSoUDP encapsulation rule

MPLSoUDP encapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 MPLSoUDP outer header:

testpmd> set mplsoudp_encap ip-version ipv4 label 4 udp-src 5 udp-dst 10
 ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsoudp_encap / end

IPv4 MPLSoUDP with VLAN outer header:

testpmd> set mplsoudp_encap-with-vlan ip-version ipv4 label 4 udp-src 5
 udp-dst 10 ip-src 127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsoudp_encap / end

IPv6 MPLSoUDP outer header:

testpmd> set mplsoudp_encap ip-version ipv6 mask 4 udp-src 5 udp-dst 10
 ip-src ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsoudp_encap / end

IPv6 MPLSoUDP with VLAN outer header:

testpmd> set mplsoudp_encap-with-vlan ip-version ipv6 mask 4 udp-src 5
 udp-dst 10 ip-src ::1 ip-dst ::2222 vlan-tci 34
 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
 mplsoudp_encap / end

4.13.18. Sample MPLSoUDP decapsulation rule

MPLSoUDP decapsulation outer layer has default value pre-configured in testpmd
source code, those can be changed by using the following commands

IPv4 MPLSoUDP outer header:

testpmd> set mplsoudp_decap ip-version ipv4
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
 mplsoudp_decap / l2_encap / end

IPv4 MPLSoUDP with VLAN outer header:

testpmd> set mplsoudp_decap-with-vlan ip-version ipv4
testpmd> flow create 0 ingress pattern eth / vlan / ipv4 / udp / mpls / end
 actions mplsoudp_decap / l2_encap / end

IPv6 MPLSoUDP outer header:

testpmd> set mplsoudp_decap ip-version ipv6
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / mpls / end
 actions mplsoudp_decap / l2_encap / end

IPv6 MPLSoUDP with VLAN outer header:

testpmd> set mplsoudp_decap-with-vlan ip-version ipv6
testpmd> flow create 0 ingress pattern eth / vlan / ipv6 / udp / mpls / end
 actions mplsoudp_decap / l2_encap / end

4.13.19. Sample Raw encapsulation rule

Raw encapsulation configuration can be set by the following commands

Eecapsulating VxLAN:

testpmd> set raw_encap 4 eth src is 10:11:22:33:44:55 / vlan tci is 1
 inner_type is 0x0800 / ipv4 / udp dst is 4789 / vxlan vni
 is 2 / end_set
testpmd> flow create 0 egress pattern eth / ipv4 / end actions
 raw_encap index 4 / end

4.13.20. Sample Raw decapsulation rule

Raw decapsulation configuration can be set by the following commands

Decapsulating VxLAN:

testpmd> set raw_decap eth / ipv4 / udp / vxlan / end_set
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan / eth / ipv4 /
 end actions raw_decap / queue index 0 / end

4.13.21. Sample ESP rules

ESP rules can be created by the following commands:

testpmd> flow create 0 ingress pattern eth / ipv4 / esp spi is 1 / end actions
 queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / esp spi is 1 / end
 actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / esp spi is 1 / end actions
 queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / esp spi is 1 / end
 actions queue index 3 / end

4.13.22. Sample AH rules

AH rules can be created by the following commands:

testpmd> flow create 0 ingress pattern eth / ipv4 / ah spi is 1 / end actions
 queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / ah spi is 1 / end
 actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / ah spi is 1 / end actions
 queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / ah spi is 1 / end
 actions queue index 3 / end

4.13.23. Sample PFCP rules

PFCP rules can be created by the following commands(s_field need to be 1
if seid is set):

testpmd> flow create 0 ingress pattern eth / ipv4 / pfcp s_field is 0 / end
 actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / pfcp s_field is 1
 seid is 1 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / pfcp s_field is 0 / end
 actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / pfcp s_field is 1
 seid is 1 / end actions queue index 3 / end

4.14. BPF Functions

The following sections show functions to load/unload eBPF based filters.

4.14.1. bpf-load

Load an eBPF program as a callback for particular RX/TX queue:

testpmd> bpf-load rx|tx (portid) (queueid) (load-flags) (bpf-prog-filename)

The available load-flags are:

	J: use JIT generated native code, otherwise BPF interpreter will be used.

	M: assume input parameter is a pointer to rte_mbuf, otherwise assume it is a pointer to first segment’s data.

	-: none.

Note

You’ll need clang v3.7 or above to build bpf program you’d like to load

For example:

cd examples/bpf
clang -O2 -target bpf -c t1.c

Then to load (and JIT compile) t1.o at RX queue 0, port 1:

testpmd> bpf-load rx 1 0 J ./dpdk.org/examples/bpf/t1.o

To load (not JITed) t1.o at TX queue 0, port 0:

testpmd> bpf-load tx 0 0 - ./dpdk.org/examples/bpf/t1.o

4.14.2. bpf-unload

Unload previously loaded eBPF program for particular RX/TX queue:

testpmd> bpf-unload rx|tx (portid) (queueid)

For example to unload BPF filter from TX queue 0, port 0:

testpmd> bpf-unload tx 0 0

Network Interface Controller Drivers

	1. Overview of Networking Drivers

	2. Features Overview
	2.1. Speed capabilities

	2.2. Link status

	2.3. Link status event

	2.4. Removal event

	2.5. Queue status event

	2.6. Rx interrupt

	2.7. Lock-free Tx queue

	2.8. Fast mbuf free

	2.9. Free Tx mbuf on demand

	2.10. Queue start/stop

	2.11. MTU update

	2.12. Jumbo frame

	2.13. Scattered Rx

	2.14. LRO

	2.15. TSO

	2.16. Promiscuous mode

	2.17. Allmulticast mode

	2.18. Unicast MAC filter

	2.19. Multicast MAC filter

	2.20. RSS hash

	2.21. Inner RSS

	2.22. RSS key update

	2.23. RSS reta update

	2.24. VMDq

	2.25. SR-IOV

	2.26. DCB

	2.27. VLAN filter

	2.28. Flow control

	2.29. Flow API

	2.30. Rate limitation

	2.31. Traffic mirroring

	2.32. Inline crypto

	2.33. Inline protocol

	2.34. CRC offload

	2.35. VLAN offload

	2.36. QinQ offload

	2.37. L3 checksum offload

	2.38. L4 checksum offload

	2.39. Timestamp offload

	2.40. MACsec offload

	2.41. Inner L3 checksum

	2.42. Inner L4 checksum

	2.43. Packet type parsing

	2.44. Timesync

	2.45. Rx descriptor status

	2.46. Tx descriptor status

	2.47. Basic stats

	2.48. Extended stats

	2.49. Stats per queue

	2.50. FW version

	2.51. EEPROM dump

	2.52. Module EEPROM dump

	2.53. Registers dump

	2.54. LED

	2.55. Multiprocess aware

	2.56. BSD nic_uio

	2.57. Linux UIO

	2.58. Linux VFIO

	2.59. Other kdrv

	2.60. ARMv7

	2.61. ARMv8

	2.62. Power8

	2.63. x86-32

	2.64. x86-64

	2.65. Usage doc

	2.66. Design doc

	2.67. Perf doc

	2.68. Runtime Rx queue setup

	2.69. Runtime Tx queue setup

	2.70. Burst mode info

	2.71. Other dev ops not represented by a Feature

	3. Compiling and testing a PMD for a NIC
	3.1. Driver Compilation

	3.2. Running testpmd in Linux

	4. AF_PACKET Poll Mode Driver
	4.1. Options and inherent limitations

	4.2. Prerequisites

	4.3. Set up an af_packet interface

	5. AF_XDP Poll Mode Driver
	5.1. Options

	5.2. Prerequisites

	5.3. Set up an af_xdp interface

	5.4. Limitations

	6. ARK Poll Mode Driver
	6.1. Overview

	6.2. Device Parameters

	6.3. Data Path Interface

	6.4. Configuration Information

	6.5. Building DPDK

	6.6. Supported ARK RTL PCIe Instances

	6.7. Supported Operating Systems

	6.8. Supported Features

	6.9. Unsupported Features

	6.10. Pre-Requisites

	6.11. Usage Example

	7. Aquantia Atlantic DPDK Driver
	7.1. Supported features

	7.2. Experimental API features

	7.3. Configuration Information
	7.3.1. Application Programming Interface

	7.3.2. Limitations or Known issues

	7.3.3. Supported Chipsets and NICs

	8. AVP Poll Mode Driver
	8.1. Features and Limitations of the AVP PMD

	8.2. Prerequisites

	8.3. Launching a VM with an AVP type network attachment

	9. AXGBE Poll Mode Driver
	9.1. Supported Features

	9.2. Configuration Information

	9.3. Building DPDK

	9.4. Prerequisites and Pre-conditions

	9.5. Usage Example

	10. BNX2X Poll Mode Driver
	10.1. Supported Features

	10.2. Non-supported Features

	10.3. Co-existence considerations

	10.4. Supported QLogic NICs

	10.5. Prerequisites

	10.6. Pre-Installation Configuration
	10.6.1. Config File Options

	10.7. Driver compilation and testing

	10.8. Jumbo: Limitation

	10.9. SR-IOV: Prerequisites and sample Application Notes

	11. BNXT Poll Mode Driver
	11.1. CPU Support

	11.2. Kernel Dependency

	11.3. Compiling BNXT PMD

	11.4. Running BNXT PMD
	11.4.1. Running on VF

	11.4.2. Running on PF

	11.5. Features
	11.5.1. Port Control

	11.5.2. Packet Filtering

	11.5.3. Stateless Offloads

	11.5.4. VLAN Insert/Strip

	11.5.5. Time Synchronization

	11.5.6. Statistics Collection

	11.5.7. Generic Flow Offload

	11.6. Application Support
	11.6.1. Firmware

	11.6.2. Multiple Processes

	11.6.3. Runtime Queue Setup

	11.6.4. Descriptor Status

	11.6.5. Bonding

	11.7. Vector Processing

	11.8. Appendix
	11.8.1. Supported Chipsets and Adapters

	12. CXGBE Poll Mode Driver
	12.1. Features

	12.2. Limitations

	12.3. Supported Chelsio T5 NICs

	12.4. Supported Chelsio T6 NICs

	12.5. Supported SR-IOV Chelsio NICs

	12.6. Prerequisites

	12.7. Pre-Installation Configuration
	12.7.1. Config File Options

	12.7.2. Runtime Options

	12.8. Driver compilation and testing

	12.9. Linux
	12.9.1. Linux Installation

	12.9.2. Running testpmd

	12.9.3. Configuring SR-IOV Virtual Functions

	12.10. FreeBSD
	12.10.1. FreeBSD Installation

	12.10.2. Running testpmd

	12.11. Sample Application Notes
	12.11.1. Enable/Disable Flow Control

	12.11.2. Jumbo Mode

	13. DPAA Poll Mode Driver
	13.1. NXP DPAA (Data Path Acceleration Architecture - Gen 1)
	13.1.1. DPAA Overview

	13.2. DPAA DPDK - Poll Mode Driver Overview
	13.2.1. DPAA Bus driver

	13.2.2. DPAA NIC Driver (PMD)

	13.2.3. DPAA Mempool Driver

	13.3. Whitelisting & Blacklisting

	13.4. Supported DPAA SoCs

	13.5. Prerequisites

	13.6. Pre-Installation Configuration
	13.6.1. Config File Options

	13.6.2. Environment Variables

	13.7. Driver compilation and testing

	13.8. Limitations
	13.8.1. Platform Requirement

	13.8.2. Maximum packet length

	13.8.3. Multiprocess Support

	14. DPAA2 Poll Mode Driver
	14.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2)
	14.1.1. DPAA2 Overview

	14.1.2. Overview of DPAA2 Objects

	14.1.3. DPAA2 Objects for an Ethernet Network Interface

	14.1.4. Object Connections

	14.1.5. Interrupts

	14.2. DPAA2 DPDK - Poll Mode Driver Overview
	14.2.1. DPAA2 bus driver

	14.2.2. DPIO driver

	14.2.3. DPBP based Mempool driver

	14.2.4. DPAA2 NIC Driver

	14.3. Supported DPAA2 SoCs

	14.4. Prerequisites

	14.5. Pre-Installation Configuration
	14.5.1. Config File Options

	14.6. Driver compilation and testing

	14.7. Enabling logs

	14.8. Whitelisting & Blacklisting

	14.9. Limitations
	14.9.1. Platform Requirement

	14.9.2. Maximum packet length

	14.9.3. Other Limitations

	15. Driver for VM Emulated Devices
	15.1. Validated Hypervisors

	15.2. Recommended Guest Operating System in Virtual Machine

	15.3. Setting Up a KVM Virtual Machine

	15.4. Known Limitations of Emulated Devices

	16. ENA Poll Mode Driver
	16.1. Overview

	16.2. Management Interface

	16.3. Data Path Interface

	16.4. Configuration information

	16.5. Building DPDK

	16.6. Supported ENA adapters

	16.7. Supported Operating Systems

	16.8. Supported features

	16.9. Prerequisites

	16.10. Usage example

	17. ENETC Poll Mode Driver
	17.1. ENETC
	17.1.1. ENETC Overview

	17.1.2. ENETC Features

	17.1.3. NIC Driver (PMD)

	17.1.4. Supported ENETC SoCs

	17.1.5. Prerequisites

	17.1.6. Driver compilation and testing

	18. ENIC Poll Mode Driver
	18.1. How to obtain ENIC PMD integrated DPDK

	18.2. Configuration information

	18.3. SR-IOV mode utilization

	18.4. Generic Flow API support

	18.5. Overlay Offload

	18.6. Ingress VLAN Rewrite

	18.7. Vectorized Rx Handler

	18.8. Limitations

	18.9. How to build the suite

	18.10. Supported Cisco VIC adapters

	18.11. Supported Operating Systems

	18.12. Supported features

	18.13. Known bugs and unsupported features in this release

	18.14. Prerequisites

	18.15. Additional Reference

	18.16. Contact Information

	19. FM10K Poll Mode Driver
	19.1. FTAG Based Forwarding of FM10K

	19.2. Vector PMD for FM10K
	19.2.1. RX Constraints

	19.2.2. TX Constraint

	19.3. Limitations
	19.3.1. Switch manager

	19.3.2. Support for Switch Restart

	19.3.3. CRC stripping

	19.3.4. Maximum packet length

	19.3.5. Statistic Polling Frequency

	19.3.6. Interrupt mode

	20. HINIC Poll Mode Driver
	20.1. Features

	20.2. Prerequisites

	20.3. Pre-Installation Configuration
	20.3.1. Config File Options

	20.4. Driver compilation and testing

	20.5. Limitations or Known issues

	21. HNS3 Poll Mode Driver
	21.1. Features

	21.2. Prerequisites

	21.3. Pre-Installation Configuration
	21.3.1. Config File Options

	21.4. Driver compilation and testing

	21.5. Limitations or Known issues

	22. I40E Poll Mode Driver
	22.1. Features

	22.2. Prerequisites

	22.3. Recommended Matching List

	22.4. Pre-Installation Configuration
	22.4.1. Config File Options

	22.4.2. Runtime Config Options

	22.4.3. Vector RX Pre-conditions

	22.5. Driver compilation and testing

	22.6. SR-IOV: Prerequisites and sample Application Notes

	22.7. Sample Application Notes
	22.7.1. Vlan filter

	22.7.2. Flow Director

	22.7.3. Floating VEB

	22.7.4. Dynamic Device Personalization (DDP)

	22.7.5. Input set configuration

	22.7.6. Queue region configuration

	22.7.7. Generic flow API

	22.8. Limitations or Known issues
	22.8.1. MPLS packet classification

	22.8.2. 16 Byte RX Descriptor setting on DPDK VF

	22.8.3. Receive packets with Ethertype 0x88A8

	22.8.4. Incorrect Rx statistics when packet is oversize

	22.8.5. VF & TC max bandwidth setting

	22.8.6. TC TX scheduling mode setting

	22.8.7. VF performance is impacted by PCI extended tag setting

	22.8.8. Vlan strip of VF

	22.8.9. DCB function

	22.8.10. Global configuration warning

	22.9. High Performance of Small Packets on 40GbE NIC
	22.9.1. Use 16 Bytes RX Descriptor Size

	22.9.2. Input set requirement of each pctype for FDIR

	22.10. Example of getting best performance with l3fwd example
	22.10.1. Tx bytes affected by the link status change

	23. ICE Poll Mode Driver
	23.1. Prerequisites

	23.2. Pre-Installation Configuration
	23.2.1. Config File Options

	23.2.2. Runtime Config Options

	23.3. Driver compilation and testing

	23.4. Features
	23.4.1. Vector PMD

	23.4.2. Malicious driver detection (MDD)

	23.4.3. Device Config Function (DCF)

	23.5. Sample Application Notes
	23.5.1. Vlan filter

	23.6. Limitations or Known issues
	23.6.1. limitation

	24. IGB Poll Mode Driver
	24.1. Features

	24.2. Limitations or Known issues

	24.3. Supported Chipsets and NICs

	25. IGC Poll Mode Driver
	25.1. Config File Options
	25.1.1. Driver compilation and testing

	25.1.2. Supported Chipsets and NICs

	25.1.3. Sample Application Notes

	25.2. Vlan filter

	25.3. Flow Director

	26. IONIC Driver
	26.1. Identifying the Adapter

	26.2. Pre-Installation Configuration

	26.3. Building DPDK

	27. IPN3KE Poll Mode Driver
	27.1. Prerequisites

	27.2. Pre-Installation Configuration
	27.2.1. Config File Options

	27.2.2. Runtime Config Options

	27.3. Driver compilation and testing

	27.4. Sample Application Notes
	27.4.1. Packet TX/RX with FPGA Pass-through image

	27.4.2. HQoS and flow acceleration

	27.5. Limitations or Known issues
	27.5.1. 19.05 limitation

	28. IXGBE Driver
	28.1. Vector PMD for IXGBE
	28.1.1. RX Constraints

	28.1.2. TX Constraint

	28.2. Application Programming Interface

	28.3. Sample Application Notes
	28.3.1. l3fwd

	28.3.2. load_balancer

	28.4. Limitations or Known issues
	28.4.1. Malicious Driver Detection not Supported

	28.4.2. Statistics

	28.4.3. MTU setting

	28.4.4. VF MAC address setting

	28.4.5. X550 does not support legacy interrupt mode

	28.5. Inline crypto processing support

	28.6. Virtual Function Port Representors

	28.7. Supported Chipsets and NICs

	29. Intel Virtual Function Driver
	29.1. SR-IOV Mode Utilization in a DPDK Environment
	29.1.1. Physical and Virtual Function Infrastructure

	29.1.2. Validated Hypervisors

	29.1.3. Expected Guest Operating System in Virtual Machine

	29.2. Setting Up a KVM Virtual Machine Monitor

	29.3. DPDK SR-IOV PMD PF/VF Driver Usage Model
	29.3.1. Fast Host-based Packet Processing

	29.4. SR-IOV (PF/VF) Approach for Inter-VM Communication

	30. KNI Poll Mode Driver
	30.1. Usage

	30.2. Default interface configuration

	30.3. PMD arguments

	30.4. PMD log messages

	30.5. PMD testing

	31. LiquidIO VF Poll Mode Driver
	31.1. Supported LiquidIO Adapters

	31.2. Pre-Installation Configuration

	31.3. SR-IOV: Prerequisites and Sample Application Notes

	31.4. Limitations
	31.4.1. VF MTU

	31.4.2. VLAN offload

	31.4.3. Ring size

	31.4.4. CRC stripping

	32. Memif Poll Mode Driver
	32.1. Shared memory

	32.2. Zero-copy slave
	32.2.1. Example: testpmd

	32.2.2. Example: testpmd and VPP

	32.2.3. Example: testpmd memif loopback

	33. MLX4 poll mode driver library
	33.1. Implementation details

	33.2. Configuration
	33.2.1. Compilation options

	33.2.2. Environment variables

	33.2.3. Run-time configuration

	33.2.4. Kernel module parameters

	33.3. Limitations

	33.4. Prerequisites
	33.4.1. Current RDMA core package and Linux kernel (recommended)

	33.4.2. Mellanox OFED as a fallback

	33.5. Quick Start Guide

	33.6. Performance tuning

	33.7. Usage example

	34. MLX5 poll mode driver
	34.1. Design

	34.2. Features

	34.3. Limitations

	34.4. Statistics

	34.5. Configuration
	34.5.1. Compilation options

	34.5.2. Environment variables

	34.5.3. Run-time configuration

	34.5.4. Firmware configuration

	34.6. Prerequisites
	34.6.1. Installation

	34.7. Supported NICs

	34.8. Quick Start Guide on OFED/EN

	34.9. Enable switchdev mode

	34.10. Performance tuning

	34.11. Supported hardware offloads

	34.12. Notes for metadata

	34.13. Notes for rte_flow

	34.14. Notes for testpmd

	34.15. Usage example

	34.16. How to dump flows

	35. MVNETA Poll Mode Driver
	35.1. Features

	35.2. Limitations

	35.3. Prerequisites

	35.4. Pre-Installation Configuration
	35.4.1. Config File Options

	35.4.2. Runtime options

	35.5. Building DPDK

	35.6. Usage Example

	36. MVPP2 Poll Mode Driver
	36.1. Features

	36.2. Limitations

	36.3. Prerequisites

	36.4. Config File Options

	36.5. Building DPDK

	36.6. Usage Example

	36.7. Extended stats

	36.8. QoS Configuration
	36.8.1. Configuration syntax

	36.9. Flow API
	36.9.1. Supported flow actions

	36.9.2. Supported flow items

	36.9.3. Classifier match engine

	36.9.4. Flow rules usage example

	36.9.5. Limitations

	36.10. Traffic metering and policing
	36.10.1. Limitations

	36.10.2. Usage example

	36.11. Traffic Management API
	36.11.1. Limitations

	36.11.2. Usage example

	37. Netvsc poll mode driver
	37.1. Features and Limitations of Hyper-V PMD

	37.2. Installation

	37.3. Prerequisites

	37.4. Netvsc PMD arguments

	38. NFB poll mode driver library
	38.1. Prerequisites
	38.1.1. Versions of the packages

	38.2. Configuration

	38.3. Using the NFB PMD

	38.4. NFB card architecture

	38.5. Limitations

	38.6. Example of usage

	39. NFP poll mode driver library
	39.1. Dependencies

	39.2. Building the software

	39.3. Driver compilation and testing

	39.4. Using the PF

	39.5. PF multiport support

	39.6. PF multiprocess support

	39.7. System configuration

	40. NULL Poll Mode Driver
	40.1. Usage

	40.2. Runtime Config Options

	41. OCTEON TX Poll Mode driver
	41.1. Features

	41.2. Supported OCTEON TX SoCs

	41.3. Unsupported features

	41.4. Prerequisites

	41.5. Pre-Installation Configuration
	41.5.1. Config File Options

	41.5.2. Driver compilation and testing

	41.6. Initialization
	41.6.1. Device arguments

	41.6.2. Dependency

	41.7. Limitations
	41.7.1. octeontx_fpavf external mempool handler dependency

	41.7.2. CRC stripping

	41.7.3. Maximum packet length

	41.7.4. Maximum mempool size

	42. OCTEON TX2 Poll Mode driver
	42.1. Features

	42.2. Prerequisites

	42.3. Compile time Config Options

	42.4. Driver compilation and testing

	42.5. Runtime Config Options

	42.6. Traffic Management API

	42.7. Limitations
	42.7.1. mempool_octeontx2 external mempool handler dependency

	42.7.2. CRC stripping

	42.7.3. Multicast MAC filtering

	42.7.4. SDP interface support

	42.7.5. Inline Protocol Processing

	42.8. Debugging Options

	42.9. RTE Flow Support

	43. PFE Poll Mode Driver
	43.1. PFE
	43.1.1. PFE Overview

	43.1.2. PFE Features

	43.1.3. Supported PFE SoCs

	43.1.4. Prerequisites

	43.1.5. Driver compilation and testing

	43.1.6. Limitations

	44. QEDE Poll Mode Driver
	44.1. Supported Features

	44.2. Non-supported Features

	44.3. Co-existence considerations

	44.4. Supported QLogic Adapters

	44.5. Prerequisites
	44.5.1. Performance note

	44.5.2. Config File Options

	44.5.3. Config notes

	44.6. Driver compilation and testing

	44.7. RTE Flow Support

	44.8. SR-IOV: Prerequisites and Sample Application Notes

	45. Solarflare libefx-based Poll Mode Driver
	45.1. Features

	45.2. Non-supported Features

	45.3. Limitations
	45.3.1. Equal stride super-buffer mode

	45.4. Tunnels support

	45.5. Flow API support
	45.5.1. Ethernet destination individual/group match

	45.5.2. Exceptions to flow rules

	45.6. Supported NICs

	45.7. Prerequisites

	45.8. Pre-Installation Configuration
	45.8.1. Config File Options

	45.8.2. Per-Device Parameters

	45.8.3. Dynamic Logging Parameters

	46. Soft NIC Poll Mode Driver
	46.1. Flow

	46.2. Supported Operating Systems

	46.3. Build options

	46.4. Soft NIC PMD arguments

	46.5. Soft NIC testing

	46.6. Soft NIC Firmware

	46.7. QoS API Support:

	46.8. Flow API support:
	46.8.1. Example:

	47. SZEDATA2 poll mode driver library
	47.1. Prerequisites
	47.1.1. Versions of the packages

	47.2. Configuration

	47.3. Using the SZEDATA2 PMD

	47.4. NFB card architecture

	47.5. Limitations

	47.6. Example of usage

	48. Tun|Tap Poll Mode Driver
	48.1. Flow API support
	48.1.1. Examples of testpmd flow rules

	48.2. Multi-process sharing

	48.3. Example

	48.4. RSS specifics

	48.5. Systems supporting flow API

	49. ThunderX NICVF Poll Mode Driver
	49.1. Features

	49.2. Supported ThunderX SoCs

	49.3. Prerequisites

	49.4. Pre-Installation Configuration
	49.4.1. Config File Options

	49.5. Driver compilation and testing

	49.6. Linux
	49.6.1. SR-IOV: Prerequisites and sample Application Notes

	49.6.2. Multiple Queue Set per DPDK port configuration

	49.6.3. LBK HW Access

	49.6.4. Example device binding

	49.6.5. Thunder-nic VF’s

	49.7. Debugging Options

	49.8. Module params
	49.8.1. skip_data_bytes

	49.9. Limitations
	49.9.1. CRC stripping

	49.9.2. Maximum packet length

	49.9.3. Maximum packet segments

	49.9.4. skip_data_bytes

	50. VDEV_NETVSC driver
	50.1. Implementation details

	50.2. Build options

	50.3. Run-time parameters

	51. Poll Mode Driver for Emulated Virtio NIC
	51.1. Virtio Implementation in DPDK

	51.2. Features and Limitations of virtio PMD

	51.3. Prerequisites

	51.4. Virtio with kni vhost Back End

	51.5. Virtio with qemu virtio Back End

	51.6. Virtio PMD Rx/Tx Callbacks

	51.7. Interrupt mode
	51.7.1. Prerequisites for Rx interrupts

	51.7.2. Example

	51.8. Virtio PMD arguments

	51.9. Virtio paths Selection and Usage
	51.9.1. Virtio paths Selection

	51.9.2. Rx/Tx callbacks of each Virtio path

	51.9.3. Virtio paths Support Status from Release to Release

	51.9.4. QEMU Support Status

	51.9.5. How to Debug

	52. Poll Mode Driver that wraps vhost library
	52.1. Vhost Implementation in DPDK

	52.2. Features and Limitations of vhost PMD

	52.3. Vhost PMD arguments

	52.4. Vhost PMD event handling

	52.5. Vhost PMD with testpmd application

	53. Poll Mode Driver for Paravirtual VMXNET3 NIC
	53.1. VMXNET3 Implementation in the DPDK

	53.2. Features and Limitations of VMXNET3 PMD

	53.3. Prerequisites

	53.4. VMXNET3 with a Native NIC Connected to a vSwitch

	53.5. VMXNET3 Chaining VMs Connected to a vSwitch

	54. Libpcap and Ring Based Poll Mode Drivers
	54.1. Using the Drivers from the EAL Command Line
	54.1.1. Libpcap-based PMD

	54.1.2. Rings-based PMD

	54.1.3. Using the Poll Mode Driver from an Application

	55. Fail-safe poll mode driver library
	55.1. Features

	55.2. Compilation option

	55.3. Using the Fail-safe PMD from the EAL command line
	55.3.1. Fail-safe command line parameters

	55.3.2. Usage example

	55.4. Using the Fail-safe PMD from an application

	55.5. Plug-in feature

	55.6. Plug-out feature

	55.7. Fail-safe glossary

1. Overview of Networking Drivers

The networking drivers may be classified in two categories:

	physical for real devices

	virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for
SR-IOV.
The interface seen in the virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions
of these devices.
The bottom half part of ethdev is implemented by the drivers.
Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties,
portability or even documentation availability.
Most of these differences are summarized below.

More details about features can be found in Features Overview.

Table 1.1 Features availability in networking drivers

	Feature

	a
f
_
x
d
p

	a
f
p
a
c
k
e
t

	a
r
k

	a
t
l
a
n
t
i
c

	a
v
p

	a
x
g
b
e

	b
n
x
2
x

	b
n
x
t

	c
x
g
b
e

	c
x
g
b
e
v
f

	d
p
a
a

	d
p
a
a
2

	e
1
0
0
0

	e
n
a

	e
n
e
t
c

	e
n
i
c

	f
a
i
l
s
a
f
e

	f
m
1
0
k

	f
m
1
0
k
v
f

	h
i
n
i
c

	h
n
s
3

	h
n
s
3
v
f

	i
4
0
e

	i
4
0
e
v
f

	i
a
v
f

	i
c
e

	i
g
b

	i
g
b
v
f

	i
g
c

	i
o
n
i
c

	i
p
n
3
k
e

	i
x
g
b
e

	i
x
g
b
e
v
f

	l
i
q
u
i
d
i
o

	m
e
m
i
f

	m
l
x
4

	m
l
x
5

	m
v
n
e
t
a

	m
v
p
p
2

	n
e
t
v
s
c

	n
f
b

	n
f
p

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
c
t
e
o
n
t
x
2
.
v
e
c

	o
c
t
e
o
n
t
x
2
v
f

	p
c
a
p

	p
f
e

	q
e
d
e

	q
e
d
e
v
f

	s
f
c
_
e
f
x

	s
z
e
d
a
t
a
2

	t
a
p

	t
h
u
n
d
e
r
x

	v
h
o
s
t

	v
i
r
t
i
o

	v
m
x
n
e
t
3

	Speed capabilities

	
	
	Y

	Y

	
	Y

	P

	Y

	Y

	Y

	P

	Y

	P

	
	
	Y

	
	P

	P

	Y

	
	
	Y

	
	Y

	Y

	P

	
	Y

	Y

	Y

	Y

	
	Y

	
	P

	Y

	Y

	Y

	P

	P

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	P

	P

	Y

	
	P

	P

	Link status

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Link status event

	
	
	
	Y

	
	
	Y

	Y

	
	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	
	
	Y

	
	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	Y

	Y

	
	
	
	
	Y

	Y

	Y

	Y

	Y

	
	
	
	
	Y

	
	Y

	Y

	
	Y

	Y

	Removal event

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Queue status event

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	

	Rx interrupt

	
	
	
	
	
	
	
	Y

	
	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	
	
	
	
	Y

	
	Y

	
	Y

	
	
	
	
	Y

	
	Y

	
	
	Y

	

	Lock-free Tx queue

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	Fast mbuf free

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	P

	P

	
	P

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	Free Tx mbuf on demand

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	Y

	
	

	Queue start/stop

	
	
	Y

	Y

	
	
	
	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	
	
	
	Y

	Y

	
	
	Y

	Y

	Y

	P

	Y

	Y

	Y

	
	
	
	
	Y

	Y

	
	Y

	
	Y

	Y

	Runtime Rx queue setup

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	Y

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	Runtime Tx queue setup

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	Y

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	Burst mode info

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	Y

	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	MTU update

	Y

	
	
	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Jumbo frame

	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	
	
	Y

	Scattered Rx

	
	
	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	
	Y

	
	
	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	Y

	
	P

	

	LRO

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	Y

	
	Y

	Y

	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	TSO

	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	
	
	
	
	Y

	
	Y

	
	Y

	
	
	Y

	Y

	Y

	
	
	
	
	
	Y

	Promiscuous mode

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Allmulticast mode

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Unicast MAC filter

	
	
	
	Y

	Y

	
	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	
	
	
	Y

	Y

	
	
	Y

	
	
	Y

	Y

	Multicast MAC filter

	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	
	Y

	
	
	Y

	
	Y

	
	Y

	Y

	
	
	
	Y

	Y

	
	Y

	
	
	
	
	Y

	Y

	
	
	
	Y

	Y

	Y

	
	Y

	
	
	Y

	

	RSS hash

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	
	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	
	
	Y

	RSS key update

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	
	
	
	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	
	
	

	RSS reta update

	
	
	
	Y

	
	
	
	Y

	
	
	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	
	
	
	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	
	
	

	Inner RSS

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	VMDq

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SR-IOV

	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	
	
	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	Y

	
	
	
	
	Y

	Y

	
	
	Y

	
	
	

	DCB

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	VLAN filter

	
	
	
	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	
	
	
	Y

	Y

	Y

	Y

	
	
	Y

	Y

	
	
	
	
	
	Y

	Y

	Flow control

	
	
	
	Y

	
	
	
	Y

	Y

	
	Y

	Y

	Y

	
	
	
	Y

	
	
	Y

	Y

	
	Y

	
	
	
	Y

	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	
	Y

	
	
	
	

	Flow API

	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	P

	
	Y

	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	Y

	
	Y

	
	Y

	
	
	
	

	Rate limitation

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	Traffic mirroring

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Inline crypto

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Inline protocol

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	Y

	
	
	
	
	
	
	
	
	
	
	

	CRC offload

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	
	
	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	P

	P

	Y

	
	Y

	Y

	Y

	Y

	
	
	
	Y

	
	
	
	
	
	Y

	Y

	
	
	
	Y

	
	
	

	VLAN offload

	
	
	
	Y

	Y

	
	
	Y

	Y

	Y

	
	Y

	Y

	
	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	P

	P

	P

	
	
	Y

	
	
	
	
	Y

	P

	Y

	Y

	Y

	
	
	Y

	Y

	P

	
	
	P

	
	
	Y

	QinQ offload

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	P

	P

	
	P

	Y

	Y

	
	
	Y

	P

	P

	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	L3 checksum offload

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	P

	Y

	
	Y

	Y

	Y

	Y

	Y

	P

	P

	P

	P

	Y

	Y

	Y

	Y

	Y

	P

	P

	Y

	
	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	
	

	L4 checksum offload

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	P

	Y

	
	Y

	Y

	Y

	Y

	Y

	P

	P

	P

	P

	Y

	Y

	Y

	Y

	Y

	P

	P

	Y

	
	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	
	Y

	Timestamp offload

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	MACsec offload

	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Inner L3 checksum

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	Y

	P

	P

	
	P

	
	
	
	
	Y

	P

	P

	Y

	
	Y

	Y

	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	Y

	
	Y

	
	
	
	
	
	

	Inner L4 checksum

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	Y

	P

	P

	
	P

	
	
	
	
	Y

	P

	P

	Y

	
	Y

	Y

	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	Y

	
	Y

	
	
	
	
	
	

	Packet type parsing

	
	
	
	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	
	Y

	Timesync

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	Rx descriptor status

	
	
	
	Y

	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	Tx descriptor status

	
	
	
	Y

	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	Basic stats

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Extended stats

	
	
	
	Y

	
	
	Y

	Y

	
	
	Y

	Y

	
	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	
	Y

	P

	Y

	Stats per queue

	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	
	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	
	
	
	
	Y

	Y

	
	Y

	
	
	
	Y

	Y

	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	
	Y

	
	Y

	
	Y

	Y

	FW version

	
	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	
	
	
	Y

	
	
	
	Y

	Y

	
	Y

	
	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	

	EEPROM dump

	
	
	
	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Module EEPROM dump

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	Y

	Y

	
	
	
	Y

	Y

	
	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	Registers dump

	
	
	
	Y

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	Y

	
	
	

	LED

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Multiprocess aware

	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	
	Y

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	
	Y

	

	BSD nic_uio

	
	
	
	
	
	
	
	
	Y

	
	
	
	Y

	
	
	Y

	
	Y

	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	Y

	

	Linux UIO

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	
	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	Y

	Y

	Linux VFIO

	
	
	
	
	
	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	
	
	
	
	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	Y

	
	Y

	Y

	Other kdrv

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	

	ARMv7

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	Y

	
	
	
	
	
	Y

	
	
	Y

	

	ARMv8

	
	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	
	
	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	
	
	
	
	
	
	Y

	Y

	
	Y

	
	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	
	Y

	

	Power8

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	Y

	
	
	
	

	x86-32

	
	
	
	Y

	
	Y

	
	Y

	Y

	Y

	
	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	Y

	Y

	Y

	
	
	Y

	
	
	
	
	
	
	Y

	
	Y

	Y

	
	
	Y

	
	Y

	Y

	Y

	x86-64

	Y

	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	
	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	
	Y

	Y

	Y

	
	
	
	
	Y

	
	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Usage doc

	
	
	Y

	
	
	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	Y

	
	Y

	Y

	Design doc

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Perf doc

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Note

Features marked with “P” are partially supported. Refer to the appropriate
NIC guide in the following sections for details.

2. Features Overview

This section explains the supported features that are listed in the
Overview of Networking Drivers.

As a guide to implementers it also shows the structs where the features are
defined and the APIs that can be use to get/set the values.

Following tags used for feature details, these are from driver point of view:

[uses] : Driver uses some kind of input from the application.

[implements] : Driver implements a functionality.

[provides] : Driver provides some kind of data to the application. It is possible
to provide data by implementing some function, but “provides” is used
for cases where provided data can’t be represented simply by a function.

[related] : Related API with that feature.

2.1. Speed capabilities

Supports getting the speed capabilities that the current device is capable of.

	[provides] rte_eth_dev_info: speed_capa:ETH_LINK_SPEED_*.

	[related] API: rte_eth_dev_info_get().

2.2. Link status

Supports getting the link speed, duplex mode and link state (up/down).

	[implements] eth_dev_ops: link_update.

	[implements] rte_eth_dev_data: dev_link.

	[related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.3. Link status event

Supports Link Status Change interrupts.

	[uses] user config: dev_conf.intr_conf.lsc.

	[uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_LSC.

	[uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_LSC.

	[implements] rte_eth_dev_data: dev_link.

	[provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_LSC.

	[related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.4. Removal event

Supports device removal interrupts.

	[uses] user config: dev_conf.intr_conf.rmv.

	[uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_RMV.

	[uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_RMV.

	[provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_RMV.

2.5. Queue status event

Supports queue enable/disable events.

	[uses] rte_eth_event_type: RTE_ETH_EVENT_QUEUE_STATE.

2.6. Rx interrupt

Supports Rx interrupts.

	[uses] user config: dev_conf.intr_conf.rxq.

	[implements] eth_dev_ops: rx_queue_intr_enable, rx_queue_intr_disable.

	[related] API: rte_eth_dev_rx_intr_enable(), rte_eth_dev_rx_intr_disable().

2.7. Lock-free Tx queue

If a PMD advertises DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can
invoke rte_eth_tx_burst() concurrently on the same Tx queue without SW lock.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MT_LOCKFREE.

	[provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MT_LOCKFREE.

	[related] API: rte_eth_tx_burst().

2.8. Fast mbuf free

Supports optimization for fast release of mbufs following successful Tx.
Requires that per queue, all mbufs come from the same mempool and has refcnt = 1.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

	[provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

2.9. Free Tx mbuf on demand

Supports freeing consumed buffers on a Tx ring.

	[implements] eth_dev_ops: tx_done_cleanup.

	[related] API: rte_eth_tx_done_cleanup().

2.10. Queue start/stop

Supports starting/stopping a specific Rx/Tx queue of a port.

	[implements] eth_dev_ops: rx_queue_start, rx_queue_stop, tx_queue_start,
tx_queue_stop.

	[related] API: rte_eth_dev_rx_queue_start(), rte_eth_dev_rx_queue_stop(),
rte_eth_dev_tx_queue_start(), rte_eth_dev_tx_queue_stop().

2.11. MTU update

Supports updating port MTU.

	[implements] eth_dev_ops: mtu_set.

	[implements] rte_eth_dev_data: mtu.

	[provides] rte_eth_dev_info: max_rx_pktlen.

	[related] API: rte_eth_dev_set_mtu(), rte_eth_dev_get_mtu().

2.12. Jumbo frame

Supports Rx jumbo frames.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_JUMBO_FRAME.
dev_conf.rxmode.max_rx_pkt_len.

	[related] rte_eth_dev_info: max_rx_pktlen.

	[related] API: rte_eth_dev_set_mtu().

2.13. Scattered Rx

Supports receiving segmented mbufs.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SCATTER.

	[implements] datapath: Scattered Rx function.

	[implements] rte_eth_dev_data: scattered_rx.

	[provides] eth_dev_ops: rxq_info_get:scattered_rx.

	[related] eth_dev_ops: rx_pkt_burst.

2.14. LRO

Supports Large Receive Offload.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TCP_LRO.
dev_conf.rxmode.max_lro_pkt_size.

	[implements] datapath: LRO functionality.

	[implements] rte_eth_dev_data: lro.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_LRO, mbuf.tso_segsz.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_TCP_LRO.

	[provides] rte_eth_dev_info: max_lro_pkt_size.

2.15. TSO

Supports TCP Segmentation Offloading.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_TCP_TSO.

	[uses] rte_eth_desc_lim: nb_seg_max, nb_mtu_seg_max.

	[uses] mbuf: mbuf.ol_flags: PKT_TX_TCP_SEG, PKT_TX_IPV4, PKT_TX_IPV6, PKT_TX_IP_CKSUM.

	[uses] mbuf: mbuf.tso_segsz, mbuf.l2_len, mbuf.l3_len, mbuf.l4_len.

	[implements] datapath: TSO functionality.

	[provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_TCP_TSO,DEV_TX_OFFLOAD_UDP_TSO.

2.16. Promiscuous mode

Supports enabling/disabling promiscuous mode for a port.

	[implements] eth_dev_ops: promiscuous_enable, promiscuous_disable.

	[implements] rte_eth_dev_data: promiscuous.

	[related] API: rte_eth_promiscuous_enable(), rte_eth_promiscuous_disable(),
rte_eth_promiscuous_get().

2.17. Allmulticast mode

Supports enabling/disabling receiving multicast frames.

	[implements] eth_dev_ops: allmulticast_enable, allmulticast_disable.

	[implements] rte_eth_dev_data: all_multicast.

	[related] API: rte_eth_allmulticast_enable(),
rte_eth_allmulticast_disable(), rte_eth_allmulticast_get().

2.18. Unicast MAC filter

Supports adding MAC addresses to enable whitelist filtering to accept packets.

	[implements] eth_dev_ops: mac_addr_set, mac_addr_add, mac_addr_remove.

	[implements] rte_eth_dev_data: mac_addrs.

	[related] API: rte_eth_dev_default_mac_addr_set(),
rte_eth_dev_mac_addr_add(), rte_eth_dev_mac_addr_remove(),
rte_eth_macaddr_get().

2.19. Multicast MAC filter

Supports setting multicast addresses to filter.

	[implements] eth_dev_ops: set_mc_addr_list.

	[related] API: rte_eth_dev_set_mc_addr_list().

2.20. RSS hash

Supports RSS hashing on RX.

	[uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_RSS_FLAG.

	[uses] user config: dev_conf.rx_adv_conf.rss_conf.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_RSS_HASH.

	[provides] rte_eth_dev_info: flow_type_rss_offloads.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.21. Inner RSS

Supports RX RSS hashing on Inner headers.

	[uses] rte_flow_action_rss: level.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_RSS_HASH.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.22. RSS key update

Supports configuration of Receive Side Scaling (RSS) hash computation. Updating
Receive Side Scaling (RSS) hash key.

	[implements] eth_dev_ops: rss_hash_update, rss_hash_conf_get.

	[provides] rte_eth_dev_info: hash_key_size.

	[related] API: rte_eth_dev_rss_hash_update(),
rte_eth_dev_rss_hash_conf_get().

2.23. RSS reta update

Supports updating Redirection Table of the Receive Side Scaling (RSS).

	[implements] eth_dev_ops: reta_update, reta_query.

	[provides] rte_eth_dev_info: reta_size.

	[related] API: rte_eth_dev_rss_reta_update(), rte_eth_dev_rss_reta_query().

2.24. VMDq

Supports Virtual Machine Device Queues (VMDq).

	[uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_FLAG.

	[uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

	[uses] user config: dev_conf.rx_adv_conf.vmdq_rx_conf.

	[uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

	[uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

2.25. SR-IOV

Driver supports creating Virtual Functions.

	[implements] rte_eth_dev_data: sriov.

2.26. DCB

Supports Data Center Bridging (DCB).

	[uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_DCB_FLAG.

	[uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

	[uses] user config: dev_conf.rx_adv_conf.dcb_rx_conf.

	[uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

	[uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

	[implements] eth_dev_ops: get_dcb_info.

	[related] API: rte_eth_dev_get_dcb_info().

2.27. VLAN filter

Supports filtering of a VLAN Tag identifier.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_FILTER.

	[implements] eth_dev_ops: vlan_filter_set.

	[related] API: rte_eth_dev_vlan_filter().

2.28. Flow control

Supports configuring link flow control.

	[implements] eth_dev_ops: flow_ctrl_get, flow_ctrl_set,
priority_flow_ctrl_set.

	[related] API: rte_eth_dev_flow_ctrl_get(), rte_eth_dev_flow_ctrl_set(),
rte_eth_dev_priority_flow_ctrl_set().

2.29. Flow API

Supports the DPDK Flow API for generic filtering.

	[implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_GENERIC.

	[implements] rte_flow_ops: All.

2.30. Rate limitation

Supports Tx rate limitation for a queue.

	[implements] eth_dev_ops: set_queue_rate_limit.

	[related] API: rte_eth_set_queue_rate_limit().

2.31. Traffic mirroring

Supports adding traffic mirroring rules.

	[implements] eth_dev_ops: mirror_rule_set, mirror_rule_reset.

	[related] API: rte_eth_mirror_rule_set(), rte_eth_mirror_rule_reset().

2.32. Inline crypto

Supports inline crypto processing defined by rte_security library to perform crypto
operations of security protocol while packet is received in NIC. NIC is not aware
of protocol operations. See Security library and PMD documentation for more details.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SECURITY,

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_SECURITY.

	[implements] rte_security_ops: session_create, session_update,
session_stats_get, session_destroy, set_pkt_metadata, capabilities_get.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_SECURITY,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_SECURITY.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_SEC_OFFLOAD,
mbuf.ol_flags:PKT_TX_SEC_OFFLOAD, mbuf.ol_flags:PKT_RX_SEC_OFFLOAD_FAILED.

	[provides] rte_security_ops, capabilities_get: action: RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO

2.33. Inline protocol

Supports inline protocol processing defined by rte_security library to perform
protocol processing for the security protocol (e.g. IPsec, MACSEC) while the
packet is received at NIC. The NIC is capable of understanding the security
protocol operations. See security library and PMD documentation for more details.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SECURITY,

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_SECURITY.

	[implements] rte_security_ops: session_create, session_update,
session_stats_get, session_destroy, set_pkt_metadata, get_userdata,
capabilities_get.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_SECURITY,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_SECURITY.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_SEC_OFFLOAD,
mbuf.ol_flags:PKT_TX_SEC_OFFLOAD, mbuf.ol_flags:PKT_RX_SEC_OFFLOAD_FAILED.

	[provides] rte_security_ops, capabilities_get: action: RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL

2.34. CRC offload

Supports CRC stripping by hardware.
A PMD assumed to support CRC stripping by default. PMD should advertise if it supports keeping CRC.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_KEEP_CRC.

2.35. VLAN offload

Supports VLAN offload to hardware.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_STRIP,DEV_RX_OFFLOAD_VLAN_FILTER,DEV_RX_OFFLOAD_VLAN_EXTEND.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_VLAN_INSERT.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_VLAN, mbuf.vlan_tci.

	[implements] eth_dev_ops: vlan_offload_set.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_VLAN_STRIPPED, mbuf.ol_flags:PKT_RX_VLAN mbuf.vlan_tci.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_VLAN_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_VLAN_INSERT.

	[related] API: rte_eth_dev_set_vlan_offload(),
rte_eth_dev_get_vlan_offload().

2.36. QinQ offload

Supports QinQ (queue in queue) offload.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_QINQ_STRIP.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_QINQ_INSERT.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_QINQ, mbuf.vlan_tci_outer.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_QINQ_STRIPPED, mbuf.ol_flags:PKT_RX_QINQ,
mbuf.ol_flags:PKT_RX_VLAN_STRIPPED, mbuf.ol_flags:PKT_RX_VLAN
mbuf.vlan_tci, mbuf.vlan_tci_outer.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_QINQ_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_QINQ_INSERT.

2.37. L3 checksum offload

Supports L3 checksum offload.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_IPV4_CKSUM.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_IPV4_CKSUM.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM,
mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6.

	[uses] mbuf: mbuf.l2_len, mbuf.l3_len.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_IP_CKSUM_UNKNOWN |
PKT_RX_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_NONE.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_IPV4_CKSUM.

2.38. L4 checksum offload

Supports L4 checksum offload.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM,DEV_RX_OFFLOAD_SCTP_CKSUM.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6,
mbuf.ol_flags:PKT_TX_L4_NO_CKSUM | PKT_TX_TCP_CKSUM |
PKT_TX_SCTP_CKSUM | PKT_TX_UDP_CKSUM.

	[uses] mbuf: mbuf.l2_len, mbuf.l3_len.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_L4_CKSUM_UNKNOWN |
PKT_RX_L4_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_NONE.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM,DEV_RX_OFFLOAD_SCTP_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

2.39. Timestamp offload

Supports Timestamp.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TIMESTAMP.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_TIMESTAMP.

	[provides] mbuf: mbuf.timestamp.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa: DEV_RX_OFFLOAD_TIMESTAMP.

	[related] eth_dev_ops: read_clock.

2.40. MACsec offload

Supports MACsec.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_MACSEC_STRIP.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MACSEC_INSERT.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_MACSEC.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_MACSEC_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MACSEC_INSERT.

2.41. Inner L3 checksum

Supports inner packet L3 checksum.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM,
mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6,
mbuf.ol_flags:PKT_TX_OUTER_IP_CKSUM,
mbuf.ol_flags:PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6.

	[uses] mbuf: mbuf.outer_l2_len, mbuf.outer_l3_len.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_EIP_CKSUM_BAD.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

2.42. Inner L4 checksum

Supports inner packet L4 checksum.

	[uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_OUTER_UDP_CKSUM.

	[provides] mbuf: mbuf.ol_flags:PKT_RX_OUTER_L4_CKSUM_UNKNOWN |
PKT_RX_OUTER_L4_CKSUM_BAD | PKT_RX_OUTER_L4_CKSUM_GOOD | PKT_RX_OUTER_L4_CKSUM_INVALID.

	[uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_OUTER_UDP_CKSUM.

	[uses] mbuf: mbuf.ol_flags:PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6.
mbuf.ol_flags:PKT_TX_OUTER_UDP_CKSUM.

	[uses] mbuf: mbuf.outer_l2_len, mbuf.outer_l3_len.

	[provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_OUTER_UDP_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_OUTER_UDP_CKSUM.

2.43. Packet type parsing

Supports packet type parsing and returns a list of supported types.
Allows application to set ptypes it is interested in.

	[implements] eth_dev_ops: dev_supported_ptypes_get,

	[related] API: rte_eth_dev_get_supported_ptypes(),
rte_eth_dev_set_ptypes(), dev_ptypes_set.

	[provides] mbuf: mbuf.packet_type.

2.44. Timesync

Supports IEEE1588/802.1AS timestamping.

	[implements] eth_dev_ops: timesync_enable, timesync_disable
timesync_read_rx_timestamp, timesync_read_tx_timestamp,
timesync_adjust_time, timesync_read_time, timesync_write_time.

	[related] API: rte_eth_timesync_enable(), rte_eth_timesync_disable(),
rte_eth_timesync_read_rx_timestamp(),
rte_eth_timesync_read_tx_timestamp, rte_eth_timesync_adjust_time(),
rte_eth_timesync_read_time(), rte_eth_timesync_write_time().

2.45. Rx descriptor status

Supports check the status of a Rx descriptor. When rx_descriptor_status is
used, status can be “Available”, “Done” or “Unavailable”. When
rx_descriptor_done is used, status can be “DD bit is set” or “DD bit is
not set”.

	[implements] eth_dev_ops: rx_descriptor_status.

	[related] API: rte_eth_rx_descriptor_status().

	[implements] eth_dev_ops: rx_descriptor_done.

	[related] API: rte_eth_rx_descriptor_done().

2.46. Tx descriptor status

Supports checking the status of a Tx descriptor. Status can be “Full”, “Done”
or “Unavailable.”

	[implements] eth_dev_ops: tx_descriptor_status.

	[related] API: rte_eth_tx_descriptor_status().

2.47. Basic stats

Support basic statistics such as: ipackets, opackets, ibytes, obytes,
imissed, ierrors, oerrors, rx_nombuf.

And per queue stats: q_ipackets, q_opackets, q_ibytes, q_obytes, q_errors.

These apply to all drivers.

	[implements] eth_dev_ops: stats_get, stats_reset.

	[related] API: rte_eth_stats_get, rte_eth_stats_reset().

2.48. Extended stats

Supports Extended Statistics, changes from driver to driver.

	[implements] eth_dev_ops: xstats_get, xstats_reset, xstats_get_names.

	[implements] eth_dev_ops: xstats_get_by_id, xstats_get_names_by_id.

	[related] API: rte_eth_xstats_get(), rte_eth_xstats_reset(),
rte_eth_xstats_get_names, rte_eth_xstats_get_by_id(),
rte_eth_xstats_get_names_by_id(), rte_eth_xstats_get_id_by_name().

2.49. Stats per queue

Supports configuring per-queue stat counter mapping.

	[implements] eth_dev_ops: queue_stats_mapping_set.

	[related] API: rte_eth_dev_set_rx_queue_stats_mapping(),
rte_eth_dev_set_tx_queue_stats_mapping().

2.50. FW version

Supports getting device hardware firmware information.

	[implements] eth_dev_ops: fw_version_get.

	[related] API: rte_eth_dev_fw_version_get().

2.51. EEPROM dump

Supports getting/setting device eeprom data.

	[implements] eth_dev_ops: get_eeprom_length, get_eeprom, set_eeprom.

	[related] API: rte_eth_dev_get_eeprom_length(), rte_eth_dev_get_eeprom(),
rte_eth_dev_set_eeprom().

2.52. Module EEPROM dump

Supports getting information and data of plugin module eeprom.

	[implements] eth_dev_ops: get_module_info, get_module_eeprom.

	[related] API: rte_eth_dev_get_module_info(), rte_eth_dev_get_module_eeprom().

2.53. Registers dump

Supports retrieving device registers and registering attributes (number of
registers and register size).

	[implements] eth_dev_ops: get_reg.

	[related] API: rte_eth_dev_get_reg_info().

2.54. LED

Supports turning on/off a software controllable LED on a device.

	[implements] eth_dev_ops: dev_led_on, dev_led_off.

	[related] API: rte_eth_led_on(), rte_eth_led_off().

2.55. Multiprocess aware

Driver can be used for primary-secondary process model.

2.56. BSD nic_uio

BSD nic_uio module supported.

2.57. Linux UIO

Works with igb_uio kernel module.

	[provides] RTE_PMD_REGISTER_KMOD_DEP: igb_uio.

2.58. Linux VFIO

Works with vfio-pci kernel module.

	[provides] RTE_PMD_REGISTER_KMOD_DEP: vfio-pci.

2.59. Other kdrv

Kernel module other than above ones supported.

2.60. ARMv7

Support armv7 architecture.

Use defconfig_arm-armv7a-*-*.

2.61. ARMv8

Support armv8a (64bit) architecture.

Use defconfig_arm64-armv8a-*-*

2.62. Power8

Support PowerPC architecture.

Use defconfig_ppc_64-power8-*-*

2.63. x86-32

Support 32bits x86 architecture.

Use defconfig_x86_x32-native-*-* and defconfig_i686-native-*-*.

2.64. x86-64

Support 64bits x86 architecture.

Use defconfig_x86_64-native-*-*.

2.65. Usage doc

Documentation describes usage.

See doc/guides/nics/*.rst

2.66. Design doc

Documentation describes design.

See doc/guides/nics/*.rst.

2.67. Perf doc

Documentation describes performance values.

See dpdk.org/doc/perf/*.

2.68. Runtime Rx queue setup

Supports Rx queue setup after device started.

	[provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP.

	[related] API: rte_eth_dev_info_get().

2.69. Runtime Tx queue setup

Supports Tx queue setup after device started.

	[provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP.

	[related] API: rte_eth_dev_info_get().

2.70. Burst mode info

Supports to get Rx/Tx packet burst mode information.

	[implements] eth_dev_ops: rx_burst_mode_get, tx_burst_mode_get.

	[related] API: rte_eth_rx_burst_mode_get(), rte_eth_tx_burst_mode_get().

2.71. Other dev ops not represented by a Feature

	rxq_info_get

	txq_info_get

	vlan_tpid_set

	vlan_strip_queue_set

	vlan_pvid_set

	rx_queue_count

	l2_tunnel_offload_set

	uc_hash_table_set

	uc_all_hash_table_set

	udp_tunnel_port_add

	udp_tunnel_port_del

	l2_tunnel_eth_type_conf

	l2_tunnel_offload_set

	tx_pkt_prepare

3. Compiling and testing a PMD for a NIC

This section demonstrates how to compile and run a Poll Mode Driver (PMD) for
the available Network Interface Cards in DPDK using TestPMD.

TestPMD is one of the reference applications distributed with the DPDK. Its main
purpose is to forward packets between Ethernet ports on a network interface and
as such is the best way to test a PMD.

Refer to the testpmd application user guide for detailed
information on how to build and run testpmd.

3.1. Driver Compilation

To compile a PMD for a platform, run make with appropriate target as shown below.
Use “make” command in Linux and “gmake” in FreeBSD. This will also build testpmd.

To check available targets:

cd <DPDK-source-directory>
make showconfigs

Example output:

arm-armv7a-linux-gcc
arm64-armv8a-linux-gcc
arm64-dpaa-linux-gcc
arm64-thunderx-linux-gcc
arm64-xgene1-linux-gcc
i686-native-linux-gcc
i686-native-linux-icc
ppc_64-power8-linux-gcc
x86_64-native-freebsd-clang
x86_64-native-freebsd-gcc
x86_64-native-linux-clang
x86_64-native-linux-gcc
x86_64-native-linux-icc
x86_x32-native-linux-gcc

To compile a PMD for Linux x86_64 gcc target, run the following “make” command:

make install T=x86_64-native-linux-gcc

Use ARM (ThunderX, DPAA, X-Gene) or PowerPC target for respective platform.

For more information, refer to the Getting Started Guide for Linux
or Getting Started Guide for FreeBSD depending on your platform.

3.2. Running testpmd in Linux

This section demonstrates how to setup and run testpmd in Linux.

	Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

	Request huge pages:

Hugepage memory should be reserved as per application requirement. Check
hugepage size configured in the system and calculate the number of pages
required.

To reserve 1024 pages of 2MB:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note

Check /proc/meminfo to find system hugepage size:

grep "Hugepagesize:" /proc/meminfo

Example output:

Hugepagesize: 2048 kB

	Load igb_uio or vfio-pci driver:

modprobe uio
insmod ./x86_64-native-linux-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

	Setup VFIO permissions for regular users before binding to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

	Bind the adapters to igb_uio or vfio-pci loaded in the previous step:

./usertools/dpdk-devbind.py --bind igb_uio DEVICE1 DEVICE2 ...

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./usertools/dpdk-devbind.py --bind vfio-pci DEVICE1 DEVICE2 ...

Note

DEVICE1, DEVICE2 are specified via PCI “domain:bus:slot.func” syntax or
“bus:slot.func” syntax.

	Start testpmd with basic parameters:

./x86_64-native-linux-gcc/app/testpmd -l 0-3 -n 4 -- -i

Successful execution will show initialization messages from EAL, PMD and
testpmd application. A prompt will be displayed at the end for user commands
as interactive mode (-i) is on.

testpmd>

Refer to the testpmd runtime functions for a list
of available commands.

Note

When testpmd is built with shared library, use option -d to load
the dynamic PMD for rte_eal_init.

4. AF_PACKET Poll Mode Driver

The AF_PACKET socket in Linux allows an application to receive and send raw
packets. This Linux-specific PMD driver binds to an AF_PACKET socket and allows
a DPDK application to send and receive raw packets through the Kernel.

In order to improve Rx and Tx performance this implementation makes use of
PACKET_MMAP, which provides a mmap’ed ring buffer, shared between user space
and kernel, that’s used to send and receive packets. This helps reducing system
calls and the copies needed between user space and Kernel.

The PACKET_FANOUT_HASH behavior of AF_PACKET is used for frame reception.

4.1. Options and inherent limitations

The following options can be provided to set up an af_packet port in DPDK.
Some of these, in turn, will be used to configure the PACKET_MMAP settings.

	iface - name of the Kernel interface to attach to (required);

	qpairs - number of Rx and Tx queues (optional, default 1);

	qdisc_bypass - set PACKET_QDISC_BYPASS option in AF_PACKET (optional,
disabled by default);

	blocksz - PACKET_MMAP block size (optional, default 4096);

	framesz - PACKET_MMAP frame size (optional, default 2048B; Note: multiple
of 16B);

	framecnt - PACKET_MMAP frame count (optional, default 512).

Because this implementation is based on PACKET_MMAP, and PACKET_MMAP has its
own pre-requisites, it should be noted that the inner workings of PACKET_MMAP
should be carefully considered before modifying some of these options (namely,
blocksz, framesz and framecnt above).

As an example, if one changes framesz to be 1024B, it is expected that
blocksz is set to at least 1024B as well (although 2048B in this case would
allow two “frames” per “block”).

This restriction happens because PACKET_MMAP expects each single “frame” to fit
inside of a “block”. And although multiple “frames” can fit inside of a single
“block”, a “frame” may not span across two “blocks”.

For the full details behind PACKET_MMAP’s structures and settings, consider
reading the PACKET_MMAP documentation in the Kernel [https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt].

4.2. Prerequisites

This is a Linux-specific PMD, thus the following prerequisites apply:

	A Linux Kernel;

	A Kernel bound interface to attach to (e.g. a tap interface).

4.3. Set up an af_packet interface

The following example will set up an af_packet interface in DPDK with the
default options described above (blocksz=4096B, framesz=2048B and
framecnt=512):

--vdev=eth_af_packet0,iface=tap0,blocksz=4096,framesz=2048,framecnt=512,qpairs=1,qdisc_bypass=0

5. AF_XDP Poll Mode Driver

AF_XDP is an address family that is optimized for high performance
packet processing. AF_XDP sockets enable the possibility for XDP program to
redirect packets to a memory buffer in userspace.

For the full details behind AF_XDP socket, you can refer to
AF_XDP documentation in the Kernel [https://www.kernel.org/doc/Documentation/networking/af_xdp.rst].

This Linux-specific PMD driver creates the AF_XDP socket and binds it to a
specific netdev queue, it allows a DPDK application to send and receive raw
packets through the socket which would bypass the kernel network stack.
Current implementation only supports single queue, multi-queues feature will
be added later.

AF_XDP PMD enables need_wakeup flag by default if it is supported. This
need_wakeup feature is used to support executing application and driver on the
same core efficiently. This feature not only has a large positive performance
impact for the one core case, but also does not degrade 2 core performance and
actually improves it for Tx heavy workloads.

5.1. Options

The following options can be provided to set up an af_xdp port in DPDK.

	iface - name of the Kernel interface to attach to (required);

	start_queue - starting netdev queue id (optional, default 0);

	queue_count - total netdev queue number (optional, default 1);

5.2. Prerequisites

This is a Linux-specific PMD, thus the following prerequisites apply:

	A Linux Kernel (version > v4.18) with XDP sockets configuration enabled;

	libbpf (within kernel version > v5.1-rc4) with latest af_xdp support installed,
User can install libbpf via make install_lib && make install_headers in
<kernel src tree>/tools/lib/bpf;

	A Kernel bound interface to attach to;

	For need_wakeup feature, it requires kernel version later than v5.3-rc1;

	For PMD zero copy, it requires kernel version later than v5.4-rc1;

5.3. Set up an af_xdp interface

The following example will set up an af_xdp interface in DPDK:

--vdev net_af_xdp,iface=ens786f1

5.4. Limitations

	MTU

The MTU of the AF_XDP PMD is limited due to the XDP requirement of one packet
per page. In the PMD we report the maximum MTU for zero copy to be equal
to the page size less the frame overhead introduced by AF_XDP (XDP HR = 256)
and DPDK (frame headroom = 320). With a 4K page size this works out at 3520.
However in practice this value may be even smaller, due to differences between
the supported RX buffer sizes of the underlying kernel netdev driver.

For example, the largest RX buffer size supported by the underlying kernel driver
which is less than the page size (4096B) may be 3072B. In this case, the maximum
MTU value will be at most 3072, but likely even smaller than this, once relevant
headers are accounted for eg. Ethernet and VLAN.

To determine the actual maximum MTU value of the interface you are using with the
AF_XDP PMD, consult the documentation for the kernel driver.

Note: The AF_XDP PMD will fail to initialise if an MTU which violates the driver’s
conditions as above is set prior to launching the application.

6. ARK Poll Mode Driver

The ARK PMD is a DPDK poll-mode driver for the Atomic Rules Arkville
(ARK) family of devices.

More information can be found at the Atomic Rules website [http://atomicrules.com].

6.1. Overview

The Atomic Rules Arkville product is DPDK and AXI compliant product
that marshals packets across a PCIe conduit between host DPDK mbufs and
FPGA AXI streams.

The ARK PMD, and the spirit of the overall Arkville product,
has been to take the DPDK API/ABI as a fixed specification;
then implement much of the business logic in FPGA RTL circuits.
The approach of working backwards from the DPDK API/ABI and having
the GPP host software dictate, while the FPGA hardware copes,
results in significant performance gains over a naive implementation.

While this document describes the ARK PMD software, it is helpful to
understand what the FPGA hardware is and is not. The Arkville RTL
component provides a single PCIe Physical Function (PF) supporting
some number of RX/Ingress and TX/Egress Queues. The ARK PMD controls
the Arkville core through a dedicated opaque Core BAR (CBAR).
To allow users full freedom for their own FPGA application IP,
an independent FPGA Application BAR (ABAR) is provided.

One popular way to imagine Arkville’s FPGA hardware aspect is as the
FPGA PCIe-facing side of a so-called Smart NIC. The Arkville core does
not contain any MACs, and is link-speed independent, as well as
agnostic to the number of physical ports the application chooses to
use. The ARK driver exposes the familiar PMD interface to allow packet
movement to and from mbufs across multiple queues.

However FPGA RTL applications could contain a universe of added
functionality that an Arkville RTL core does not provide or can
not anticipate. To allow for this expectation of user-defined
innovation, the ARK PMD provides a dynamic mechanism of adding
capabilities without having to modify the ARK PMD.

The ARK PMD is intended to support all instances of the Arkville
RTL Core, regardless of configuration, FPGA vendor, or target
board. While specific capabilities such as number of physical
hardware queue-pairs are negotiated; the driver is designed to
remain constant over a broad and extendable feature set.

Intentionally, Arkville by itself DOES NOT provide common NIC
capabilities such as offload or receive-side scaling (RSS).
These capabilities would be viewed as a gate-level “tax” on
Green-box FPGA applications that do not require such function.
Instead, they can be added as needed with essentially no
overhead to the FPGA Application.

The ARK PMD also supports optional user extensions, through dynamic linking.
The ARK PMD user extensions are a feature of Arkville’s DPDK
net/ark poll mode driver, allowing users to add their
own code to extend the net/ark functionality without
having to make source code changes to the driver. One motivation for
this capability is that while DPDK provides a rich set of functions
to interact with NIC-like capabilities (e.g. MAC addresses and statistics),
the Arkville RTL IP does not include a MAC. Users can supply their
own MAC or custom FPGA applications, which may require control from
the PMD. The user extension is the means providing the control
between the user’s FPGA application and the existing DPDK features via
the PMD.

6.2. Device Parameters

The ARK PMD supports device parameters that are used for packet
routing and for internal packet generation and packet checking. This
section describes the supported parameters. These features are
primarily used for diagnostics, testing, and performance verification
under the guidance of an Arkville specialist. The nominal use of
Arkville does not require any configuration using these parameters.

“Pkt_dir”

The Packet Director controls connectivity between Arkville’s internal
hardware components. The features of the Pkt_dir are only used for
diagnostics and testing; it is not intended for nominal use. The full
set of features are not published at this level.

Format:
Pkt_dir=0x00110F10

“Pkt_gen”

The packet generator parameter takes a file as its argument. The file
contains configuration parameters used internally for regression
testing and are not intended to be published at this level. The
packet generator is an internal Arkville hardware component.

Format:
Pkt_gen=./config/pg.conf

“Pkt_chkr”

The packet checker parameter takes a file as its argument. The file
contains configuration parameters used internally for regression
testing and are not intended to be published at this level. The
packet checker is an internal Arkville hardware component.

Format:
Pkt_chkr=./config/pc.conf

6.3. Data Path Interface

Ingress RX and Egress TX operation is by the nominal DPDK API .
The driver supports single-port, multi-queue for both RX and TX.

6.4. Configuration Information

DPDK Configuration Parameters

The following configuration options are available for the ARK PMD:

	CONFIG_RTE_LIBRTE_ARK_PMD (default y): Enables or disables inclusion
of the ARK PMD driver in the DPDK compilation.

	CONFIG_RTE_LIBRTE_ARK_PAD_TX (default y): When enabled TX
packets are padded to 60 bytes to support downstream MACS.

	CONFIG_RTE_LIBRTE_ARK_DEBUG_RX (default n): Enables or disables debug
logging and internal checking of RX ingress logic within the ARK PMD driver.

	CONFIG_RTE_LIBRTE_ARK_DEBUG_TX (default n): Enables or disables debug
logging and internal checking of TX egress logic within the ARK PMD driver.

	CONFIG_RTE_LIBRTE_ARK_DEBUG_STATS (default n): Enables or disables debug
logging of detailed packet and performance statistics gathered in
the PMD and FPGA.

	CONFIG_RTE_LIBRTE_ARK_DEBUG_TRACE (default n): Enables or disables debug
logging of detailed PMD events and status.

6.5. Building DPDK

See the DPDK Getting Started Guide for Linux for
instructions on how to build DPDK.

By default the ARK PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the
documentation that comes with DPDK suite.

6.6. Supported ARK RTL PCIe Instances

ARK PMD supports the following Arkville RTL PCIe instances including:

	1d6c:100d - AR-ARKA-FX0 [Arkville 32B DPDK Data Mover]

	1d6c:100e - AR-ARKA-FX1 [Arkville 64B DPDK Data Mover]

6.7. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements
section of the DPDK documentation or refer to DPDK
Release Notes. ARM and PowerPC architectures are not supported at this time.

6.8. Supported Features

	Dynamic ARK PMD extensions

	Multiple receive and transmit queues

	Jumbo frames up to 9K

	Hardware Statistics

6.9. Unsupported Features

Features that may be part of, or become part of, the Arkville RTL IP that are
not currently supported or exposed by the ARK PMD include:

	PCIe SR-IOV Virtual Functions (VFs)

	Arkville’s Packet Generator Control and Status

	Arkville’s Packet Director Control and Status

	Arkville’s Packet Checker Control and Status

	Arkville’s Timebase Management

6.10. Pre-Requisites

	Prepare the system as recommended by DPDK suite. This includes environment
variables, hugepages configuration, tool-chains and configuration

	Insert igb_uio kernel module using the command ‘modprobe igb_uio’

	Bind the intended ARK device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the
application runs to completion, the ARK PMD can be detached from igb_uio if necessary.

6.11. Usage Example

Follow instructions available in the document
compiling and testing a PMD for a NIC to launch
testpmd with Atomic Rules ARK devices managed by librte_pmd_ark.

Example output:

[...]
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: probe driver: 1d6c:100e rte_ark_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ark_dev_init(): Initializing 0:2:0.1
ARKP PMD CommitID: 378f3a67
Configuring Port 0 (socket 0)
Port 0: DC:3C:F6:00:00:01
Checking link statuses...
Port 0 Link Up - speed 100000 Mbps - full-duplex
Done
testpmd>

7. Aquantia Atlantic DPDK Driver

Atlantic DPDK driver provides DPDK support for Aquantia’s AQtion family of chipsets: AQC107/AQC108/AQC109

More information can be found at Aquantia Official Website [https://www.aquantia.com/products/client-connectivity/].

7.1. Supported features

	Base L2 features

	Promiscuous mode

	Multicast mode

	Port statistics

	RSS (Receive Side Scaling)

	Checksum offload

	Jumbo Frame up to 16K

	MACSEC offload

7.2. Experimental API features

	MACSEC PMD API is considered as experimental and is subject to change/removal in next DPDK releases.

7.3. Configuration Information

	CONFIG_RTE_LIBRTE_ATLANTIC_PMD (default y)

7.3.1. Application Programming Interface

7.3.2. Limitations or Known issues

7.3.2.1. Statistics

7.3.2.2. MTU setting

Atlantic NIC supports up to 16K jumbo frame size

7.3.3. Supported Chipsets and NICs

	Aquantia AQtion AQC107 10 Gigabit Ethernet Controller

	Aquantia AQtion AQC108 5 Gigabit Ethernet Controller

	Aquantia AQtion AQC109 2.5 Gigabit Ethernet Controller

8. AVP Poll Mode Driver

The Accelerated Virtual Port (AVP) device is a shared memory based device
only available on virtualization platforms [http://www.windriver.com/products/titanium-cloud/]
from Wind River Systems. The Wind River Systems virtualization platform
currently uses QEMU/KVM as its hypervisor and as such provides support for all
of the QEMU supported virtual and/or emulated devices (e.g., virtio, e1000,
etc.). The platform offers the virtio device type as the default device when
launching a virtual machine or creating a virtual machine port. The AVP device
is a specialized device available to customers that require increased
throughput and decreased latency to meet the demands of their performance
focused applications.

The AVP driver binds to any AVP PCI devices that have been exported by the Wind
River Systems QEMU/KVM hypervisor. As a user of the DPDK driver API it
supports a subset of the full Ethernet device API to enable the application to
use the standard device configuration functions and packet receive/transmit
functions.

These devices enable optimized packet throughput by bypassing QEMU and
delivering packets directly to the virtual switch via a shared memory
mechanism. This provides DPDK applications running in virtual machines with
significantly improved throughput and latency over other device types.

The AVP device implementation is integrated with the QEMU/KVM live-migration
mechanism to allow applications to seamlessly migrate from one hypervisor node
to another with minimal packet loss.

8.1. Features and Limitations of the AVP PMD

The AVP PMD driver provides the following functionality.

	Receive and transmit of both simple and chained mbuf packets,

	Chained mbufs may include up to 5 chained segments,

	Up to 8 receive and transmit queues per device,

	Only a single MAC address is supported,

	The MAC address cannot be modified,

	The maximum receive packet length is 9238 bytes,

	VLAN header stripping and inserting,

	Promiscuous mode

	VM live-migration

	PCI hotplug insertion and removal

8.2. Prerequisites

The following prerequisites apply:

	A virtual machine running in a Wind River Systems virtualization
environment and configured with at least one neutron port defined with a
vif-model set to “avp”.

8.3. Launching a VM with an AVP type network attachment

The following example will launch a VM with three network attachments. The
first attachment will have a default vif-model of “virtio”. The next two
network attachments will have a vif-model of “avp” and may be used with a DPDK
application which is built to include the AVP PMD driver.

nova boot --flavor small --image my-image \
 --nic net-id=${NETWORK1_UUID} \
 --nic net-id=${NETWORK2_UUID},vif-model=avp \
 --nic net-id=${NETWORK3_UUID},vif-model=avp \
 --security-group default my-instance1

9. AXGBE Poll Mode Driver

The AXGBE poll mode driver library (librte_pmd_axgbe) implements support
for AMD 10 Gbps family of adapters. It is compiled and tested in standard linux distro like Ubuntu.

Detailed information about SoCs that use these devices can be found here:

	AMD EPYC™ EMBEDDED 3000 family [https://www.amd.com/en/products/embedded-epyc-3000-series].

9.1. Supported Features

AXGBE PMD has support for:

	Base L2 features

	TSS (Transmit Side Scaling)

	Promiscuous mode

	Port statistics

	Multicast mode

	RSS (Receive Side Scaling)

	Checksum offload

	Jumbo Frame up to 9K

9.2. Configuration Information

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_AXGBE_PMD (default y)

Toggle compilation of axgbe PMD.

	CONFIG_RTE_LIBRTE_AXGBE_PMD_DEBUG (default n)

Toggle display for PMD debug related messages.

9.3. Building DPDK

See the DPDK Getting Started Guide for Linux for
instructions on how to build DPDK.

By default the AXGBE PMD library will be built into the DPDK library.

For configuring and using UIO frameworks, please also refer the
documentation that comes with DPDK suite.

9.4. Prerequisites and Pre-conditions

	Prepare the system as recommended by DPDK suite.

	Bind the intended AMD device to igb_uio or vfio-pci module.

Now system is ready to run DPDK application.

9.5. Usage Example

Refer to the document compiling and testing a PMD for a NIC
for details.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1022:1458 net_axgbe
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
USER1: create a new mbuf pool <mbuf_pool_socket_1>: n=171456, size=2176, socket=1
USER1: create a new mbuf pool <mbuf_pool_socket_2>: n=171456, size=2176, socket=2
USER1: create a new mbuf pool <mbuf_pool_socket_3>: n=171456, size=2176, socket=3
Configuring Port 0 (socket 0)
Port 0: 00:00:1A:1C:6A:17
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

10. BNX2X Poll Mode Driver

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support
for QLogic 578xx 10/20 Gbps family of adapters as well as their virtual
functions (VF) in SR-IOV context. It is supported on several standard Linux
distros like RHEL and SLES. It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website [http://www.qlogic.com].

10.1. Supported Features

BNX2X PMD has support for:

	Base L2 features

	Unicast/multicast filtering

	Promiscuous mode

	Port hardware statistics

	SR-IOV VF

10.2. Non-supported Features

The features not yet supported include:

	TSS (Transmit Side Scaling)

	RSS (Receive Side Scaling)

	LRO/TSO offload

	Checksum offload

	SR-IOV PF

	Rx TX scatter gather

10.3. Co-existence considerations

	QLogic 578xx CNAs support Ethernet, iSCSI and FCoE functionalities.
These functionalities are supported using QLogic Linux kernel
drivers bnx2x, cnic, bnx2i and bnx2fc. DPDK is supported on these
adapters using bnx2x PMD.

	When SR-IOV is not enabled on the adapter,
QLogic Linux kernel drivers (bnx2x, cnic, bnx2i and bnx2fc) and bnx2x
PMD can’t be attached to different PFs on a given QLogic 578xx
adapter.
A given adapter needs to be completely used by DPDK or Linux drivers.
Before binding DPDK driver to one or more PFs on the adapter,
please make sure to unbind Linux drivers from all PFs of the adapter.
If there are multiple adapters on the system, one or more adapters
can be used by DPDK driver completely and other adapters can be used
by Linux drivers completely.

	When SR-IOV is enabled on the adapter,
Linux kernel drivers (bnx2x, cnic, bnx2i and bnx2fc) can be bound
to the PFs of a given adapter and either bnx2x PMD or Linux drivers
bnx2x can be bound to the VFs of the adapter.

10.4. Supported QLogic NICs

	578xx

10.5. Prerequisites

	Requires firmware version 7.13.11.0. It is included in most of the
standard Linux distros. If it is not available visit
linux-firmware git repository [https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/plain/bnx2x/bnx2x-e2-7.13.11.0.fw]
to get the required firmware.

10.6. Pre-Installation Configuration

10.6.1. Config File Options

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_BNX2X_PMD (default n)

Toggle compilation of bnx2x driver. To use bnx2x PMD set this config parameter
to ‘y’. Also, in order for firmware binary to load user will need zlib devel
package installed.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

	CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

10.7. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

10.8. Jumbo: Limitation

Rx descriptor limit for number of segments per MTU is set to 1.
PMD doesn’t support Jumbo Rx scatter gather. Some applciations can
adjust mbuf_size based on this param and max_pkt_len.

For others, PMD detects the condition where Rx packet length cannot
be held by configured mbuf size and logs the message.

Example output:

[...]
[bnx2x_recv_pkts:397(04:00.0:dpdk-port-0)] mbuf size 2048 is not enough to hold Rx packet length more than 2046

10.9. SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

	Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

	Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

	Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

	Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry
of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:
ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

	PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or
virsh etc. bnx2x PMD should be used to bind the VF devices in the guest VM
using the instructions outlined in the Application notes below.

	Running testpmd:
(Supply --log-level="pmd.net.bnx2x.driver",7 to view informational messages):

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,
 usable_bd=1020, total_bd=1024,
 tx_pages=4
PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,
 usable_bd=510, total_bd=512,
 rx_pages=1, cq_pages=8
PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

11. BNXT Poll Mode Driver

The Broadcom BNXT PMD (librte_pmd_bnxt) implements support for adapters
based on Ethernet controllers and SoCs belonging to the Broadcom
BCM574XX/BCM575XX NetXtreme-E® Family of Ethernet Network Controllers,
the Broadcom BCM588XX Stingray Family of Smart NIC Adapters, and the Broadcom
StrataGX® BCM5873X Series of Communications Processors.

A complete list with links to reference material is in the Appendix section.

11.1. CPU Support

BNXT PMD supports multiple CPU architectures, including x86-32, x86-64, and ARMv8.

11.2. Kernel Dependency

BNXT PMD requires a kernel module (VFIO or UIO) for setting up a device, mapping
device memory to userspace, registering interrupts, etc.
VFIO is more secure than UIO, relying on IOMMU protection.
UIO requires the IOMMU disabled or configured to pass-through mode.

Operating Systems supported:

	Red Hat Enterprise Linux release 8.1 (Ootpa)

	Red Hat Enterprise Linux release 8.0 (Ootpa)

	Red Hat Enterprise Linux Server release 7.7 (Maipo)

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	CentOS Linux release 8.0

	CentOS Linux release 7.7

	CentOS Linux release 7.6.1810

	CentOS Linux release 7.5.1804

	CentOS Linux release 7.4.1708

	Fedora 31

	FreeBSD 12.1

	Suse 15SP1

	Ubuntu 19.04

	Ubuntu 18.04

	Ubuntu 16.10

	Ubuntu 16.04

	Ubuntu 14.04

The BNXT PMD supports operating with:

	Linux vfio-pci

	Linux uio_pci_generic

	Linux igb_uio

	BSD nic_uio

11.3. Compiling BNXT PMD

To compile the BNXT PMD:

make config T=x86_64-native-linux-gcc && make // for x86-64
make config T=x86_32-native-linux-gcc && make // for x86-32
make config T=armv8a-linux-gcc && make // for ARMv8

Bind the device to one of the kernel modules listed above

./dpdk-devbind.py -b vfio-pci|igb_uio|uio_pci_generic bus_id:device_id.function_id

Load an application (e.g. testpmd) with a default configuration (e.g. a single
TX /RX queue):

./testpmd -c 0xF -n 4 -- -i --portmask=0x1 --nb-cores=2

11.4. Running BNXT PMD

The BNXT PMD can run on PF or VF.

PCI-SIG Single Root I/O Virtualization (SR-IOV) involves the direct assignment
of part of the network port resources to guest operating systems using the
SR-IOV standard.
NIC is logically distributed among multiple virtual machines (VMs), while still
having global data in common to share with the PF and other VFs.

Sysadmin can create and configure VFs:

echo num_vfs > /sys/bus/pci/devices/domain_id:bus_id:device_id:function_id/sriov_numvfs
(ex) echo 4 > /sys/bus/pci/devices/0000:82:00:0/sriov_numvfs

Sysadmin also can change the VF property such as MAC address, transparent VLAN,
TX rate limit, and trusted VF:

ip link set pf_id vf vf_id mac (mac_address) vlan (vlan_id) txrate (rate_value) trust (enable|disable)
(ex) ip link set 0 vf 0 mac 00:11:22:33:44:55 vlan 0x100 txrate 100 trust disable

11.4.1. Running on VF

11.4.1.1. Flow Bifurcation

The Flow Bifurcation splits the incoming data traffic to user space applications
(such as DPDK applications) and/or kernel space programs (such as the Linux
kernel stack).
It can direct some traffic, for example data plane traffic, to DPDK.
Rest of the traffic, for example control plane traffic, would be redirected to
the traditional Linux networking stack.

Refer to https://doc.dpdk.org/guides/howto/flow_bifurcation.html

Benefits of the flow bifurcation include:

	Better performance with less CPU overhead, as user application can directly
access the NIC for data path

	NIC is still being controlled by the kernel, as control traffic is forwarded
only to the kernel driver

	Control commands, e.g. ethtool, will work as usual

Running on a VF, the BXNT PMD supports the flow bifurcation with a combination
of SR-IOV and packet classification and/or forwarding capability.
In the simplest case of flow bifurcation, a PF driver configures a NIC to
forward all user traffic directly to VFs with matching destination MAC address,
while the rest of the traffic is forwarded to a PF.
Note that the broadcast packets will be forwarded to both PF and VF.

(ex) ethtool --config-ntuple ens2f0 flow-type ether dst 00:01:02:03:00:01 vlan 10 vlan-mask 0xf000 action 0x100000000

11.4.1.2. Trusted VF

By default, VFs are not allowed to perform privileged operations, such as
modifying the VF’s MAC address in the guest. These security measures are
designed to prevent possible attacks.
However, when a DPDK application can be trusted (e.g., OVS-DPDK, here), these
operations performed by a VF would be legitimate and can be allowed.

To enable VF to request “trusted mode,” a new trusted VF concept was introduced
in Linux kernel 4.4 and allowed VFs to become “trusted” and perform some
privileged operations.

The BNXT PMD supports the trusted VF mode of operation. Only a PF can enable the
trusted attribute on the VF. It is preferable to enable the Trusted setting on a
VF before starting applications.
However, the BNXT PMD handles dynamic changes in trusted settings as well.

Note that control commands, e.g., ethtool, will work via the kernel PF driver,
not via the trusted VF driver.

Operations supported by trusted VF:

	MAC address configuration

	Flow rule creation

Operations not supported by trusted VF:

	Firmware upgrade

	Promiscuous mode setting

11.4.2. Running on PF

Unlike the VF when BNXT PMD runs on a PF there are no restrictions placed on the
features which the PF can enable or request. In a multiport NIC, each port will
have a corresponding PF. Also depending on the configuration of the NIC there
can be more than one PF associated per port.
A sysadmin can load the kernel driver on one PF, and run BNXT PMD on the other
PF or run the PMD on both the PFs. In such cases, the firmware picks one of the
PFs as a master PF.

Much like in the trusted VF, the DPDK application must be trusted and expected
to be well-behaved.

11.5. Features

The BNXT PMD supports the following features:

	
	Port Control
	
	Port MTU

	LED

	Flow Control and Autoneg

	
	Packet Filtering
	
	Unicast MAC Filter

	Multicast MAC Filter

	VLAN Filtering

	Allmulticast Mode

	Promiscuous Mode

	
	Stateless Offloads
	
	CRC Offload

	Checksum Offload (IPv4, TCP, and UDP)

	Multi-Queue (TSS and RSS)

	Segmentation and Reassembly (TSO and LRO)

	VLAN insert strip

	Stats Collection

	Generic Flow Offload

11.5.1. Port Control

Port MTU: BNXT PMD supports the MTU (Maximum Transmission Unit) up to 9,574
bytes:

testpmd> port config mtu (port_id) mtu_value
testpmd> show port info (port_id)

LED: Application tunes on (or off) a port LED, typically for a port
identification:

int rte_eth_led_on (uint16_t port_id)
int rte_eth_led_off (uint16_t port_id)

Flow Control and Autoneg: Application tunes on (or off) flow control and/or
auto-negotiation on a port:

testpmd> set flow_ctrl rx (on|off) (port_id)
testpmd> set flow_ctrl tx (on|off) (port_id)
testpmd> set flow_ctrl autoneg (on|off) (port_id)

Note that the BNXT PMD does not support some options and ignores them when
requested:

	high_water

	low_water

	pause_time

	mac_ctrl_frame_fwd

	send_xon

11.5.2. Packet Filtering

Applications control the packet-forwarding behaviors with packet filters.

The BNXT PMD supports hardware-based packet filtering:

	
	UC (Unicast) MAC Filters
	
	No unicast packets are forwarded to an application except the one with
DMAC address added to the port

	At initialization, the station MAC address is added to the port

	
	MC (Multicast) MAC Filters
	
	No multicast packets are forwarded to an application except the one with
MC address added to the port

	When the application listens to a multicast group, it adds the MC address
to the port

	
	VLAN Filtering Mode
	
	When enabled, no packets are forwarded to an application except the ones
with the VLAN tag assigned to the port

	
	Allmulticast Mode
	
	When enabled, every multicast packet received on the port is forwarded to
the application

	Typical usage is routing applications

	
	Promiscuous Mode
	
	When enabled, every packet received on the port is forwarded to the
application

11.5.2.1. Unicast MAC Filter

The application adds (or removes) MAC addresses to enable (or disable)
whitelist filtering to accept packets.

testpmd> show port (port_id) macs
testpmd> mac_addr (add|remove) (port_id) (XX:XX:XX:XX:XX:XX)

11.5.2.2. Multicast MAC Filter

Application adds (or removes) Multicast addresses to enable (or disable)
whitelist filtering to accept packets.

testpmd> show port (port_id) mcast_macs
testpmd> mcast_addr (add|remove) (port_id) (XX:XX:XX:XX:XX:XX)

Application adds (or removes) Multicast addresses to enable (or disable)
whitelist filtering to accept packets.

Note that the BNXT PMD supports up to 16 MC MAC filters. if the user adds more
than 16 MC MACs, the BNXT PMD puts the port into the Allmulticast mode.

11.5.2.3. VLAN Filtering

The application enables (or disables) VLAN filtering mode. When the mode is
enabled, no packets are forwarded to an application except ones with VLAN tag
assigned for the application.

testpmd> vlan set filter (on|off) (port_id)
testpmd> rx_vlan (add|rm) (vlan_id) (port_id)

11.5.2.4. Allmulticast Mode

The application enables (or disables) the allmulticast mode. When the mode is
enabled, every multicast packet received is forwarded to the application.

testpmd> show port info (port_id)
testpmd> set allmulti (port_id) (on|off)

11.5.2.5. Promiscuous Mode

The application enables (or disables) the promiscuous mode. When the mode is
enabled on a port, every packet received on the port is forwarded to the
application.

testpmd> show port info (port_id)
testpmd> set promisc port_id (on|off)

11.5.3. Stateless Offloads

Like Linux, DPDK provides enabling hardware offload of some stateless processing
(such as checksum calculation) of the stack, alleviating the CPU from having to
burn cycles on every packet.

Listed below are the stateless offloads supported by the BNXT PMD:

	CRC offload (for both TX and RX packets)

	
	Checksum Offload (for both TX and RX packets)
	
	IPv4 Checksum Offload

	TCP Checksum Offload

	UDP Checksum Offload

	
	Segmentation/Reassembly Offloads
	
	TCP Segmentation Offload (TSO)

	Large Receive Offload (LRO)

	
	Multi-Queue
	
	Transmit Side Scaling (TSS)

	Receive Side Scaling (RSS)

Also, the BNXT PMD supports stateless offloads on inner frames for tunneled
packets. Listed below are the tunneling protocols supported by the BNXT PMD:

	VXLAN

	GRE

	NVGRE

Note that enabling (or disabling) stateless offloads requires applications to
stop DPDK before changing configuration.

11.5.3.1. CRC Offload

The FCS (Frame Check Sequence) in the Ethernet frame is a four-octet CRC (Cyclic
Redundancy Check) that allows detection of corrupted data within the entire
frame as received on the receiver side.

The BNXT PMD supports hardware-based CRC offload:

	TX: calculate and insert CRC

	RX: check and remove CRC, notify the application on CRC error

Note that the CRC offload is always turned on.

11.5.3.2. Checksum Offload

The application enables hardware checksum calculation for IPv4, TCP, and UDP.

testpmd> port stop (port_id)
testpmd> csum set (ip|tcp|udp|outer-ip|outer-udp) (sw|hw) (port_id)
testpmd> set fwd csum

11.5.3.3. Multi-Queue

Multi-Queue, also known as TSS (Transmit Side Scaling) or RSS (Receive Side
Scaling), is a common networking technique that allows for more efficient load
balancing across multiple CPU cores.

The application enables multiple TX and RX queues when it is started.

testpmd -l 1,3,5 --master-lcore 1 --txq=2 –rxq=2 --nb-cores=2

TSS

TSS distributes network transmit processing across several hardware-based
transmit queues, allowing outbound network traffic to be processed by multiple
CPU cores.

RSS

RSS distributes network receive processing across several hardware-based receive
queues, allowing inbound network traffic to be processed by multiple CPU cores.

The application can select the RSS mode, i.e. select the header fields that are
included for hash calculation. The BNXT PMD supports the RSS mode of
default|ip|tcp|udp|none, where default mode is L3 and L4.

For tunneled packets, RSS hash is calculated over inner frame header fields.
Applications may want to select the tunnel header fields for hash calculation,
and it will be supported in 20.08 using RSS level.

testpmd> port config (port_id) rss (all|default|ip|tcp|udp|none)

// note that the testpmd defaults the RSS mode to ip
// ensure to issue the command below to enable L4 header (TCP or UDP) along with IPv4 header
testpmd> port config (port_id) rss default

// to check the current RSS configuration, such as RSS function and RSS key
testpmd> show port (port_id) rss-hash key

// RSS is enabled by default. However, application can disable RSS as follows
testpmd> port config (port_id) rss none

Application can change the flow distribution, i.e. remap the received traffic to
CPU cores, using RSS RETA (Redirection Table).

// application queries the current RSS RETA configuration
testpmd> show port (port_id) rss reta size (mask0, mask1)

// application changes the RSS RETA configuration
testpmd> port config (port_id) rss reta (hash, queue) [, (hash, queue)]

11.5.3.4. TSO

TSO (TCP Segmentation Offload), also known as LSO (Large Send Offload), enables
the TCP/IP stack to pass to the NIC a larger datagram than the MTU (Maximum
Transmit Unit). NIC breaks it into multiple segments before sending it to the
network.

The BNXT PMD supports hardware-based TSO.

// display the status of TSO
testpmd> tso show (port_id)

// enable/disable TSO
testpmd> port config (port_id) tx_offload tcp_tso (on|off)

// set TSO segment size
testpmd> tso set segment_size (port_id)

The BNXT PMD also supports hardware-based tunneled TSO.

// display the status of tunneled TSO
testpmd> tunnel_tso show (port_id)

// enable/disable tunneled TSO
testpmd> port config (port_id) tx_offload vxlan_tnl_tso|gre_tnl_tso (on|off)

// set tunneled TSO segment size
testpmd> tunnel_tso set segment_size (port_id)

Note that the checksum offload is always assumed to be enabled for TSO.

11.5.3.5. LRO

LRO (Large Receive Offload) enables NIC to aggregate multiple incoming TCP/IP
packets from a single stream into a larger buffer, before passing to the
networking stack.

The BNXT PMD supports hardware-based LRO.

// display the status of LRO
testpmd> show port (port_id) rx_offload capabilities
testpmd> show port (port_id) rx_offload configuration

// enable/disable LRO
testpmd> port config (port_id) rx_offload tcp_lro (on|off)

// set max LRO packet (datagram) size
testpmd> port config (port_id) max-lro-pkt-size (max_size)

The BNXT PMD also supports tunneled LRO.

Some applications, such as routing, should not change the packet headers as
they pass through (i.e. received from and sent back to the network). In such a
case, GRO (Generic Receive Offload) should be used instead of LRO.

11.5.4. VLAN Insert/Strip

DPDK application offloads VLAN insert/strip to improve performance. The BNXT PMD
supports hardware-based VLAN insert/strip offload for both single and double
VLAN packets.

11.5.4.1. VLAN Insert

Application configures the VLAN TPID (Tag Protocol ID). By default, the TPID is
0x8100.

// configure outer TPID value for a port
testpmd> vlan set outer tpid (tpid_value) (port_id)

The inner TPID set will be rejected as the BNXT PMD supports inserting only an
outer VLAN. Note that when a packet has a single VLAN, the tag is considered as
outer, i.e. the inner VLAN is relevant only when a packet is double-tagged.

The BNXT PMD supports various TPID values shown below. Any other values will be
rejected.

	0x8100

	0x88a8

	0x9100

	0x9200

	0x9300

The BNXT PMD supports the VLAN insert offload per-packet basis. The application
provides the TCI (Tag Control Info) for a packet via mbuf. In turn, the BNXT PMD
inserts the VLAN tag (via hardware) using the provided TCI along with the
configured TPID.

// enable VLAN insert offload
testpmd> port config (port_id) rx_offload vlan_insert|qinq_insert (on|off)

if (mbuf->ol_flags && PKT_TX_QINQ) // case-1: insert VLAN to single-tagged packet
 tci_value = mbuf->vlan_tci_outer
else if (mbuf->ol_flags && PKT_TX_VLAN) // case-2: insert VLAN to untagged packet
 tci_value = mbuf->vlan_tci

11.5.4.2. VLAN Strip

The application configures the per-port VLAN strip offload.

// enable VLAN strip on a port
testpmd> port config (port_id) tx_offload vlan_strip (on|off)

// notify application VLAN strip via mbuf
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_STRIPPED // outer VLAN is found and stripped
mbuf->vlan_tci = tci_value // TCI of the stripped VLAN

11.5.5. Time Synchronization

System operators may run a PTP (Precision Time Protocol) client application to
synchronize the time on the NIC (and optionally, on the system) to a PTP master.

The BNXT PMD supports a PTP client application to communicate with a PTP master
clock using DPDK IEEE1588 APIs. Note that the PTP client application needs to
run on PF and vector mode needs to be disabled.

For the PTP time synchronization support, the BNXT PMD must be compiled with
CONFIG_RTE_LIBRTE_IEEE1588=y (this compilation flag is currently pending).

testpmd> set fwd ieee1588 // enable IEEE 1588 mode

When enabled, the BNXT PMD configures hardware to insert IEEE 1588 timestamps to
the outgoing PTP packets and reports IEEE 1588 timestamps from the incoming PTP
packets to application via mbuf.

// RX packet completion will indicate whether the packet is PTP
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP

11.5.6. Statistics Collection

In Linux, the ethtool -S enables us to query the NIC stats. DPDK provides the
similar functionalities via rte_eth_stats and rte_eth_xstats.

The BNXT PMD supports both basic and extended stats collection:

	Basic stats

	Extended stats

11.5.6.1. Basic Stats

The application collects per-port and per-queue stats using rte_eth_stats APIs.

testpmd> show port stats (port_id)

Basic stats include:

	ipackets

	ibytes

	opackets

	obytes

	imissed

	ierrors

	oerrors

By default, per-queue stats for 16 queues are supported. For more than 16
queues, BNXT PMD should be compiled with CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS
set to the desired number of queues.

11.5.6.2. Extended Stats

Unlike basic stats, the extended stats are vendor-specific, i.e. each vendor
provides its own set of counters.

The BNXT PMD provides a rich set of counters, including per-flow counters,
per-cos counters, per-priority counters, etc.

testpmd> show port xstats (port_id)

Shown below is the elaborated sequence to retrieve extended stats:

// application queries the number of xstats
len = rte_eth_xstats_get(port_id, NULL, 0);
// BNXT PMD returns the size of xstats array (i.e. the number of entries)
// BNXT PMD returns 0, if the feature is compiled out or disabled

// application allocates memory for xstats
struct rte_eth_xstats_name *names; // name is 64 character or less
struct rte_eth_xstats *xstats;
names = calloc(len, sizeof(*names));
xstats = calloc(len, sizeof(*xstats));

// application retrieves xstats // names and values
ret = rte_eth_xstats_get_names(port_id, *names, len);
ret = rte_eth_xstats_get(port_id, *xstats, len);

// application checks the xstats
// application may repeat the below:
len = rte_eth_xstats_reset(port_id); // reset the xstats

// reset can be skipped, if application wants to see accumulated stats
// run traffic
// probably stop the traffic
// retrieve xstats // no need to retrieve xstats names again
// check xstats

11.5.7. Generic Flow Offload

Applications can get benefit by offloading all or part of flow processing to
hardware. For example, applications can offload packet classification only
(partial offload) or whole match-action (full offload).

DPDK offers the Generic Flow API (rte_flow API) to configure hardware to
perform flow processing.

Listed below are the rte_flow APIs BNXT PMD supports:

	rte_flow_validate

	rte_flow_create

	rte_flow_destroy

	rte_flow_flush

11.5.7.1. Host Based Flow Table Management

Starting with 20.05 BNXT PMD supports host based flow table management. This is
a new mechanism that should allow higher flow scalability than what is currently
supported. This new approach also defines a new rte_flow parser, and mapper
which currently supports basic packet classification in the receive path.

The feature uses a newly implemented control-plane firmware interface which
optimizes flow insertions and deletions.

This is a tech preview feature, and is disabled by default. It can be enabled
using bnxt devargs. For ex: “-w 0000:0d:00.0,host-based-truflow=1”.

11.6. Application Support

11.6.1. Firmware

The BNXT PMD supports the application to retrieve the firmware version.

testpmd> show port info (port_id)

Note that the applications cannot update the firmware using BNXT PMD.

11.6.2. Multiple Processes

When two or more DPDK applications (e.g., testpmd and dpdk-pdump) share a single
instance of DPDK, the BNXT PMD supports a single primary application and one or
more secondary applications. Note that the DPDK-layer (not the PMD) ensures
there is only one primary application.

There are two modes:

Manual mode

	Application notifies whether it is primary or secondary using proc-type flag

	1st process should be spawned with --proc-type=primary

	All subsequent processes should be spawned with --proc-type=secondary

Auto detection mode

	Application is using proc-type=auto flag

	A process is spawned as a secondary if a primary is already running

The BNXT PMD uses the info to skip a device initialization, i.e. performs a
device initialization only when being brought up by a primary application.

11.6.3. Runtime Queue Setup

Typically, a DPDK application allocates TX and RX queues statically: i.e. queues
are allocated at start. However, an application may want to increase (or
decrease) the number of queues dynamically for various reasons, e.g. power
savings.

The BNXT PMD supports applications to increase or decrease queues at runtime.

testpmd> port config all (rxq|txq) (num_queues)

Note that a DPDK application must allocate default queues (one for TX and one
for RX at minimum) at initialization.

11.6.4. Descriptor Status

Applications may use the descriptor status for various reasons, e.g. for power
savings. For example, an application may stop polling and change to interrupt
mode when the descriptor status shows no packets to service for a while.

The BNXT PMD supports the application to retrieve both TX and RX descriptor
status.

testpmd> show port (port_id) (rxq|txq) (queue_id) desc (desc_id) status

11.6.5. Bonding

DPDK implements a light-weight library to allow PMDs to be bonded together and provide a single logical PMD to the application.

testpmd -l 0-3 -n4 --vdev 'net_bonding0,mode=0,slave=<PCI B:D.F device 1>,slave=<PCI B:D.F device 2>,mac=XX:XX:XX:XX:XX:XX’ – --socket_num=1 – -i --port-topology=chained
(ex) testpmd -l 1,3,5,7,9 -n4 --vdev 'net_bonding0,mode=0,slave=0000:82:00.0,slave=0000:82:00.1,mac=00:1e:67:1d:fd:1d' – --socket-num=1 – -i --port-topology=chained

11.7. Vector Processing

Vector processing provides significantly improved performance over scalar
processing (see Vector Processor, here).

The BNXT PMD supports the vector processing using SSE (Streaming SIMD
Extensions) instructions on x86 platforms. The BNXT vPMD (vector mode PMD) is
currently limited to Intel/AMD CPU architecture. Support for ARM is not
currently implemented.

This improved performance comes from several optimizations:

	
	Batching
	
	TX: processing completions in bulk

	RX: allocating mbufs in bulk

	Chained mbufs are not supported, i.e. a packet should fit a single mbuf

	
	Some stateless offloads are not supported with vector processing
	
	TX: no offloads will be supported

	RX: reduced RX offloads (listed below) will be supported:

DEV_RX_OFFLOAD_VLAN_STRIP
DEV_RX_OFFLOAD_KEEP_CRC
DEV_RX_OFFLOAD_JUMBO_FRAME
DEV_RX_OFFLOAD_IPV4_CKSUM
DEV_RX_OFFLOAD_UDP_CKSUM
DEV_RX_OFFLOAD_TCP_CKSUM
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM
DEV_RX_OFFLOAD_RSS_HASH
DEV_RX_OFFLOAD_VLAN_FILTER

The BNXT Vector PMD is enabled in DPDK builds by default.

However, a decision to enable vector mode will be made when the port transitions
from stopped to started. Any TX offloads or some RX offloads (other than listed
above) will disable the vector mode.
Offload configuration changes that impact vector mode must be made when the port
is stopped.

Note that TX (or RX) vector mode can be enabled independently from RX (or TX)
vector mode.

11.8. Appendix

11.8.1. Supported Chipsets and Adapters

11.8.1.1. BCM5730x NetXtreme-C® Family of Ethernet Network Controllers

Information about Ethernet adapters in the NetXtreme family of adapters can be
found in the NetXtreme® Brand section [https://www.broadcom.com/products/ethernet-connectivity/network-adapters/] of the Broadcom website [http://www.broadcom.com/].

	M150c ... Single-port 40/50 Gigabit Ethernet Adapter

	P150c ... Single-port 40/50 Gigabit Ethernet Adapter

	P225c ... Dual-port 10/25 Gigabit Ethernet Adapter

11.8.1.2. BCM574xx/575xx NetXtreme-E® Family of Ethernet Network Controllers

Information about Ethernet adapters in the NetXtreme family of adapters can be
found in the NetXtreme® Brand section [https://www.broadcom.com/products/ethernet-connectivity/network-adapters/] of the Broadcom website [http://www.broadcom.com/].

	M125P Single-port OCP 2.0 10/25 Gigabit Ethernet Adapter

	M150P Single-port OCP 2.0 50 Gigabit Ethernet Adapter

	M150PM ... Single-port OCP 2.0 Multi-Host 50 Gigabit Ethernet Adapter

	M210P Dual-port OCP 2.0 10 Gigabit Ethernet Adapter

	M210TP ... Dual-port OCP 2.0 10 Gigabit Ethernet Adapter

	M1100G ... Single-port OCP 2.0 10/25/50/100 Gigabit Ethernet Adapter

	N150G Single-port OCP 3.0 50 Gigabit Ethernet Adapter

	M225P Dual-port OCP 2.0 10/25 Gigabit Ethernet Adapter

	N210P Dual-port OCP 3.0 10 Gigabit Ethernet Adapter

	N210TP ... Dual-port OCP 3.0 10 Gigabit Ethernet Adapter

	N225P Dual-port OCP 3.0 10/25 Gigabit Ethernet Adapter

	N250G Dual-port OCP 3.0 50 Gigabit Ethernet Adapter

	N410SG ... Quad-port OCP 3.0 10 Gigabit Ethernet Adapter

	N410SGBT . Quad-port OCP 3.0 10 Gigabit Ethernet Adapter

	N425G Quad-port OCP 3.0 10/25 Gigabit Ethernet Adapter

	N1100G ... Single-port OCP 3.0 10/25/50/100 Gigabit Ethernet Adapter

	N2100G ... Dual-port OCP 3.0 10/25/50/100 Gigabit Ethernet Adapter

	N2200G ... Dual-port OCP 3.0 10/25/50/100/200 Gigabit Ethernet Adapter

	P150P Single-port 50 Gigabit Ethernet Adapter

	P210P Dual-port 10 Gigabit Ethernet Adapter

	P210TP ... Dual-port 10 Gigabit Ethernet Adapter

	P225P Dual-port 10/25 Gigabit Ethernet Adapter

	P410SG ... Quad-port 10 Gigabit Ethernet Adapter

	P410SGBT . Quad-port 10 Gigabit Ethernet Adapter

	P425G Quad-port 10/25 Gigabit Ethernet Adapter

	P1100G ... Single-port 10/25/50/100 Gigabit Ethernet Adapter

	P2100G ... Dual-port 10/25/50/100 Gigabit Ethernet Adapter

	P2200G ... Dual-port 10/25/50/100/200 Gigabit Ethernet Adapter

11.8.1.3. BCM588xx NetXtreme-S® Family of SmartNIC Network Controllers

Information about the Stingray family of SmartNIC adapters can be found in the
Stingray® Brand section [https://www.broadcom.com/products/ethernet-connectivity/smartnic/] of the Broadcom website [http://www.broadcom.com/].

	PS225 ... Dual-port 25 Gigabit Ethernet SmartNIC

11.8.1.4. BCM5873x StrataGX® Family of Communications Processors

These ARM-based processors target a broad range of networking applications,
including virtual CPE (vCPE) and NFV appliances, 10G service routers and
gateways, control plane processing for Ethernet switches, and network-attached
storage (NAS).

	StrataGX BCM58732 ... Octal-Core 3.0GHz 64-bit ARM®v8 Cortex®-A72 based SoC

12. CXGBE Poll Mode Driver

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support
for Chelsio Terminator 10/25/40/100 Gbps family of adapters. CXGBE PMD
has support for the latest Linux and FreeBSD operating systems.

CXGBEVF PMD provides poll mode driver support for SR-IOV Virtual functions
and has support for the latest Linux operating systems.

More information can be found at Chelsio Communications Official Website [http://www.chelsio.com].

12.1. Features

CXGBE and CXGBEVF PMD has support for:

	Multiple queues for TX and RX

	Receiver Side Steering (RSS)
Receiver Side Steering (RSS) on IPv4, IPv6, IPv4-TCP/UDP, IPv6-TCP/UDP.
For 4-tuple, enabling ‘RSS on TCP’ and ‘RSS on TCP + UDP’ is supported.

	VLAN filtering

	Checksum offload

	Promiscuous mode

	All multicast mode

	Port hardware statistics

	Jumbo frames

	Flow API - Support for both Wildcard (LE-TCAM) and Exact (HASH) match filters.

12.2. Limitations

The Chelsio Terminator series of devices provide two/four ports but
expose a single PCI bus address, thus, librte_pmd_cxgbe registers
itself as a PCI driver that allocates one Ethernet device per detected
port.

For this reason, one cannot whitelist/blacklist a single port without
whitelisting/blacklisting the other ports on the same device.

12.3. Supported Chelsio T5 NICs

	1G NICs: T502-BT

	10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

	40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

	Other T5 NICs: T522-CR

12.4. Supported Chelsio T6 NICs

	25G NICs: T6425-CR, T6225-CR, T6225-LL-CR, T6225-SO-CR

	100G NICs: T62100-CR, T62100-LP-CR, T62100-SO-CR

12.5. Supported SR-IOV Chelsio NICs

SR-IOV virtual functions are supported on all the Chelsio NICs listed
in Supported Chelsio T5 NICs and Supported Chelsio T6 NICs.

12.6. Prerequisites

	Requires firmware version 1.24.11.0 and higher. Visit
Chelsio Download Center [http://service.chelsio.com] to get latest firmware
bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the
Chelsio Unified Wire package should get you the latest firmware. More
information can be obtained from the User Guide that is bundled with the
Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire
package must be manually flashed via cxgbetool available in FreeBSD source
repository.

Instructions on how to manually flash the firmware are given in section
Linux Installation for Linux and section FreeBSD Installation
for FreeBSD.

12.7. Pre-Installation Configuration

12.7.1. Config File Options

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

Note

This controls compilation of both CXGBE and CXGBEVF PMD.

12.7.2. Runtime Options

The following devargs options can be enabled at runtime. They must
be passed as part of EAL arguments. For example,

testpmd -w 02:00.4,keep_ovlan=1 -- -i

12.7.2.1. Common Runtime Options

	keep_ovlan (default 0)

Toggle behavior to keep/strip outer VLAN in Q-in-Q packets. If
enabled, the outer VLAN tag is preserved in Q-in-Q packets. Otherwise,
the outer VLAN tag is stripped in Q-in-Q packets.

	tx_mode_latency (default 0)

When set to 1, Tx doesn’t wait for max number of packets to get
coalesced and sends the packets immediately at the end of the
current Tx burst. When set to 0, Tx waits across multiple Tx bursts
until the max number of packets have been coalesced. In this case,
Tx only sends the coalesced packets to hardware once the max
coalesce limit has been reached.

12.7.2.2. CXGBE VF Only Runtime Options

	force_link_up (default 0)

When set to 1, CXGBEVF PMD always forces link as up for all VFs on
underlying Chelsio NICs. This enables multiple VFs on the same NIC
to send traffic to each other even when the physical link is down.

12.7.2.3. CXGBE PF Only Runtime Options

	filtermode (default 0)

Apart from the 4-tuple (IP src/dst addresses and TCP/UDP src/dst port
addresses), there are only 40-bits available to match other fields in
packet headers. So, filtermode devarg allows user to dynamically
select a 40-bit supported match field combination for LETCAM (wildcard)
filters.

Default value of 0 makes driver pick the combination configured in
the firmware configuration file on the adapter.

The supported flags and their corresponding values are shown in table below.
These flags can be OR’d to create 1 of the multiple supported combinations
for LETCAM filters.

	FLAG

	VALUE

	Physical Port

	0x1

	PFVF

	0x2

	Destination MAC

	0x4

	Ethertype

	0x8

	Inner VLAN

	0x10

	Outer VLAN

	0x20

	IP TOS

	0x40

	IP Protocol

	0x80

The supported filtermode combinations and their corresponding OR’d
values are shown in table below.

	FILTERMODE COMBINATIONS

	VALUE

	Protocol, TOS, Outer VLAN, Port

	0xE1

	Protocol, TOS, Outer VLAN

	0xE0

	Protocol, TOS, Inner VLAN, Port

	0xD1

	Protocol, TOS, Inner VLAN

	0xD0

	Protocol, TOS, PFVF, Port

	0xC3

	Protocol, TOS, PFVF

	0xC2

	Protocol, TOS, Port

	0xC1

	Protocol, TOS

	0xC0

	Protocol, Outer VLAN, Port

	0xA1

	Protocol, Outer VLAN

	0xA0

	Protocol, Inner VLAN, Port

	0x91

	Protocol, Inner VLAN

	0x90

	Protocol, Ethertype, DstMAC, Port

	0x8D

	Protocol, Ethertype, DstMAC

	0x8C

	Protocol, Ethertype, Port

	0x89

	Protocol, Ethertype

	0x88

	Protocol, DstMAC, PFVF, Port

	0x87

	Protocol, DstMAC, PFVF

	0x86

	Protocol, DstMAC, Port

	0x85

	Protocol, DstMAC

	0x84

	Protocol, PFVF, Port

	0x83

	Protocol, PFVF

	0x82

	Protocol, Port

	0x81

	Protocol

	0x80

	TOS, Outer VLAN, Port

	0x61

	TOS, Outer VLAN

	0x60

	TOS, Inner VLAN, Port

	0x51

	TOS, Inner VLAN

	0x50

	TOS, Ethertype, DstMAC, Port

	0x4D

	TOS, Ethertype, DstMAC

	0x4C

	TOS, Ethertype, Port

	0x49

	TOS, Ethertype

	0x48

	TOS, DstMAC, PFVF, Port

	0x47

	TOS, DstMAC, PFVF

	0x46

	TOS, DstMAC, Port

	0x45

	TOS, DstMAC

	0x44

	TOS, PFVF, Port

	0x43

	TOS, PFVF

	0x42

	TOS, Port

	0x41

	TOS

	0x40

	Outer VLAN, Inner VLAN, Port

	0x31

	Outer VLAN, Ethertype, Port

	0x29

	Outer VLAN, Ethertype

	0x28

	Outer VLAN, DstMAC, Port

	0x25

	Outer VLAN, DstMAC

	0x24

	Outer VLAN, Port

	0x21

	Outer VLAN

	0x20

	Inner VLAN, Ethertype, Port

	0x19

	Inner VLAN, Ethertype

	0x18

	Inner VLAN, DstMAC, Port

	0x15

	Inner VLAN, DstMAC

	0x14

	Inner VLAN, Port

	0x11

	Inner VLAN

	0x10

	Ethertype, DstMAC, Port

	0xD

	Ethertype, DstMAC

	0xC

	Ethertype, PFVF, Port

	0xB

	Ethertype, PFVF

	0xA

	Ethertype, Port

	0x9

	Ethertype

	0x8

	DstMAC, PFVF, Port

	0x7

	DstMAC, PFVF

	0x6

	DstMAC, Port

	0x5

	Destination MAC

	0x4

	PFVF, Port

	0x3

	PFVF

	0x2

	Physical Port

	0x1

For example, to enable matching ethertype field in Ethernet
header, and protocol field in IPv4 header, the filtermode
combination must be given as:

testpmd -w 02:00.4,filtermode=0x88 -- -i

	filtermask (default 0)

filtermask devarg works similar to filtermode, but is used
to configure a filter mode combination for HASH (exact-match) filters.

Note

The combination chosen for filtermask devarg must be a subset of
the combination chosen for filtermode devarg.

Default value of 0 makes driver pick the combination configured in
the firmware configuration file on the adapter.

Note that the filter rule will only be inserted in HASH region, if the
rule contains all the fields specified in the filtermask combination.
Otherwise, the filter rule will get inserted in LETCAM region.

The same combination list explained in the tables in filtermode devarg
section earlier applies for filtermask devarg, as well.

For example, to enable matching only protocol field in IPv4 header, the
filtermask combination must be given as:

testpmd -w 02:00.4,filtermode=0x88,filtermask=0x80 -- -i

12.8. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

12.9. Linux

12.9.1. Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio
Unified Wire package for Linux operating system are as follows:

	Load the kernel module:

modprobe cxgb4

	Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

	Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

	Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

	Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

	Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

	Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.24.11.0, TP 0.1.23.2

12.9.2. Running testpmd

This section demonstrates how to launch testpmd with Chelsio
devices managed by librte_pmd_cxgbe in Linux operating system.

	Load the kernel module:

modprobe cxgb4

	Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note

Both the interfaces of a Chelsio 2-port adapter are bound to the
same PCI bus address.

	Unload the kernel module:

modprobe -ar cxgb4 csiostor

	Running testpmd

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Note

Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.24.11.0, TP: 0.1.23.2
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd. Refer section Enable/Disable Flow Control for more details.

12.9.3. Configuring SR-IOV Virtual Functions

This section demonstrates how to enable SR-IOV virtual functions
on Chelsio NICs and demonstrates how to run testpmd with SR-IOV
virtual functions.

	Load the kernel module:

modprobe cxgb4

	Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note

Both the interfaces of a Chelsio 2-port adapter are bound to the
same PCI bus address.

	Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

	Bring up the interfaces:

ifconfig p1p1 up
ifconfig p1p2 up

	Instantiate SR-IOV Virtual Functions. PF0..3 can be used for
SR-IOV VFs. Multiple VFs can be instantiated on each of PF0..3.
To instantiate one SR-IOV VF on each PF0 and PF1:

echo 1 > /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:02\:00.1/sriov_numvfs

	Get the PCI bus addresses of the virtual functions:

lspci | grep -i "Chelsio" | grep -i "VF"

Example output:

02:01.0 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]
02:01.1 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]

	Running testpmd

Follow instructions available in the document
compiling and testing a PMD for a NIC
to bind virtual functions and run testpmd.

Example output:

[...]
EAL: PCI device 0000:02:01.0 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.24.11.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.23.2
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.0 Chelsio rev 0 1G/10GBASE-SFP
EAL: PCI device 0000:02:01.1 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.24.11.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.23.2
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.1 Chelsio rev 0 1G/10GBASE-SFP
Configuring Port 0 (socket 0)
Port 0: 06:44:29:44:40:00
Configuring Port 1 (socket 0)
Port 1: 06:44:29:44:40:10
Checking link statuses...
Done
testpmd>

12.10. FreeBSD

12.10.1. FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio
Unified Wire package for FreeBSD operating system are as follows:

	Load the kernel module:

kldload if_cxgbe

	Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

Example output:

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

	Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

	Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

	Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

	Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.24.11.0

12.10.2. Running testpmd

This section demonstrates how to launch testpmd with Chelsio
devices managed by librte_pmd_cxgbe in FreeBSD operating system.

	Change to DPDK source directory where the target has been compiled in
section Driver compilation and testing:

cd <DPDK-source-directory>

	Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-freebsd-clang/kmod/contigmem.ko /boot/kernel/

	Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and
allocate 2 x 1G blocks of contiguous memory to be used for DPDK later on.
This is to avoid issues with potential memory fragmentation during later
system up time, which may result in failure of allocating the contiguous
memory required for the contigmem kernel module.

	Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

	Repeat step 1 to ensure that you are in the DPDK source directory.

	Load the cxgbe kernel module:

kldload if_cxgbe

	Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note

Both the interfaces of a Chelsio 2-port adapter are bound to the
same PCI bus address.

	Unload the kernel module:

kldunload if_cxgbe

	Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in
the next step.

Note

Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

	Load nic_uio kernel driver:

kldload ./x86_64-native-freebsd-clang/kmod/nic_uio.ko

	Start testpmd with basic parameters:

./x86_64-native-freebsd-clang/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.24.11.0, TP: 0.1.23.2
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd. Refer section Enable/Disable Flow Control for more details.

12.11. Sample Application Notes

12.11.1. Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via
testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

12.11.2. Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd.
One method involves using the mtu command, which changes the mtu of an
individual port without having to stop the selected port. Another method
involves stopping all the ports first and then running max-pkt-len command
to configure the mtu of all the ports with a single command.

	To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

	To configure all the ports at once, stop all the ports first and run the
max-pkt-len command as follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

13. DPAA Poll Mode Driver

The DPAA NIC PMD (librte_pmd_dpaa) provides poll mode driver
support for the inbuilt NIC found in the NXP DPAA SoC family.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

13.1. NXP DPAA (Data Path Acceleration Architecture - Gen 1)

This section provides an overview of the NXP DPAA architecture
and how it is integrated into the DPDK.

Contents summary

	DPAA overview

	DPAA driver architecture overview

13.1.1. DPAA Overview

Reference: FSL DPAA Architecture [http://www.nxp.com/assets/documents/data/en/white-papers/QORIQDPAAWP.pdf].

The QorIQ Data Path Acceleration Architecture (DPAA) is a set of hardware
components on specific QorIQ series multicore processors. This architecture
provides the infrastructure to support simplified sharing of networking
interfaces and accelerators by multiple CPU cores, and the accelerators
themselves.

DPAA includes:

	Cores

	Network and packet I/O

	Hardware offload accelerators

	Infrastructure required to facilitate flow of packets between the components above

Infrastructure components are:

	The Queue Manager (QMan) is a hardware accelerator that manages frame queues.
It allows CPUs and other accelerators connected to the SoC datapath to
enqueue and dequeue ethernet frames, thus providing the infrastructure for
data exchange among CPUs and datapath accelerators.

	The Buffer Manager (BMan) is a hardware buffer pool management block that
allows software and accelerators on the datapath to acquire and release
buffers in order to build frames.

Hardware accelerators are:

	SEC - Cryptographic accelerator

	PME - Pattern matching engine

The Network and packet I/O component:

	The Frame Manager (FMan) is a key component in the DPAA and makes use of the
DPAA infrastructure (QMan and BMan). FMan is responsible for packet
distribution and policing. Each frame can be parsed, classified and results
may be attached to the frame. This meta data can be used to select
particular QMan queue, which the packet is forwarded to.

13.2. DPAA DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA:

	Bus driver and associated “DPAA infrastructure” drivers

	Functional object drivers (such as Ethernet).

Brief description of each driver is provided in layout below as well as
in the following sections.

 +------------+
 | DPDK DPAA |
 | PMD |
 +-----+------+
 |
 +-----+------+ +---------------+
 : Ethernet :.......| DPDK DPAA |
 : (FMAN) : | Mempool driver|
 . +---+---+----+ | (BMAN) |
 . ^ | +-----+---------+
 . | |<enqueue, .
 . | | dequeue> .
 . | | .
 . +---+---V----+ .
 : Portal drv : .
 . . : : .
 . . +-----+------+ .
 . . : QMAN : .
 . . : Driver : .
+----+------+-------+ +-----+------+ .
| DPDK DPAA Bus | | .
| driver |....................|.....................
| /bus/dpaa | |
+-------------------+ |
 |
========================== HARDWARE =====|========================
 PHY
===|========================

In the above representation, solid lines represent components which interface
with DPDK RTE Framework and dotted lines represent DPAA internal components.

13.2.1. DPAA Bus driver

The DPAA bus driver is a rte_bus driver which scans the platform like bus.
Key functions include:

	Scanning and parsing the various objects and adding them to their respective
device list.

	Performing probe for available drivers against each scanned device

	Creating necessary ethernet instance before passing control to the PMD

13.2.2. DPAA NIC Driver (PMD)

DPAA PMD is traditional DPDK PMD which provides necessary interface between
RTE framework and DPAA internal components/drivers.

	Once devices have been identified by DPAA Bus, each device is associated
with the PMD

	PMD is responsible for implementing necessary glue layer between RTE APIs
and lower level QMan and FMan blocks.
The Ethernet driver is bound to a FMAN port and implements the interfaces
needed to connect the DPAA network interface to the network stack.
Each FMAN Port corresponds to a DPDK network interface.

13.2.2.1. Features

Features of the DPAA PMD are:

	Multiple queues for TX and RX

	Receive Side Scaling (RSS)

	Packet type information

	Checksum offload

	Promiscuous mode

13.2.3. DPAA Mempool Driver

DPAA has a hardware offloaded buffer pool manager, called BMan, or Buffer
Manager.

	Using standard Mempools operations RTE API, the mempool driver interfaces
with RTE to service each mempool creation, deletion, buffer allocation and
deallocation requests.

	Each FMAN instance has a BMan pool attached to it during initialization.
Each Tx frame can be automatically released by hardware, if allocated from
this pool.

13.3. Whitelisting & Blacklisting

For blacklisting a DPAA device, following commands can be used.

<dpdk app> <EAL args> -b "dpaa_bus:fmX-macY" -- ...
e.g. "dpaa_bus:fm1-mac4"

13.4. Supported DPAA SoCs

	LS1043A/LS1023A

	LS1046A/LS1026A

13.5. Prerequisites

See NXP QorIQ DPAA Board Support Package for setup information

	Follow the DPDK Getting Started Guide for Linux
to setup the basic DPDK environment.

Note

Some part of dpaa bus code (qbman and fman - library) routines are
dual licensed (BSD & GPLv2), however they are used as BSD in DPDK in userspace.

13.6. Pre-Installation Configuration

13.6.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_DPAA_BUS (default y)

Toggle compilation of the librte_bus_dpaa driver.

	CONFIG_RTE_LIBRTE_DPAA_PMD (default y)

Toggle compilation of the librte_pmd_dpaa driver.

	CONFIG_RTE_LIBRTE_DPAA_DEBUG_DRIVER (default n)

Toggles display of bus configurations and enables a debugging queue
to fetch error (Rx/Tx) packets to driver. By default, packets with errors
(like wrong checksum) are dropped by the hardware.

	CONFIG_RTE_LIBRTE_DPAA_HWDEBUG (default n)

Enables debugging of the Queue and Buffer Manager layer which interacts
with the DPAA hardware.

13.6.2. Environment Variables

DPAA drivers uses the following environment variables to configure its
state during application initialization:

	DPAA_NUM_RX_QUEUES (default 1)

This defines the number of Rx queues configured for an application, per
port. Hardware would distribute across these many number of queues on Rx
of packets.
In case the application is configured to use lesser number of queues than
configured above, it might result in packet loss (because of distribution).

	DPAA_PUSH_QUEUES_NUMBER (default 4)

This defines the number of High performance queues to be used for ethdev Rx.
These queues use one private HW portal per queue configured, so they are
limited in the system. The first configured ethdev queues will be
automatically be assigned from the these high perf PUSH queues. Any queue
configuration beyond that will be standard Rx queues. The application can
choose to change their number if HW portals are limited.
The valid values are from ‘0’ to ‘4’. The values shall be set to ‘0’ if the
application want to use eventdev with DPAA device.
Currently these queues are not used for LS1023/LS1043 platform by default.

13.7. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

./arm64-dpaa-linux-gcc/testpmd -c 0xff -n 1 \
 -- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [dpaa] bus.
EAL: Detected 4 lcore(s)
.....
EAL: dpaa: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02
.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

13.8. Limitations

13.8.1. Platform Requirement

DPAA drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA SoCs.

13.8.2. Maximum packet length

The DPAA SoC family support a maximum of a 10240 jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 10240, frames
up to 10240 bytes can still reach the host interface.

13.8.3. Multiprocess Support

Current version of DPAA driver doesn’t support multi-process applications
where I/O is performed using secondary processes. This feature would be
implemented in subsequent versions.

14. DPAA2 Poll Mode Driver

The DPAA2 NIC PMD (librte_pmd_dpaa2) provides poll mode driver
support for the inbuilt NIC found in the NXP DPAA2 SoC family.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

14.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2)

This section provides an overview of the NXP DPAA2 architecture
and how it is integrated into the DPDK.

Contents summary

	DPAA2 overview

	Overview of DPAA2 objects

	DPAA2 driver architecture overview

14.1.1. DPAA2 Overview

Reference: FSL MC BUS in Linux Kernel [https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README.txt].

DPAA2 is a hardware architecture designed for high-speed network
packet processing. DPAA2 consists of sophisticated mechanisms for
processing Ethernet packets, queue management, buffer management,
autonomous L2 switching, virtual Ethernet bridging, and accelerator
(e.g. crypto) sharing.

A DPAA2 hardware component called the Management Complex (or MC) manages the
DPAA2 hardware resources. The MC provides an object-based abstraction for
software drivers to use the DPAA2 hardware.

The MC uses DPAA2 hardware resources such as queues, buffer pools, and
network ports to create functional objects/devices such as network
interfaces, an L2 switch, or accelerator instances.

The MC provides memory-mapped I/O command interfaces (MC portals)
which DPAA2 software drivers use to operate on DPAA2 objects:

The diagram below shows an overview of the DPAA2 resource management
architecture:

+--------------------------------------+
| OS |
| DPAA2 drivers |
| | |
+-----------------------------|--------+
 |
 | (create,discover,connect
 | config,use,destroy)
 |
 DPAA2 |
+------------------------| mc portal |-+
| | |
| +- - - - - - - - - - - - -V- - -+ |
	Management Complex (MC)	
+- - - - - - - - - - - - - - - -+		
Hardware Hardware		
Resources Objects		
--------- -------		
-queues -DPRC		
-buffer pools -DPMCP		
-Eth MACs/ports -DPIO		
-network interface -DPNI		
profiles -DPMAC		
-queue portals -DPBP		
-MC portals ...		
...		
+--------------------------------------+

The MC mediates operations such as create, discover,
connect, configuration, and destroy. Fast-path operations
on data, such as packet transmit/receive, are not mediated by
the MC and are done directly using memory mapped regions in
DPIO objects.

14.1.2. Overview of DPAA2 Objects

The section provides a brief overview of some key DPAA2 objects.
A simple scenario is described illustrating the objects involved
in creating a network interfaces.

DPRC (Datapath Resource Container)

A DPRC is a container object that holds all the other
types of DPAA2 objects. In the example diagram below there
are 8 objects of 5 types (DPMCP, DPIO, DPBP, DPNI, and DPMAC)
in the container.

+---+
| DPRC |
| |
| +-------+ +-------+ +-------+ +-------+ +-------+ |
| | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | |
| +-------+ +-------+ +-------+ +---+---+ +---+---+ |
| | DPMCP | | DPIO | |
| +-------+ +-------+ |
| | DPMCP | |
| +-------+ |
| |
+---+

From the point of view of an OS, a DPRC behaves similar to a plug and
play bus, like PCI. DPRC commands can be used to enumerate the contents
of the DPRC, discover the hardware objects present (including mappable
regions and interrupts).

DPRC.1 (bus)
 |
 +--+--------+-------+-------+-------+
 | | | | |
 DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1
 DPMCP.2 DPIO.2
 DPMCP.3

Hardware objects can be created and destroyed dynamically, providing
the ability to hot plug/unplug objects in and out of the DPRC.

A DPRC has a mappable MMIO region (an MC portal) that can be used
to send MC commands. It has an interrupt for status events (like
hotplug).

All objects in a container share the same hardware “isolation context”.
This means that with respect to an IOMMU the isolation granularity
is at the DPRC (container) level, not at the individual object
level.

DPRCs can be defined statically and populated with objects
via a config file passed to the MC when firmware starts
it. There is also a Linux user space tool called “restool”
that can be used to create/destroy containers and objects
dynamically.

14.1.3. DPAA2 Objects for an Ethernet Network Interface

A typical Ethernet NIC is monolithic– the NIC device contains TX/RX
queuing mechanisms, configuration mechanisms, buffer management,
physical ports, and interrupts. DPAA2 uses a more granular approach
utilizing multiple hardware objects. Each object provides specialized
functions. Groups of these objects are used by software to provide
Ethernet network interface functionality. This approach provides
efficient use of finite hardware resources, flexibility, and
performance advantages.

The diagram below shows the objects needed for a simple
network interface configuration on a system with 2 CPUs.

+---+---+ +---+---+
 CPU0 CPU1
+---+---+ +---+---+
 | |
+---+---+ +---+---+
 DPIO DPIO
+---+---+ +---+---+
 \ /
 \ /
 \ /
 +---+---+
 DPNI --- DPBP,DPMCP
 +---+---+
 |
 |
 +---+---+
 DPMAC
 +---+---+
 |
 port/PHY

Below the objects are described. For each object a brief description
is provided along with a summary of the kinds of operations the object
supports and a summary of key resources of the object (MMIO regions
and IRQs).

DPMAC (Datapath Ethernet MAC): represents an Ethernet MAC, a
hardware device that connects to an Ethernet PHY and allows
physical transmission and reception of Ethernet frames.

	MMIO regions: none

	IRQs: DPNI link change

	commands: set link up/down, link config, get stats, IRQ config, enable, reset

DPNI (Datapath Network Interface): contains TX/RX queues,
network interface configuration, and RX buffer pool configuration
mechanisms. The TX/RX queues are in memory and are identified by
queue number.

	MMIO regions: none

	IRQs: link state

	commands: port config, offload config, queue config, parse/classify config, IRQ config, enable, reset

DPIO (Datapath I/O): provides interfaces to enqueue and dequeue
packets and do hardware buffer pool management operations. The DPAA2
architecture separates the mechanism to access queues (the DPIO object)
from the queues themselves. The DPIO provides an MMIO interface to
enqueue/dequeue packets. To enqueue something a descriptor is written
to the DPIO MMIO region, which includes the target queue number.
There will typically be one DPIO assigned to each CPU. This allows all
CPUs to simultaneously perform enqueue/dequeued operations. DPIOs are
expected to be shared by different DPAA2 drivers.

	MMIO regions: queue operations, buffer management

	IRQs: data availability, congestion notification, buffer pool depletion

	commands: IRQ config, enable, reset

DPBP (Datapath Buffer Pool): represents a hardware buffer
pool.

	MMIO regions: none

	IRQs: none

	commands: enable, reset

DPMCP (Datapath MC Portal): provides an MC command portal.
Used by drivers to send commands to the MC to manage
objects.

	MMIO regions: MC command portal

	IRQs: command completion

	commands: IRQ config, enable, reset

14.1.4. Object Connections

Some objects have explicit relationships that must
be configured:

	DPNI <–> DPMAC

	DPNI <–> DPNI

	DPNI <–> L2-switch-port

A DPNI must be connected to something such as a DPMAC,
another DPNI, or L2 switch port. The DPNI connection
is made via a DPRC command.

+-------+ +-------+
| DPNI | | DPMAC |
+---+---+ +---+---+
 | |
 +==========+

	DPNI <–> DPBP

A network interface requires a ‘buffer pool’ (DPBP object) which provides
a list of pointers to memory where received Ethernet data is to be copied.
The Ethernet driver configures the DPBPs associated with the network
interface.

14.1.5. Interrupts

All interrupts generated by DPAA2 objects are message
interrupts. At the hardware level message interrupts
generated by devices will normally have 3 components–
1) a non-spoofable ‘device-id’ expressed on the hardware
bus, 2) an address, 3) a data value.

In the case of DPAA2 devices/objects, all objects in the
same container/DPRC share the same ‘device-id’.
For ARM-based SoC this is the same as the stream ID.

14.2. DPAA2 DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for
DPAA2– 1) the bus driver and associated “DPAA2 infrastructure”
drivers and 2) functional object drivers (such as Ethernet).

As described previously, a DPRC is a container that holds the other
types of DPAA2 objects. It is functionally similar to a plug-and-play
bus controller.

Each object in the DPRC is a Linux “device” and is bound to a driver.
The diagram below shows the dpaa2 drivers involved in a networking
scenario and the objects bound to each driver. A brief description
of each driver follows.

A brief description of each driver is provided below.

14.2.1. DPAA2 bus driver

The DPAA2 bus driver is a rte_bus driver which scans the fsl-mc bus.
Key functions include:

	Reading the container and setting up vfio group

	Scanning and parsing the various MC objects and adding them to
their respective device list.

Additionally, it also provides the object driver for generic MC objects.

14.2.2. DPIO driver

The DPIO driver is bound to DPIO objects and provides services that allow
other drivers such as the Ethernet driver to enqueue and dequeue data for
their respective objects.
Key services include:

	Data availability notifications

	Hardware queuing operations (enqueue and dequeue of data)

	Hardware buffer pool management

To transmit a packet the Ethernet driver puts data on a queue and
invokes a DPIO API. For receive, the Ethernet driver registers
a data availability notification callback. To dequeue a packet
a DPIO API is used.

There is typically one DPIO object per physical CPU for optimum
performance, allowing different CPUs to simultaneously enqueue
and dequeue data.

The DPIO driver operates on behalf of all DPAA2 drivers
active – Ethernet, crypto, compression, etc.

14.2.3. DPBP based Mempool driver

The DPBP driver is bound to a DPBP objects and provides services to
create a hardware offloaded packet buffer mempool.

14.2.4. DPAA2 NIC Driver

The Ethernet driver is bound to a DPNI and implements the kernel
interfaces needed to connect the DPAA2 network interface to
the network stack.

Each DPNI corresponds to a DPDK network interface.

14.2.4.1. Features

Features of the DPAA2 PMD are:

	Multiple queues for TX and RX

	Receive Side Scaling (RSS)

	MAC/VLAN filtering

	Packet type information

	Checksum offload

	Promiscuous mode

	Multicast mode

	Port hardware statistics

	Jumbo frames

	Link flow control

	Scattered and gather for TX and RX

14.3. Supported DPAA2 SoCs

	LX2160A

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

14.4. Prerequisites

See NXP QorIQ DPAA2 Board Support Package for setup information

Currently supported by DPDK:

	NXP LSDK 19.08+.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note

Some part of fslmc bus code (mc flib - object library) routines are
dual licensed (BSD & GPLv2), however they are used as BSD in DPDK in userspace.

14.5. Pre-Installation Configuration

14.5.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_FSLMC_BUS (default y)

Toggle compilation of the librte_bus_fslmc driver.

	CONFIG_RTE_LIBRTE_DPAA2_PMD (default y)

Toggle compilation of the librte_pmd_dpaa2 driver.

	CONFIG_RTE_LIBRTE_DPAA2_DEBUG_DRIVER (default n)

Toggle display of debugging messages/logic

	CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA (default n)

Toggle to use physical address vs virtual address for hardware accelerators.

14.6. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

./testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [fslmc] bus.
EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
PMD: DPAA2: Processing Container = dprc.2
EAL: fslmc: DPRC contains = 51 devices
EAL: fslmc: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02
.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

	Use dev arg option drv_loopback=1 to loopback packets at
driver level. Any packet received will be reflected back by the
driver on same port. e.g. fslmc:dpni.1,drv_loopback=1

	Use dev arg option drv_no_prefetch=1 to disable prefetching
of the packet pull command which is issued in the previous cycle.
e.g. fslmc:dpni.1,drv_no_prefetch=1

14.7. Enabling logs

For enabling logging for DPAA2 PMD, following log-level prefix can be used:

<dpdk app> <EAL args> --log-level=bus.fslmc:<level> -- ...

Using bus.fslmc as log matching criteria, all FSLMC bus logs can be enabled
which are lower than logging level.

Or

<dpdk app> <EAL args> --log-level=pmd.net.dpaa2:<level> -- ...

Using pmd.net.dpaa2 as log matching criteria, all PMD logs can be enabled
which are lower than logging level.

14.8. Whitelisting & Blacklisting

For blacklisting a DPAA2 device, following commands can be used.

<dpdk app> <EAL args> -b "fslmc:dpni.x" -- ...

Where x is the device object id as configured in resource container.

14.9. Limitations

14.9.1. Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA2 SoCs.

14.9.2. Maximum packet length

The DPAA2 SoC family support a maximum of a 10240 jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 10240, frames
up to 10240 bytes can still reach the host interface.

14.9.3. Other Limitations

	RSS hash key cannot be modified.

	RSS RETA cannot be configured.

15. Driver for VM Emulated Devices

The DPDK EM poll mode driver supports the following emulated devices:

	qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

	VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

	VMware emulated Intel® 8274L Gigabit Ethernet Controller.

15.1. Validated Hypervisors

The validated hypervisors are:

	KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

	KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

	VMware ESXi 5.0, Update 1

15.2. Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

	Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

15.3. Setting Up a KVM Virtual Machine

The following describes a target environment:

	Host Operating System: Fedora 14

	Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

	Guest Operating System: Fedora 14

	Linux Kernel Version: Refer to the DPDK Getting Started Guide

	Target Applications: testpmd

The setup procedure is as follows:

	Download qemu-kvm-0.14.0 from
http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules,
you must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:
http://www.linux-kvm.org/page/HOWTO1.

	Create a Virtual Machine and install Fedora 14 on the Virtual Machine.
This is referred to as the Guest Operating System (Guest OS).

	Start the Virtual Machine with at least one emulated e1000 device.

Note

The Qemu provides several choices for the emulated network device backend.
Most commonly used is a TAP networking backend that uses a TAP networking device in the host.
For more information about Qemu supported networking backends and different options for configuring networking at Qemu,
please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices,
backed up with two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

	Configure your TAP networking interfaces using ip/ifconfig tools.

	Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

	Install the DPDK and run testpmd.

15.4. Known Limitations of Emulated Devices

The following are known limitations:

	The Qemu e1000 RX path does not support multiple descriptors/buffers per packet.
Therefore, rte_mbuf should be big enough to hold the whole packet.
For example, to allow testpmd to receive jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

	Qemu e1000 does not validate the checksum of incoming packets.

	Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be exclusive.

	Qemu e1000 does not support interrupt auto-clear, application should disable interrupt immediately when woken up.

16. ENA Poll Mode Driver

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic
Network Adapter (ENA) family.

16.1. Overview

The ENA driver exposes a lightweight management interface with a
minimal set of memory mapped registers and an extendable command set
through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed
independent (i.e., the same driver is used for 10GbE, 25GbE, 40GbE,
etc.), and it negotiates and supports an extendable feature set.

ENA adapters allow high speed and low overhead Ethernet traffic
processing by providing a dedicated Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such
as checksum offload and TCP transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds.

16.2. Management Interface

ENA management interface is exposed by means of:

	Device Registers

	Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers)
are accessed only during driver initialization and are not involved
in further normal device operation.

AQ is used for submitting management commands, and the
results/responses are reported asynchronously through ACQ.

ENA introduces a very small set of management commands with room for
vendor-specific extensions. Most of the management operations are
framed in a generic Get/Set feature command.

The following admin queue commands are supported:

	Create I/O submission queue

	Create I/O completion queue

	Destroy I/O submission queue

	Destroy I/O completion queue

	Get feature

	Set feature

	Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature
properties.

16.3. Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx
SQ correspondingly). Each SQ has a completion queue (CQ) associated
with it.

The SQs and CQs are implemented as descriptor rings in contiguous
physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

16.4. Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

	CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion
of the ENA PMD driver in the DPDK compilation.

	CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables debug
logging of RX logic within the ENA PMD driver.

	CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables debug
logging of TX logic within the ENA PMD driver.

	CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables debug
logging of low level tx/rx logic in ena_com(base) within the ENA PMD driver.

Runtime Configuration Parameters

	large_llq_hdr (default 0)

Enables or disables usage of large LLQ headers. This option will have
effect only if the device also supports large LLQ headers. Otherwise, the
default value will be used.

ENA Configuration Parameters

	Number of Queues

This is the requested number of queues upon initialization, however, the actual
number of receive and transmit queues to be created will be the minimum between
the maximal number supported by the device and number of queues requested.

	Size of Queues

This is the requested size of receive/transmit queues, while the actual size
will be the minimum between the requested size and the maximal receive/transmit
supported by the device.

16.5. Building DPDK

See the DPDK Getting Started Guide for Linux for
instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the
documentation that comes with DPDK suite.

16.6. Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

	1d0f:ec20 - ENA VF

	1d0f:ec21 - ENA VF with LLQ support

16.7. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements
section of the DPDK documentation or refer to DPDK Release Notes.

16.8. Supported features

	MTU configuration

	Jumbo frames up to 9K

	IPv4/TCP/UDP checksum offload

	TSO offload

	Multiple receive and transmit queues

	RSS hash

	RSS indirection table configuration

	Low Latency Queue for Tx

	Basic and extended statistics

	LSC event notification

	Watchdog (requires handling of timers in the application)

	Device reset upon failure

16.9. Prerequisites

	Prepare the system as recommended by DPDK suite. This includes environment
variables, hugepages configuration, tool-chains and configuration.

	ENA PMD can operate with vfio-pci``(*) or ``igb_uio driver.

(*) ENAv2 hardware supports Low Latency Queue v2 (LLQv2). This feature
reduces the latency of the packets by pushing the header directly through
the PCI to the device, before the DMA is even triggered. For proper work
kernel PCI driver must support write combining (WC). In mainline version of
igb_uio (in DPDK repo) it must be enabled by loading module with
wc_activate=1 flag (example below). However, mainline’s vfio-pci
driver in kernel doesn’t have WC support yet (planed to be added).
If vfio-pci used user should be either turn off ENAv2 (to avoid performance
impact) or recompile vfio-pci driver with patch provided in
amzn-github [https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk/enav2-vfio-patch].

	Insert vfio-pci or igb_uio kernel module using the command
modprobe vfio-pci or modprobe uio; insmod igb_uio.ko wc_activate=1
respectively.

	For vfio-pci users only:
Please make sure that IOMMU is enabled in your system,
or use vfio driver in noiommu mode:

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

To use noiommu mode, the vfio-pci must be built with flag
CONFIG_VFIO_NOIOMMU.

	Bind the intended ENA device to vfio-pci or igb_uio module.

At this point the system should be ready to run DPDK applications. Once the
application runs to completion, the ENA can be detached from attached module if
necessary.

Note about usage on *.metal instances

On AWS, the metal instances are supporting IOMMU for both arm64 and x86_64
hosts.

	
	x86_64 (e.g. c5.metal, i3.metal):
	IOMMU should be disabled by default. In that situation, the igb_uio can
be used as it is but vfio-pci should be working in no-IOMMU mode (please
see above).

When IOMMU is enabled, igb_uio cannot be used as it’s not supporting this
feature, while vfio-pci should work without any changes.
To enable IOMMU on those hosts, please update GRUB_CMDLINE_LINUX in file
/etc/default/grub with the below extra boot arguments:

iommu=1 intel_iommu=on

Then, make the changes live by executing as a root:

grub2-mkconfig > /boot/grub2/grub.cfg

Finally, reboot should result in IOMMU being enabled.

	
	arm64 (a1.metal):
	IOMMU should be enabled by default. Unfortunately, vfio-pci isn’t
supporting SMMU, which is implementation of IOMMU for arm64 architecture and
igb_uio isn’t supporting IOMMU at all, so to use DPDK with ENA on those
hosts, one must disable IOMMU. This can be done by updating
GRUB_CMDLINE_LINUX in file /etc/default/grub with the extra boot
argument:

iommu.passthrough=1

Then, make the changes live by executing as a root:

grub2-mkconfig > /boot/grub2/grub.cfg

Finally, reboot should result in IOMMU being disabled.
Without IOMMU, igb_uio can be used as it is but vfio-pci should be
working in no-IOMMU mode (please see above).

16.10. Usage example

Follow instructions available in the document
compiling and testing a PMD for a NIC to launch
testpmd with Amazon ENA devices managed by librte_pmd_ena.

Example output:

[...]
EAL: PCI device 0000:00:06.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 1d0f:ec20 net_ena

Interactive-mode selected
testpmd: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
testpmd: preferred mempool ops selected: ring_mp_mc
Warning! port-topology=paired and odd forward ports number, the last port will pair with itself.
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...

Done
testpmd>

17. ENETC Poll Mode Driver

The ENETC NIC PMD (librte_pmd_enetc) provides poll mode driver
support for the inbuilt NIC found in the NXP LS1028 SoC.

More information can be found at NXP Official Website [https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-1028a-industrial-applications-processor:LS1028A].

17.1. ENETC

This section provides an overview of the NXP ENETC
and how it is integrated into the DPDK.

Contents summary

	ENETC overview

	ENETC features

	PCI bus driver

	NIC driver

	Supported ENETC SoCs

	Prerequisites

	Driver compilation and testing

17.1.1. ENETC Overview

ENETC is a PCI Integrated End Point(IEP). IEP implements
peripheral devices in an SoC such that software sees them as PCIe device.
ENETC is an evolution of BDR(Buffer Descriptor Ring) based networking
IPs.

This infrastructure simplifies adding support for IEP and facilitates in following:

	Device discovery and location

	Resource requirement discovery and allocation (e.g. interrupt assignment,
device register address)

	Event reporting

17.1.2. ENETC Features

	Link Status

	Packet type information

	Basic stats

	Promiscuous

	Multicast

	Jumbo packets

	Queue Start/Stop

	Deferred Queue Start

	CRC offload

17.1.3. NIC Driver (PMD)

ENETC PMD is traditional DPDK PMD which provides necessary interface between
RTE framework and ENETC internal drivers.

	Driver registers the device vendor table in PCI subsystem.

	RTE framework scans the PCI bus for connected devices.

	This scanning will invoke the probe function of ENETC driver.

	The probe function will set the basic device registers and also setups BD rings.

	On packet Rx the respective BD Ring status bit is set which is then used for
packet processing.

	Then Tx is done first followed by Rx.

17.1.4. Supported ENETC SoCs

	LS1028

17.1.5. Prerequisites

There are three main pre-requisites for executing ENETC PMD on a ENETC
compatible board:

	ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain [https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz].

	Linux Kernel

It can be obtained from NXP’s Github hosting [https://source.codeaurora.org/external/qoriq/qoriq-components/linux].

	Rootfile system

Any aarch64 supporting filesystem can be used. For example,
Ubuntu 16.04 LTS (Xenial) or 18.04 (Bionic) userland which can be obtained
from here [http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz].

The following dependencies are not part of DPDK and must be installed
separately:

	NXP Linux LSDK

NXP Layerscape software development kit (LSDK) includes support for family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.

LSDK and related information can be obtained from: LSDK [https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK]

17.1.6. Driver compilation and testing

Follow instructions available in the document
compiling and testing a PMD for a NIC
to launch testpmd

To compile in performance mode, please set CONFIG_RTE_CACHE_LINE_SIZE=64

18. ENIC Poll Mode Driver

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet
NICs. These adapters are also referred to as vNICs below. If you are running
or would like to run DPDK software applications on Cisco UCS servers using
Cisco VIC adapters the following documentation is relevant.

18.1. How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz
should be downloaded from https://core.dpdk.org/download/

18.2. Configuration information

	DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

	CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion
of the ENIC PMD driver in the DPDK compilation.

	vNIC Configuration Parameters

	Number of Queues

The maximum number of receive queues (RQs), work queues (WQs) and
completion queues (CQs) are configurable on a per vNIC basis
through the Cisco UCS Manager (CIMC or UCSM).

These values should be configured as follows:

	The number of WQs should be greater or equal to the value of the
expected nb_tx_q parameter in the call to
rte_eth_dev_configure()

	The number of RQs configured in the vNIC should be greater or
equal to twice the value of the expected nb_rx_q parameter in
the call to rte_eth_dev_configure(). With the addition of Rx
scatter, a pair of RQs on the vnic is needed for each receive
queue used by DPDK, even if Rx scatter is not being used.
Having a vNIC with only 1 RQ is not a valid configuration, and
will fail with an error message.

	The number of CQs should set so that there is one CQ for each
WQ, and one CQ for each pair of RQs.

For example: If the application requires 3 Rx queues, and 3 Tx
queues, the vNIC should be configured to have at least 3 WQs, 6
RQs (3 pairs), and 6 CQs (3 for use by WQs + 3 for use by the 3
pairs of RQs).

	Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on
a per-vNIC basis via the UCS Manager and should be greater than or equal to
the nb_rx_desc and nb_tx_desc parameters expected to be used in the calls
to rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() respectively.
An application requesting more than the set size will be limited to that
size.

Unless there is a lack of resources due to creating many vNICs, it
is recommended that the WQ and RQ sizes be set to the maximum. This
gives the application the greatest amount of flexibility in its
queue configuration.

	Note: Since the introduction of Rx scatter, for performance
reasons, this PMD uses two RQs on the vNIC per receive queue in
DPDK. One RQ holds descriptors for the start of a packet, and the
second RQ holds the descriptors for the rest of the fragments of
a packet. This means that the nb_rx_desc parameter to
rte_eth_rx_queue_setup() can be a greater than 4096. The exact
amount will depend on the size of the mbufs being used for
receives, and the MTU size.

For example: If the mbuf size is 2048, and the MTU is 9000, then
receiving a full size packet will take 5 descriptors, 1 from the
start-of-packet queue, and 4 from the second queue. Assuming
that the RQ size was set to the maximum of 4096, then the
application can specify up to 1024 + 4096 as the nb_rx_desc
parameter to rte_eth_rx_queue_setup().

	Interrupts

At least one interrupt per vNIC interface should be configured in the UCS
manager regardless of the number receive/transmit queues. The ENIC PMD
uses this interrupt to get information about link status and errors
in the fast path.

In addition to the interrupt for link status and errors, when using Rx queue
interrupts, increase the number of configured interrupts so that there is at
least one interrupt for each Rx queue. For example, if the app uses 3 Rx
queues and wants to use per-queue interrupts, configure 4 (3 + 1) interrupts.

	Receive Side Scaling

In order to fully utilize RSS in DPDK, enable all RSS related settings in
CIMC or UCSM. These include the following items listed under
Receive Side Scaling:
TCP, IPv4, TCP-IPv4, IPv6, TCP-IPv6, IPv6 Extension, TCP-IPv6 Extension.

18.3. SR-IOV mode utilization

UCS blade servers configured with dynamic vNIC connection policies in UCSM
are capable of supporting SR-IOV. SR-IOV virtual functions (VFs) are
specialized vNICs, distinct from regular Ethernet vNICs. These VFs can be
directly assigned to virtual machines (VMs) as ‘passthrough’ devices.

In UCS, SR-IOV VFs require the use of the Cisco Virtual Machine Fabric Extender
(VM-FEX), which gives the VM a dedicated
interface on the Fabric Interconnect (FI). Layer 2 switching is done at
the FI. This may eliminate the requirement for software switching on the
host to route intra-host VM traffic.

Please refer to Creating a Dynamic vNIC Connection Policy [http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/vm_fex/vmware/gui/config_guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide_chapter_010.html#task_433E01651F69464783A68E66DA8A47A5]
for information on configuring SR-IOV adapter policies and port profiles
using UCSM.

Once the policies are in place and the host OS is rebooted, VFs should be
visible on the host, E.g.:

lspci | grep Cisco | grep Ethernet
0d:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
0d:00.1 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.2 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.3 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.4 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.5 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.6 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.7 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Enable Intel IOMMU on the host and install KVM and libvirt, and reboot again as
required. Then, using libvirt, create a VM instance with an assigned device.
Below is an example interface block (part of the domain configuration XML)
that adds the host VF 0d:00:01 to the VM. profileid='pp-vlan-25' indicates
the port profile that has been configured in UCSM.

<interface type='hostdev' managed='yes'>
 <mac address='52:54:00:ac:ff:b6'/>
 <driver name='vfio'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x0d' slot='0x00' function='0x1'/>
 </source>
 <virtualport type='802.1Qbh'>
 <parameters profileid='pp-vlan-25'/>
 </virtualport>
</interface>

Alternatively, the configuration can be done in a separate file using the
network keyword. These methods are described in the libvirt documentation for
Network XML format [https://libvirt.org/formatnetwork.html].

When the VM instance is started, libvirt will bind the host VF to
vfio, complete provisioning on the FI and bring up the link.

Note

It is not possible to use a VF directly from the host because it is not
fully provisioned until libvirt brings up the VM that it is assigned
to.

In the VM instance, the VF will now be visible. E.g., here the VF 00:04.0 is
seen on the VM instance and should be available for binding to a DPDK.

lspci | grep Ether
00:04.0 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Follow the normal DPDK install procedure, binding the VF to either igb_uio
or vfio in non-IOMMU mode.

In the VM, the kernel enic driver may be automatically bound to the VF during
boot. Unbinding it currently hangs due to a known issue with the driver. To
work around the issue, blacklist the enic module as follows.
Please see Limitations for limitations in
the use of SR-IOV.

cat /etc/modprobe.d/enic.conf
blacklist enic

dracut --force

Note

Passthrough does not require SR-IOV. If VM-FEX is not desired, the user
may create as many regular vNICs as necessary and assign them to VMs as
passthrough devices. Since these vNICs are not SR-IOV VFs, using them as
passthrough devices do not require libvirt, port profiles, and VM-FEX.

18.4. Generic Flow API support

Generic Flow API (also called “rte_flow” API) is supported. More advanced
capabilities are available when “Advanced Filtering” is enabled on the adapter.
Advanced filtering was added to 1300 series VIC firmware starting with version
2.0.13 for C-series UCS servers and version 3.1.2 for UCSM managed blade
servers. Advanced filtering is available on 1400 series adapters and beyond.
To enable advanced filtering, the ‘Advanced filter’ radio button should be
selected via CIMC or UCSM followed by a reboot of the server.

	1200 series VICs

5-tuple exact flow support for 1200 series adapters. This allows:

	Attributes: ingress

	Items: ipv4, ipv6, udp, tcp (must exactly match src/dst IP
addresses and ports and all must be specified)

	Actions: queue and void

	Selectors: ‘is’

	1300 and later series VICS with advanced filters disabled

With advanced filters disabled, an IPv4 or IPv6 item must be specified
in the pattern.

	Attributes: ingress

	Items: eth, vlan, ipv4, ipv6, udp, tcp, vxlan, inner eth, vlan, ipv4, ipv6, udp, tcp

	Actions: queue and void

	Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

	In total, up to 64 bytes of mask is allowed across all headers

	1300 and later series VICS with advanced filters enabled

	Attributes: ingress

	Items: eth, vlan, ipv4, ipv6, udp, tcp, vxlan, raw, inner eth, vlan, ipv4, ipv6, udp, tcp

	Actions: queue, mark, drop, flag, rss, passthru, and void

	Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

	In total, up to 64 bytes of mask is allowed across all headers

	1400 and later series VICs with Flow Manager API enabled

	Attributes: ingress, egress

	Items: eth, vlan, ipv4, ipv6, sctp, udp, tcp, vxlan, raw, inner eth, vlan, ipv4, ipv6, sctp, udp, tcp

	Ingress Actions: count, drop, flag, jump, mark, port_id, passthru, queue, rss, vxlan_decap, vxlan_encap, and void

	Egress Actions: count, drop, jump, passthru, vxlan_encap, and void

	Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

	In total, up to 64 bytes of mask is allowed across all headers

The VIC performs packet matching after applying VLAN strip. If VLAN
stripping is enabled, EtherType in the ETH item corresponds to the
stripped VLAN header’s EtherType. Stripping does not affect the VLAN
item. TCI and EtherType in the VLAN item are matched against those in
the (stripped) VLAN header whether stripping is enabled or disabled.

More features may be added in future firmware and new versions of the VIC.
Please refer to the release notes.

18.5. Overlay Offload

Recent hardware models support overlay offload. When enabled, the NIC performs
the following operations for VXLAN, NVGRE, and GENEVE packets. In all cases,
inner and outer packets can be IPv4 or IPv6.

	TSO for VXLAN and GENEVE packets.

Hardware supports NVGRE TSO, but DPDK currently has no NVGRE offload flags.

	Tx checksum offloads.

The NIC fills in IPv4/UDP/TCP checksums for both inner and outer packets.

	Rx checksum offloads.

The NIC validates IPv4/UDP/TCP checksums of both inner and outer packets.
Good checksum flags (e.g. PKT_RX_L4_CKSUM_GOOD) indicate that the inner
packet has the correct checksum, and if applicable, the outer packet also
has the correct checksum. Bad checksum flags (e.g. PKT_RX_L4_CKSUM_BAD)
indicate that the inner and/or outer packets have invalid checksum values.

	Inner Rx packet type classification

PMD sets inner L3/L4 packet types (e.g. RTE_PTYPE_INNER_L4_TCP), and
RTE_PTYPE_TUNNEL_GRENAT to indicate that the packet is tunneled.
PMD does not set L3/L4 packet types for outer packets.

	Inner RSS

RSS hash calculation, therefore queue selection, is done on inner packets.

In order to enable overlay offload, the ‘Enable VXLAN’ box should be checked
via CIMC or UCSM followed by a reboot of the server. When PMD successfully
enables overlay offload, it prints the following message on the console.

Overlay offload is enabled

By default, PMD enables overlay offload if hardware supports it. To disable
it, set devargs parameter disable-overlay=1. For example:

-w 12:00.0,disable-overlay=1

By default, the NIC uses 4789 as the VXLAN port. The user may change
it through rte_eth_dev_udp_tunnel_port_{add,delete}. However, as
the current NIC has a single VXLAN port number, the user cannot
configure multiple port numbers.

Geneve headers with non-zero options are not supported by default. To
use Geneve with options, update the VIC firmware to the latest version
and then set devargs parameter geneve-opt=1. When Geneve with
options is enabled, flow API cannot be used as the features are
currently mutually exclusive. When this feature is successfully
enabled, PMD prints the following message.

Geneve with options is enabled

18.6. Ingress VLAN Rewrite

VIC adapters can tag, untag, or modify the VLAN headers of ingress
packets. The ingress VLAN rewrite mode controls this behavior. By
default, it is set to pass-through, where the NIC does not modify the
VLAN header in any way so that the application can see the original
header. This mode is sufficient for many applications, but may not be
suitable for others. Such applications may change the mode by setting
devargs parameter ig-vlan-rewrite to one of the following.

	pass: Pass-through mode. The NIC does not modify the VLAN
header. This is the default mode.

	priority: Priority-tag default VLAN mode. If the ingress packet
is tagged with the default VLAN, the NIC replaces its VLAN header
with the priority tag (VLAN ID 0).

	trunk: Default trunk mode. The NIC tags untagged ingress packets
with the default VLAN. Tagged ingress packets are not modified. To
the application, every packet appears as tagged.

	untag: Untag default VLAN mode. If the ingress packet is tagged
with the default VLAN, the NIC removes or untags its VLAN header so
that the application sees an untagged packet. As a result, the
default VLAN becomes untagged. This mode can be useful for
applications such as OVS-DPDK performance benchmarks that utilize
only the default VLAN and want to see only untagged packets.

18.7. Vectorized Rx Handler

ENIC PMD includes a version of the receive handler that is vectorized using
AVX2 SIMD instructions. It is meant for bulk, throughput oriented workloads
where reducing cycles/packet in PMD is a priority. In order to use the
vectorized handler, take the following steps.

	Use a recent version of gcc, icc, or clang and build 64-bit DPDK. If
the compiler is known to support AVX2, DPDK build system
automatically compiles the vectorized handler. Otherwise, the
handler is not available.

	Set devargs parameter enable-avx2-rx=1 to explicitly request that
PMD consider the vectorized handler when selecting the receive handler.
For example:

-w 12:00.0,enable-avx2-rx=1

As the current implementation is intended for field trials, by default, the
vectorized handler is not considered (enable-avx2-rx=0).

	Run on a UCS M4 or later server with CPUs that support AVX2.

PMD selects the vectorized handler when the handler is compiled into
the driver, the user requests its use via enable-avx2-rx=1, CPU
supports AVX2, and scatter Rx is not used. To verify that the
vectorized handler is selected, enable debug logging
(--log-level=pmd,debug) and check the following message.

enic_use_vector_rx_handler use the non-scatter avx2 Rx handler

18.8. Limitations

	VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will
priority tag egress packets according to 802.1Q if they were not already
VLAN tagged by software. If the adapter is connected to a properly configured
switch, there will be no unexpected behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is
connected point-to-point to another adapter port or connected though a router
instead of a switch, all ingress packets will be VLAN tagged. Programs such
as l3fwd may not account for VLAN tags in packets and may misbehave. One
solution is to enable VLAN stripping on ingress so the VLAN tag is removed
from the packet and put into the mbuf->vlan_tci field. Here is an example
of how to accomplish this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

Another alternative is modify the adapter’s ingress VLAN rewrite mode so that
packets with the default VLAN tag are stripped by the adapter and presented to
DPDK as untagged packets. In this case mbuf->vlan_tci and the PKT_RX_VLAN and
PKT_RX_VLAN_STRIPPED mbuf flags would not be set. This mode is enabled with the
devargs parameter ig-vlan-rewrite=untag. For example:

-w 12:00.0,ig-vlan-rewrite=untag

	SR-IOV

	KVM hypervisor support only. VMware has not been tested.

	Requires VM-FEX, and so is only available on UCS managed servers connected
to Fabric Interconnects. It is not on standalone C-Series servers.

	VF devices are not usable directly from the host. They can only be used
as assigned devices on VM instances.

	Currently, unbind of the ENIC kernel mode driver ‘enic.ko’ on the VM
instance may hang. As a workaround, enic.ko should be blacklisted or removed
from the boot process.

	pci_generic cannot be used as the uio module in the VM. igb_uio or
vfio in non-IOMMU mode can be used.

	The number of RQs in UCSM dynamic vNIC configurations must be at least 2.

	The number of SR-IOV devices is limited to 256. Components on target system
might limit this number to fewer than 256.

	Flow API

	The number of filters that can be specified with the Generic Flow API is
dependent on how many header fields are being masked. Use ‘flow create’ in
a loop to determine how many filters your VIC will support (not more than
1000 for 1300 series VICs). Filters are checked for matching in the order they
were added. Since there currently is no grouping or priority support,
‘catch-all’ filters should be added last.

	The supported range of IDs for the ‘MARK’ action is 0 - 0xFFFD.

	RSS and PASSTHRU actions only support “receive normally”. They are limited
to supporting MARK + RSS and PASSTHRU + MARK to allow the application to mark
packets and then receive them normally. These require 1400 series VIC adapters
and latest firmware.

	RAW items are limited to matching UDP tunnel headers like VXLAN.

	For 1400 VICs, all flows using the RSS action on a port use same hash
configuration. The RETA is ignored. The queues used in the RSS group must be
sequential. There is a performance hit if the number of queues is not a power of 2.
Only level 0 (outer header) RSS is allowed.

	Statistics

	rx_good_bytes (ibytes) always includes VLAN header (4B) and CRC bytes (4B).
This behavior applies to 1300 and older series VIC adapters.
1400 series VICs do not count CRC bytes, and count VLAN header only when VLAN
stripping is disabled.

	When the NIC drops a packet because the Rx queue has no free buffers,
rx_good_bytes still increments by 4B if the packet is not VLAN tagged or
VLAN stripping is disabled, or by 8B if the packet is VLAN tagged and stripping
is enabled.
This behavior applies to 1300 and older series VIC adapters. 1400 series VICs
do not increment this byte counter when packets are dropped.

	RSS Hashing

	Hardware enables and disables UDP and TCP RSS hashing together. The driver
cannot control UDP and TCP hashing individually.

18.9. How to build the suite

The build instructions for the DPDK suite should be followed. By default
the ENIC PMD library will be built into the DPDK library.

Refer to the document compiling and testing a PMD for a NIC for details.

For configuring and using UIO and VFIO frameworks, please refer to the
documentation that comes with DPDK suite.

18.10. Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

	VIC 1200 series

	VIC 1300 series

	VIC 1400 series

18.11. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies
section of DPDK documentation.

18.12. Supported features

	Unicast, multicast and broadcast transmission and reception

	Receive queue polling

	Port Hardware Statistics

	Hardware VLAN acceleration

	IP checksum offload

	Receive side VLAN stripping

	Multiple receive and transmit queues

	Promiscuous mode

	Setting RX VLAN (supported via UCSM/CIMC only)

	VLAN filtering (supported via UCSM/CIMC only)

	Execution of application by unprivileged system users

	IPV4, IPV6 and TCP RSS hashing

	UDP RSS hashing (1400 series and later adapters)

	Scattered Rx

	MTU update

	SR-IOV on UCS managed servers connected to Fabric Interconnects

	Flow API

	Overlay offload

	Rx/Tx checksum offloads for VXLAN, NVGRE, GENEVE

	TSO for VXLAN and GENEVE packets

	Inner RSS

18.13. Known bugs and unsupported features in this release

	Signature or flex byte based flow direction

	Drop feature of flow direction

	VLAN based flow direction

	Non-IPV4 flow direction

	Setting of extended VLAN

	MTU update only works if Scattered Rx mode is disabled

	Maximum receive packet length is ignored if Scattered Rx mode is used

18.14. Prerequisites

	Prepare the system as recommended by DPDK suite. This includes environment
variables, hugepages configuration, tool-chains and configuration.

	Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the
user wants to use VFIO framework.

	Insert uio kernel module using the command ‘modprobe uio’ if the user wants
to use UIO framework.

	DPDK suite should be configured based on the user’s decision to use VFIO or
UIO framework.

	If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver
use ‘ip’ to bring the interface down. The dpdk-devbind.py tool can
then be used to unbind the device’s bus id from the ENIC kernel mode driver.

	Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use
VFIO framework using dpdk-devbind.py.

	Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use
UIO framework using dpdk-devbind.py.

At this point the system should be ready to run DPDK applications. Once the
application runs to completion, the vNIC can be detached from vfio-pci or
igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO.
VFIO framework helps an unprivileged user to run the applications.
For an unprivileged user to run the applications on DPDK and ENIC PMD,
it may be necessary to increase the maximum locked memory of the user.
The following command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

The value depends on the memory configuration of the application, DPDK and
PMD. Typically, the limit has to be raised to higher than 2GB.
e.g., 2621440

The compilation of any unused drivers can be disabled using the
configuration file in config/ directory (e.g., config/common_linux).
This would help in bringing down the time taken for building the
libraries and the initialization time of the application.

18.15. Additional Reference

	https://www.cisco.com/c/en/us/products/servers-unified-computing/index.html

	https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/index.html

18.16. Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD
maintainers:

	John Daley <johndale@cisco.com>

	Hyong Youb Kim <hyonkim@cisco.com>

19. FM10K Poll Mode Driver

The FM10K poll mode driver library provides support for the Intel FM10000
(FM10K) family of 40GbE/100GbE adapters.

19.1. FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs
support the addition of a Fabric Tag (FTAG) to carry special information.
The FTAG is placed at the beginning of the frame, it contains information
such as where the packet comes from and goes, and the vlan tag. In FTAG based
forwarding mode, the switch logic forwards packets according to glort (global
resource tag) information, rather than the mac and vlan table. Currently this
feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal
like “-w 84:00.0,enable_ftag=1”, and the application should make sure an
appropriate FTAG is inserted for every frame on TX side.

19.2. Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O.
It improves load/store bandwidth efficiency of L1 data cache by using a wider
SSE/AVX ‘’register (1)’’.
The wider register gives space to hold multiple packet buffers so as to save
on the number of instructions when bulk processing packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for
vPMD packet I/O. They are transparently registered at runtime RX/TX execution
if all required conditions are met.

	To date, only an SSE version of FM10K vPMD is available.
To ensure that vPMD is in the binary code, set
CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk
packet transfers. The following sections explain RX and TX constraints in the
vPMD.

19.2.1. RX Constraints

19.2.1.1. Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power
of 2. With this pre-condition, the ring pointer can easily scroll back to the
head after hitting the tail without a conditional check. In addition Vector RX
can use this assumption to do a bit mask using ring_size - 1.

19.2.1.2. Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in
vPMD. They are:

	IEEE1588

	Flow director

	Header split

	RX checksum offload

Other features are supported using optional MACRO configuration. They include:

	HW VLAN strip

	L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

To guarantee the constraint, the following capabilities in dev_conf.rxmode.offloads
will be checked:

	DEV_RX_OFFLOAD_VLAN_EXTEND

	DEV_RX_OFFLOAD_CHECKSUM

	DEV_RX_OFFLOAD_HEADER_SPLIT

	fdir_conf->mode

19.2.1.3. RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes
that the RX burst should be greater than 4 packets per burst. It returns zero if using
nb_pkt < 4 in the receive handler. If nb_pkt is not a multiple of 4, a
floor alignment will be applied.

19.2.2. TX Constraint

19.2.2.1. Features not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

19.3. Limitations

19.3.1. Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host
interfaces. The FM10000 PMD driver only manages host interfaces. For the
switch component another switch driver has to be loaded prior to the
FM10000 PMD driver. The switch driver can be acquired from Intel support.
Only Testpoint is validated with DPDK, the latest version that has been
validated with DPDK is 4.1.6.

19.3.2. Support for Switch Restart

For FM10000 multi host based design a DPDK app running in the VM or host needs
to be aware of the switch’s state since it may undergo a quit-restart. When
the switch goes down the DPDK app will receive a LSC event indicating link
status down, and the app should stop the worker threads that are polling on
the Rx/Tx queues. When switch comes up, a LSC event indicating LINK_UP is
sent to the app, which can then restart the FM10000 port to resume network
processing.

19.3.3. CRC stripping

The FM10000 family of NICs strip the CRC for every packets coming into the
host interface. So, keeping CRC is not supported.

19.3.4. Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 15364, frames
up to 15364 bytes can still reach the host interface.

19.3.5. Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics
are read from the hardware registers when rte_eth_stats_get() or
rte_eth_xstats_get() is called. The packet counting registers are 32 bits
while the byte counting registers are 48 bits. As a result, the statistics must
be polled regularly in order to ensure the consistency of the returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets
this gives almost 100 million packets/second, causing 32 bit integer overflow
after approx 40 seconds. To ensure these overflows are detected and accounted
for in the statistics, it is necessary to read statistic regularly. It is
suggested to read stats every 20 seconds, which will ensure the statistics
are accurate.

19.3.6. Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only
drivers which support multiple interrupt vectors e.g. vfio-pci can work
for fm10k interrupt mode.

20. HINIC Poll Mode Driver

The hinic PMD (librte_pmd_hinic) provides poll mode driver support
for 25Gbps Huawei Intelligent PCIE Network Adapters based on the
Huawei Ethernet Controller Hi1822.

20.1. Features

	Multi arch support: x86_64, ARMv8.

	Multiple queues for TX and RX

	Receiver Side Scaling (RSS)

	MAC/VLAN filtering

	Checksum offload

	TSO offload

	Promiscuous mode

	Port hardware statistics

	Link state information

	Link flow control

	Scattered and gather for TX and RX

	SR-IOV - Partially supported at this point, VFIO only

	VLAN filter and VLAN offload

	Allmulticast mode

	MTU update

	Unicast MAC filter

	Multicast MAC filter

	Flow API

	Set Link down or up

	FW version

	LRO

20.2. Prerequisites

	Learning about Huawei Hi1822 IN200 Series Intelligent NICs using
https://e.huawei.com/en/products/cloud-computing-dc/servers/pcie-ssd/in-card.

	Getting the latest product documents and software supports using
https://support.huawei.com/enterprise/en/intelligent-accelerator-components/in500-solution-pid-23507369.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

20.3. Pre-Installation Configuration

20.3.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_HINIC_PMD (default y)

20.4. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

20.5. Limitations or Known issues

Build with ICC is not supported yet.
X86-32, Power8, ARMv7 and BSD are not supported yet.

21. HNS3 Poll Mode Driver

The hns3 PMD (librte_pmd_hns3) provides poll mode driver support
for the inbuilt Hisilicon Network Subsystem(HNS) network engine
found in the Hisilicon Kunpeng 920 SoC.

21.1. Features

Features of the HNS3 PMD are:

	Multiple queues for TX and RX

	Receive Side Scaling (RSS)

	Packet type information

	Checksum offload

	TSO offload

	Promiscuous mode

	Multicast mode

	Port hardware statistics

	Jumbo frames

	Link state information

	Interrupt mode for RX

	VLAN stripping

	NUMA support

21.2. Prerequisites

	Get the information about Kunpeng920 chip using
http://www.hisilicon.com/en/Products/ProductList/Kunpeng.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

21.3. Pre-Installation Configuration

21.3.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_HNS3_PMD (default y)

21.4. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

21.5. Limitations or Known issues

Currently, we only support VF device is bound to vfio_pci or
igb_uio and then driven by DPDK driver when PF is driven by
kernel mode hns3 ethdev driver, VF is not supported when PF
is driven by DPDK driver.

Build with ICC is not supported yet.
X86-32, Power8, ARMv7 and BSD are not supported yet.

22. I40E Poll Mode Driver

The i40e PMD (librte_pmd_i40e) provides poll mode driver support for
10/25/40 Gbps Intel® Ethernet 700 Series Network Adapters based on
the Intel Ethernet Controller X710/XL710/XXV710 and Intel Ethernet
Connection X722 (only support part of features).

22.1. Features

Features of the i40e PMD are:

	Multiple queues for TX and RX

	Receiver Side Scaling (RSS)

	MAC/VLAN filtering

	Packet type information

	Flow director

	Cloud filter

	Checksum offload

	VLAN/QinQ stripping and inserting

	TSO offload

	Promiscuous mode

	Multicast mode

	Port hardware statistics

	Jumbo frames

	Link state information

	Link flow control

	Mirror on port, VLAN and VSI

	Interrupt mode for RX

	Scattered and gather for TX and RX

	Vector Poll mode driver

	DCB

	VMDQ

	SR-IOV VF

	Hot plug

	IEEE1588/802.1AS timestamping

	VF Daemon (VFD) - EXPERIMENTAL

	Dynamic Device Personalization (DDP)

	Queue region configuration

	Virtual Function Port Representors

	Malicious Device Drive event catch and notify

	Generic flow API

22.2. Prerequisites

	Identifying your adapter using Intel Support [http://www.intel.com/support] and get the latest NVM/FW images.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

	To get better performance on Intel platforms, please follow the “How to get best performance with NICs on Intel platforms”
section of the Getting Started Guide for Linux.

	Upgrade the NVM/FW version following the Intel® Ethernet NVM Update Tool Quick Usage Guide for Linux [https://www-ssl.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-linux-usage-guide.html] and Intel® Ethernet NVM Update Tool: Quick Usage Guide for EFI [https://www.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-efi-usage-guide.html] if needed.

	For information about supported media, please refer to this document: Intel® Ethernet Controller X710/XXV710/XL710 Feature Support Matrix [http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/xl710-ethernet-controller-feature-matrix.pdf].

Note

	Some adapters based on the Intel(R) Ethernet Controller 700 Series only
support Intel Ethernet Optics modules. On these adapters, other modules are not
supported and will not function.

	For connections based on Intel(R) Ethernet Controller 700 Series,
support is dependent on your system board. Please see your vendor for details.

	In all cases Intel recommends using Intel Ethernet Optics; other modules
may function but are not validated by Intel. Contact Intel for supported media types.

22.3. Recommended Matching List

It is highly recommended to upgrade the i40e kernel driver and firmware to
avoid the compatibility issues with i40e PMD. Here is the suggested matching
list which has been tested and verified. The detailed information can refer
to chapter Tested Platforms/Tested NICs in release notes.

For X710/XL710/XXV710,

	DPDK version

	Kernel driver version

	Firmware version

	20.05

	2.11.27

	7.30

	20.02

	2.10.19

	7.20

	19.11

	2.9.21

	7.00

	19.08

	2.8.43

	7.00

	19.05

	2.7.29

	6.80

	19.02

	2.7.26

	6.80

	18.11

	2.4.6

	6.01

	18.08

	2.4.6

	6.01

	18.05

	2.4.6

	6.01

	18.02

	2.4.3

	6.01

	17.11

	2.1.26

	6.01

	17.08

	2.0.19

	6.01

	17.05

	1.5.23

	5.05

	17.02

	1.5.23

	5.05

	16.11

	1.5.23

	5.05

	16.07

	1.4.25

	5.04

	16.04

	1.4.25

	5.02

For X722,

	DPDK version

	Kernel driver version

	Firmware version

	20.05

	2.11.27

	4.11

	20.02

	2.10.19

	4.11

	19.11

	2.9.21

	4.10

	19.08

	2.9.21

	4.10

	19.05

	2.7.29

	3.33

	19.02

	2.7.26

	3.33

	18.11

	2.4.6

	3.33

22.4. Pre-Installation Configuration

22.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

	CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

	CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

	CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

Toggle the use of Vector PMD instead of normal RX/TX path.
To enable vPMD for RX, bulk allocation for Rx must be allowed.

	CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

	CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

	CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

22.4.2. Runtime Config Options

	Reserved number of Queues per VF (default 4)

The number of reserved queue per VF is determined by its host PF. If the
PCI address of an i40e PF is aaaa:bb.cc, the number of reserved queues per
VF can be configured with EAL parameter like -w aaaa:bb.cc,queue-num-per-vf=n.
The value n can be 1, 2, 4, 8 or 16. If no such parameter is configured, the
number of reserved queues per VF is 4 by default. If VF request more than
reserved queues per VF, PF will able to allocate max to 16 queues after a VF
reset.

	Support multiple driver (default disable)

There was a multiple driver support issue during use of 700 series Ethernet
Adapter with both Linux kernel and DPDK PMD. To fix this issue, devargs
parameter support-multi-driver is introduced, for example:

-w 84:00.0,support-multi-driver=1

With the above configuration, DPDK PMD will not change global registers, and
will switch PF interrupt from IntN to Int0 to avoid interrupt conflict between
DPDK and Linux Kernel.

	Support VF Port Representor (default not enabled)

The i40e PF PMD supports the creation of VF port representors for the control
and monitoring of i40e virtual function devices. Each port representor
corresponds to a single virtual function of that device. Using the devargs
option representor the user can specify which virtual functions to create
port representors for on initialization of the PF PMD by passing the VF IDs of
the VFs which are required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required
representors must be specified on the creation of the PF.

	Use latest supported vector (default disable)

Latest supported vector path may not always get the best perf so vector path was
recommended to use only on later platform. But users may want the latest vector path
since it can get better perf in some real work loading cases. So devargs param
use-latest-supported-vec is introduced, for example:

-w 84:00.0,use-latest-supported-vec=1

	Enable validation for VF message (default not enabled)

The PF counts messages from each VF. If in any period of seconds the message
statistic from a VF exceeds maximal limitation, the PF will ignore any new message
from that VF for some seconds.
Format – “maximal-message@period-seconds:ignore-seconds”
For example:

-w 84:00.0,vf_msg_cfg=80@120:180

22.4.3. Vector RX Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power
of 2. With this pre-condition, the ring pointer can easily scroll back to the
head after hitting the tail without a conditional check. In addition Vector RX
can use this assumption to do a bit mask using ring_size - 1.

22.5. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

22.6. SR-IOV: Prerequisites and sample Application Notes

	Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

	Bring up the PF ports:

ifconfig ens802f0 up

	Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry
of the parent PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

	Assign VF to VM, and bring up the VM.
Please see the documentation for the I40E/IXGBE/IGB Virtual Function Driver.

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

22.7. Sample Application Notes

22.7.1. Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i --forward-mode=mac
...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

22.7.2. Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to specific queues.
The Flow Director filters can match the different fields for different type of packet: flow type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
 verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
 verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked out from matching.

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -l 0-15 -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
 --rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5, src_ip=2.2.2.3, src_port=32, dst_port=32 to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
 src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
 fwd pf queue 1 fd_id 1

Check the flow director status:

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
 MODE: PERFECT
 SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other
 ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
 l2_payload
 FLEX PAYLOAD INFO:
 max_len: 16 payload_limit: 480
 payload_unit: 2 payload_seg: 3
 bitmask_unit: 2 bitmask_num: 2
 MASK:
 vlan_tci: 0x0000,
 src_ipv4: 0x00000000,
 dst_ipv4: 0x00000000,
 src_port: 0x0000,
 dst_port: 0x0000
 src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
 dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000
 FLEX PAYLOAD SRC OFFSET:
 L2_PAYLOAD: 0 1 2 3 4 5 6 ...
 L3_PAYLOAD: 0 1 2 3 4 5 6 ...
 L4_PAYLOAD: 0 1 2 3 4 5 6 ...
 FLEX MASK CFG:
 ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 guarant_count: 1 best_count: 0
 guarant_space: 512 best_space: 7168
 collision: 0 free: 0
 maxhash: 0 maxlen: 0
 add: 0 remove: 0
 f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

22.7.3. Floating VEB

The Intel® Ethernet 700 Series support a feature called
“Floating VEB”.

A Virtual Ethernet Bridge (VEB) is an IEEE Edge Virtual Bridging (EVB) term
for functionality that allows local switching between virtual endpoints within
a physical endpoint and also with an external bridge/network.

A “Floating” VEB doesn’t have an uplink connection to the outside world so all
switching is done internally and remains within the host. As such, this
feature provides security benefits.

In addition, a Floating VEB overcomes a limitation of normal VEBs where they
cannot forward packets when the physical link is down. Floating VEBs don’t need
to connect to the NIC port so they can still forward traffic from VF to VF
even when the physical link is down.

Therefore, with this feature enabled VFs can be limited to communicating with
each other but not an outside network, and they can do so even when there is
no physical uplink on the associated NIC port.

To enable this feature, the user should pass a devargs parameter to the
EAL, for example:

-w 84:00.0,enable_floating_veb=1

In this configuration the PMD will use the floating VEB feature for all the
VFs created by this PF device.

Alternatively, the user can specify which VFs need to connect to this floating
VEB using the floating_veb_list argument:

-w 84:00.0,enable_floating_veb=1,floating_veb_list=1;3-4

In this example VF1, VF3 and VF4 connect to the floating VEB,
while other VFs connect to the normal VEB.

The current implementation only supports one floating VEB and one regular
VEB. VFs can connect to a floating VEB or a regular VEB according to the
configuration passed on the EAL command line.

The floating VEB functionality requires a NIC firmware version of 5.0
or greater.

22.7.4. Dynamic Device Personalization (DDP)

The Intel® Ethernet 700 Series except for the Intel Ethernet Connection
X722 support a feature called “Dynamic Device Personalization (DDP)”,
which is used to configure hardware by downloading a profile to support
protocols/filters which are not supported by default. The DDP
functionality requires a NIC firmware version of 6.0 or greater.

Current implementation supports GTP-C/GTP-U/PPPoE/PPPoL2TP/ESP,
steering can be used with rte_flow API.

GTPv1 package is released, and it can be downloaded from
https://downloadcenter.intel.com/download/27587.

PPPoE package is released, and it can be downloaded from
https://downloadcenter.intel.com/download/28040.

ESP-AH package is released, and it can be downloaded from
https://downloadcenter.intel.com/download/29446.

Load a profile which supports GTP and store backup profile:

testpmd> ddp add 0 ./gtp.pkgo,./backup.pkgo

Delete a GTP profile and restore backup profile:

testpmd> ddp del 0 ./backup.pkgo

Get loaded DDP package info list:

testpmd> ddp get list 0

Display information about a GTP profile:

testpmd> ddp get info ./gtp.pkgo

22.7.5. Input set configuration

Input set for any PCTYPE can be configured with user defined configuration,
For example, to use only 48bit prefix for IPv6 src address for IPv6 TCP RSS:

testpmd> port config 0 pctype 43 hash_inset clear all
testpmd> port config 0 pctype 43 hash_inset set field 13
testpmd> port config 0 pctype 43 hash_inset set field 14
testpmd> port config 0 pctype 43 hash_inset set field 15

22.7.6. Queue region configuration

The Intel® Ethernet 700 Series supports a feature of queue regions
configuration for RSS in the PF, so that different traffic classes or
different packet classification types can be separated to different
queues in different queue regions. There is an API for configuration
of queue regions in RSS with a command line. It can parse the parameters
of the region index, queue number, queue start index, user priority, traffic
classes and so on. Depending on commands from the command line, it will call
i40e private APIs and start the process of setting or flushing the queue
region configuration. As this feature is specific for i40e only private
APIs are used. These new test_pmd commands are as shown below. For
details please refer to Testpmd Application User Guide.

testpmd> set port (port_id) queue-region region_id (value) \
 queue_start_index (value) queue_num (value)
testpmd> set port (port_id) queue-region region_id (value) flowtype (value)
testpmd> set port (port_id) queue-region UP (value) region_id (value)
testpmd> set port (port_id) queue-region flush (on|off)
testpmd> show port (port_id) queue-region

22.7.7. Generic flow API

	RSS Flow

RSS Flow supports to set hash input set, hash function, enable hash
and configure queue region.
For example:
Configure queue region as queue 0, 1, 2, 3.

testpmd> flow create 0 ingress pattern end actions rss types end \
 queues 0 1 2 3 end / end

Enable hash and set input set for ipv4-tcp.

testpmd> flow create 0 ingress pattern eth / ipv4 / tcp / end \
 actions rss types ipv4-tcp l3-src-only end queues end / end

Set symmetric hash enable for flow type ipv4-tcp.

testpmd> flow create 0 ingress pattern eth / ipv4 / tcp / end \
 actions rss types ipv4-tcp end queues end func symmetric_toeplitz / end

Set hash function as simple xor.

testpmd> flow create 0 ingress pattern end actions rss types end \
 queues end func simple_xor / end

22.8. Limitations or Known issues

22.8.1. MPLS packet classification

For firmware versions prior to 5.0, MPLS packets are not recognized by the NIC.
The L2 Payload flow type in flow director can be used to classify MPLS packet
by using a command in testpmd like:

	testpmd> flow_director_filter 0 mode IP add flow l2_payload ether
	0x8847 flexbytes () fwd pf queue <N> fd_id <M>

With the NIC firmware version 5.0 or greater, some limited MPLS support
is added: Native MPLS (MPLS in Ethernet) skip is implemented, while no
new packet type, no classification or offload are possible. With this change,
L2 Payload flow type in flow director cannot be used to classify MPLS packet
as with previous firmware versions. Meanwhile, the Ethertype filter can be
used to classify MPLS packet by using a command in testpmd like:

	testpmd> ethertype_filter 0 add mac_ignr 00:00:00:00:00:00 ethertype
	0x8847 fwd queue <M>

22.8.2. 16 Byte RX Descriptor setting on DPDK VF

Currently the VF’s RX descriptor mode is decided by PF. There’s no PF-VF
interface for VF to request the RX descriptor mode, also no interface to notify
VF its own RX descriptor mode.
For all available versions of the i40e driver, these drivers don’t support 16
byte RX descriptor. If the Linux i40e kernel driver is used as host driver,
while DPDK i40e PMD is used as the VF driver, DPDK cannot choose 16 byte receive
descriptor. The reason is that the RX descriptor is already set to 32 byte by
the i40e kernel driver. That is to say, user should keep
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n in config file.
In the future, if the Linux i40e driver supports 16 byte RX descriptor, user
should make sure the DPDK VF uses the same RX descriptor mode, 16 byte or 32
byte, as the PF driver.

The same rule for DPDK PF + DPDK VF. The PF and VF should use the same RX
descriptor mode. Or the VF RX will not work.

22.8.3. Receive packets with Ethertype 0x88A8

Due to the FW limitation, PF can receive packets with Ethertype 0x88A8
only when floating VEB is disabled.

22.8.4. Incorrect Rx statistics when packet is oversize

When a packet is over maximum frame size, the packet is dropped.
However, the Rx statistics, when calling rte_eth_stats_get incorrectly
shows it as received.

22.8.5. VF & TC max bandwidth setting

The per VF max bandwidth and per TC max bandwidth cannot be enabled in parallel.
The behavior is different when handling per VF and per TC max bandwidth setting.
When enabling per VF max bandwidth, SW will check if per TC max bandwidth is
enabled. If so, return failure.
When enabling per TC max bandwidth, SW will check if per VF max bandwidth
is enabled. If so, disable per VF max bandwidth and continue with per TC max
bandwidth setting.

22.8.6. TC TX scheduling mode setting

There are 2 TX scheduling modes for TCs, round robin and strict priority mode.
If a TC is set to strict priority mode, it can consume unlimited bandwidth.
It means if APP has set the max bandwidth for that TC, it comes to no
effect.
It’s suggested to set the strict priority mode for a TC that is latency
sensitive but no consuming much bandwidth.

22.8.7. VF performance is impacted by PCI extended tag setting

To reach maximum NIC performance in the VF the PCI extended tag must be
enabled. The DPDK i40e PF driver will set this feature during initialization,
but the kernel PF driver does not. So when running traffic on a VF which is
managed by the kernel PF driver, a significant NIC performance downgrade has
been observed (for 64 byte packets, there is about 25% line-rate downgrade for
a 25GbE device and about 35% for a 40GbE device).

For kernel version >= 4.11, the kernel’s PCI driver will enable the extended
tag if it detects that the device supports it. So by default, this is not an
issue. For kernels <= 4.11 or when the PCI extended tag is disabled it can be
enabled using the steps below.

	Get the current value of the PCI configure register:

setpci -s <XX:XX.X> a8.w

	Set bit 8:

value = value | 0x100

	Set the PCI configure register with new value:

setpci -s <XX:XX.X> a8.w=<value>

22.8.8. Vlan strip of VF

The VF vlan strip function is only supported in the i40e kernel driver >= 2.1.26.

22.8.9. DCB function

DCB works only when RSS is enabled.

22.8.10. Global configuration warning

I40E PMD will set some global registers to enable some function or set some
configure. Then when using different ports of the same NIC with Linux kernel
and DPDK, the port with Linux kernel will be impacted by the port with DPDK.
For example, register I40E_GL_SWT_L2TAGCTRL is used to control L2 tag, i40e
PMD uses I40E_GL_SWT_L2TAGCTRL to set vlan TPID. If setting TPID in port A
with DPDK, then the configuration will also impact port B in the NIC with
kernel driver, which don’t want to use the TPID.
So PMD reports warning to clarify what is changed by writing global register.

22.9. High Performance of Small Packets on 40GbE NIC

As there might be firmware fixes for performance enhancement in latest version
of firmware image, the firmware update might be needed for getting high performance.
Check the Intel support website for the latest firmware updates.
Users should consult the release notes specific to a DPDK release to identify
the validated firmware version for a NIC using the i40e driver.

22.9.1. Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes size can provide helps to high performance of small packets.
Configuration of CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16 bytes size RX descriptors.

22.9.2. Input set requirement of each pctype for FDIR

Each PCTYPE can only have one specific FDIR input set at one time.
For example, if creating 2 rte_flow rules with different input set for one PCTYPE,
it will fail and return the info “Conflict with the first rule’s input set”,
which means the current rule’s input set conflicts with the first rule’s.
Remove the first rule if want to change the input set of the PCTYPE.

22.10. Example of getting best performance with l3fwd example

The following is an example of running the DPDK l3fwd sample application to get high performance with a
server with Intel Xeon processors and Intel Ethernet CNA XL710.

The example scenario is to get best performance with two Intel Ethernet CNA XL710 40GbE ports.
See Fig. 22.1 for the performance test setup.

[image: ../_images/intel_perf_test_setup.svg]
Fig. 22.1 Performance Test Setup

	Add two Intel Ethernet CNA XL710 to the platform, and use one port per card to get best performance.
The reason for using two NICs is to overcome a PCIe v3.0 limitation since it cannot provide 80GbE bandwidth
for two 40GbE ports, but two different PCIe v3.0 x8 slot can.
Refer to the sample NICs output above, then we can select 82:00.0 and 85:00.0 as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

	Connect the ports to the traffic generator. For high speed testing, it’s best to use a hardware traffic generator.

	Check the PCI devices numa node (socket id) and get the cores number on the exact socket id.
In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on socket 1 in the referenced platform
are 18-35 and 54-71.
Note: Don’t use 2 logical cores on the same core (e.g core18 has 2 logical cores, core18 and core54), instead, use 2 logical
cores from different cores (e.g core18 and core19).

	Bind these two ports to igb_uio.

	As to Intel Ethernet CNA XL710 40GbE port, we need at least two queue pairs to achieve best performance, then two queues per port
will be required, and each queue pair will need a dedicated CPU core for receiving/transmitting packets.

	The DPDK sample application l3fwd will be used for performance testing, with using two ports for bi-directional forwarding.
Compile the l3fwd sample with the default lpm mode.

	The command line of running l3fwd would be something like the following:

./l3fwd -l 18-21 -n 4 -w 82:00.0 -w 85:00.0 \
 -- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19 for port 0, queue pair 1 forwarding,
core 20 for port 1, queue pair 0 forwarding, and core 21 for port 1, queue pair 1 forwarding.

	Configure the traffic at a traffic generator.

	Start creating a stream on packet generator.

	Set the Ethernet II type to 0x0800.

22.10.1. Tx bytes affected by the link status change

For firmware versions prior to 6.01 for X710 series and 3.33 for X722 series, the tx_bytes statistics data is affected by
the link down event. Each time the link status changes to down, the tx_bytes decreases 110 bytes.

23. ICE Poll Mode Driver

The ice PMD (librte_pmd_ice) provides poll mode driver support for
10/25/50/100 Gbps Intel® Ethernet 810 Series Network Adapters based on
the Intel Ethernet Controller E810.

23.1. Prerequisites

	The E810 is currently in sampling state only. To obtain early samples and/or get further information
about kernel drivers, firmware and DDP support, please speak to your Intel representative.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

	To get better performance on Intel platforms, please follow the “How to get best performance with NICs on Intel platforms”
section of the Getting Started Guide for Linux.

23.2. Pre-Installation Configuration

23.2.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_ICE_PMD (default y)

Toggle compilation of the librte_pmd_ice driver.

	CONFIG_RTE_LIBRTE_ICE_DEBUG_* (default n)

Toggle display of generic debugging messages.

	CONFIG_RTE_LIBRTE_ICE_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

23.2.2. Runtime Config Options

	Safe Mode Support (default 0)

If driver failed to load OS package, by default driver’s initialization failed.
But if user intend to use the device without OS package, user can take devargs
parameter safe-mode-support, for example:

-w 80:00.0,safe-mode-support=1

Then the driver will be initialized successfully and the device will enter Safe Mode.
NOTE: In Safe mode, only very limited features are available, features like RSS,
checksum, fdir, tunneling … are all disabled.

	Generic Flow Pipeline Mode Support (default 0)

In pipeline mode, a flow can be set at one specific stage by setting parameter
priority. Currently, we support two stages: priority = 0 or !0. Flows with
priority 0 located at the first pipeline stage which typically be used as a firewall
to drop the packet on a blacklist(we called it permission stage). At this stage,
flow rules are created for the device’s exact match engine: switch. Flows with priority
!0 located at the second stage, typically packets are classified here and be steered to
specific queue or queue group (we called it distribution stage), At this stage, flow
rules are created for device’s flow director engine.
For none-pipeline mode, priority is ignored, a flow rule can be created as a flow director
rule or a switch rule depends on its pattern/action and the resource allocation situation,
all flows are virtually at the same pipeline stage.
By default, generic flow API is enabled in none-pipeline mode, user can choose to
use pipeline mode by setting devargs parameter pipeline-mode-support,
for example:

-w 80:00.0,pipeline-mode-support=1

	Flow Mark Support (default 0)

This is a hint to the driver to select the data path that supports flow mark extraction
by default.
NOTE: This is an experimental devarg, it will be removed when any of below conditions
is ready.
1) all data paths support flow mark (currently vPMD does not)
2) a new offload like RTE_DEV_RX_OFFLOAD_FLOW_MARK be introduced as a standard way to hint.
Example:

-w 80:00.0,flow-mark-support=1

	Protocol extraction for per queue

Configure the RX queues to do protocol extraction into mbuf for protocol
handling acceleration, like checking the TCP SYN packets quickly.

The argument format is:

-w 18:00.0,proto_xtr=<queues:protocol>[<queues:protocol>...]
-w 18:00.0,proto_xtr=<protocol>

Queues are grouped by (and) within the group. The - character
is used as a range separator and , is used as a single number separator.
The grouping () can be omitted for single element group. If no queues are
specified, PMD will use this protocol extraction type for all queues.

Protocol is : vlan, ipv4, ipv6, ipv6_flow, tcp.

testpmd -w 18:00.0,proto_xtr='[(1,2-3,8-9):tcp,10-13:vlan]'

This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-13 are
VLAN extraction, other queues run with no protocol extraction.

testpmd -w 18:00.0,proto_xtr=vlan,proto_xtr='[(1,2-3,8-9):tcp,10-23:ipv6]'

This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-23 are
IPv6 extraction, other queues use the default VLAN extraction.

The extraction metadata is copied into the registered dynamic mbuf field, and
the related dynamic mbuf flags is set.

Table 23.3 Protocol extraction : vlan

	VLAN2

	VLAN1

	PCP

	D

	VID

	PCP

	D

	VID

VLAN1 - single or EVLAN (first for QinQ).

VLAN2 - C-VLAN (second for QinQ).

Table 23.4 Protocol extraction : ipv4

	IPHDR2

	IPHDR1

	Ver

	Hdr Len

	ToS

	TTL

	Protocol

IPHDR1 - IPv4 header word 4, “TTL” and “Protocol” fields.

IPHDR2 - IPv4 header word 0, “Ver”, “Hdr Len” and “Type of Service” fields.

Table 23.5 Protocol extraction : ipv6

	IPHDR2

	IPHDR1

	Ver

	Traffic class

	Flow

	Next Header

	Hop Limit

IPHDR1 - IPv6 header word 3, “Next Header” and “Hop Limit” fields.

IPHDR2 - IPv6 header word 0, “Ver”, “Traffic class” and high 4 bits of
“Flow Label” fields.

Table 23.6 Protocol extraction : ipv6_flow

	IPHDR2

	IPHDR1

	Ver

	Traffic class

	Flow Label

IPHDR1 - IPv6 header word 1, 16 low bits of the “Flow Label” field.

IPHDR2 - IPv6 header word 0, “Ver”, “Traffic class” and high 4 bits of
“Flow Label” fields.

Table 23.7 Protocol extraction : tcp

	TCPHDR2

	TCPHDR1

	Reserved

	Offset

	RSV

	Flags

TCPHDR1 - TCP header word 6, “Data Offset” and “Flags” fields.

TCPHDR2 - Reserved

Use rte_net_ice_dynf_proto_xtr_metadata_get to access the protocol
extraction metadata, and use RTE_PKT_RX_DYNF_PROTO_XTR_* to get the
metadata type of struct rte_mbuf::ol_flags.

The rte_net_ice_dump_proto_xtr_metadata routine shows how to
access the protocol extraction result in struct rte_mbuf.

23.3. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

23.4. Features

23.4.1. Vector PMD

Vector PMD for RX and TX path are selected automatically. The paths
are chosen based on 2 conditions.

	CPU
On the X86 platform, the driver checks if the CPU supports AVX2.
If it’s supported, AVX2 paths will be chosen. If not, SSE is chosen.

	Offload features
The supported HW offload features are described in the document ice_vec.ini.
If any not supported features are used, ICE vector PMD is disabled and the
normal paths are chosen.

23.4.2. Malicious driver detection (MDD)

It’s not appropriate to send a packet, if this packet’s destination MAC address
is just this port’s MAC address. If SW tries to send such packets, HW will
report a MDD event and drop the packets.

The APPs based on DPDK should avoid providing such packets.

23.4.3. Device Config Function (DCF)

This section demonstrates ICE DCF PMD, which shares the core module with ICE
PMD and iAVF PMD.

A DCF (Device Config Function) PMD bounds to the device’s trusted VF with ID 0,
it can act as a sole controlling entity to exercise advance functionality (such
as switch, ACL) for the rest VFs.

The DCF PMD needs to advertise and acquire DCF capability which allows DCF to
send AdminQ commands that it would like to execute over to the PF and receive
responses for the same from PF.

[image: ../_images/ice_dcf.svg]
Fig. 23.1 DCF Communication flow.

	Create the VFs:

echo 4 > /sys/bus/pci/devices/0000\:18\:00.0/sriov_numvfs

	Enable the VF0 trust on:

ip link set dev enp24s0f0 vf 0 trust on

	Bind the VF0, and run testpmd with ‘cap=dcf’ devarg:

testpmd -l 22-25 -n 4 -w 18:01.0,cap=dcf -- -i

	Monitor the VF2 interface network traffic:

tcpdump -e -nn -i enp24s1f2

	Create one flow to redirect the traffic to VF2 by DCF:

flow create 0 priority 0 ingress pattern eth / ipv4 src is 192.168.0.2 \
dst is 192.168.0.3 / end actions vf id 2 / end

	Send the packet, and it should be displayed on tcpdump:

sendp(Ether(src='3c:fd:fe:aa:bb:78', dst='00:00:00:01:02:03')/IP(src=' \
192.168.0.2', dst="192.168.0.3")/TCP(flags='S')/Raw(load='XXXXXXXXXX'), \
iface="enp24s0f0", count=10)

23.5. Sample Application Notes

23.5.1. Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i
...

testpmd> rx_vlan add 10 0

23.6. Limitations or Known issues

The Intel E810 requires a programmable pipeline package be downloaded
by the driver to support normal operations. The E810 has a limited
functionality built in to allow PXE boot and other use cases, but the
driver must download a package file during the driver initialization
stage.

The default DDP package file name is ice.pkg. For a specific NIC, the
DDP package supposed to be loaded can have a filename: ice-xxxxxx.pkg,
where ‘xxxxxx’ is the 64-bit PCIe Device Serial Number of the NIC. For
example, if the NIC’s device serial number is 00-CC-BB-FF-FF-AA-05-68,
the device-specific DDP package filename is ice-00ccbbffffaa0568.pkg
(in hex and all low case). During initialization, the driver searches
in the following paths in order: /lib/firmware/updates/intel/ice/ddp
and /lib/firmware/intel/ice/ddp. The corresponding device-specific DDP
package will be downloaded first if the file exists. If not, then the
driver tries to load the default package. The type of loaded package
is stored in ice_adapter->active_pkg_type.

A symbolic link to the DDP package file is also ok. The same package
file is used by both the kernel driver and the DPDK PMD.

23.6.1. limitation

Ice code released is for evaluation only currently.

24. IGB Poll Mode Driver

The IGB PMD (librte_pmd_e1000) provides poll mode driver
support for Intel 1GbE nics.

24.1. Features

Features of the IGB PMD are:

	Multiple queues for TX and RX

	Receiver Side Scaling (RSS)

	MAC/VLAN filtering

	Packet type information

	Double VLAN

	IEEE 1588

	TSO offload

	Checksum offload

	TCP segmentation offload

	Jumbo frames supported

24.2. Limitations or Known issues

24.3. Supported Chipsets and NICs

	Intel 82576EB 10 Gigabit Ethernet Controller

	Intel 82580EB 10 Gigabit Ethernet Controller

	Intel 82580DB 10 Gigabit Ethernet Controller

	Intel Ethernet Controller I210

	Intel Ethernet Controller I350

25. IGC Poll Mode Driver

The IGC PMD (librte_pmd_igc) provides poll mode driver support for Foxville
I225 Series Network Adapters.

	For information about I225, please refer to:
https://ark.intel.com/content/www/us/en/ark/products/series/184686/
intel-ethernet-controller-i225-series.html

25.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_IGC_PMD (default y)

Toggle compilation of the librte_pmd_igc driver.

	CONFIG_RTE_LIBRTE_IGC_DEBUG_* (default n)

Toggle display of generic debugging messages.

25.1.1. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

25.1.2. Supported Chipsets and NICs

Foxville LM (I225 LM): Client 2.5G LAN vPro Corporate
Foxville V (I225 V): Client 2.5G LAN Consumer
Foxville I (I225 I): Client 2.5G Industrial Temp
Foxville V (I225 K): Client 2.5G LAN Consumer

25.1.3. Sample Application Notes

25.2. Vlan filter

VLAN stripping off only works with inner vlan.
Only the outer VLAN TPID can be set to a vlan other than 0x8100.

If extend VLAN is enabled:

	The VLAN header in a packet that carries a single VLAN header is treated as the external VLAN.

	Foxville expects that any transmitted packet to have at least the external VLAN added by the
software. For those packets where an external VLAN is not present, any offload that relates to
inner fields to the EtherType might not be provided.

	If VLAN TX-OFFLOAD is enabled and the packet does not contain an external VLAN, the packet is
dropped, and if configured, the queue from which the packet was sent is disabled.

To start testpmd, add vlan 10 to port, set vlan stripping off on, set extend on, set TPID of
outer VLAN to 0x9100:

./app/testpmd -l 4-8 -- -i
...

testpmd> vlan set filter on 0
testpmd> rx_vlan add 10 0
testpmd> vlan set strip off 0
testpmd> vlan set extend on 0
testpmd> vlan set outer tpid 0x9100 0

25.3. Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues.

The Flow Director filters includes the following types:

	ether-type filter

	2-tuple filter(destination L4 protocol and destination L4 port)

	TCP SYN filter

	RSS filter

Start testpmd:

./testpmd -l 4-8 -- i --rxq=4 --txq=4 --pkt-filter-mode=perfect --disable-rss

Add a rule to direct packet whose ether-type=0x801 to queue 1:

testpmd> flow create 0 ingress pattern eth type is 0x801 / end actions queue index 1 / end

Add a rule to direct packet whose ip-protocol=0x6(TCP), tcp_port=0x80 to queue 1:

testpmd> flow create 0 ingress pattern eth / ipv4 proto is 6 / tcp dst is 0x80 / end actions queue index 1 / end

Add a rule to direct packet whose ip-protocol=0x6(TCP), SYN flag is set to queue 1:

testpmd> flow validate 0 ingress pattern tcp flags spec 0x02 flags mask 0x02 / end actions queue index 1 / end

Add a rule to enable ipv4-udp RSS:

testpmd> flow create 0 ingress pattern end actions rss types ipv4-udp end / end

26. IONIC Driver

The ionic driver provides support for Pensando server adapters.
It currently supports the below models:

	Naples DSC-25 [https://pensando.io/assets/documents/Naples-25_ProductBrief_10-2019.pdf]

	Naples DSC-100 [https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf]

Please visit https://pensando.io for more information.

26.1. Identifying the Adapter

To find if one or more Pensando PCI Ethernet devices are installed
on the host, check for the PCI devices:

lspci -d 1dd8:
b5:00.0 Ethernet controller: Device 1dd8:1002
b6:00.0 Ethernet controller: Device 1dd8:1002

26.2. Pre-Installation Configuration

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_IONIC_PMD (default y)

Toggle compilation of ionic PMD.

26.3. Building DPDK

The ionic PMD driver supports UIO and VFIO, please refer to the
DPDK documentation that comes with the DPDK suite
for instructions on how to build DPDK.

27. IPN3KE Poll Mode Driver

The ipn3ke PMD (librte_pmd_ipn3ke) provides poll mode driver support
for Intel® FPGA PAC(Programmable Acceleration Card) N3000 based on
the Intel Ethernet Controller X710/XXV710 and Intel Arria 10 FPGA.

In this card, FPGA is an acceleration bridge between network interface
and the Intel Ethernet Controller. Although both FPGA and Ethernet
Controllers are connected to CPU with PCIe Gen3x16 Switch, all the
packet RX/TX is handled by Intel Ethernet Controller. So from application
point of view the data path is still the legacy Intel Ethernet Controller
X710/XXV710 PMD. Besides this, users can enable more acceleration
features by FPGA IP.

27.1. Prerequisites

	Identifying your adapter using Intel Support [http://www.intel.com/support] and get the latest NVM/FW images.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

	To get better performance on Intel platforms, please follow the “How to get best performance with NICs on Intel platforms”
section of the Getting Started Guide for Linux.

27.2. Pre-Installation Configuration

27.2.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_IPN3KE_PMD (default y)

Toggle compilation of the librte_pmd_ipn3ke driver.

27.2.2. Runtime Config Options

	AFU name

AFU name identifies which AFU is used by IPN3KE. The AFU name format is “Port|BDF”,
Each FPGA can be divided into four blocks at most. “Port” identifies which FPGA block
the AFU bitstream belongs to, but currently only 0 IPN3KE support. “BDF” means FPGA PCIe BDF.
For example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0'

	FPGA Acceleration list

For IPN3KE FPGA can provide different bitstream, different bitstream includes different
Acceleration, so users need to identify which Acceleration is used. Current IPN3KE can
support TM and Flow Acceleration, for example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow}'

	I40e PF name list

Users need to bind FPGA LineSidePort to FVL PF. So I40e PF name list should be involved in
startup command. For example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow},i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}'

27.3. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

27.4. Sample Application Notes

27.4.1. Packet TX/RX with FPGA Pass-through image

FPGA Pass-through bitstream is original FPGA Image.

To start testpmd, and add I40e PF to FPGA network port:

./app/testpmd -l 0-15 -n 4 --vdev 'ifpga_rawdev_cfg0,ifpga=b3:00.0,port=0' --vdev 'ipn3ke_cfg0,afu=0|b3:00.0,i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}' -- -i --no-numa --port-topology=loop

27.4.2. HQoS and flow acceleration

HQoS and flow acceleration bitstream is used to offloading HQoS and flow classifier.

To start testpmd, and add I40e PF to FPGA network port, enable FPGA HQoS and Flow Acceleration:

./app/testpmd -l 0-15 -n 4 --vdev 'ifpga_rawdev_cfg0,ifpga=b3:00.0,port=0' --vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow},i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}' -- -i --no-numa --forward-mode=macswap

27.5. Limitations or Known issues

27.5.1. 19.05 limitation

Ipn3ke code released in 19.05 is for evaluation only.

28. IXGBE Driver

28.1. Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O.
It improves load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX register 1 (1).
The wider register gives space to hold multiple packet buffers so as to save instruction number when processing bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet I/O.
They are transparently registered at runtime RX/TX execution if all condition checks pass.

	To date, only an SSE version of IX GBE vPMD is available.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

28.1.1. RX Constraints

28.1.1.1. Prerequisites and Pre-conditions

The following prerequisites apply:

	To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

	rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

	rxq->rx_free_thresh < rxq->nb_rx_desc

	(rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

	rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode.
If an incoming packet is greater than the maximum acceptable length of one “mbuf” data size (by default, the size is 2 KB),
vPMD for RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

28.1.1.2. Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD.
They are:

	IEEE1588

	FDIR

	Header split

	RX checksum off load

Other features are supported using optional MACRO configuration. They include:

	HW VLAN strip

	HW extend dual VLAN

To guarantee the constraint, capabilities in dev_conf.rxmode.offloads will be checked:

	DEV_RX_OFFLOAD_VLAN_STRIP

	DEV_RX_OFFLOAD_VLAN_EXTEND

	DEV_RX_OFFLOAD_CHECKSUM

	DEV_RX_OFFLOAD_HEADER_SPLIT

	dev_conf

fdir_conf->mode will also be checked.

28.1.1.3. VF Runtime Options

The following devargs options can be enabled at runtime. They must
be passed as part of EAL arguments. For example,

testpmd -w af:10.0,pflink_fullchk=1 -- -i

	pflink_fullchk (default 0)

When calling rte_eth_link_get_nowait() to get VF link status,
this option is used to control how VF synchronizes its status with
PF’s. If set, VF will not only check the PF’s physical link status
by reading related register, but also check the mailbox status. We
call this behavior as fully checking. And checking mailbox will
trigger PF’s mailbox interrupt generation. If unset, the application
can get the VF’s link status quickly by just reading the PF’s link
status register, this will avoid the whole system’s mailbox interrupt
generation.

rte_eth_link_get() will still use the mailbox method regardless
of the pflink_fullchk setting.

28.1.1.4. RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater than 32 per burst.
It returns zero if using nb_pkt < 32 as the expected packet number in the receive handler.

28.1.2. TX Constraint

28.1.2.1. Prerequisite

The only prerequisite is related to tx_rs_thresh.
The tx_rs_thresh value must be greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST,
but less or equal to RTE_IXGBE_TX_MAX_FREE_BUF_SZ.
Consequently, by default the tx_rs_thresh value is in the range 32 to 64.

28.1.2.2. Feature not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

28.2. Application Programming Interface

In DPDK release v16.11 an API for ixgbe specific functions has been added to the ixgbe PMD.
The declarations for the API functions are in the header rte_pmd_ixgbe.h.

28.3. Sample Application Notes

28.3.1. l3fwd

When running l3fwd with vPMD, there is one thing to note.
In the configuration, ensure that DEV_RX_OFFLOAD_CHECKSUM in port_conf.rxmode.offloads is NOT set.
Otherwise, by default, RX vPMD is disabled.

28.3.2. load_balancer

As in the case of l3fwd, to enable vPMD, do NOT set DEV_RX_OFFLOAD_CHECKSUM in port_conf.rxmode.offloads.
In addition, for improved performance, use -bsz “(32,32),(64,64),(32,32)” in load_balancer to avoid using the default burst size of 144.

28.4. Limitations or Known issues

28.4.1. Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious
Driver Detection) which checks the behavior of the VF driver.
If this feature is enabled, the VF must use the advanced context descriptor
correctly and set the CC (Check Context) bit.
DPDK PF doesn’t support MDD, but kernel PF does. We may hit problem in this
scenario kernel PF + DPDK VF. If user enables MDD in kernel PF, DPDK VF will
not work. Because kernel PF thinks the VF is malicious. But actually it’s not.
The only reason is the VF doesn’t act as MDD required.
There’s significant performance impact to support MDD. DPDK should check if
the advanced context descriptor should be set and set it. And DPDK has to ask
the info about the header length from the upper layer, because parsing the
packet itself is not acceptable. So, it’s too expensive to support MDD.
When using kernel PF + DPDK VF on x550, please make sure to use a kernel
PF driver that disables MDD or can disable MDD.

Some kernel drivers already disable MDD by default while some kernels can use
the command insmod ixgbe.ko MDD=0,0 to disable MDD. Each “0” in the
command refers to a port. For example, if there are 6 ixgbe ports, the command
should be changed to insmod ixgbe.ko MDD=0,0,0,0,0,0.

28.4.2. Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to
remain consistent. Running a DPDK application without polling the statistics will
cause registers on hardware to count to the maximum value, and “stick” at
that value.

In order to avoid statistic registers every reaching the maximum value,
read the statistics from the hardware using rte_eth_stats_get() or
rte_eth_xstats_get().

The maximum time between statistics polls that ensures consistent results can
be calculated as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

28.4.3. MTU setting

Although the user can set the MTU separately on PF and VF ports, the ixgbe NIC
only supports one global MTU per physical port.
So when the user sets different MTUs on PF and VF ports in one physical port,
the real MTU for all these PF and VF ports is the largest value set.
This behavior is based on the kernel driver behavior.

28.4.4. VF MAC address setting

On ixgbe, the concept of “pool” can be used for different things depending on
the mode. In VMDq mode, “pool” means a VMDq pool. In IOV mode, “pool” means a
VF.

There is no RTE API to add a VF’s MAC address from the PF. On ixgbe, the
rte_eth_dev_mac_addr_add() function can be used to add a VF’s MAC address,
as a workaround.

28.4.5. X550 does not support legacy interrupt mode

28.4.5.1. Description

X550 cannot get interrupts if using uio_pci_generic module or using legacy
interrupt mode of igb_uio or vfio. Because the errata of X550 states
that the Interrupt Status bit is not implemented. The errata is the item #22
from X550 spec update [https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ethernet-x550-spec-update.pdf]

28.4.5.2. Implication

When using uio_pci_generic module or using legacy interrupt mode of
igb_uio or vfio, the Interrupt Status bit would be checked if the
interrupt is coming. Since the bit is not implemented in X550, the irq cannot
be handled correctly and cannot report the event fd to DPDK apps. Then apps
cannot get interrupts and dmesg will show messages like irq #No.: ``
``nobody cared.

28.4.5.3. Workaround

Do not bind the uio_pci_generic module in X550 NICs.
Do not bind igb_uio with legacy mode in X550 NICs.
Before binding vfio with legacy mode in X550 NICs, use modprobe vfio ``
``nointxmask=1 to load vfio module if the intx is not shared with other
devices.

28.5. Inline crypto processing support

Inline IPsec processing is supported for RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
mode for ESP packets only:

	ESP authentication only: AES-128-GMAC (128-bit key)

	ESP encryption and authentication: AES-128-GCM (128-bit key)

IPsec Security Gateway Sample Application supports inline IPsec processing for
ixgbe PMD.

For more details see the IPsec Security Gateway Sample Application and Security
library documentation.

28.6. Virtual Function Port Representors

The IXGBE PF PMD supports the creation of VF port representors for the control
and monitoring of IXGBE virtual function devices. Each port representor
corresponds to a single virtual function of that device. Using the devargs
option representor the user can specify which virtual functions to create
port representors for on initialization of the PF PMD by passing the VF IDs of
the VFs which are required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required
representors must be specified on the creation of the PF.

28.7. Supported Chipsets and NICs

	Intel 82599EB 10 Gigabit Ethernet Controller

	Intel 82598EB 10 Gigabit Ethernet Controller

	Intel 82599ES 10 Gigabit Ethernet Controller

	Intel 82599EN 10 Gigabit Ethernet Controller

	Intel Ethernet Controller X540-AT2

	Intel Ethernet Controller X550-BT2

	Intel Ethernet Controller X550-AT2

	Intel Ethernet Controller X550-AT

	Intel Ethernet Converged Network Adapter X520-SR1

	Intel Ethernet Converged Network Adapter X520-SR2

	Intel Ethernet Converged Network Adapter X520-LR1

	Intel Ethernet Converged Network Adapter X520-DA1

	Intel Ethernet Converged Network Adapter X520-DA2

	Intel Ethernet Converged Network Adapter X520-DA4

	Intel Ethernet Converged Network Adapter X520-QDA1

	Intel Ethernet Converged Network Adapter X520-T2

	Intel 10 Gigabit AF DA Dual Port Server Adapter

	Intel 10 Gigabit AT Server Adapter

	Intel 10 Gigabit AT2 Server Adapter

	Intel 10 Gigabit CX4 Dual Port Server Adapter

	Intel 10 Gigabit XF LR Server Adapter

	Intel 10 Gigabit XF SR Dual Port Server Adapter

	Intel 10 Gigabit XF SR Server Adapter

	Intel Ethernet Converged Network Adapter X540-T1

	Intel Ethernet Converged Network Adapter X540-T2

	Intel Ethernet Converged Network Adapter X550-T1

	Intel Ethernet Converged Network Adapter X550-T2

29. Intel Virtual Function Driver

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details)
support the following modes of operation in a virtualized environment:

	SR-IOV mode: Involves direct assignment of part of the port resources to different guest operating systems
using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard,
also known as “native mode” or “pass-through” mode.
In this chapter, this mode is referred to as IOV mode.

	VMDq mode: Involves central management of the networking resources by an IO Virtual Machine (IOVM) or
a Virtual Machine Monitor (VMM), also known as software switch acceleration mode.
In this chapter, this mode is referred to as the Next Generation VMDq mode.

29.1. SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode.
Therefore, it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and
expose them to a virtual machine as a separate PCI function called a “Virtual Function”.
Refer to Fig. 29.3.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig. 29.3),
while still having global data in common to share with the Physical Function and other Virtual Functions.
The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD) serves for the Intel® 82576 Gigabit Ethernet Controller,
Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller NIC,
Intel® Fortville 10/40 Gigabit Ethernet Controller NIC’s virtual PCI function, or PCIe host-interface of the Intel Ethernet Switch
FM10000 Series.
Meanwhile the DPDK Poll Mode Driver (PMD) also supports “Physical Function” of such NIC’s on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit Ethernet Controller,
Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller,
and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

	SR-IOV provides hardware based I/O sharing [http://www.intel.com/network/connectivity/solutions/vmdc.htm]

	PCI-SIG-Single Root I/O Virtualization Support on IA [http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html]

	Scalable I/O Virtualized Servers [http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html]

[image: ../_images/single_port_nic.png]

Fig. 29.3 Virtualization for a Single Port NIC in SR-IOV Mode

29.1.1. Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the supported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and therefore have no access
to the global NIC resources that are shared between other functions for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the queues assigned to it.
For global resource access, a Virtual Function has to send a request to the Physical Function for that port,
and the Physical Function operates on the global resources on behalf of the Virtual Function.
For this out-of-band communication, an SR-IOV enabled NIC provides a memory buffer for each Virtual Function,
which is called a “Mailbox”.

29.1.1.1. Intel® Ethernet Adaptive Virtual Function

Adaptive Virtual Function (IAVF) is a SR-IOV Virtual Function with the same device id (8086:1889) on different Intel Ethernet Controller.
IAVF Driver is VF driver which supports for all future Intel devices without requiring a VM update. And since this happens to be an adaptive VF driver,
every new drop of the VF driver would add more and more advanced features that can be turned on in the VM if the underlying HW device supports those
advanced features based on a device agnostic way without ever compromising on the base functionality. IAVF provides generic hardware interface and
interface between IAVF driver and a compliant PF driver is specified.

Intel products starting Ethernet Controller 700 Series to support Adaptive Virtual Function.

The way to generate Virtual Function is like normal, and the resource of VF assignment depends on the NIC Infrastructure.

For more detail on SR-IOV, please refer to the following documents:

	Intel® IAVF HAS [https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ethernet-adaptive-virtual-function-hardware-spec.pdf]

Note

To use DPDK IAVF PMD on Intel® 700 Series Ethernet Controller, the device id (0x1889) need to specified during device
assignment in hypervisor. Take qemu for example, the device assignment should carry the IAVF device id (0x1889) like
-device vfio-pci,x-pci-device-id=0x1889,host=03:0a.0.

29.1.1.2. The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions (VF)
globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device.
Each VF can have a maximum of 16 queue pairs.
The Physical Function in host could be only configured by the Linux* fm10k driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]), DPDK PMD PF driver doesn’t support it yet.

For example,

	Using Linux* fm10k driver:

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

29.1.1.3. Intel® X710/XL710 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128 Virtual Functions (VF)
globally per Intel® X710/XL710 Gigabit Ethernet Controller NIC device.
The number of queue pairs of each VF can be configured by CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF in config file.
The Physical Function in host could be either configured by the Linux* i40e driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver.
When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

	Using Linux* i40e driver:

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

	Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

For Intel® X710/XL710 Gigabit Ethernet Controller, queues are in pairs. One queue pair means one receive queue and
one transmit queue. The default number of queue pairs per VF is 4, and can be 16 in maximum.

29.1.1.4. Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Physical Function per Intel® 82599
10 Gigabit Ethernet Controller NIC port.
The reason for this is that the device allows for a maximum of 128 queues per port and a virtual/physical function has to
have at least one queue pair (RX/TX).
The current implementation of the DPDK ixgbevf driver supports a single queue pair (RX/TX) per Virtual Function.
The Physical Function in host could be either configured by the Linux* ixgbe driver
(in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver.
When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

	Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

	Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

	Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI device, and
launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

The available queue number (at most 4) per VF depends on the total number of pool, which is
determined by the max number of VF at PF initialization stage and the number of queue specified
in config:

	If the max number of VFs (max_vfs) is set in the range of 1 to 32:

If the number of Rx queues is specified as 4 (--rxq=4 in testpmd), then there are totally 32
pools (ETH_32_POOLS), and each VF could have 4 Rx queues;

If the number of Rx queues is specified as 2 (--rxq=2 in testpmd), then there are totally 32
pools (ETH_32_POOLS), and each VF could have 2 Rx queues;

	If the max number of VFs (max_vfs) is in the range of 33 to 64:

If the number of Rx queues in specified as 4 (--rxq=4 in testpmd), then error message is expected
as rxq is not correct at this case;

If the number of rxq is 2 (--rxq=2 in testpmd), then there is totally 64 pools (ETH_64_POOLS),
and each VF have 2 Rx queues;

On host, to enable VF RSS functionality, rx mq mode should be set as ETH_MQ_RX_VMDQ_RSS
or ETH_MQ_RX_RSS mode, and SRIOV mode should be activated (max_vfs >= 1).
It also needs config VF RSS information like hash function, RSS key, RSS key length.

Note

The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is:
The hash and key are shared among PF and all VF, the RETA table with 128 entries is also shared
among PF and all VF; So it could not to provide a method to query the hash and reta content per
VF on guest, while, if possible, please query them on host for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a dual-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

	Virtual Functions 0 and 2 belong to Physical Function 0

	Virtual Functions 1 and 3 belong to Physical Function 1

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

29.1.1.5. Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight virtual machines (VMs).
The controller has 16 TX and 16 RX queues.
They are generally referred to (or thought of) as queue pairs (one TX and one RX queue).
This gives the controller 16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive operations.
The controller has eight pools, with each pool containing two queue pairs, that is, two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight virtual machines (VMs) per port.
The eight queues can be accessed by eight different VMs if configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues),
that means, one Transmit and one Receive queue assigned to each VF.

For example,

	Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

	Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a four-port NIC.
When you enable the four Virtual Functions with the above command, the four enabled functions have a Function#
represented by (Bus#, Device#, Function#) in sequence, starting from 0 to 7.
However:

	Virtual Functions 0 and 4 belong to Physical Function 0

	Virtual Functions 1 and 5 belong to Physical Function 1

	Virtual Functions 2 and 6 belong to Physical Function 2

	Virtual Functions 3 and 7 belong to Physical Function 3

Note

The above is an important consideration to take into account when targeting specific packets to a selected port.

29.1.2. Validated Hypervisors

The validated hypervisor is:

	KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mailbox interface,
the solution is hypervisor-agnostic.
Xen* and VMware* (when SR- IOV is supported) will also be able to support the DPDK with Virtual Function driver support.

29.1.3. Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

	Fedora* 14 (64-bit)

	Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

29.2. Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

	Host Operating System: Fedora 14

	Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

	Guest Operating System: Fedora 14

	Linux Kernel Version: Refer to the DPDK Getting Started Guide

	Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

	Before booting the Host OS, open BIOS setup and enable Intel® VT features.

	While booting the Host OS kernel, pass the intel_iommu=on kernel command line argument using GRUB.
When using DPDK PF driver on host, pass the iommu=pt kernel command line argument in GRUB.

	Download qemu-kvm-0.14.0 from
http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules,
you must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

	Create a Virtual Machine and install Fedora 14 on the Virtual Machine.
This is referred to as the Guest Operating System (Guest OS).

	Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

	In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the number of VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note

You need to explicitly specify number of vfs for each port, for example,
in the command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

	List the PCI devices connected and notice that the Host OS shows two Physical Functions (traditional ports)
and four Virtual Functions (two for each port).
This is the result of the previous step.

	Insert the pci_stub module to hold the PCI devices that are freed from the default driver using the following command
(see http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more information):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions.
A script to perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

	Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

—-smp = number of smp cores

— -boot = boot option

—-hda = virtual disk image

— -device = device to attach

Note

— The pci-assign,host=08:10.0 value indicates that you want to attach a PCI device
to a Virtual Machine and the respective (Bus:Device.Function)
numbers should be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM,
but this is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the cpu_model
to emulate in a Virtual Machine. Therefore, it can be used as:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

	If use vfio-pci to pass through device instead of pci-assign, steps 8 and 9 need to be updated to bind device to vfio-pci and
replace pci-assign with vfio-pci when start virtual machine.

sudo /sbin/modprobe vfio-pci

echo "8086 10ed" > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/vfio-pci/bind

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device vfio-pci,host=08:10.0

	Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linux-gcc
./x86_64-native-linux-gcc/app/testpmd -l 0-3 -n 4 -- -i

	Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the lspci command output in the Guest OS.
The virtual functions will be listed as available for use.

	Configure and install the DPDK with an x86_64-native-linux-gcc configuration on the Guest OS as normal,
that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linux-gcc O=x86_64-native-linux-gcc
cd x86_64-native-linux-gcc
make

Note

If you are unable to compile the DPDK and you are getting “error: CPU you selected does not support x86-64 instruction set”,
power off the Guest OS and start the virtual machine with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9.
You must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note

Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled.
For the expected benchmark performance, you must pin the cores from the Guest OS to the Host OS (taskset can be used to do this) and
you must also look at the PCI Bus layout on the board to ensure you are not running the traffic over the QPI Interface.

Note

	The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility for virtual machine management
that can also be used to create, start, stop and delete virtual machines.
If this option is used, step 2 and 6 in the instructions provided will be different.

	virsh, a command line utility for virtual machine management,
can also be used to bind and unbind devices to a virtual machine in Ubuntu.
If this option is used, step 6 in the instructions provided will be different.

	The Virtual Machine Monitor (see Fig. 29.4) is equivalent to a Host OS with KVM installed as described in the instructions.

[image: ../_images/perf_benchmark.png]

Fig. 29.4 Performance Benchmark Setup

29.3. DPDK SR-IOV PMD PF/VF Driver Usage Model

29.3.1. Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling.
In a virtualization environment,
the DPDK VF PMD driver performs the same throughput result as a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS,
DPI can be offloaded on the host fast path.

Fig. 29.5 shows the scenario where some VMs directly communicate externally via a VFs,
while others connect to a virtual switch and share the same uplink bandwidth.

[image: ../_images/fast_pkt_proc.png]

Fig. 29.5 Fast Host-based Packet Processing

29.4. SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms.
SR-IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in the NIC.
So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware acceleration.
However, when VF crosses physical ports (VM0<->VM2), there is no such hardware bridge.
In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 29.6 shows an example.
In this case an update of the MAC address lookup tables in both the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to the PF specific pool.
So when a packet comes in, its destination MAC address will match and forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding,
that is, the packet is forwarded to the correct PF pool.
The SR-IOV NIC switch forwards the packet to a specific VM according to the MAC destination address
which belongs to the destination VF on the VM.

[image: ../_images/inter_vm_comms.png]

Fig. 29.6 Inter-VM Communication

30. KNI Poll Mode Driver

KNI PMD is wrapper to the librte_kni library.

This PMD enables using KNI without having a KNI specific application,
any forwarding application can use PMD interface for KNI.

Sending packets to any DPDK controlled interface or sending to the
Linux networking stack will be transparent to the DPDK application.

To create a KNI device net_kni# device name should be used, and this
will create kni# Linux virtual network interface.

There is no physical device backend for the virtual KNI device.

Packets sent to the KNI Linux interface will be received by the DPDK
application, and DPDK application may forward packets to a physical NIC
or to a virtual device (like another KNI interface or PCAP interface).

To forward any traffic from physical NIC to the Linux networking stack,
an application should control a physical port and create one virtual KNI port,
and forward between two.

Using this PMD requires KNI kernel module be inserted.

30.1. Usage

EAL --vdev argument can be used to create KNI device instance, like:

testpmd --vdev=net_kni0 --vdev=net_kn1 -- -i

Above command will create kni0 and kni1 Linux network interfaces,
those interfaces can be controlled by standard Linux tools.

When testpmd forwarding starts, any packets sent to kni0 interface
forwarded to the kni1 interface and vice versa.

There is no hard limit on number of interfaces that can be created.

30.2. Default interface configuration

librte_kni can create Linux network interfaces with different features,
feature set controlled by a configuration struct, and KNI PMD uses a fixed
configuration:

Interface name: kni#
force bind kernel thread to a core : NO
mbuf size: (rte_pktmbuf_data_room_size(pktmbuf_pool) - RTE_PKTMBUF_HEADROOM)
mtu: (conf.mbuf_size - RTE_ETHER_HDR_LEN)

KNI control path is not supported with the PMD, since there is no physical
backend device by default.

30.3. PMD arguments

no_request_thread, by default PMD creates a pthread for each KNI interface
to handle Linux network interface control commands, like ifconfig kni0 up

With no_request_thread option, pthread is not created and control commands
not handled by PMD.

By default request thread is enabled. And this argument should not be used
most of the time, unless this PMD used with customized DPDK application to handle
requests itself.

Argument usage:

testpmd --vdev "net_kni0,no_request_thread=1" -- -i

30.4. PMD log messages

If KNI kernel module (rte_kni.ko) not inserted, following error log printed:

"KNI: KNI subsystem has not been initialized. Invoke rte_kni_init() first"

30.5. PMD testing

It is possible to test PMD quickly using KNI kernel module loopback feature:

	Insert KNI kernel module with loopback support:

insmod build/kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

	Start testpmd with no physical device but two KNI virtual devices:

./testpmd --vdev net_kni0 --vdev net_kni1 -- -i

...
Configuring Port 0 (socket 0)
KNI: pci: 00:00:00 c580:b8
Port 0: 1A:4A:5B:7C:A2:8C
Configuring Port 1 (socket 0)
KNI: pci: 00:00:00 600:b9
Port 1: AE:95:21:07:93:DD
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

	Observe Linux interfaces

$ ifconfig kni0 && ifconfig kni1
kni0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether ae:8e:79:8e:9b:c8 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

kni1: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 9e:76:43:53:3e:9b txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

	Start forwarding with tx_first:

testpmd> start tx_first

	Quit and check forwarding stats:

testpmd> quit
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ----------------------
RX-packets: 35637905 RX-dropped: 0 RX-total: 35637905
TX-packets: 35637947 TX-dropped: 0 TX-total: 35637947
--

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 35637915 RX-dropped: 0 RX-total: 35637915
TX-packets: 35637937 TX-dropped: 0 TX-total: 35637937
--

+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 71275820 RX-dropped: 0 RX-total: 71275820
TX-packets: 71275884 TX-dropped: 0 TX-total: 71275884
++

31. LiquidIO VF Poll Mode Driver

The LiquidIO VF PMD library (librte_pmd_lio) provides poll mode driver support for
Cavium LiquidIO® II server adapter VFs. PF management and VF creation can be
done using kernel driver.

More information can be found at Cavium Official Website [http://cavium.com/LiquidIO_Adapters.html].

31.1. Supported LiquidIO Adapters

	LiquidIO II CN2350 210SV/225SV

	LiquidIO II CN2350 210SVPT

	LiquidIO II CN2360 210SV/225SV

	LiquidIO II CN2360 210SVPT

31.2. Pre-Installation Configuration

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_LIO_PMD (default y)

Toggle compilation of LiquidIO PMD.

	CONFIG_RTE_LIBRTE_LIO_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

	CONFIG_RTE_LIBRTE_LIO_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

	CONFIG_RTE_LIBRTE_LIO_DEBUG_MBOX (default n)

Toggle display of mailbox messages.

	CONFIG_RTE_LIBRTE_LIO_DEBUG_REGS (default n)

Toggle display of register reads and writes.

31.3. SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

	Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [148 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [178 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: LiquidIO

	Load the kernel module:

modprobe liquidio

	Bring up the PF ports:

ifconfig p4p1 up
ifconfig p4p2 up

	Change PF MTU if required:

ifconfig p4p1 mtu 9000
ifconfig p4p2 mtu 9000

	Create VF device(s):

Echo number of VFs to be created into "sriov_numvfs" sysfs entry
of the parent PF.

echo 1 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000:03:00.1/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set p4p1 vf 0 mac F2:A8:1B:5E:B4:66

	Assign VF(s) to VM.

The VF devices may be passed through to the guest VM using qemu or
virt-manager or virsh etc.

Example qemu guest launch command:

./qemu-system-x86_64 -name lio-vm -machine accel=kvm \
-cpu host -m 4096 -smp 4 \
-drive file=<disk_file>,if=none,id=disk1,format=<type> \
-device virtio-blk-pci,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-device vfio-pci,host=03:00.3 -device vfio-pci,host=03:08.3

	Running testpmd

Refer to the document
compiling and testing a PMD for a NIC to run
testpmd application.

Note

Use igb_uio instead of vfio-pci in VM.

Example output:

[...]
EAL: PCI device 0000:03:00.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
EAL: using IOMMU type 1 (Type 1)
PMD: net_liovf[03:00.3]INFO: DEVICE : CN23XX VF
EAL: PCI device 0000:03:08.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
PMD: net_liovf[03:08.3]INFO: DEVICE : CN23XX VF
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
Configuring Port 0 (socket 0)
PMD: net_liovf[03:00.3]INFO: Starting port 0
Port 0: F2:A8:1B:5E:B4:66
Configuring Port 1 (socket 0)
PMD: net_liovf[03:08.3]INFO: Starting port 1
Port 1: 32:76:CC:EE:56:D7
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

	Enabling VF promiscuous mode

One VF per PF can be marked as trusted for promiscuous mode.

ip link set dev <PF iface> vf <VF id> trust on

31.4. Limitations

31.4.1. VF MTU

VF MTU is limited by PF MTU. Raise PF value before configuring VF for larger packet size.

31.4.2. VLAN offload

Tx VLAN insertion is not supported and consequently VLAN offload feature is
marked partial.

31.4.3. Ring size

Number of descriptors for Rx/Tx ring should be in the range 128 to 512.

31.4.4. CRC stripping

LiquidIO adapters strip ethernet FCS of every packet coming to the host interface.

32. Memif Poll Mode Driver

Shared memory packet interface (memif) PMD allows for DPDK and any other client
using memif (DPDK, VPP, libmemif) to communicate using shared memory. Memif is
Linux only.

The created device transmits packets in a raw format. It can be used with
Ethernet mode, IP mode, or Punt/Inject. At this moment, only Ethernet mode is
supported in DPDK memif implementation.

Memif works in two roles: master and slave. Slave connects to master over an
existing socket. It is also a producer of shared memory file and initializes
the shared memory. Each interface can be connected to one peer interface
at same time. The peer interface is identified by id parameter. Master
creates the socket and listens for any slave connection requests. The socket
may already exist on the system. Be sure to remove any such sockets, if you
are creating a master interface, or you will see an “Address already in use”
error. Function rte_pmd_memif_remove(), which removes memif interface,
will also remove a listener socket, if it is not being used by any other
interface.

The method to enable one or more interfaces is to use the
--vdev=net_memif0 option on the DPDK application command line. Each
--vdev=net_memif1 option given will create an interface named net_memif0,
net_memif1, and so on. Memif uses unix domain socket to transmit control
messages. Each memif has a unique id per socket. This id is used to identify
peer interface. If you are connecting multiple
interfaces using same socket, be sure to specify unique ids id=0, id=1,
etc. Note that if you assign a socket to a master interface it becomes a
listener socket. Listener socket can not be used by a slave interface on same
client.

Table 32.1 Memif configuration options

	Option

	Description

	Default

	Valid value

	id=0

	Used to identify peer interface

	0

	uint32_t

	role=master

	Set memif role

	slave

	master|slave

	bsize=1024

	Size of single packet buffer

	2048

	uint16_t

	rsize=11

	Log2 of ring size. If rsize is 10, actual ring size is 1024

	10

	1-14

	socket=/tmp/memif.sock

	Socket filename

	/tmp/memif.sock

	string len 108

	mac=01:23:45:ab:cd:ef

	Mac address

	01:ab:23:cd:45:ef

	

	secret=abc123

	Secret is an optional security option, which if specified, must be matched by peer

	
	string len 24

	zero-copy=yes

	Enable/disable zero-copy slave mode. Only relevant to slave, requires ‘–single-file-segments’ eal argument

	no

	yes|no

Connection establishment

In order to create memif connection, two memif interfaces, each in separate
process, are needed. One interface in master role and other in
slave role. It is not possible to connect two interfaces in a single
process. Each interface can be connected to one interface at same time,
identified by matching id parameter.

Memif driver uses unix domain socket to exchange required information between
memif interfaces. Socket file path is specified at interface creation see
Memif configuration options table above. If socket is used by master
interface, it’s marked as listener socket (in scope of current process) and
listens to connection requests from other processes. One socket can be used by
multiple interfaces. One process can have slave and master interfaces
at the same time, provided each role is assigned unique socket.

For detailed information on memif control messages, see: net/memif/memif.h.

Slave interface attempts to make a connection on assigned socket. Process
listening on this socket will extract the connection request and create a new
connected socket (control channel). Then it sends the ‘hello’ message
(MEMIF_MSG_TYPE_HELLO), containing configuration boundaries. Slave interface
adjusts its configuration accordingly, and sends ‘init’ message
(MEMIF_MSG_TYPE_INIT). This message among others contains interface id. Driver
uses this id to find master interface, and assigns the control channel to this
interface. If such interface is found, ‘ack’ message (MEMIF_MSG_TYPE_ACK) is
sent. Slave interface sends ‘add region’ message (MEMIF_MSG_TYPE_ADD_REGION) for
every region allocated. Master responds to each of these messages with ‘ack’
message. Same behavior applies to rings. Slave sends ‘add ring’ message
(MEMIF_MSG_TYPE_ADD_RING) for every initialized ring. Master again responds to
each message with ‘ack’ message. To finalize the connection, slave interface
sends ‘connect’ message (MEMIF_MSG_TYPE_CONNECT). Upon receiving this message
master maps regions to its address space, initializes rings and responds with
‘connected’ message (MEMIF_MSG_TYPE_CONNECTED). Disconnect
(MEMIF_MSG_TYPE_DISCONNECT) can be sent by both master and slave interfaces at
any time, due to driver error or if the interface is being deleted.

Files

	net/memif/memif.h - control messages definitions

	net/memif/memif_socket.h

	net/memif/memif_socket.c

32.1. Shared memory

Shared memory format

Slave is producer and master is consumer. Memory regions, are mapped shared memory files,
created by memif slave and provided to master at connection establishment.
Regions contain rings and buffers. Rings and buffers can also be separated into multiple
regions. For no-zero-copy, rings and buffers are stored inside single memory
region to reduce the number of opened files.

region n (no-zero-copy):

	Rings

	Buffers

	S2M rings

	M2S rings

	packet buffer 0

	.

	pb ((1 << pmd->run.log2_ring_size)*(s2m + m2s))-1

S2M OR M2S Rings:

	ring 0

	ring 1

	ring num_s2m_rings - 1

ring 0:

	ring header

	(1 << pmd->run.log2_ring_size) * desc

Descriptors are assigned packet buffers in order of rings creation. If we have one ring
in each direction and ring size is 1024, then first 1024 buffers will belong to S2M ring and
last 1024 will belong to M2S ring. In case of zero-copy, buffers are dequeued and
enqueued as needed.

Descriptor format

	Quad

Word

	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	3

	3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	1

	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	2

	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	6

	5

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0

	0

	length

	region

	flags

	1

	metadata

	offset

	
	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	3

	3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	2

	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0

Flags field - flags (Quad Word 0, bits 0:15)

	Bits

	Name

	Functionality

	0

	MEMIF_DESC_FLAG_NEXT

	Is chained buffer. When set, the packet is divided into multiple buffers. May not be contiguous.

Region index - region (Quad Word 0, 16:31)

Index of memory region, the buffer is located in.

Data length - length (Quad Word 0, 32:63)

Length of transmitted/received data.

Data Offset - offset (Quad Word 1, 0:31)

Data start offset from memory region address. .regions[desc->region].addr + desc->offset

Metadata - metadata (Quad Word 1, 32:63)

Buffer metadata.

Files

	net/memif/memif.h - descriptor and ring definitions

	net/memif/rte_eth_memif.c - eth_memif_rx() eth_memif_tx()

32.2. Zero-copy slave

Zero-copy slave can be enabled with memif configuration option ‘zero-copy=yes’. This option
is only relevant to slave and requires eal argument ‘–single-file-segments’.
This limitation is in place, because it is too expensive to identify memseg
for each packet buffer, resulting in worse performance than with zero-copy disabled.
With single file segments we can calculate offset from the beginning of the file
for each packet buffer.

Shared memory format

Region 0 is created by memif driver and contains rings. Slave interface exposes DPDK memory (memseg).
Instead of using memfd_create() to create new shared file, existing memsegs are used.
Master interface functions the same as with zero-copy disabled.

region 0:

	Rings

	S2M rings

	M2S rings

region n:

	Buffers

	memseg

Buffers are dequeued and enqueued as needed. Offset descriptor field is calculated at tx.
Only single file segments mode (EAL option –single-file-segments) is supported, as calculating
offset from multiple segments is too expensive.

32.2.1. Example: testpmd

In this example we run two instances of testpmd application and transmit packets over memif.

First create master interface:

#./build/app/testpmd -l 0-1 --proc-type=primary --file-prefix=pmd1 --vdev=net_memif,role=master -- -i

Now create slave interface (master must be already running so the slave will connect):

#./build/app/testpmd -l 2-3 --proc-type=primary --file-prefix=pmd2 --vdev=net_memif -- -i

You can also enable zero-copy on slave interface:

#./build/app/testpmd -l 2-3 --proc-type=primary --file-prefix=pmd2 --vdev=net_memif,zero-copy=yes --single-file-segments -- -i

Start forwarding packets:

Slave:
 testpmd> start

Master:
 testpmd> start tx_first

Show status:

testpmd> show port stats 0

For more details on testpmd please refer to Testpmd Application User Guide.

32.2.2. Example: testpmd and VPP

For information on how to get and run VPP please see https://wiki.fd.io/view/VPP.

Start VPP in interactive mode (should be by default). Create memif master interface in VPP:

vpp# create interface memif id 0 master no-zero-copy
vpp# set interface state memif0/0 up
vpp# set interface ip address memif0/0 192.168.1.1/24

To see socket filename use show memif command:

vpp# show memif
sockets
 id listener filename
 0 yes (1) /run/vpp/memif.sock
...

Now create memif interface by running testpmd with these command line options:

#./testpmd --vdev=net_memif,socket=/run/vpp/memif.sock -- -i

Testpmd should now create memif slave interface and try to connect to master.
In testpmd set forward option to icmpecho and start forwarding:

testpmd> set fwd icmpecho
testpmd> start

Send ping from VPP:

vpp# ping 192.168.1.2
64 bytes from 192.168.1.2: icmp_seq=2 ttl=254 time=36.2918 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=254 time=23.3927 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=254 time=24.2975 ms
64 bytes from 192.168.1.2: icmp_seq=5 ttl=254 time=17.7049 ms

32.2.3. Example: testpmd memif loopback

In this example we will create 2 memif ports connected into loopback.
The situation is analogous to cross connecting 2 ports of the NIC by cable.

To set the loopback, just use the same socket and id with different roles:

#./testpmd --vdev=net_memif0,role=master,id=0 --vdev=net_memif1,role=slave,id=0 -- -i

Then start the communication:

testpmd> start tx_first

Finally we can check port stats to see the traffic:

testpmd> show port stats all
testpmd> show port stats all

33. MLX4 poll mode driver library

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support
for Mellanox ConnectX-3 and Mellanox ConnectX-3 Pro 10/40 Gbps adapters
as well as their virtual functions (VF) in SR-IOV context.

Information and documentation about this family of adapters can be found on
the Mellanox website [http://www.mellanox.com]. Help is also provided by
the Mellanox community [http://community.mellanox.com/welcome].

There is also a section dedicated to this poll mode driver [http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk].

Note

Due to external dependencies, this driver is disabled by default. It must
be enabled manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and
recompiling DPDK.

33.1. Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI
bus address, thus unlike most drivers, librte_pmd_mlx4 registers itself as a
PCI driver that allocates one Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also
white/blacklisting the others on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated
kernel support), librte_pmd_mlx4 relies heavily on system calls for control
operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel
combined with hardware specifications that allow it to handle virtual memory
addresses directly ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces
which remain functional, although they stop receiving unicast packets as
long as they share the same MAC address.

The Flow isolated mode is supported.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

33.2. Configuration

33.2.1. Compilation options

These options can be modified in the .config file.

	CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

	CONFIG_RTE_IBVERBS_LINK_DLOPEN (default n)

Build PMD with additional code to make it loadable without hard
dependencies on libibverbs nor libmlx4, which may not be installed
on the target system.

In this mode, their presence is still required for it to run properly,
however their absence won’t prevent a DPDK application from starting (with
CONFIG_RTE_BUILD_SHARED_LIB disabled) and they won’t show up as
missing with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue”
plug-in which must either be installed in a directory whose name is based
on CONFIG_RTE_EAL_PMD_PATH suffixed with -glue if set, or in a
standard location for the dynamic linker (e.g. /lib) if left to the
default empty string ("").

This option has no performance impact.

	CONFIG_RTE_IBVERBS_LINK_STATIC (default n)

Embed static flavor of the dependencies libibverbs and libmlx4
in the PMD shared library or the executable static binary.

	CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option
adds additional run-time checks and debugging messages at the cost of
lower performance.

This option is available in meson:

	ibverbs_link can be static, shared, or dlopen.

33.2.2. Environment variables

	MLX4_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in,
separated by colons or semi-colons.

Only matters when compiled with CONFIG_RTE_IBVERBS_LINK_DLOPEN
enabled and most useful when CONFIG_RTE_EAL_PMD_PATH is also set,
since LD_LIBRARY_PATH has no effect in this case.

33.2.3. Run-time configuration

	librte_pmd_mlx4 brings kernel network interfaces up during initialization
because it is affected by their state. Forcing them down prevents packets
reception.

	ethtool operations on related kernel interfaces also affect the PMD.

	port parameter [int]

This parameter provides a physical port to probe and can be specified multiple
times for additional ports. All ports are probed by default if left
unspecified.

	mr_ext_memseg_en parameter [int]

A nonzero value enables extending memseg when registering DMA memory. If
enabled, the number of entries in MR (Memory Region) lookup table on datapath
is minimized and it benefits performance. On the other hand, it worsens memory
utilization because registered memory is pinned by kernel driver. Even if a
page in the extended chunk is freed, that doesn’t become reusable until the
entire memory is freed.

Enabled by default.

33.2.4. Kernel module parameters

The mlx4_core kernel module has several parameters that affect the
behavior and/or the performance of librte_pmd_mlx4. Some of them are described
below.

	num_vfs (integer or triplet, optionally prefixed by device address
strings)

Create the given number of VFs on the specified devices.

	log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is
enabled by using a negative value, the last four bits of which have a
special meaning.

	-1: force device-managed flow steering (DMFS).

	-7: configure optimized steering mode to improve performance with the
following limitation: VLAN filtering is not supported with this mode.
This is the recommended mode in case VLAN filter is not needed.

33.3. Limitations

	For secondary process:

	Forked secondary process not supported.

	External memory unregistered in EAL memseg list cannot be used for DMA
unless such memory has been registered by mlx4_mr_update_ext_mp() in
primary process and remapped to the same virtual address in secondary
process. If the external memory is registered by primary process but has
different virtual address in secondary process, unexpected error may happen.

	CRC stripping is supported by default and always reported as “true”.
The ability to enable/disable CRC stripping requires OFED version
4.3-1.5.0.0 and above or rdma-core version v18 and above.

	TSO (Transmit Segmentation Offload) is supported in OFED version
4.4 and above.

33.4. Prerequisites

This driver relies on external libraries and kernel drivers for resources
allocations and initialization. The following dependencies are not part of
DPDK and must be installed separately:

	libibverbs (provided by rdma-core package)

User space verbs framework used by librte_pmd_mlx4. This library provides
a generic interface between the kernel and low-level user space drivers
such as libmlx4.

It allows slow and privileged operations (context initialization, hardware
resources allocations) to be managed by the kernel and fast operations to
never leave user space.

	libmlx4 (provided by rdma-core package)

Low-level user space driver library for Mellanox ConnectX-3 devices,
it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware
queues.

	Kernel modules

They provide the kernel-side verbs API and low level device drivers that
manage actual hardware initialization and resources sharing with user
space processes.

Unlike most other PMDs, these modules must remain loaded and bound to
their devices:

	mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

	mlx4_en: Ethernet device driver that provides kernel network interfaces.

	mlx4_ib: InifiniBand device driver.

	ib_uverbs: user space driver for verbs (entry point for libibverbs).

	Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to
match the kernel modules and libraries they come with.

Note

Both libraries are BSD and GPL licensed. Linux kernel modules are GPL
licensed.

Depending on system constraints and user preferences either RDMA core library
with a recent enough Linux kernel release (recommended) or Mellanox OFED,
which provides compatibility with older releases.

33.4.1. Current RDMA core package and Linux kernel (recommended)

	Minimal Linux kernel version: 4.14.

	Minimal RDMA core version: v15 (see RDMA core installation documentation [https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md]).

	Starting with rdma-core v21, static libraries can be built:

cd build
CFLAGS=-fPIC cmake -DIN_PLACE=1 -DENABLE_STATIC=1 -GNinja ..
ninja

If rdma-core libraries are built but not installed, DPDK makefile can link them,
thanks to these environment variables:

	EXTRA_CFLAGS=-I/path/to/rdma-core/build/include

	EXTRA_LDFLAGS=-L/path/to/rdma-core/build/lib

	PKG_CONFIG_PATH=/path/to/rdma-core/build/lib/pkgconfig

33.4.2. Mellanox OFED as a fallback

	Mellanox OFED [http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers] version: 4.4, 4.5, 4.6.

	firmware version: 2.42.5000 and above.

Note

Several versions of Mellanox OFED are available. Installing the version
this DPDK release was developed and tested against is strongly
recommended. Please check the prerequisites.

33.4.2.1. Installing Mellanox OFED

	Download latest Mellanox OFED.

	Install the required libraries and kernel modules either by installing
only the required set, or by installing the entire Mellanox OFED:

For bare metal use:

./mlnxofedinstall --dpdk --upstream-libs

For SR-IOV hypervisors use:

./mlnxofedinstall --dpdk --upstream-libs --enable-sriov --hypervisor

For SR-IOV virtual machine use:

./mlnxofedinstall --dpdk --upstream-libs --guest

	Verify the firmware is the correct one:

ibv_devinfo

	Set all ports links to Ethernet, follow instructions on the screen:

connectx_port_config

	Continue with section 2 of the Quick Start Guide.

33.5. Quick Start Guide

	Set all ports links to Ethernet:

PCI=<NIC PCI address>
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port0"
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port1"

Note

If using Mellanox OFED one can permanently set the port link
to Ethernet using connectx_port_config tool provided by it.
Mellanox OFED as a fallback:

	In case of bare metal or hypervisor, configure optimized steering mode
by adding the following line to /etc/modprobe.d/mlx4_core.conf:

options mlx4_core log_num_mgm_entry_size=-7

Note

If VLAN filtering is used, set log_num_mgm_entry_size=-1.
Performance degradation can occur on this case.

	Restart the driver:

/etc/init.d/openibd restart

or:

service openibd restart

	Compile DPDK and you are ready to go. See instructions on
Development Kit Build System

33.6. Performance tuning

	Verify the optimized steering mode is configured:

cat /sys/module/mlx4_core/parameters/log_num_mgm_entry_size

	Use the CPU near local NUMA node to which the PCIe adapter is connected,
for better performance. For VMs, verify that the right CPU
and NUMA node are pinned according to the above. Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

	If more than one adapter is used, and root complex capabilities allow
to put both adapters on the same NUMA node without PCI bandwidth degradation,
it is recommended to locate both adapters on the same NUMA node.
This in order to forward packets from one to the other without
NUMA performance penalty.

	Disable pause frames:

ethtool -A <netdev> rx off tx off

	Verify IO non-posted prefetch is disabled by default. This can be checked
via the BIOS configuration. Please contact you server provider for more
information about the settings.

Note

On some machines, depends on the machine integrator, it is beneficial
to set the PCI max read request parameter to 1K. This can be
done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

The XXX can be different on different systems. Make sure to configure
according to the setpci output.

	To minimize overhead of searching Memory Regions:

	‘–socket-mem’ is recommended to pin memory by predictable amount.

	Configure per-lcore cache when creating Mempools for packet buffer.

	Refrain from dynamically allocating/freeing memory in run-time.

33.7. Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3
devices managed by librte_pmd_mlx4.

	Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can
be run:

/etc/init.d/openibd restart

Note

User space I/O kernel modules (uio and igb_uio) are not used and do
not have to be loaded.

	Make sure Ethernet interfaces are in working order and linked to kernel
verbs. Related sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

	Optionally, retrieve their PCI bus addresses for whitelisting:

{
 for intf in eth2 eth3 eth4 eth5;
 do
 (cd "/sys/class/net/${intf}/device/" && pwd -P);
 done;
} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

Note

There are only two distinct PCI bus addresses because the Mellanox
ConnectX-3 adapters installed on this system are dual port.

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

34. MLX5 poll mode driver

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support
for Mellanox ConnectX-4, Mellanox ConnectX-4 Lx , Mellanox
ConnectX-5, Mellanox ConnectX-6, Mellanox ConnectX-6 Dx and
Mellanox BlueField families of 10/25/40/50/100/200 Gb/s adapters
as well as their virtual functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the
Mellanox website [http://www.mellanox.com]. Help is also provided by the
Mellanox community [http://community.mellanox.com/welcome].

There is also a section dedicated to this poll mode driver [http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk].

Note

Due to external dependencies, this driver is disabled in default configuration
of the “make” build. It can be enabled with CONFIG_RTE_LIBRTE_MLX5_PMD=y
or by using “meson” build system which will detect dependencies.

34.1. Design

Besides its dependency on libibverbs (that implies libmlx5 and associated
kernel support), librte_pmd_mlx5 relies heavily on system calls for control
operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel,
combined with hardware specifications that allow to handle virtual memory
addresses directly, ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces
which remain functional, although they stop receiving unicast packets as
long as they share the same MAC address.
This means legacy linux control tools (for example: ethtool, ifconfig and
more) can operate on the same network interfaces that owned by the DPDK
application.

The PMD can use libibverbs and libmlx5 to access the device firmware
or directly the hardware components.
There are different levels of objects and bypassing abilities
to get the best performances:

	Verbs is a complete high-level generic API

	Direct Verbs is a device-specific API

	DevX allows to access firmware objects

	Direct Rules manages flow steering at low-level hardware layer

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against
libibverbs.

34.2. Features

	Multi arch support: x86_64, POWER8, ARMv8, i686.

	Multiple TX and RX queues.

	Support for scattered TX and RX frames.

	IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

	RSS using different combinations of fields: L3 only, L4 only or both,
and source only, destination only or both.

	Several RSS hash keys, one for each flow type.

	Default RSS operation with no hash key specification.

	Configurable RETA table.

	Link flow control (pause frame).

	Support for multiple MAC addresses.

	VLAN filtering.

	RX VLAN stripping.

	TX VLAN insertion.

	RX CRC stripping configuration.

	Promiscuous mode on PF and VF.

	Multicast promiscuous mode on PF and VF.

	Hardware checksum offloads.

	Flow director (RTE_FDIR_MODE_PERFECT, RTE_FDIR_MODE_PERFECT_MAC_VLAN and
RTE_ETH_FDIR_REJECT).

	Flow API, including Flow isolated mode.

	Multiple process.

	KVM and VMware ESX SR-IOV modes are supported.

	RSS hash result is supported.

	Hardware TSO for generic IP or UDP tunnel, including VXLAN and GRE.

	Hardware checksum Tx offload for generic IP or UDP tunnel, including VXLAN and GRE.

	RX interrupts.

	Statistics query including Basic, Extended and per queue.

	Rx HW timestamp.

	Tunnel types: VXLAN, L3 VXLAN, VXLAN-GPE, GRE, MPLSoGRE, MPLSoUDP, IP-in-IP, Geneve, GTP.

	Tunnel HW offloads: packet type, inner/outer RSS, IP and UDP checksum verification.

	NIC HW offloads: encapsulation (vxlan, gre, mplsoudp, mplsogre), NAT, routing, TTL
increment/decrement, count, drop, mark. For details please see Supported hardware offloads.

	Flow insertion rate of more then million flows per second, when using Direct Rules.

	Support for multiple rte_flow groups.

	Per packet no-inline hint flag to disable packet data copying into Tx descriptors.

	Hardware LRO.

	Hairpin.

34.3. Limitations

	For secondary process:

	Forked secondary process not supported.

	External memory unregistered in EAL memseg list cannot be used for DMA
unless such memory has been registered by mlx5_mr_update_ext_mp() in
primary process and remapped to the same virtual address in secondary
process. If the external memory is registered by primary process but has
different virtual address in secondary process, unexpected error may happen.

	When using Verbs flow engine (dv_flow_en = 0), flow pattern without any
specific VLAN will match for VLAN packets as well:

When VLAN spec is not specified in the pattern, the matching rule will be created with VLAN as a wild card.
Meaning, the flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match vlan packets with vid=3. and the flow rule:

flow create 0 ingress pattern eth / ipv4 / end ...

Will match any ipv4 packet (VLAN included).

	When using DV flow engine (dv_flow_en = 1), flow pattern without VLAN item
will match untagged packets only.
The flow rule:

flow create 0 ingress pattern eth / ipv4 / end ...

Will match untagged packets only.
The flow rule:

flow create 0 ingress pattern eth / vlan / ipv4 / end ...

Will match tagged packets only, with any VLAN ID value.
The flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match tagged packets with VLAN ID 3.

	VLAN pop offload command:

	Flow rules having a VLAN pop offload command as one of their actions and
are lacking a match on VLAN as one of their items are not supported.

	The command is not supported on egress traffic.

	VLAN push offload is not supported on ingress traffic.

	VLAN set PCP offload is not supported on existing headers.

	A multi segment packet must have not more segments than reported by dev_infos_get()
in tx_desc_lim.nb_seg_max field. This value depends on maximal supported Tx descriptor
size and txq_inline_min settings and may be from 2 (worst case forced by maximal
inline settings) to 58.

	Flows with a VXLAN Network Identifier equal (or ends to be equal)
to 0 are not supported.

	L3 VXLAN and VXLAN-GPE tunnels cannot be supported together with MPLSoGRE and MPLSoUDP.

	Match on Geneve header supports the following fields only:

	VNI

	OAM

	protocol type

	options length
Currently, the only supported options length value is 0.

	VF: flow rules created on VF devices can only match traffic targeted at the
configured MAC addresses (see rte_eth_dev_mac_addr_add()).

	Match on GTP tunnel header item supports the following fields only:

	v_pt_rsv_flags: E flag, S flag, PN flag

	msg_type

	teid

	No Tx metadata go to the E-Switch steering domain for the Flow group 0.
The flows within group 0 and set metadata action are rejected by hardware.

Note

MAC addresses not already present in the bridge table of the associated
kernel network device will be added and cleaned up by the PMD when closing
the device. In case of ungraceful program termination, some entries may
remain present and should be removed manually by other means.

	When Multi-Packet Rx queue is configured (mprq_en), a Rx packet can be
externally attached to a user-provided mbuf with having EXT_ATTACHED_MBUF in
ol_flags. As the mempool for the external buffer is managed by PMD, all the
Rx mbufs must be freed before the device is closed. Otherwise, the mempool of
the external buffers will be freed by PMD and the application which still
holds the external buffers may be corrupted.

	If Multi-Packet Rx queue is configured (mprq_en) and Rx CQE compression is
enabled (rxq_cqe_comp_en) at the same time, RSS hash result is not fully
supported. Some Rx packets may not have PKT_RX_RSS_HASH.

	IPv6 Multicast messages are not supported on VM, while promiscuous mode
and allmulticast mode are both set to off.
To receive IPv6 Multicast messages on VM, explicitly set the relevant
MAC address using rte_eth_dev_mac_addr_add() API.

	To support a mixed traffic pattern (some buffers from local host memory, some
buffers from other devices) with high bandwidth, a mbuf flag is used.

An application hints the PMD whether or not it should try to inline the
given mbuf data buffer. PMD should do the best effort to act upon this request.

The hint flag RTE_PMD_MLX5_FINE_GRANULARITY_INLINE is dynamic,
registered by application with rte_mbuf_dynflag_register(). This flag is
purely driver-specific and declared in PMD specific header rte_pmd_mlx5.h,
which is intended to be used by the application.

To query the supported specific flags in runtime,
the function rte_pmd_mlx5_get_dyn_flag_names returns the array of
currently (over present hardware and configuration) supported specific flags.
The “not inline hint” feature operating flow is the following one:

	application starts

	probe the devices, ports are created

	query the port capabilities

	if port supporting the feature is found

	register dynamic flag RTE_PMD_MLX5_FINE_GRANULARITY_INLINE

	application starts the ports

	on dev_start() PMD checks whether the feature flag is registered and
enables the feature support in datapath

	application might set the registered flag bit in ol_flags field
of mbuf being sent and PMD will handle ones appropriately.

	The amount of descriptors in Tx queue may be limited by data inline settings.
Inline data require the more descriptor building blocks and overall block
amount may exceed the hardware supported limits. The application should
reduce the requested Tx size or adjust data inline settings with
txq_inline_max and txq_inline_mpw devargs keys.

	E-Switch decapsulation Flow:

	can be applied to PF port only.

	must specify VF port action (packet redirection from PF to VF).

	optionally may specify tunnel inner source and destination MAC addresses.

	E-Switch encapsulation Flow:

	can be applied to VF ports only.

	must specify PF port action (packet redirection from VF to PF).

	Raw encapsulation:

	The input buffer, used as outer header, is not validated.

	Raw decapsulation:

	The decapsulation is always done up to the outermost tunnel detected by the HW.

	The input buffer, providing the removal size, is not validated.

	The buffer size must match the length of the headers to be removed.

	ICMP/ICMP6 code/type matching, IP-in-IP and MPLS flow matching are all
mutually exclusive features which cannot be supported together
(see Firmware configuration).

	LRO:

	Requires DevX and DV flow to be enabled.

	KEEP_CRC offload cannot be supported with LRO.

	The first mbuf length, without head-room, must be big enough to include the
TCP header (122B).

	Rx queue with LRO offload enabled, receiving a non-LRO packet, can forward
it with size limited to max LRO size, not to max RX packet length.

	
	LRO can be used with outer header of TCP packets of the standard format:
	eth (with or without vlan) / ipv4 or ipv6 / tcp / payload

Other TCP packets (e.g. with MPLS label) received on Rx queue with LRO enabled, will be received with bad checksum.

34.4. Statistics

MLX5 supports various methods to report statistics:

Port statistics can be queried using rte_eth_stats_get(). The received and sent statistics are through SW only and counts the number of packets received or sent successfully by the PMD. The imissed counter is the amount of packets that could not be delivered to SW because a queue was full. Packets not received due to congestion in the bus or on the NIC can be queried via the rx_discards_phy xstats counter.

Extended statistics can be queried using rte_eth_xstats_get(). The extended statistics expose a wider set of counters counted by the device. The extended port statistics counts the number of packets received or sent successfully by the port. As Mellanox NICs are using the Bifurcated Linux Driver those counters counts also packet received or sent by the Linux kernel. The counters with _phy suffix counts the total events on the physical port, therefore not valid for VF.

Finally per-flow statistics can by queried using rte_flow_query when attaching a count action for specific flow. The flow counter counts the number of packets received successfully by the port and match the specific flow.

34.5. Configuration

34.5.1. Compilation options

These options can be modified in the .config file.

	CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

	CONFIG_RTE_IBVERBS_LINK_DLOPEN (default n)

Build PMD with additional code to make it loadable without hard
dependencies on libibverbs nor libmlx5, which may not be installed
on the target system.

In this mode, their presence is still required for it to run properly,
however their absence won’t prevent a DPDK application from starting (with
CONFIG_RTE_BUILD_SHARED_LIB disabled) and they won’t show up as
missing with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue”
plug-in which must either be installed in a directory whose name is based
on CONFIG_RTE_EAL_PMD_PATH suffixed with -glue if set, or in a
standard location for the dynamic linker (e.g. /lib) if left to the
default empty string ("").

This option has no performance impact.

	CONFIG_RTE_IBVERBS_LINK_STATIC (default n)

Embed static flavor of the dependencies libibverbs and libmlx5
in the PMD shared library or the executable static binary.

	CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option
adds additional run-time checks and debugging messages at the cost of
lower performance.

Note

For BlueField, target should be set to arm64-bluefield-linux-gcc. This
will enable CONFIG_RTE_LIBRTE_MLX5_PMD and set RTE_CACHE_LINE_SIZE to
64. Default armv8a configuration of make build and meson build set it to 128
then brings performance degradation.

This option is available in meson:

	ibverbs_link can be static, shared, or dlopen.

34.5.2. Environment variables

	MLX5_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in,
separated by colons or semi-colons.

Only matters when compiled with CONFIG_RTE_IBVERBS_LINK_DLOPEN
enabled and most useful when CONFIG_RTE_EAL_PMD_PATH is also set,
since LD_LIBRARY_PATH has no effect in this case.

	MLX5_SHUT_UP_BF

Configures HW Tx doorbell register as IO-mapped.

By default, the HW Tx doorbell is configured as a write-combining register.
The register would be flushed to HW usually when the write-combining buffer
becomes full, but it depends on CPU design.

Except for vectorized Tx burst routines, a write memory barrier is enforced
after updating the register so that the update can be immediately visible to
HW.

When vectorized Tx burst is called, the barrier is set only if the burst size
is not aligned to MLX5_VPMD_TX_MAX_BURST. However, setting this environmental
variable will bring better latency even though the maximum throughput can
slightly decline.

34.5.3. Run-time configuration

	librte_pmd_mlx5 brings kernel network interfaces up during initialization
because it is affected by their state. Forcing them down prevents packets
reception.

	ethtool operations on related kernel interfaces also affect the PMD.

34.5.3.1. Run as non-root

In order to run as a non-root user,
some capabilities must be granted to the application:

setcap cap_sys_admin,cap_net_admin,cap_net_raw,cap_ipc_lock+ep <dpdk-app>

Below are the reasons of the need for each capability:

	cap_sys_admin
	When using physical addresses (PA mode), with Linux >= 4.0,
for access to /proc/self/pagemap.

	cap_net_admin
	For device configuration.

	cap_net_raw
	For raw ethernet queue allocation through kernel driver.

	cap_ipc_lock
	For DMA memory pinning.

34.5.3.2. Driver options

	rxq_cqe_comp_en parameter [int]

A nonzero value enables the compression of CQE on RX side. This feature
allows to save PCI bandwidth and improve performance. Enabled by default.

Supported on:

	x86_64 with ConnectX-4, ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx
and BlueField.

	POWER9 and ARMv8 with ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx
and BlueField.

	rxq_cqe_pad_en parameter [int]

A nonzero value enables 128B padding of CQE on RX side. The size of CQE
is aligned with the size of a cacheline of the core. If cacheline size is
128B, the CQE size is configured to be 128B even though the device writes
only 64B data on the cacheline. This is to avoid unnecessary cache
invalidation by device’s two consecutive writes on to one cacheline.
However in some architecture, it is more beneficial to update entire
cacheline with padding the rest 64B rather than striding because
read-modify-write could drop performance a lot. On the other hand,
writing extra data will consume more PCIe bandwidth and could also drop
the maximum throughput. It is recommended to empirically set this
parameter. Disabled by default.

Supported on:

	CPU having 128B cacheline with ConnectX-5 and BlueField.

	rxq_pkt_pad_en parameter [int]

A nonzero value enables padding Rx packet to the size of cacheline on PCI
transaction. This feature would waste PCI bandwidth but could improve
performance by avoiding partial cacheline write which may cause costly
read-modify-copy in memory transaction on some architectures. Disabled by
default.

Supported on:

	x86_64 with ConnectX-4, ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx
and BlueField.

	POWER8 and ARMv8 with ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx
and BlueField.

	mprq_en parameter [int]

A nonzero value enables configuring Multi-Packet Rx queues. Rx queue is
configured as Multi-Packet RQ if the total number of Rx queues is
rxqs_min_mprq or more. Disabled by default.

Multi-Packet Rx Queue (MPRQ a.k.a Striding RQ) can further save PCIe bandwidth
by posting a single large buffer for multiple packets. Instead of posting a
buffers per a packet, one large buffer is posted in order to receive multiple
packets on the buffer. A MPRQ buffer consists of multiple fixed-size strides
and each stride receives one packet. MPRQ can improve throughput for
small-packet traffic.

When MPRQ is enabled, max_rx_pkt_len can be larger than the size of
user-provided mbuf even if DEV_RX_OFFLOAD_SCATTER isn’t enabled. PMD will
configure large stride size enough to accommodate max_rx_pkt_len as long as
device allows. Note that this can waste system memory compared to enabling Rx
scatter and multi-segment packet.

	mprq_log_stride_num parameter [int]

Log 2 of the number of strides for Multi-Packet Rx queue. Configuring more
strides can reduce PCIe traffic further. If configured value is not in the
range of device capability, the default value will be set with a warning
message. The default value is 4 which is 16 strides per a buffer, valid only
if mprq_en is set.

The size of Rx queue should be bigger than the number of strides.

	mprq_log_stride_size parameter [int]

Log 2 of the size of a stride for Multi-Packet Rx queue. Configuring a smaller
stride size can save some memory and reduce probability of a depletion of all
available strides due to unreleased packets by an application. If configured
value is not in the range of device capability, the default value will be set
with a warning message. The default value is 11 which is 2048 bytes per a
stride, valid only if mprq_en is set. With mprq_log_stride_size set
it is possible for a pcaket to span across multiple strides. This mode allows
support of jumbo frames (9K) with MPRQ. The memcopy of some packets (or part
of a packet if Rx scatter is configured) may be required in case there is no
space left for a head room at the end of a stride which incurs some
performance penalty.

	mprq_max_memcpy_len parameter [int]

The maximum length of packet to memcpy in case of Multi-Packet Rx queue. Rx
packet is mem-copied to a user-provided mbuf if the size of Rx packet is less
than or equal to this parameter. Otherwise, PMD will attach the Rx packet to
the mbuf by external buffer attachment - rte_pktmbuf_attach_extbuf().
A mempool for external buffers will be allocated and managed by PMD. If Rx
packet is externally attached, ol_flags field of the mbuf will have
EXT_ATTACHED_MBUF and this flag must be preserved. RTE_MBUF_HAS_EXTBUF()
checks the flag. The default value is 128, valid only if mprq_en is set.

	rxqs_min_mprq parameter [int]

Configure Rx queues as Multi-Packet RQ if the total number of Rx queues is
greater or equal to this value. The default value is 12, valid only if
mprq_en is set.

	txq_inline parameter [int]

Amount of data to be inlined during TX operations. This parameter is
deprecated and converted to the new parameter txq_inline_max providing
partial compatibility.

	txqs_min_inline parameter [int]

Enable inline data send only when the number of TX queues is greater or equal
to this value.

This option should be used in combination with txq_inline_max and
txq_inline_mpw below and does not affect txq_inline_min settings above.

If this option is not specified the default value 16 is used for BlueField
and 8 for other platforms

The data inlining consumes the CPU cycles, so this option is intended to
auto enable inline data if we have enough Tx queues, which means we have
enough CPU cores and PCI bandwidth is getting more critical and CPU
is not supposed to be bottleneck anymore.

The copying data into WQE improves latency and can improve PPS performance
when PCI back pressure is detected and may be useful for scenarios involving
heavy traffic on many queues.

Because additional software logic is necessary to handle this mode, this
option should be used with care, as it may lower performance when back
pressure is not expected.

If inline data are enabled it may affect the maximal size of Tx queue in
descriptors because the inline data increase the descriptor size and
queue size limits supported by hardware may be exceeded.

	txq_inline_min parameter [int]

Minimal amount of data to be inlined into WQE during Tx operations. NICs
may require this minimal data amount to operate correctly. The exact value
may depend on NIC operation mode, requested offloads, etc. It is strongly
recommended to omit this parameter and use the default values. Anyway,
applications using this parameter should take into consideration that
specifying an inconsistent value may prevent the NIC from sending packets.

If txq_inline_min key is present the specified value (may be aligned
by the driver in order not to exceed the limits and provide better descriptor
space utilization) will be used by the driver and it is guaranteed that
requested amount of data bytes are inlined into the WQE beside other inline
settings. This key also may update txq_inline_max value (default
or specified explicitly in devargs) to reserve the space for inline data.

If txq_inline_min key is not present, the value may be queried by the
driver from the NIC via DevX if this feature is available. If there is no DevX
enabled/supported the value 18 (supposing L2 header including VLAN) is set
for ConnectX-4 and ConnectX-4 Lx, and 0 is set by default for ConnectX-5
and newer NICs. If packet is shorter the txq_inline_min value, the entire
packet is inlined.

For ConnectX-4 NIC, driver does not allow specifying value below 18
(minimal L2 header, including VLAN), error will be raised.

For ConnectX-4 Lx NIC, it is allowed to specify values below 18, but
it is not recommended and may prevent NIC from sending packets over
some configurations.

Please, note, this minimal data inlining disengages eMPW feature (Enhanced
Multi-Packet Write), because last one does not support partial packet inlining.
This is not very critical due to minimal data inlining is mostly required
by ConnectX-4 and ConnectX-4 Lx, these NICs do not support eMPW feature.

	txq_inline_max parameter [int]

Specifies the maximal packet length to be completely inlined into WQE
Ethernet Segment for ordinary SEND method. If packet is larger than specified
value, the packet data won’t be copied by the driver at all, data buffer
is addressed with a pointer. If packet length is less or equal all packet
data will be copied into WQE. This may improve PCI bandwidth utilization for
short packets significantly but requires the extra CPU cycles.

The data inline feature is controlled by number of Tx queues, if number of Tx
queues is larger than txqs_min_inline key parameter, the inline feature
is engaged, if there are not enough Tx queues (which means not enough CPU cores
and CPU resources are scarce), data inline is not performed by the driver.
Assigning txqs_min_inline with zero always enables the data inline.

The default txq_inline_max value is 290. The specified value may be adjusted
by the driver in order not to exceed the limit (930 bytes) and to provide better
WQE space filling without gaps, the adjustment is reflected in the debug log.
Also, the default value (290) may be decreased in run-time if the large transmit
queue size is requested and hardware does not support enough descriptor
amount, in this case warning is emitted. If txq_inline_max key is
specified and requested inline settings can not be satisfied then error
will be raised.

	txq_inline_mpw parameter [int]

Specifies the maximal packet length to be completely inlined into WQE for
Enhanced MPW method. If packet is large the specified value, the packet data
won’t be copied, and data buffer is addressed with pointer. If packet length
is less or equal, all packet data will be copied into WQE. This may improve PCI
bandwidth utilization for short packets significantly but requires the extra
CPU cycles.

The data inline feature is controlled by number of TX queues, if number of Tx
queues is larger than txqs_min_inline key parameter, the inline feature
is engaged, if there are not enough Tx queues (which means not enough CPU cores
and CPU resources are scarce), data inline is not performed by the driver.
Assigning txqs_min_inline with zero always enables the data inline.

The default txq_inline_mpw value is 268. The specified value may be adjusted
by the driver in order not to exceed the limit (930 bytes) and to provide better
WQE space filling without gaps, the adjustment is reflected in the debug log.
Due to multiple packets may be included to the same WQE with Enhanced Multi
Packet Write Method and overall WQE size is limited it is not recommended to
specify large values for the txq_inline_mpw. Also, the default value (268)
may be decreased in run-time if the large transmit queue size is requested
and hardware does not support enough descriptor amount, in this case warning
is emitted. If txq_inline_mpw key is specified and requested inline
settings can not be satisfied then error will be raised.

	txqs_max_vec parameter [int]

Enable vectorized Tx only when the number of TX queues is less than or
equal to this value. This parameter is deprecated and ignored, kept
for compatibility issue to not prevent driver from probing.

	txq_mpw_hdr_dseg_en parameter [int]

A nonzero value enables including two pointers in the first block of TX
descriptor. The parameter is deprecated and ignored, kept for compatibility
issue.

	txq_max_inline_len parameter [int]

Maximum size of packet to be inlined. This limits the size of packet to
be inlined. If the size of a packet is larger than configured value, the
packet isn’t inlined even though there’s enough space remained in the
descriptor. Instead, the packet is included with pointer. This parameter
is deprecated and converted directly to txq_inline_mpw providing full
compatibility. Valid only if eMPW feature is engaged.

	txq_mpw_en parameter [int]

A nonzero value enables Enhanced Multi-Packet Write (eMPW) for ConnectX-5,
ConnectX-6, ConnectX-6 Dx and BlueField. eMPW allows the TX burst function to pack
up multiple packets in a single descriptor session in order to save PCI bandwidth
and improve performance at the cost of a slightly higher CPU usage. When
txq_inline_mpw is set along with txq_mpw_en, TX burst function copies
entire packet data on to TX descriptor instead of including pointer of packet.

The Enhanced Multi-Packet Write feature is enabled by default if NIC supports
it, can be disabled by explicit specifying 0 value for txq_mpw_en option.
Also, if minimal data inlining is requested by non-zero txq_inline_min
option or reported by the NIC, the eMPW feature is disengaged.

	tx_db_nc parameter [int]

The rdma core library can map doorbell register in two ways, depending on the
environment variable “MLX5_SHUT_UP_BF”:

	As regular cached memory (usually with write combining attribute), if the
variable is either missing or set to zero.

	As non-cached memory, if the variable is present and set to not “0” value.

The type of mapping may slightly affect the Tx performance, the optimal choice
is strongly relied on the host architecture and should be deduced practically.

If tx_db_nc is set to zero, the doorbell is forced to be mapped to regular
memory (with write combining), the PMD will perform the extra write memory barrier
after writing to doorbell, it might increase the needed CPU clocks per packet
to send, but latency might be improved.

If tx_db_nc is set to one, the doorbell is forced to be mapped to non
cached memory, the PMD will not perform the extra write memory barrier
after writing to doorbell, on some architectures it might improve the
performance.

If tx_db_nc is set to two, the doorbell is forced to be mapped to regular
memory, the PMD will use heuristics to decide whether write memory barrier
should be performed. For bursts with size multiple of recommended one (64 pkts)
it is supposed the next burst is coming and no need to issue the extra memory
barrier (it is supposed to be issued in the next coming burst, at least after
descriptor writing). It might increase latency (on some hosts till next
packets transmit) and should be used with care.

If tx_db_nc is omitted or set to zero, the preset (if any) environment
variable “MLX5_SHUT_UP_BF” value is used. If there is no “MLX5_SHUT_UP_BF”,
the default tx_db_nc value is zero for ARM64 hosts and one for others.

	tx_vec_en parameter [int]

A nonzero value enables Tx vector on ConnectX-5, ConnectX-6, ConnectX-6 Dx
and BlueField NICs if the number of global Tx queues on the port is less than
txqs_max_vec. The parameter is deprecated and ignored.

	rx_vec_en parameter [int]

A nonzero value enables Rx vector if the port is not configured in
multi-segment otherwise this parameter is ignored.

Enabled by default.

	vf_nl_en parameter [int]

A nonzero value enables Netlink requests from the VF to add/remove MAC
addresses or/and enable/disable promiscuous/all multicast on the Netdevice.
Otherwise the relevant configuration must be run with Linux iproute2 tools.
This is a prerequisite to receive this kind of traffic.

Enabled by default, valid only on VF devices ignored otherwise.

	l3_vxlan_en parameter [int]

A nonzero value allows L3 VXLAN and VXLAN-GPE flow creation. To enable
L3 VXLAN or VXLAN-GPE, users has to configure firmware and enable this
parameter. This is a prerequisite to receive this kind of traffic.

Disabled by default.

	dv_xmeta_en parameter [int]

A nonzero value enables extensive flow metadata support if device is
capable and driver supports it. This can enable extensive support of
MARK and META item of rte_flow. The newly introduced
SET_TAG and SET_META actions do not depend on dv_xmeta_en.

There are some possible configurations, depending on parameter value:

	0, this is default value, defines the legacy mode, the MARK and
META related actions and items operate only within NIC Tx and
NIC Rx steering domains, no MARK and META information crosses
the domain boundaries. The MARK item is 24 bits wide, the META
item is 32 bits wide and match supported on egress only.

	1, this engages extensive metadata mode, the MARK and META
related actions and items operate within all supported steering domains,
including FDB, MARK and META information may cross the domain
boundaries. The MARK item is 24 bits wide, the META item width
depends on kernel and firmware configurations and might be 0, 16 or
32 bits. Within NIC Tx domain META data width is 32 bits for
compatibility, the actual width of data transferred to the FDB domain
depends on kernel configuration and may be vary. The actual supported
width can be retrieved in runtime by series of rte_flow_validate()
trials.

	2, this engages extensive metadata mode, the MARK and META
related actions and items operate within all supported steering domains,
including FDB, MARK and META information may cross the domain
boundaries. The META item is 32 bits wide, the MARK item width
depends on kernel and firmware configurations and might be 0, 16 or
24 bits. The actual supported width can be retrieved in runtime by
series of rte_flow_validate() trials.

	Mode

	MARK

	META

	META Tx

	FDB/Through

	0

	24 bits

	32 bits

	32 bits

	no

	1

	24 bits

	vary 0-32

	32 bits

	yes

	2

	vary 0-32

	32 bits

	32 bits

	yes

If there is no E-Switch configuration the dv_xmeta_en parameter is
ignored and the device is configured to operate in legacy mode (0).

Disabled by default (set to 0).

The Direct Verbs/Rules (engaged with dv_flow_en = 1) supports all
of the extensive metadata features. The legacy Verbs supports FLAG and
MARK metadata actions over NIC Rx steering domain only.

	dv_flow_en parameter [int]

A nonzero value enables the DV flow steering assuming it is supported
by the driver (RDMA Core library version is rdma-core-24.0 or higher).

Enabled by default if supported.

	dv_esw_en parameter [int]

A nonzero value enables E-Switch using Direct Rules.

Enabled by default if supported.

	mr_ext_memseg_en parameter [int]

A nonzero value enables extending memseg when registering DMA memory. If
enabled, the number of entries in MR (Memory Region) lookup table on datapath
is minimized and it benefits performance. On the other hand, it worsens memory
utilization because registered memory is pinned by kernel driver. Even if a
page in the extended chunk is freed, that doesn’t become reusable until the
entire memory is freed.

Enabled by default.

	representor parameter [list]

This parameter can be used to instantiate DPDK Ethernet devices from
existing port (or VF) representors configured on the device.

It is a standard parameter whose format is described in
Ethernet Device Standard Device Arguments.

For instance, to probe port representors 0 through 2:

representor=[0-2]

	max_dump_files_num parameter [int]

The maximum number of files per PMD entity that may be created for debug information.
The files will be created in /var/log directory or in current directory.

set to 128 by default.

	lro_timeout_usec parameter [int]

The maximum allowed duration of an LRO session, in micro-seconds.
PMD will set the nearest value supported by HW, which is not bigger than
the input lro_timeout_usec value.
If this parameter is not specified, by default PMD will set
the smallest value supported by HW.

	hp_buf_log_sz parameter [int]

The total data buffer size of a hairpin queue (logarithmic form), in bytes.
PMD will set the data buffer size to 2 ** hp_buf_log_sz, both for RX & TX.
The capacity of the value is specified by the firmware and the initialization
will get a failure if it is out of scope.
The range of the value is from 11 to 19 right now, and the supported frame
size of a single packet for hairpin is from 512B to 128KB. It might change if
different firmware release is being used. By using a small value, it could
reduce memory consumption but not work with a large frame. If the value is
too large, the memory consumption will be high and some potential performance
degradation will be introduced.
By default, the PMD will set this value to 16, which means that 9KB jumbo
frames will be supported.

34.5.4. Firmware configuration

Firmware features can be configured as key/value pairs.

The command to set a value is:

mlxconfig -d <device> set <key>=<value>

The command to query a value is:

mlxconfig -d <device> query | grep <key>

The device name for the command mlxconfig can be either the PCI address,
or the mst device name found with:

mst status

Below are some firmware configurations listed.

	link type:

LINK_TYPE_P1
LINK_TYPE_P2
value: 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

	enable SR-IOV:

SRIOV_EN=1

	maximum number of SR-IOV virtual functions:

NUM_OF_VFS=<max>

	enable DevX (required by Direct Rules and other features):

UCTX_EN=1

	aggressive CQE zipping:

CQE_COMPRESSION=1

	L3 VXLAN and VXLAN-GPE destination UDP port:

IP_OVER_VXLAN_EN=1
IP_OVER_VXLAN_PORT=<udp dport>

	enable VXLAN-GPE tunnel flow matching:

FLEX_PARSER_PROFILE_ENABLE=0
or
FLEX_PARSER_PROFILE_ENABLE=2

	enable IP-in-IP tunnel flow matching:

FLEX_PARSER_PROFILE_ENABLE=0

	enable MPLS flow matching:

FLEX_PARSER_PROFILE_ENABLE=1

	enable ICMP/ICMP6 code/type fields matching:

FLEX_PARSER_PROFILE_ENABLE=2

	enable Geneve flow matching:

FLEX_PARSER_PROFILE_ENABLE=0
or
FLEX_PARSER_PROFILE_ENABLE=1

	enable GTP flow matching:

FLEX_PARSER_PROFILE_ENABLE=3

34.6. Prerequisites

This driver relies on external libraries and kernel drivers for resources
allocations and initialization. The following dependencies are not part of
DPDK and must be installed separately:

	libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides
a generic interface between the kernel and low-level user space drivers
such as libmlx5.

It allows slow and privileged operations (context initialization, hardware
resources allocations) to be managed by the kernel and fast operations to
never leave user space.

	libmlx5

Low-level user space driver library for Mellanox
ConnectX-4/ConnectX-5/ConnectX-6/BlueField devices, it is automatically loaded
by libibverbs.

This library basically implements send/receive calls to the hardware
queues.

	Kernel modules

They provide the kernel-side Verbs API and low level device drivers that
manage actual hardware initialization and resources sharing with user
space processes.

Unlike most other PMDs, these modules must remain loaded and bound to
their devices:

	mlx5_core: hardware driver managing Mellanox
ConnectX-4/ConnectX-5/ConnectX-6/BlueField devices and related Ethernet kernel
network devices.

	mlx5_ib: InifiniBand device driver.

	ib_uverbs: user space driver for Verbs (entry point for libibverbs).

	Firmware update

Mellanox OFED/EN releases include firmware updates for
ConnectX-4/ConnectX-5/ConnectX-6/BlueField adapters.

Because each release provides new features, these updates must be applied to
match the kernel modules and libraries they come with.

Note

Both libraries are BSD and GPL licensed. Linux kernel modules are GPL
licensed.

34.6.1. Installation

Either RDMA Core library with a recent enough Linux kernel release
(recommended) or Mellanox OFED/EN, which provides compatibility with older
releases.

34.6.1.1. RDMA Core with Linux Kernel

	Minimal kernel version : v4.14 or the most recent 4.14-rc (see Linux installation documentation [https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/plain/Documentation/admin-guide/README.rst])

	Minimal rdma-core version: v15+ commit 0c5f5765213a (“Merge pull request #227 from yishaih/tm”)
(see RDMA Core installation documentation [https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md])

	When building for i686 use:

	rdma-core version 18.0 or above built with 32bit support.

	Kernel version 4.14.41 or above.

	Starting with rdma-core v21, static libraries can be built:

cd build
CFLAGS=-fPIC cmake -DIN_PLACE=1 -DENABLE_STATIC=1 -GNinja ..
ninja

If rdma-core libraries are built but not installed, DPDK makefile can link them,
thanks to these environment variables:

	EXTRA_CFLAGS=-I/path/to/rdma-core/build/include

	EXTRA_LDFLAGS=-L/path/to/rdma-core/build/lib

	PKG_CONFIG_PATH=/path/to/rdma-core/build/lib/pkgconfig

34.6.1.2. Mellanox OFED/EN

	Mellanox OFED version: 4.5 and above /
Mellanox EN version: 4.5 and above

	firmware version:

	ConnectX-4: 12.21.1000 and above.

	ConnectX-4 Lx: 14.21.1000 and above.

	ConnectX-5: 16.21.1000 and above.

	ConnectX-5 Ex: 16.21.1000 and above.

	ConnectX-6: 20.27.0090 and above.

	ConnectX-6 Dx: 22.27.0090 and above.

	BlueField: 18.25.1010 and above.

While these libraries and kernel modules are available on OpenFabrics
Alliance’s website [https://www.openfabrics.org/] and provided by package
managers on most distributions, this PMD requires Ethernet extensions that
may not be supported at the moment (this is a work in progress).

Mellanox OFED [http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux] and
Mellanox EN [http://www.mellanox.com/page/products_dyn?product_family=27&mtag=linux]
include the necessary support and should be used in the meantime. For DPDK,
only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are
required from that distribution.

Note

Several versions of Mellanox OFED/EN are available. Installing the version
this DPDK release was developed and tested against is strongly
recommended. Please check the prerequisites.

34.7. Supported NICs

The following Mellanox device families are supported by the same mlx5 driver:

	ConnectX-4

	ConnectX-4 Lx

	ConnectX-5

	ConnectX-5 Ex

	ConnectX-6

	ConnectX-6 Dx

	BlueField

Below are detailed device names:

	Mellanox® ConnectX®-4 10G MCX4111A-XCAT (1x10G)

	Mellanox® ConnectX®-4 10G MCX412A-XCAT (2x10G)

	Mellanox® ConnectX®-4 25G MCX4111A-ACAT (1x25G)

	Mellanox® ConnectX®-4 25G MCX412A-ACAT (2x25G)

	Mellanox® ConnectX®-4 40G MCX413A-BCAT (1x40G)

	Mellanox® ConnectX®-4 40G MCX4131A-BCAT (1x40G)

	Mellanox® ConnectX®-4 40G MCX415A-BCAT (1x40G)

	Mellanox® ConnectX®-4 50G MCX413A-GCAT (1x50G)

	Mellanox® ConnectX®-4 50G MCX4131A-GCAT (1x50G)

	Mellanox® ConnectX®-4 50G MCX414A-BCAT (2x50G)

	Mellanox® ConnectX®-4 50G MCX415A-GCAT (1x50G)

	Mellanox® ConnectX®-4 50G MCX416A-BCAT (2x50G)

	Mellanox® ConnectX®-4 50G MCX416A-GCAT (2x50G)

	Mellanox® ConnectX®-4 50G MCX415A-CCAT (1x100G)

	Mellanox® ConnectX®-4 100G MCX416A-CCAT (2x100G)

	Mellanox® ConnectX®-4 Lx 10G MCX4111A-XCAT (1x10G)

	Mellanox® ConnectX®-4 Lx 10G MCX4121A-XCAT (2x10G)

	Mellanox® ConnectX®-4 Lx 25G MCX4111A-ACAT (1x25G)

	Mellanox® ConnectX®-4 Lx 25G MCX4121A-ACAT (2x25G)

	Mellanox® ConnectX®-4 Lx 40G MCX4131A-BCAT (1x40G)

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Mellanox® ConnectX®-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Mellanox® ConnectX®-6 200G MCX654106A-HCAT (2x200G)

	Mellanox® ConnectX®-6 Dx EN 100G MCX623106AN-CDAT (2x100G)

	Mellanox® ConnectX®-6 Dx EN 200G MCX623105AN-VDAT (1x200G)

34.8. Quick Start Guide on OFED/EN

	Download latest Mellanox OFED/EN. For more info check the prerequisites.

	Install the required libraries and kernel modules either by installing
only the required set, or by installing the entire Mellanox OFED/EN:

./mlnxofedinstall --upstream-libs --dpdk

	Verify the firmware is the correct one:

ibv_devinfo

	Verify all ports links are set to Ethernet:

mlxconfig -d <mst device> query | grep LINK_TYPE
LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2)

Link types may have to be configured to Ethernet:

mlxconfig -d <mst device> set LINK_TYPE_P1/2=1/2/3

* LINK_TYPE_P1=<1|2|3> , 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

For hypervisors, verify SR-IOV is enabled on the NIC:

mlxconfig -d <mst device> query | grep SRIOV_EN
SRIOV_EN True(1)

If needed, configure SR-IOV:

mlxconfig -d <mst device> set SRIOV_EN=1 NUM_OF_VFS=16
mlxfwreset -d <mst device> reset

	Restart the driver:

/etc/init.d/openibd restart

or:

service openibd restart

If link type was changed, firmware must be reset as well:

mlxfwreset -d <mst device> reset

For hypervisors, after reset write the sysfs number of virtual functions
needed for the PF.

To dynamically instantiate a given number of virtual functions (VFs):

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

	Compile DPDK and you are ready to go. See instructions on
Development Kit Build System

34.9. Enable switchdev mode

Switchdev mode is a mode in E-Switch, that binds between representor and VF.
Representor is a port in DPDK that is connected to a VF in such a way
that assuming there are no offload flows, each packet that is sent from the VF
will be received by the corresponding representor. While each packet that is
sent to a representor will be received by the VF.
This is very useful in case of SRIOV mode, where the first packet that is sent
by the VF will be received by the DPDK application which will decide if this
flow should be offloaded to the E-Switch. After offloading the flow packet
that the VF that are matching the flow will not be received any more by
the DPDK application.

	Enable SRIOV mode:

mlxconfig -d <mst device> set SRIOV_EN=true

	Configure the max number of VFs:

mlxconfig -d <mst device> set NUM_OF_VFS=<num of vfs>

	Reset the FW:

mlxfwreset -d <mst device> reset

	Configure the actual number of VFs:

echo <num of vfs > /sys/class/net/<net device>/device/sriov_numvfs

	Unbind the device (can be rebind after the switchdev mode):

echo -n "<device pci address" > /sys/bus/pci/drivers/mlx5_core/unbind

	Enbale switchdev mode:

echo switchdev > /sys/class/net/<net device>/compat/devlink/mode

34.10. Performance tuning

	Configure aggressive CQE Zipping for maximum performance:

mlxconfig -d <mst device> s CQE_COMPRESSION=1

To set it back to the default CQE Zipping mode use:

mlxconfig -d <mst device> s CQE_COMPRESSION=0

	In case of virtualization:

	Make sure that hypervisor kernel is 3.16 or newer.

	Configure boot with iommu=pt.

	Use 1G huge pages.

	Make sure to allocate a VM on huge pages.

	Make sure to set CPU pinning.

	Use the CPU near local NUMA node to which the PCIe adapter is connected,
for better performance. For VMs, verify that the right CPU
and NUMA node are pinned according to the above. Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

	If more than one adapter is used, and root complex capabilities allow
to put both adapters on the same NUMA node without PCI bandwidth degradation,
it is recommended to locate both adapters on the same NUMA node.
This in order to forward packets from one to the other without
NUMA performance penalty.

	Disable pause frames:

ethtool -A <netdev> rx off tx off

	Verify IO non-posted prefetch is disabled by default. This can be checked
via the BIOS configuration. Please contact you server provider for more
information about the settings.

Note

On some machines, depends on the machine integrator, it is beneficial
to set the PCI max read request parameter to 1K. This can be
done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

The XXX can be different on different systems. Make sure to configure
according to the setpci output.

	To minimize overhead of searching Memory Regions:

	‘–socket-mem’ is recommended to pin memory by predictable amount.

	Configure per-lcore cache when creating Mempools for packet buffer.

	Refrain from dynamically allocating/freeing memory in run-time.

34.11. Supported hardware offloads

Table 34.1 Minimal SW/HW versions for queue offloads

	Offload

	DPDK

	Linux

	rdma-core

	OFED

	firmware

	hardware

	common base

	17.11

	4.14

	16

	4.2-1

	12.21.1000

	ConnectX-4

	checksums

	17.11

	4.14

	16

	4.2-1

	12.21.1000

	ConnectX-4

	Rx timestamp

	17.11

	4.14

	16

	4.2-1

	12.21.1000

	ConnectX-4

	TSO

	17.11

	4.14

	16

	4.2-1

	12.21.1000

	ConnectX-4

	LRO

	19.08

	N/A

	N/A

	4.6-4

	16.25.6406

	ConnectX-5

Table 34.2 Minimal SW/HW versions for rte_flow offloads

	Offload

	with E-Switch

	with NIC

	Count

	
DPDK 19.05

OFED 4.6

rdma-core 24

ConnectX-5

	
DPDK 19.02

OFED 4.6

rdma-core 23

ConnectX-5

	Drop

	
DPDK 19.05

OFED 4.6

rdma-core 24

ConnectX-5

	
DPDK 18.11

OFED 4.5

rdma-core 23

ConnectX-4

	Queue / RSS

	

N/A

	
DPDK 18.11

OFED 4.5

rdma-core 23

ConnectX-4

	Encapsulation
(VXLAN / NVGRE / RAW)

	
DPDK 19.05

OFED 4.7-1

rdma-core 24

ConnectX-5

	
DPDK 19.02

OFED 4.6

rdma-core 23

ConnectX-5

	Encapsulation
GENEVE

	
DPDK 19.11

OFED 4.7-3

rdma-core 27

ConnectX-5

	
DPDK 19.11

OFED 4.7-3

rdma-core 27

ConnectX-5

	
Header rewrite

(set_ipv4_src /

set_ipv4_dst /

set_ipv6_src /

set_ipv6_dst /

set_tp_src /

set_tp_dst /

dec_ttl /

set_ttl /

set_mac_src /

set_mac_dst)

	
DPDK 19.05

OFED 4.7-1

rdma-core 24

ConnectX-5

	
DPDK 19.02

OFED 4.7-1

rdma-core 24

ConnectX-5

	
Header rewrite

(set_dscp)

	
DPDK 20.02

OFED 5.0

rdma-core 24

ConnectX-5

	
DPDK 20.02

OFED 5.0

rdma-core 24

ConnectX-5

	Jump

	
DPDK 19.05

OFED 4.7-1

rdma-core 24

ConnectX-5

	
DPDK 19.02

OFED 4.7-1

N/A

ConnectX-5

	Mark / Flag

	
DPDK 19.05

OFED 4.6

rdma-core 24

ConnectX-5

	
DPDK 18.11

OFED 4.5

rdma-core 23

ConnectX-4

	Port ID

	
DPDK 19.05

OFED 4.7-1

rdma-core 24

ConnectX-5

	
N/A

N/A

N/A

N/A

	
VLAN

(of_pop_vlan /

of_push_vlan /

of_set_vlan_pcp /

of_set_vlan_vid)

	
DPDK 19.11

OFED 4.7-1

ConnectX-5

	
DPDK 19.11

OFED 4.7-1

ConnectX-5

	Hairpin

	

N/A

	
DPDK 19.11

OFED 4.7-3

rdma-core 26

ConnectX-5

	Meta data

	
DPDK 19.11

OFED 4.7-3

rdma-core 26

ConnectX-5

	
DPDK 19.11

OFED 4.7-3

rdma-core 26

ConnectX-5

	Metering

	
DPDK 19.11

OFED 4.7-3

rdma-core 26

ConnectX-5

	
DPDK 19.11

OFED 4.7-3

rdma-core 26

ConnectX-5

34.12. Notes for metadata

MARK and META items are interrelated with datapath - they might move from/to
the applications in mbuf fields. Hence, zero value for these items has the
special meaning - it means “no metadata are provided”, not zero values are
treated by applications and PMD as valid ones.

Moreover in the flow engine domain the value zero is acceptable to match and
set, and we should allow to specify zero values as rte_flow parameters for the
META and MARK items and actions. In the same time zero mask has no meaning and
should be rejected on validation stage.

34.13. Notes for rte_flow

Flows are not cached in the driver.
When stopping a device port, all the flows created on this port from the
application will be flushed automatically in the background.
After stopping the device port, all flows on this port become invalid and
not represented in the system.
All references to these flows held by the application should be discarded
directly but neither destroyed nor flushed.

The application should re-create the flows as required after the port restart.

34.14. Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per
port, librte_pmd_mlx5 supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no
command-line parameter to enable additional protocols (UDP and TCP as well
as IP), the following commands must be entered from its CLI to get the same
behavior as librte_pmd_mlx4:

> port stop all
> port config all rss all
> port start all

34.15. Usage example

This section demonstrates how to launch testpmd with Mellanox
ConnectX-4/ConnectX-5/ConnectX-6/BlueField devices managed by librte_pmd_mlx5.

	Load the kernel modules:

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED/MLNX_EN is fully installed, the following script
can be run:

/etc/init.d/openibd restart

Note

User space I/O kernel modules (uio and igb_uio) are not used and do
not have to be loaded.

	Make sure Ethernet interfaces are in working order and linked to kernel
verbs. Related sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth30
eth31
eth32
eth33

	Optionally, retrieve their PCI bus addresses for whitelisting:

{
 for intf in eth2 eth3 eth4 eth5;
 do
 (cd "/sys/class/net/${intf}/device/" && pwd -P);
 done;
} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

	Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

	Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

34.16. How to dump flows

This section demonstrates how to dump flows. Currently, it’s possible to dump
all flows with assistance of external tools.

	2 ways to get flow raw file:

	Using testpmd CLI:

testpmd> flow dump <port> <output_file>

	call rte_flow_dev_dump api:

rte_flow_dev_dump(port, file, NULL);

	Dump human-readable flows from raw file:

Get flow parsing tool from: https://github.com/Mellanox/mlx_steering_dump

mlx_steering_dump.py -f <output_file>

35. MVNETA Poll Mode Driver

The MVNETA PMD (librte_pmd_mvneta) provides poll mode driver support
for the Marvell NETA 1/2.5 Gbps adapter.

Detailed information about SoCs that use PPv2 can be obtained here:

	https://www.marvell.com/embedded-processors/armada-3700/

Note

Due to external dependencies, this driver is disabled by default. It must
be enabled manually by setting relevant configuration option manually.
Please refer to Config File Options section for further details.

35.1. Features

Features of the MVNETA PMD are:

	Start/stop

	tx/rx_queue_setup

	tx/rx_burst

	Speed capabilities

	Jumbo frame

	MTU update

	Promiscuous mode

	Unicast MAC filter

	Link status

	CRC offload

	L3 checksum offload

	L4 checksum offload

	Packet type parsing

	Basic stats

35.2. Limitations

	Flushing vlans added for filtering is not possible due to MUSDK missing
functionality. Current workaround is to reset board so that NETA has a
chance to start in a sane state.

35.3. Prerequisites

	Custom Linux Kernel sources

git clone https://github.com/MarvellEmbeddedProcessors/linux-marvell.git -b linux-4.4.120-armada-18.09

	MUSDK (Marvell User-Space SDK) sources

git clone https://github.com/MarvellEmbeddedProcessors/musdk-marvell.git -b musdk-armada-18.09

MUSDK is a light-weight library that provides direct access to Marvell’s
NETA. Alternatively prebuilt MUSDK library can be
requested from Marvell Extranet [https://extranet.marvell.com]. Once
approval has been granted, library can be found by typing musdk in
the search box.

MUSDK must be configured with the following features:

--enable-pp2=no --enable-neta

	DPDK environment

Follow the DPDK Getting Started Guide for Linux to setup
DPDK environment.

35.4. Pre-Installation Configuration

35.4.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_MVNETA_PMD (default n)

Toggle compilation of the librte_pmd_mvneta driver.

35.4.2. Runtime options

The following devargs options can be enabled at runtime. They must
be passed as part of EAL arguments.

	iface (mandatory, with no default value)

The name of port (owned by MUSDK) that should be enabled in DPDK.
This options can be repeated resulting in a list of ports to be
enabled. For instance below will enable eth0 and eth1 ports.

./testpmd --vdev=net_mvneta,iface=eth0,iface=eth1 \
 -c 3 -- -i --p 3 -a

35.5. Building DPDK

Driver needs precompiled MUSDK library during compilation.

export CROSS_COMPILE=<toolchain>/bin/aarch64-linux-gnu-
./bootstrap
./configure --host=aarch64-linux-gnu --enable-pp2=no --enable-neta
make install

MUSDK will be installed to usr/local under current directory.
For the detailed build instructions please consult doc/musdk_get_started.txt.

Before the DPDK build process the environmental variable LIBMUSDK_PATH with
the path to the MUSDK installation directory needs to be exported.

export LIBMUSDK_PATH=<musdk>/usr/local
export CROSS=aarch64-linux-gnu-
make config T=arm64-armv8a-linux-gcc
sed -ri 's,(MVNETA_PMD=)n,\1y,' build/.config
make

35.6. Usage Example

MVNETA PMD requires extra out of tree kernel modules to function properly.
musdk_uio and mv_neta_uio sources are part of the MUSDK. Please consult
doc/musdk_get_started.txt for the detailed build instructions.

insmod musdk_uio.ko
insmod mv_neta_uio.ko

Additionally interfaces used by DPDK application need to be put up:

ip link set eth0 up
ip link set eth1 up

In order to run testpmd example application following command can be used:

./testpmd --vdev=net_mvneta,iface=eth0,iface=eth1 -c 3 -- \
 -i --p 3 -a --txd 256 --rxd 128 --rxq=1 --txq=1 --nb-cores=1

In order to run l2fwd example application following command can be used:

./l2fwd --vdev=net_mvneta,iface=eth0,iface=eth1 -c 3 -- -T 1 -p 3

36. MVPP2 Poll Mode Driver

The MVPP2 PMD (librte_pmd_mvpp2) provides poll mode driver support
for the Marvell PPv2 (Packet Processor v2) 1/10 Gbps adapter.

Detailed information about SoCs that use PPv2 can be obtained here:

	https://www.marvell.com/embedded-processors/armada-70xx/

	https://www.marvell.com/embedded-processors/armada-80xx/

Note

Due to external dependencies, this driver is disabled by default. It must
be enabled manually by setting relevant configuration option manually.
Please refer to Config File Options section for further details.

36.1. Features

Features of the MVPP2 PMD are:

	Speed capabilities

	Link status

	Tx Queue start/stop

	MTU update

	Jumbo frame

	Promiscuous mode

	Allmulticast mode

	Unicast MAC filter

	Multicast MAC filter

	RSS hash

	VLAN filter

	CRC offload

	L3 checksum offload

	L4 checksum offload

	Packet type parsing

	Basic stats

	Extended stats

	RX flow control

	Scattered TX frames

	QoS

	Flow API

	Traffic metering and policing

	Traffic Management API

36.2. Limitations

	Number of lcores is limited to 9 by MUSDK internal design. If more lcores
need to be allocated, locking will have to be considered. Number of available
lcores can be changed via MRVL_MUSDK_HIFS_RESERVED define in
mrvl_ethdev.c source file.

	Flushing vlans added for filtering is not possible due to MUSDK missing
functionality. Current workaround is to reset board so that PPv2 has a
chance to start in a sane state.

	MUSDK architecture does not support changing configuration in run time.
All necessary configurations should be done before first dev_start().

	RX queue start/stop is not supported.

	Current implementation does not support replacement of buffers in the HW buffer pool
at run time, so it is responsibility of the application to ensure that MTU does not exceed the configured buffer size.

	Configuring TX flow control currently is not supported.

	In current implementation, mechanism for acknowledging transmitted packets (tx_done_cleanup) is not supported.

	Running more than one DPDK-MUSDK application simultaneously is not supported.

36.3. Prerequisites

	Custom Linux Kernel sources

git clone https://github.com/MarvellEmbeddedProcessors/linux-marvell.git -b linux-4.4.120-armada-18.09

	Out of tree mvpp2x_sysfs kernel module sources

git clone https://github.com/MarvellEmbeddedProcessors/mvpp2x-marvell.git -b mvpp2x-armada-18.09

	MUSDK (Marvell User-Space SDK) sources

git clone https://github.com/MarvellEmbeddedProcessors/musdk-marvell.git -b musdk-armada-18.09

MUSDK is a light-weight library that provides direct access to Marvell’s
PPv2 (Packet Processor v2). Alternatively prebuilt MUSDK library can be
requested from Marvell Extranet [https://extranet.marvell.com]. Once
approval has been granted, library can be found by typing musdk in
the search box.

To get better understanding of the library one can consult documentation
available in the doc top level directory of the MUSDK sources.

	DPDK environment

Follow the DPDK Getting Started Guide for Linux to setup
DPDK environment.

36.4. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_MVPP2_PMD (default n)

Toggle compilation of the librte mvpp2 driver.

Note

When MVPP2 PMD is enabled CONFIG_RTE_LIBRTE_MVNETA_PMD must be disabled

36.5. Building DPDK

Driver needs precompiled MUSDK library during compilation.

export CROSS_COMPILE=<toolchain>/bin/aarch64-linux-gnu-
./bootstrap
./configure --host=aarch64-linux-gnu
make install

MUSDK will be installed to usr/local under current directory.
For the detailed build instructions please consult doc/musdk_get_started.txt.

Before the DPDK build process the environmental variable LIBMUSDK_PATH with
the path to the MUSDK installation directory needs to be exported.

For additional instructions regarding DPDK cross compilation please refer to Cross compile DPDK for ARM64.

export LIBMUSDK_PATH=<musdk>/usr/local
export CROSS=<toolchain>/bin/aarch64-linux-gnu-
export RTE_KERNELDIR=<kernel-dir>
export RTE_TARGET=arm64-armv8a-linux-gcc

make config T=arm64-armv8a-linux-gcc
sed -i "s/MVNETA_PMD=y/MVNETA_PMD=n/" build/.config
sed -i "s/MVPP2_PMD=n/MVPP2_PMD=y/" build/.config
make

36.6. Usage Example

MVPP2 PMD requires extra out of tree kernel modules to function properly.
musdk_cma sources are part of the MUSDK. Please consult
doc/musdk_get_started.txt for the detailed build instructions.
For mvpp2x_sysfs please consult Documentation/pp22_sysfs.txt for the
detailed build instructions.

insmod musdk_cma.ko
insmod mvpp2x_sysfs.ko

Additionally interfaces used by DPDK application need to be put up:

ip link set eth0 up
ip link set eth2 up

In order to run testpmd example application following command can be used:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 7 -- \
 --burst=128 --txd=2048 --rxd=1024 --rxq=2 --txq=2 --nb-cores=2 \
 -i -a --rss-udp

36.7. Extended stats

MVPP2 PMD supports the following extended statistics:

	rx_bytes: number of RX bytes

	rx_packets: number of RX packets

	rx_unicast_packets: number of RX unicast packets

	rx_errors: number of RX MAC errors

	rx_fullq_dropped: number of RX packets dropped due to full RX queue

	rx_bm_dropped: number of RX packets dropped due to no available buffers in the HW pool

	rx_early_dropped: number of RX packets that were early dropped

	rx_fifo_dropped: number of RX packets dropped due to RX fifo overrun

	rx_cls_dropped: number of RX packets dropped by classifier

	tx_bytes: number of TX bytes

	tx_packets: number of TX packets

	tx_unicast_packets: number of TX unicast packets

	tx_errors: number of TX MAC errors

36.8. QoS Configuration

QoS configuration is done through external configuration file. Path to the
file must be given as cfg in driver’s vdev parameter list.

36.8.1. Configuration syntax

[policer <policer_id>]
token_unit = <token_unit>
color = <color_mode>
cir = <cir>
ebs = <ebs>
cbs = <cbs>

[port <portnum> default]
default_tc = <default_tc>
mapping_priority = <mapping_priority>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

default_policer = <policer_id>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>
default_color = <default_color>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>

[port <portnum> txq <txqnum>]
sched_mode = <sched_mode>
wrr_weight = <wrr_weight>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

Where:

	<portnum>: DPDK Port number (0..n).

	<default_tc>: Default traffic class (e.g. 0)

	<mapping_priority>: QoS priority for mapping (ip, vlan, ip/vlan or vlan/ip).

	<traffic_class>: Traffic Class to be configured.

	<rx_queue_list>: List of DPDK RX queues (e.g. 0 1 3-4)

	<pcp_list>: List of PCP values to handle in particular TC (e.g. 0 1 3-4 7).

	<dscp_list>: List of DSCP values to handle in particular TC (e.g. 0-12 32-48 63).

	<default_policer>: Id of the policer configuration section to be used as default.

	<policer_id>: Id of the policer configuration section (0..31).

	<token_unit>: Policer token unit (bytes or packets).

	<color_mode>: Policer color mode (aware or blind).

	<cir>: Committed information rate in unit of kilo bits per second (data rate) or packets per second.

	<cbs>: Committed burst size in unit of kilo bytes or number of packets.

	<ebs>: Excess burst size in unit of kilo bytes or number of packets.

	<default_color>: Default color for specific tc.

	<rate_limit_enable>: Enables per port or per txq rate limiting (0/1 to disable/enable).

	<rate_limit>: Committed information rate, in kilo bits per second.

	<burst_size>: Committed burst size, in kilo bytes.

	<sched_mode>: Egress scheduler mode (wrr or sp).

	<wrr_weight>: Txq weight.

Setting PCP/DSCP values for the default TC is not required. All PCP/DSCP
values not assigned explicitly to particular TC will be handled by the
default TC.

36.8.1.1. Configuration file example

[policer 0]
token_unit = bytes
color = blind
cir = 100000
ebs = 64
cbs = 64

[port 0 default]
default_tc = 0
mapping_priority = ip

rate_limit_enable = 1
rate_limit = 1000
burst_size = 2000

[port 0 tc 0]
rxq = 0 1

[port 0 txq 0]
sched_mode = wrr
wrr_weight = 10

[port 0 txq 1]
sched_mode = wrr
wrr_weight = 100

[port 0 txq 2]
sched_mode = sp

[port 0 tc 1]
rxq = 2
pcp = 5 6 7
dscp = 26-38

[port 1 default]
default_tc = 0
mapping_priority = vlan/ip

default_policer = 0

[port 1 tc 0]
rxq = 0
dscp = 10

[port 1 tc 1]
rxq = 1
dscp = 11-20

[port 1 tc 2]
rxq = 2
dscp = 30

[port 1 txq 0]
rate_limit_enable = 1
rate_limit = 10000
burst_size = 2000

36.8.1.2. Usage example

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2,cfg=/home/user/mrvl.conf \
 -c 7 -- -i -a --disable-hw-vlan-strip --rxq=3 --txq=3

36.9. Flow API

PPv2 offers packet classification capabilities via classifier engine which
can be configured via generic flow API offered by DPDK.

The Flow isolated mode is supported.

For an additional description please refer to DPDK Generic flow API (rte_flow).

36.9.1. Supported flow actions

Following flow action items are supported by the driver:

	DROP

	QUEUE

36.9.2. Supported flow items

Following flow items and their respective fields are supported by the driver:

	ETH

	source MAC

	destination MAC

	ethertype

	VLAN

	PCP

	VID

	IPV4

	DSCP

	protocol

	source address

	destination address

	IPV6

	flow label

	next header

	source address

	destination address

	UDP

	source port

	destination port

	TCP

	source port

	destination port

36.9.3. Classifier match engine

Classifier has an internal match engine which can be configured to
operate in either exact or maskable mode.

Mode is selected upon creation of the first unique flow rule as follows:

	maskable, if key size is up to 8 bytes.

	exact, otherwise, i.e for keys bigger than 8 bytes.

Where the key size equals the number of bytes of all fields specified
in the flow items.

Table 36.1 Examples of key size calculation

	Flow pattern

	Key size in bytes

	Used engine

	ETH (destination MAC) / VLAN (VID)

	6 + 2 = 8

	Maskable

	VLAN (VID) / IPV4 (source address)

	2 + 4 = 6

	Maskable

	TCP (source port, destination port)

	2 + 2 = 4

	Maskable

	VLAN (priority) / IPV4 (source address)

	1 + 4 = 5

	Maskable

	IPV4 (destination address) / UDP (source port, destination port)

	6 + 2 + 2 = 10

	Exact

	VLAN (VID) / IPV6 (flow label, destination address)

	2 + 3 + 16 = 21

	Exact

	IPV4 (DSCP, source address, destination address)

	1 + 4 + 4 = 9

	Exact

	IPV6 (flow label, source address, destination address)

	3 + 16 + 16 = 35

	Exact

From the user perspective maskable mode means that masks specified
via flow rules are respected. In case of exact match mode, masks
which do not provide exact matching (all bits masked) are ignored.

If the flow matches more than one classifier rule the first
(with the lowest index) matched takes precedence.

36.9.4. Flow rules usage example

Before proceeding run testpmd user application:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 3 -- -i --p 3 -a --disable-hw-vlan-strip

36.9.4.1. Example #1

testpmd> flow create 0 ingress pattern eth src is 10:11:12:13:14:15 / end actions drop / end

In this case key size is 6 bytes thus maskable type is selected. Testpmd
will set mask to ff:ff:ff:ff:ff:ff i.e traffic explicitly matching
above rule will be dropped.

36.9.4.2. Example #2

testpmd> flow create 0 ingress pattern ipv4 src spec 10.10.10.0 src mask 255.255.255.0 / tcp src spec 0x10 src mask 0x10 / end action drop / end

In this case key size is 8 bytes thus maskable type is selected.
Flows which have IPv4 source addresses ranging from 10.10.10.0 to 10.10.10.255
and tcp source port set to 16 will be dropped.

36.9.4.3. Example #3

testpmd> flow create 0 ingress pattern vlan vid spec 0x10 vid mask 0x10 / ipv4 src spec 10.10.1.1 src mask 255.255.0.0 dst spec 11.11.11.1 dst mask 255.255.255.0 / end actions drop / end

In this case key size is 10 bytes thus exact type is selected.
Even though each item has partial mask set, masks will be ignored.
As a result only flows with VID set to 16 and IPv4 source and destination
addresses set to 10.10.1.1 and 11.11.11.1 respectively will be dropped.

36.9.5. Limitations

Following limitations need to be taken into account while creating flow rules:

	For IPv4 exact match type the key size must be up to 12 bytes.

	For IPv6 exact match type the key size must be up to 36 bytes.

	Following fields cannot be partially masked (all masks are treated as
if they were exact):

	ETH: ethertype

	VLAN: PCP, VID

	IPv4: protocol

	IPv6: next header

	TCP/UDP: source port, destination port

	Only one classifier table can be created thus all rules in the table
have to match table format. Table format is set during creation of
the first unique flow rule.

	Up to 5 fields can be specified per flow rule.

	Up to 20 flow rules can be added.

For additional information about classifier please consult
doc/musdk_cls_user_guide.txt.

36.10. Traffic metering and policing

MVPP2 PMD supports DPDK traffic metering and policing that allows the following:

	Meter ingress traffic.

	Do policing.

	Gather statistics.

For an additional description please refer to DPDK Traffic Metering and Policing API.

The policer objects defined by this feature can work with the default policer defined via config file as described in QoS Support.

36.10.1. Limitations

The following capabilities are not supported:

	MTR object meter DSCP table update

	MTR object policer action update

	MTR object enabled statistics

36.10.2. Usage example

	Run testpmd user app:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 6 -- -i -p 3 -a --txd 1024 --rxd 1024

	Create meter profile:

testpmd> add port meter profile 0 0 srtcm_rfc2697 2000 256 256

	Create meter:

testpmd> create port meter 0 0 0 yes d d d 0 1 0

	Create flow rule witch meter attached:

testpmd> flow create 0 ingress pattern ipv4 src is 10.10.10.1 / end actions meter mtr_id 0 / end

For a detailed usage description please refer to “Traffic Metering and Policing” section in DPDK Testpmd Runtime Functions.

36.11. Traffic Management API

MVPP2 PMD supports generic DPDK Traffic Management API which allows to
configure the following features:

	Hierarchical scheduling

	Traffic shaping

	Congestion management

	Packet marking

Internally TM is represented by a hierarchy (tree) of nodes.
Node which has a parent is called a leaf whereas node without
parent is called a non-leaf (root).
MVPP2 PMD supports two level hierarchy where level 0 represents ports and level 1 represents tx queues of a given port.

[image: ../_images/mvpp2_tm.svg]
Nodes hold following types of settings:

	for egress scheduler configuration: weight

	for egress rate limiter: private shaper

	bitmask indicating which statistics counters will be read

Hierarchy is always constructed from the top, i.e first a root node is added
then some number of leaf nodes. Number of leaf nodes cannot exceed number
of configured tx queues.

After hierarchy is complete it can be committed.

For an additional description please refer to DPDK Traffic Management API.

36.11.1. Limitations

The following capabilities are not supported:

	Traffic manager WRED profile and WRED context

	Traffic manager shared shaper update

	Traffic manager packet marking

	Maximum number of levels in hierarchy is 2

	Currently dynamic change of a hierarchy is not supported

36.11.2. Usage example

For a detailed usage description please refer to “Traffic Management” section in DPDK Testpmd Runtime Functions.

	Run testpmd as follows:

./testpmd --vdev=net_mrvl,iface=eth0,iface=eth2,cfg=./qos_config -c 7 -- \
-i -p 3 --disable-hw-vlan-strip --rxq 3 --txq 3 --txd 1024 --rxd 1024

	Stop all ports:

testpmd> port stop all

	Add shaper profile:

testpmd> add port tm node shaper profile 0 0 900000 70000 0

Parameters have following meaning:

0 - Id of a port.
0 - Id of a new shaper profile.
900000 - Shaper rate in bytes/s.
70000 - Bucket size in bytes.
0 - Packet length adjustment - ignored.

	Add non-leaf node for port 0:

testpmd> add port tm nonleaf node 0 3 -1 0 0 0 0 0 1 3 0

Parameters have following meaning:

 0 - Id of a port
 3 - Id of a new node.
-1 - Indicate that root does not have a parent.
 0 - Priority of the node.
 0 - Weight of the node.
 0 - Id of a level. Since this is a root 0 is passed.
 0 - Id of the shaper profile.
 0 - Number of SP priorities.
 3 - Enable statistics for both number of transmitted packets and bytes.
 0 - Number of shared shapers.

	Add leaf node for tx queue 0:

testpmd> add port tm leaf node 0 0 3 0 30 1 -1 0 0 1 0

Parameters have following meaning:

 0 - Id of a port.
 0 - Id of a new node.
 3 - Id of the parent node.
 0 - Priority of a node.
 30 - WRR weight.
 1 - Id of a level. Since this is a leaf node 1 is passed.
-1 - Id of a shaper. -1 indicates that shaper is not attached.
 0 - Congestion management is not supported.
 0 - Congestion management is not supported.
 1 - Enable statistics counter for number of transmitted packets.
 0 - Number of shared shapers.

	Add leaf node for tx queue 1:

testpmd> add port tm leaf node 0 1 3 0 60 1 -1 0 0 1 0

Parameters have following meaning:

 0 - Id of a port.
 1 - Id of a new node.
 3 - Id of the parent node.
 0 - Priority of a node.
 60 - WRR weight.
 1 - Id of a level. Since this is a leaf node 1 is passed.
-1 - Id of a shaper. -1 indicates that shaper is not attached.
 0 - Congestion management is not supported.
 0 - Congestion management is not supported.
 1 - Enable statistics counter for number of transmitted packets.
 0 - Number of shared shapers.

	Add leaf node for tx queue 2:

testpmd> add port tm leaf node 0 2 3 0 99 1 -1 0 0 1 0

Parameters have following meaning:

 0 - Id of a port.
 2 - Id of a new node.
 3 - Id of the parent node.
 0 - Priority of a node.
 99 - WRR weight.
 1 - Id of a level. Since this is a leaf node 1 is passed.
-1 - Id of a shaper. -1 indicates that shaper is not attached.
 0 - Congestion management is not supported.
 0 - Congestion management is not supported.
 1 - Enable statistics counter for number of transmitted packets.
 0 - Number of shared shapers.

	Commit hierarchy:

testpmd> port tm hierarchy commit 0 no

Parameters have following meaning:

0 - Id of a port.
no - Do not flush TM hierarchy if commit fails.

	Start all ports

testpmd> port start all

	Enable forwarding

testpmd> start

37. Netvsc poll mode driver

The Netvsc Poll Mode driver (PMD) provides support for the paravirtualized
network device for Microsoft Hyper-V. It can be used with
Window Server 2008/2012/2016, Windows 10.
The device offers multi-queue support (if kernel and host support it),
checksum and segmentation offloads.

37.1. Features and Limitations of Hyper-V PMD

In this release, the hyper PMD driver provides the basic functionality of packet reception and transmission.

	It supports merge-able buffers per packet when receiving packets and scattered buffer per packet
when transmitting packets. The packet size supported is from 64 to 65536.

	The PMD supports multicast packets and promiscuous mode subject to restrictions on the host.
In order to this to work, the guest network configuration on Hyper-V must be configured to allow MAC address
spoofing.

	The device has only a single MAC address.
Hyper-V driver does not support MAC or VLAN filtering because the Hyper-V host does not support it.

	VLAN tags are always stripped and presented in mbuf tci field.

	The Hyper-V driver does not use or support interrupts. Link state change
callback is done via change events in the packet ring.

	The maximum number of queues is limited by the host (currently 64).
When used with 4.16 kernel only a single queue is available.

	This driver supports SR-IOV network acceleration.
If SR-IOV is enabled then the driver will transparently manage the interface,
and send and receive packets using the VF path.
The VDEV_NETVSC and FAILSAFE drivers are not used when using netvsc PMD.

37.2. Installation

The Netvsc PMD is a standalone driver, similar to virtio and vmxnet3.
Using Netvsc PMD requires that the associated VMBUS device be bound to the userspace
I/O device driver for Hyper-V (uio_hv_generic). By default, all netvsc devices
will be bound to the Linux kernel driver; in order to use netvsc PMD the
device must first be overridden.

The first step is to identify the network device to override.
VMBUS uses Universal Unique Identifiers
(UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier]) to identify devices on the bus similar to how PCI uses Domain:Bus:Function.
The UUID associated with a Linux kernel network device can be determined
by looking at the sysfs information. To find the UUID for eth1 and
store it in a shell variable:

DEV_UUID=$(basename $(readlink /sys/class/net/eth1/device))

There are several possible ways to assign the uio device driver for a device.
The easiest way (but only on 4.18 or later)
is to use the driverctl Device Driver control utility [https://gitlab.com/driverctl/driverctl] to override
the normal kernel device.

driverctl -b vmbus set-override $DEV_UUID uio_hv_generic

Any settings done with driverctl are by default persistent and will be reapplied
on reboot.

On older kernels, the same effect can be had by manual sysfs bind and unbind
operations:

NET_UUID="f8615163-df3e-46c5-913f-f2d2f965ed0e"
modprobe uio_hv_generic
echo $NET_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/new_id
echo $DEV_UUID > /sys/bus/vmbus/drivers/hv_netvsc/unbind
echo $DEV_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/bind

Note

The dpdk-devbind.py script can not be used since it only handles PCI devices.

37.3. Prerequisites

The following prerequisites apply:

	Linux kernel support for UIO on vmbus is done with the uio_hv_generic driver.
Full support of multiple queues requires the 4.17 kernel. It is possible
to use the netvsc PMD with 4.16 kernel but it is limited to a single queue.

37.4. Netvsc PMD arguments

The user can specify below argument in devargs.

	latency:

A netvsc device uses a mailbox page to indicate to the host that there
is something in the transmit queue. The host scans this page at a
periodic interval. This parameter allows adjusting the value that
is used by the host. Smaller values improve transmit latency, and larger
values save CPU cycles. This parameter is in microseconds.
If the value is too large or too small it will be
ignored by the host. (Default: 50)

38. NFB poll mode driver library

The NFB poll mode driver library implements support for the Netcope
FPGA Boards (NFB-40G2, NFB-100G2, NFB-200G2QL) and Silicom FB2CGG3 card,
FPGA-based programmable NICs. The NFB PMD uses interface provided by the libnfb
library to communicate with these cards over the nfb layer.

More information about the
NFB cards [http://www.netcope.com/en/products/fpga-boards]
and used technology
(Netcope Development Kit [http://www.netcope.com/en/products/fpga-development-kit])
can be found on the Netcope Technologies website [http://www.netcope.com/].

Note

This driver has external dependencies.
Therefore it is disabled in default configuration files.
It can be enabled by setting CONFIG_RTE_LIBRTE_NFB_PMD=y
and recompiling.

Note

Currently the driver is supported only on x86_64 architectures.
Only x86_64 versions of the external libraries are provided.

38.1. Prerequisites

This PMD requires kernel modules which are responsible for initialization and
allocation of resources needed for nfb layer function.
Communication between PMD and kernel modules is mediated by libnfb library.
These kernel modules and library are not part of DPDK and must be installed
separately:

	libnfb library

The library provides API for initialization of nfb transfers, receiving and
transmitting data segments.

	Kernel modules

	nfb

Kernel modules manage initialization of hardware, allocation and
sharing of resources for user space applications.

Dependencies can be found here:
Netcope common [https://www.netcope.com/en/company/community-support/dpdk-libsze2#NFB].

38.1.1. Versions of the packages

The minimum version of the provided packages:

	for DPDK from 19.05

38.2. Configuration

These configuration options can be modified before compilation in the
.config file:

	CONFIG_RTE_LIBRTE_NFB_PMD default value: n

Value y enables compilation of nfb PMD.

Timestamps

The PMD supports hardware timestamps of frame receipt on physical network interface. In order to use
the timestamps, the hardware timestamping unit must be enabled (follow the documentation of the NFB
products) and the device argument timestamp=1 must be used.

$RTE_TARGET/app/testpmd -w b3:00.0,timestamp=1 <other EAL params> -- <testpmd params>

When the timestamps are enabled with the devarg, a timestamp validity flag is set in the MBUFs
containing received frames and timestamp is inserted into the rte_mbuf struct.

The timestamp is an uint64_t field. Its lower 32 bits represent seconds portion of the timestamp
(number of seconds elapsed since 1.1.1970 00:00:00 UTC) and its higher 32 bits represent
nanosecond portion of the timestamp (number of nanoseconds elapsed since the beginning of the
second in the seconds portion.

38.3. Using the NFB PMD

Kernel modules have to be loaded before running the DPDK application.

38.4. NFB card architecture

The NFB cards are multi-port multi-queue cards, where (generally) data from any
Ethernet port may be sent to any queue.
They are represented in DPDK as a single port.

NFB-200G2QL card employs an add-on cable which allows to connect it to two
physical PCI-E slots at the same time (see the diagram below).
This is done to allow 200 Gbps of traffic to be transferred through the PCI-E
bus (note that a single PCI-E 3.0 x16 slot provides only 125 Gbps theoretical
throughput).

Although each slot may be connected to a different CPU and therefore to a different
NUMA node, the card is represented as a single port in DPDK. To work with data
from the individual queues on the right NUMA node, connection of NUMA nodes on
first and last queue (each NUMA node has half of the queues) need to be checked.

[image: ../_images/szedata2_nfb200g_architecture.svg]
Fig. 38.2 NFB-200G2QL high-level diagram

38.5. Limitations

Driver is usable only on Linux architecture, namely on CentOS.

Since a card is always represented as a single port, but can be connected to two
NUMA nodes, there is need for manual check where master/slave is connected.

38.6. Example of usage

Read packets from 0. and 1. receive queue and write them to 0. and 1.
transmit queue:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 net_nfb
PMD: Initializing NFB device (0000:06:00.0)
PMD: Available DMA queues RX: 8 TX: 8
PMD: NFB device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding
 io packet forwarding - CRC stripping disabled - packets/burst=32
 nb forwarding cores=2 - nb forwarding ports=1
 RX queues=2 - RX desc=128 - RX free threshold=0
 RX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX queues=2 - TX desc=512 - TX free threshold=0
 TX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX RS bit threshold=0 - TXQ flags=0x0
testpmd>

39. NFP poll mode driver library

Netronome’s sixth generation of flow processors pack 216 programmable
cores and over 100 hardware accelerators that uniquely combine packet,
flow, security and content processing in a single device that scales
up to 400-Gb/s.

This document explains how to use DPDK with the Netronome Poll Mode
Driver (PMD) supporting Netronome’s Network Flow Processor 6xxx
(NFP-6xxx) and Netronome’s Flow Processor 4xxx (NFP-4xxx).

NFP is a SRIOV capable device and the PMD driver supports the physical
function (PF) and the virtual functions (VFs).

39.1. Dependencies

Before using the Netronome’s DPDK PMD some NFP configuration,
which is not related to DPDK, is required. The system requires
installation of Netronome’s BSP (Board Support Package) along
with a specific NFP firmware application. Netronome’s NSP ABI
version should be 0.20 or higher.

If you have a NFP device you should already have the code and
documentation for this configuration. Contact
support@netronome.com to obtain the latest available firmware.

The NFP Linux netdev kernel driver for VFs has been a part of the
vanilla kernel since kernel version 4.5, and support for the PF
since kernel version 4.11. Support for older kernels can be obtained
on Github at
https://github.com/Netronome/nfp-drv-kmods along with the build
instructions.

NFP PMD needs to be used along with UIO igb_uio or VFIO (vfio-pci)
Linux kernel driver.

39.2. Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory.
Although NFP PMD has Netronome´s BSP dependencies, it is possible to
compile it along with other DPDK PMDs even if no BSP was installed previously.
Of course, a DPDK app will require such a BSP installed for using the
NFP PMD, along with a specific NFP firmware application.

Default PMD configuration is at the common_linux configuration file:

	CONFIG_RTE_LIBRTE_NFP_PMD=y

Once the DPDK is built all the DPDK apps and examples include support for
the NFP PMD.

39.3. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

39.4. Using the PF

NFP PMD supports using the NFP PF as another DPDK port, but it does not
have any functionality for controlling VFs. In fact, it is not possible to use
the PMD with the VFs if the PF is being used by DPDK, that is, with the NFP PF
bound to igb_uio or vfio-pci kernel drivers. Future DPDK versions will
have a PMD able to work with the PF and VFs at the same time and with the PF
implementing VF management along with other PF-only functionalities/offloads.

The PMD PF has extra work to do which will delay the DPDK app initialization
like uploading the firmware and configure the Link state properly when starting or
stopping a PF port. Since DPDK 18.05 the firmware upload happens when
a PF is initialized, which was not always true with older DPDK versions.

Depending on the Netronome product installed in the system, firmware files
should be available under /lib/firmware/netronome. DPDK PMD supporting the
PF looks for a firmware file in this order:

	First try to find a firmware image specific for this device using the
NFP serial number:

serial-00-15-4d-12-20-65-10-ff.nffw

	Then try the PCI name:

pci-0000:04:00.0.nffw

	Finally try the card type and media:

nic_AMDA0099-0001_2x25.nffw

Netronome’s software packages install firmware files under /lib/firmware/netronome
to support all the Netronome’s SmartNICs and different firmware applications.
This is usually done using file names based on SmartNIC type and media and with a
directory per firmware application. Options 1 and 2 for firmware filenames allow
more than one SmartNIC, same type of SmartNIC or different ones, and to upload a
different firmware to each SmartNIC.

39.5. PF multiport support

Some NFP cards support several physical ports with just one single PCI device.
The DPDK core is designed with a 1:1 relationship between PCI devices and DPDK
ports, so NFP PMD PF support requires handling the multiport case specifically.
During NFP PF initialization, the PMD will extract the information about the
number of PF ports from the firmware and will create as many DPDK ports as
needed.

Because the unusual relationship between a single PCI device and several DPDK
ports, there are some limitations when using more than one PF DPDK port: there
is no support for RX interrupts and it is not possible either to use those PF
ports with the device hotplug functionality.

39.6. PF multiprocess support

Due to how the driver needs to access the NFP through a CPP interface, which implies
to use specific registers inside the chip, the number of secondary processes with PF
ports is limited to only one.

This limitation will be solved in future versions but having basic multiprocess support
is important for allowing development and debugging through the PF using a secondary
process which will create a CPP bridge for user space tools accessing the NFP.

39.7. System configuration

	Enable SR-IOV on the NFP device: The current NFP PMD supports the PF and
the VFs on a NFP device. However, it is not possible to work with both at the
same time because the VFs require the PF being bound to the NFP PF Linux
netdev driver. Make sure you are working with a kernel with NFP PF support or
get the drivers from the above Github repository and follow the instructions
for building and installing it.

VFs need to be enabled before they can be used with the PMD.
Before enabling the VFs it is useful to obtain information about the
current NFP PCI device detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device
whose PCI system identity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The
-k option shows the device driver, if any, that devices are bound to.
Depending on the modules loaded at this point the new PCI devices may be
bound to nfp_netvf driver.

40. NULL Poll Mode Driver

NULL PMD is a simple virtual driver mainly for testing. It always returns success for all packets for Rx/Tx.

On Rx it returns requested number of empty packets (all zero). On Tx it just frees all sent packets.

40.1. Usage

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev net_null0 --vdev net_null1 -- -i

40.2. Runtime Config Options

	copy [optional, default disabled]

It copies data of the packet before Rx/Tx. For Rx it uses another empty dummy mbuf for this.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev "net_null0,copy=1" -- -i

	size [optional, default=64 bytes]

Custom packet length value to use.r
If copy is enabled, this is the length of copy operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev "net_null0,size=256" -- -i

	no-rx [optional, default disabled]

Makes PMD more like /dev/null. On Rx no packets received, on Tx all packets are freed.
This option can’t co-exist with copy option.

41. OCTEON TX Poll Mode driver

The OCTEON TX ETHDEV PMD (librte_pmd_octeontx) provides poll mode ethdev
driver support for the inbuilt network device found in the Cavium OCTEON TX
SoC family as well as their virtual functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website [http://www.cavium.com/OCTEON-TX_ARM_Processors.html].

41.1. Features

Features of the OCTEON TX Ethdev PMD are:

	Packet type information

	Promiscuous mode

	Port hardware statistics

	Jumbo frames

	Scatter-Gather IO support

	Link state information

	MAC/VLAN filtering

	MTU update

	SR-IOV VF

	Multiple queues for TX

	Lock-free Tx queue

	HW offloaded ethdev Rx queue to eventdev event queue packet injection

41.2. Supported OCTEON TX SoCs

	CN83xx

41.3. Unsupported features

The features supported by the device and not yet supported by this PMD include:

	Receive Side Scaling (RSS)

	Scattered and gather for TX and RX

	Ingress classification support

	Egress hierarchical scheduling, traffic shaping, and marking

41.4. Prerequisites

See OCTEON TX Board Support Package for setup information.

41.5. Pre-Installation Configuration

41.5.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_OCTEONTX_PMD (default y)

Toggle compilation of the librte_pmd_octeontx driver.

41.5.2. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

To compile the OCTEON TX PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc install

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

./arm64-thunderx-linux-gcc/app/testpmd -c 700 \
 --base-virtaddr=0x100000000000 \
 --mbuf-pool-ops-name="octeontx_fpavf" \
 --vdev='event_octeontx' \
 --vdev='eth_octeontx,nr_port=2' \
 -- --rxq=1 --txq=1 --nb-core=2 \
 --total-num-mbufs=16384 -i
.....
EAL: Detected 24 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
EAL: PCI device 0000:07:00.1 on NUMA socket 0
EAL: probe driver: 177d:a04b octeontx_ssovf
.....
EAL: PCI device 0001:02:00.7 on NUMA socket 0
EAL: probe driver: 177d:a0dd octeontx_pkivf
.....
EAL: PCI device 0001:03:01.0 on NUMA socket 0
EAL: probe driver: 177d:a049 octeontx_pkovf
.....
PMD: octeontx_probe(): created ethdev eth_octeontx for port 0
PMD: octeontx_probe(): created ethdev eth_octeontx for port 1
.....
Configuring Port 0 (socket 0)
Port 0: 00:0F:B7:11:94:46
Configuring Port 1 (socket 0)
Port 1: 00:0F:B7:11:94:47
.....
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

41.6. Initialization

The OCTEON TX ethdev pmd is exposed as a vdev device which consists of a set
of PKI and PKO PCIe VF devices. On EAL initialization,
PKI/PKO PCIe VF devices will be probed and then the vdev device can be created
from the application code, or from the EAL command line based on
the number of probed/bound PKI/PKO PCIe VF device to DPDK by

	Invoking rte_vdev_init("eth_octeontx") from the application

	Using --vdev="eth_octeontx" in the EAL options, which will call
rte_vdev_init() internally

41.6.1. Device arguments

Each ethdev port is mapped to a physical port(LMAC), Application can specify
the number of interesting ports with nr_ports argument.

41.6.2. Dependency

eth_octeontx pmd is depend on event_octeontx eventdev device and
octeontx_fpavf external mempool handler.

Example:

./your_dpdk_application --mbuf-pool-ops-name="octeontx_fpavf" \
 --vdev='event_octeontx' \
 --vdev="eth_octeontx,nr_port=2"

41.7. Limitations

41.7.1. octeontx_fpavf external mempool handler dependency

The OCTEON TX SoC family NIC has inbuilt HW assisted external mempool manager.
This driver will only work with octeontx_fpavf external mempool handler
as it is the most performance effective way for packet allocation and Tx buffer
recycling on OCTEON TX SoC platform.

41.7.2. CRC stripping

The OCTEON TX SoC family NICs strip the CRC for every packets coming into the
host interface irrespective of the offload configuration.

41.7.3. Maximum packet length

The OCTEON TX SoC family NICs support a maximum of a 32K jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 32k, frames
up to 32k bytes can still reach the host interface.

41.7.4. Maximum mempool size

The maximum mempool size supplied to Rx queue setup should be less than 128K.
When running testpmd on OCTEON TX the application can limit the number of mbufs
by using the option --total-num-mbufs=131072.

42. OCTEON TX2 Poll Mode driver

The OCTEON TX2 ETHDEV PMD (librte_pmd_octeontx2) provides poll mode ethdev
driver support for the inbuilt network device found in Marvell OCTEON TX2
SoC family as well as for their virtual functions (VF) in SR-IOV context.

More information can be found at Marvell Official Website [https://www.marvell.com/embedded-processors/infrastructure-processors].

42.1. Features

Features of the OCTEON TX2 Ethdev PMD are:

	Packet type information

	Promiscuous mode

	Jumbo frames

	SR-IOV VF

	Lock-free Tx queue

	Multiple queues for TX and RX

	Receiver Side Scaling (RSS)

	MAC/VLAN filtering

	Multicast MAC filtering

	Generic flow API

	Inner and Outer Checksum offload

	VLAN/QinQ stripping and insertion

	Port hardware statistics

	Link state information

	Link flow control

	MTU update

	Scatter-Gather IO support

	Vector Poll mode driver

	Debug utilities - Context dump and error interrupt support

	IEEE1588 timestamping

	HW offloaded ethdev Rx queue to eventdev event queue packet injection

	Support Rx interrupt

	Inline IPsec processing support

	Traffic Management API

42.2. Prerequisites

See Marvell OCTEON TX2 Platform Guide for setup information.

42.3. Compile time Config Options

The following options may be modified in the config file.

	CONFIG_RTE_LIBRTE_OCTEONTX2_PMD (default y)

Toggle compilation of the librte_pmd_octeontx2 driver.

42.4. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

To compile the OCTEON TX2 PMD for Linux arm64 gcc,
use arm64-octeontx2-linux-gcc as target.

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

./build/app/testpmd -c 0x300 -w 0002:02:00.0 -- --portmask=0x1 --nb-cores=1 --port-topology=loop --rxq=1 --txq=1
EAL: Detected 24 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: No available hugepages reported in hugepages-2048kB
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0002:02:00.0 on NUMA socket 0
EAL: probe driver: 177d:a063 net_octeontx2
EAL: using IOMMU type 1 (Type 1)
testpmd: create a new mbuf pool <mbuf_pool_socket_0>: n=267456, size=2176, socket=0
testpmd: preferred mempool ops selected: octeontx2_npa
Configuring Port 0 (socket 0)
PMD: Port 0: Link Up - speed 40000 Mbps - full-duplex

Port 0: link state change event
Port 0: 36:10:66:88:7A:57
Checking link statuses...
Done
No commandline core given, start packet forwarding
io packet forwarding - ports=1 - cores=1 - streams=1 - NUMA support enabled, MP allocation mode: native
Logical Core 9 (socket 0) forwards packets on 1 streams:
 RX P=0/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

 io packet forwarding packets/burst=32
 nb forwarding cores=1 - nb forwarding ports=1
 port 0: RX queue number: 1 Tx queue number: 1
 Rx offloads=0x0 Tx offloads=0x10000
 RX queue: 0
 RX desc=512 - RX free threshold=0
 RX threshold registers: pthresh=0 hthresh=0 wthresh=0
 RX Offloads=0x0
 TX queue: 0
 TX desc=512 - TX free threshold=0
 TX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX offloads=0x10000 - TX RS bit threshold=0
Press enter to exit

42.5. Runtime Config Options

	Rx&Tx scalar mode enable (default 0)

Ethdev supports both scalar and vector mode, it may be selected at runtime
using scalar_enable devargs parameter.

	RSS reta size (default 64)

RSS redirection table size may be configured during runtime using reta_size
devargs parameter.

For example:

-w 0002:02:00.0,reta_size=256

With the above configuration, reta table of size 256 is populated.

	Flow priority levels (default 3)

RTE Flow priority levels can be configured during runtime using
flow_max_priority devargs parameter.

For example:

-w 0002:02:00.0,flow_max_priority=10

With the above configuration, priority level was set to 10 (0-9). Max
priority level supported is 32.

	Reserve Flow entries (default 8)

RTE flow entries can be pre allocated and the size of pre allocation can be
selected runtime using flow_prealloc_size devargs parameter.

For example:

-w 0002:02:00.0,flow_prealloc_size=4

With the above configuration, pre alloc size was set to 4. Max pre alloc
size supported is 32.

	Max SQB buffer count (default 512)

Send queue descriptor buffer count may be limited during runtime using
max_sqb_count devargs parameter.

For example:

-w 0002:02:00.0,max_sqb_count=64

With the above configuration, each send queue’s decscriptor buffer count is
limited to a maximum of 64 buffers.

	Switch header enable (default none)

A port can be configured to a specific switch header type by using
switch_header devargs parameter.

For example:

-w 0002:02:00.0,switch_header="higig2"

With the above configuration, higig2 will be enabled on that port and the
traffic on this port should be higig2 traffic only. Supported switch header
types are “higig2”, “dsa” and “chlen90b”.

	RSS tag as XOR (default 0)

C0 HW revision onward, The HW gives an option to configure the RSS adder as

	rss_adder<7:0> = flow_tag<7:0> ^ flow_tag<15:8> ^ flow_tag<23:16> ^ flow_tag<31:24>

	rss_adder<7:0> = flow_tag<7:0>

Latter one aligns with standard NIC behavior vs former one is a legacy
RSS adder scheme used in OCTEON TX2 products.

By default, the driver runs in the latter mode from C0 HW revision onward.
Setting this flag to 1 to select the legacy mode.

For example to select the legacy mode(RSS tag adder as XOR):

-w 0002:02:00.0,tag_as_xor=1

	Max SPI for inbound inline IPsec (default 1)

Max SPI supported for inbound inline IPsec processing can be specified by
ipsec_in_max_spi devargs parameter.

For example:

-w 0002:02:00.0,ipsec_in_max_spi=128

With the above configuration, application can enable inline IPsec processing
on 128 SAs (SPI 0-127).

Note

Above devarg parameters are configurable per device, user needs to pass the
parameters to all the PCIe devices if application requires to configure on
all the ethdev ports.

	Lock NPA contexts in NDC

Lock NPA aura and pool contexts in NDC cache.
The device args take hexadecimal bitmask where each bit represent the
corresponding aura/pool id.

For example:

-w 0002:02:00.0,npa_lock_mask=0xf

42.6. Traffic Management API

OCTEON TX2 PMD supports generic DPDK Traffic Management API which allows to
configure the following features:

	Hierarchical scheduling

	Single rate - Two color, Two rate - Three color shaping

Both DWRR and Static Priority(SP) hierarchial scheduling is supported.

Every parent can have atmost 10 SP Children and unlimited DWRR children.

Both PF & VF supports traffic management API with PF supporting 6 levels
and VF supporting 5 levels of topology.

42.7. Limitations

42.7.1. mempool_octeontx2 external mempool handler dependency

The OCTEON TX2 SoC family NIC has inbuilt HW assisted external mempool manager.
net_octeontx2 pmd only works with mempool_octeontx2 mempool handler
as it is performance wise most effective way for packet allocation and Tx buffer
recycling on OCTEON TX2 SoC platform.

42.7.2. CRC stripping

The OCTEON TX2 SoC family NICs strip the CRC for every packet being received by
the host interface irrespective of the offload configuration.

42.7.3. Multicast MAC filtering

net_octeontx2 pmd supports multicast mac filtering feature only on physical
function devices.

42.7.4. SDP interface support

OCTEON TX2 SDP interface support is limited to PF device, No VF support.

42.7.5. Inline Protocol Processing

net_octeontx2 pmd doesn’t support the following features for packets to be
inline protocol processed.
- TSO offload
- VLAN/QinQ offload
- Fragmentation

42.8. Debugging Options

Table 42.1 OCTEON TX2 ethdev debug options

	#

	Component

	EAL log command

	1

	NIX

	–log-level=’pmd.net.octeontx2,8’

	2

	NPC

	–log-level=’pmd.net.octeontx2.flow,8’

42.9. RTE Flow Support

The OCTEON TX2 SoC family NIC has support for the following patterns and
actions.

Patterns:

Table 42.2 Item types

	#

	Pattern Type

	1

	RTE_FLOW_ITEM_TYPE_ETH

	2

	RTE_FLOW_ITEM_TYPE_VLAN

	3

	RTE_FLOW_ITEM_TYPE_E_TAG

	4

	RTE_FLOW_ITEM_TYPE_IPV4

	5

	RTE_FLOW_ITEM_TYPE_IPV6

	6

	RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4

	7

	RTE_FLOW_ITEM_TYPE_MPLS

	8

	RTE_FLOW_ITEM_TYPE_ICMP

	9

	RTE_FLOW_ITEM_TYPE_UDP

	10

	RTE_FLOW_ITEM_TYPE_TCP

	11

	RTE_FLOW_ITEM_TYPE_SCTP

	12

	RTE_FLOW_ITEM_TYPE_ESP

	13

	RTE_FLOW_ITEM_TYPE_GRE

	14

	RTE_FLOW_ITEM_TYPE_NVGRE

	15

	RTE_FLOW_ITEM_TYPE_VXLAN

	16

	RTE_FLOW_ITEM_TYPE_GTPC

	17

	RTE_FLOW_ITEM_TYPE_GTPU

	18

	RTE_FLOW_ITEM_TYPE_GENEVE

	19

	RTE_FLOW_ITEM_TYPE_VXLAN_GPE

	20

	RTE_FLOW_ITEM_TYPE_IPV6_EXT

	21

	RTE_FLOW_ITEM_TYPE_VOID

	22

	RTE_FLOW_ITEM_TYPE_ANY

	23

	RTE_FLOW_ITEM_TYPE_GRE_KEY

	24

	RTE_FLOW_ITEM_TYPE_HIGIG2

Note

RTE_FLOW_ITEM_TYPE_GRE_KEY works only when checksum and routing
bits in the GRE header are equal to 0.

Actions:

Table 42.3 Ingress action types

	#

	Action Type

	1

	RTE_FLOW_ACTION_TYPE_VOID

	2

	RTE_FLOW_ACTION_TYPE_MARK

	3

	RTE_FLOW_ACTION_TYPE_FLAG

	4

	RTE_FLOW_ACTION_TYPE_COUNT

	5

	RTE_FLOW_ACTION_TYPE_DROP

	6

	RTE_FLOW_ACTION_TYPE_QUEUE

	7

	RTE_FLOW_ACTION_TYPE_RSS

	8

	RTE_FLOW_ACTION_TYPE_SECURITY

	9

	RTE_FLOW_ACTION_TYPE_PF

	10

	RTE_FLOW_ACTION_TYPE_VF

Table 42.4 Egress action types

	#

	Action Type

	1

	RTE_FLOW_ACTION_TYPE_COUNT

	2

	RTE_FLOW_ACTION_TYPE_DROP

43. PFE Poll Mode Driver

The PFE NIC PMD (librte_pmd_pfe) provides poll mode driver
support for the inbuilt NIC found in the NXP LS1012 SoC.

More information can be found at NXP Official Website [https://nxp.com/ls1012a].

43.1. PFE

This section provides an overview of the NXP PFE
and how it is integrated into the DPDK.

Contents summary

	PFE overview

	PFE features

	Supported PFE SoCs

	Prerequisites

	Driver compilation and testing

	Limitations

43.1.1. PFE Overview

PFE is a hardware programmable packet forwarding engine to provide
high performance Ethernet interfaces. The diagram below shows a
system level overview of PFE:

==+===============
US +---+ | Kernel Space
 | | |
 | PFE Ethernet Driver | |
 +---+ |
 ^ | ^ | |
PFE RXQ| |TXQ RXQ| |TXQ |
PMD | | | | |
 | v | v | +----------+
 +---------+ +----------+ | | pfe.ko |
 | net_pfe0| | net_pfe1 | | +----------+
 +---------+ +----------+ |
 ^ | ^ | |
 TXQ| |RXQ TXQ| |RXQ |
 | | | | |
 | v | v |
 +------------------------+ |
 | | |
 | PFE HIF driver | |
 +------------------------+ |
 ^ | |
 RX | TX | |
 RING| RING| |
 | v |
 +--------------+ |
 | | |
==================| HIF |==================+===============
 +-----------+ +--------------+
 | | | | HW
 | PFE +--------------+ |
 | +-----+ +-----+ |
 | | MAC | | MAC | |
 | | | | | |
 +-------+-----+----------------+-----+----+
 | PHY | | PHY |
 +-----+ +-----+

The HIF, PFE, MAC and PHY are the hardware blocks, the pfe.ko is a kernel
module, the PFE HIF driver and the PFE ethernet driver combined represent
as DPDK PFE poll mode driver are running in the userspace.

The PFE hardware supports one HIF (host interface) RX ring and one TX ring
to send and receive packets through packet forwarding engine. Both network
interface traffic is multiplexed and send over HIF queue.

net_pfe0 and net_pfe1 are logical ethernet interfaces, created by HIF client
driver. HIF driver is responsible for send and receive packets between
host interface and these logical interfaces. PFE ethernet driver is a
hardware independent and register with the HIF client driver to transmit and
receive packets from HIF via logical interfaces.

pfe.ko is required for PHY initialisation and also responsible for creating
the character device “pfe_us_cdev” which will be used for interacting with
the kernel layer for link status.

43.1.2. PFE Features

	L3/L4 checksum offload

	Packet type parsing

	Basic stats

	MTU update

	Promiscuous mode

	Allmulticast mode

	Link status

	ARMv8

43.1.3. Supported PFE SoCs

	LS1012

43.1.4. Prerequisites

Below are some pre-requisites for executing PFE PMD on a PFE
compatible board:

	ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain [https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz].

	Linux Kernel

It can be obtained from NXP’s Github hosting [https://source.codeaurora.org/external/qoriq/qoriq-components/linux].

	Rootfile system

Any aarch64 supporting filesystem can be used. For example,
Ubuntu 16.04 LTS (Xenial) or 18.04 (Bionic) userland which can be obtained
from here [http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz].

	The ethernet device will be registered as virtual device, so pfe has dependency on
rte_bus_vdev library and it is mandatory to use –vdev with value net_pfe to
run DPDK application.

The following dependencies are not part of DPDK and must be installed
separately:

	NXP Linux LSDK

NXP Layerscape software development kit (LSDK) includes support for family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.

LSDK and related information can be obtained from: LSDK [https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK]

	pfe kernel module

pfe kernel module can be obtained from NXP Layerscape software development kit at
location /lib/modules/<kernel version>/kernel/drivers/staging/fsl_ppfe in rootfs.
Module should be loaded using below command:

insmod pfe.ko us=1

43.1.5. Driver compilation and testing

Follow instructions available in the document
compiling and testing a PMD for a NIC
to launch testpmd

Additionally, PFE driver needs –vdev as an input with value net_pfe
to execute DPDK application. There is an optional parameter intf available
to specify port ID. PFE driver supports only two interfaces, so valid values
for intf are 0 and 1.
see the command below:

<dpdk app> <EAL args> --vdev="net_pfe0,intf=0" --vdev="net_pfe1,intf=1" -- ...

43.1.6. Limitations

	Multi buffer pool cannot be supported.

44. QEDE Poll Mode Driver

The QEDE poll mode driver library (librte_pmd_qede) implements support
for QLogic FastLinQ QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA) and Converged Network Adapters (CNA) family of adapters as well as SR-IOV virtual functions (VF). It is supported on
several standard Linux distros like RHEL, SLES, Ubuntu etc.
It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Website [http://www.qlogic.com].

44.1. Supported Features

	Unicast/Multicast filtering

	Promiscuous mode

	Allmulti mode

	Port hardware statistics

	Jumbo frames

	Multiple MAC address

	MTU change

	Default pause flow control

	Multiprocess aware

	Scatter-Gather

	Multiple Rx/Tx queues

	RSS (with RETA/hash table/key)

	TSS

	Stateless checksum offloads (IPv4/IPv6/TCP/UDP)

	LRO/TSO

	VLAN offload - Filtering and stripping

	N-tuple filter and flow director (limited support)

	NPAR (NIC Partitioning)

	SR-IOV VF

	GRE Tunneling offload

	GENEVE Tunneling offload

	VXLAN Tunneling offload

	MPLSoUDP Tx Tunneling offload

	Generic flow API

44.2. Non-supported Features

	SR-IOV PF

44.3. Co-existence considerations

	QLogic FastLinQ QL4xxxx CNAs support Ethernet, RDMA, iSCSI and FCoE
functionalities. These functionalities are supported using
QLogic Linux kernel drivers qed, qede, qedr, qedi and qedf. DPDK is
supported on these adapters using qede PMD.

	When SR-IOV is not enabled on the adapter,
QLogic Linux kernel drivers (qed, qede, qedr, qedi and qedf) and qede
PMD can’t be attached to different PFs on a given QLogic FastLinQ
QL4xxx adapter.
A given adapter needs to be completely used by DPDK or Linux drivers
Before binding DPDK driver to one or more PFs on the adapter,
please make sure to unbind Linux drivers from all PFs of the adapter.
If there are multiple adapters on the system, one or more adapters
can be used by DPDK driver completely and other adapters can be used
by Linux drivers completely.

	When SR-IOV is enabled on the adapter,
Linux kernel drivers (qed, qede, qedr, qedi and qedf) can be bound
to the PFs of a given adapter and either qede PMD or Linux drivers
(qed and qede) can be bound to the VFs of the adapter.

	For sharing an adapter between DPDK and Linux drivers, SRIOV needs
to be enabled. Bind all the PFs to Linux Drivers(qed/qede). Create
a VF on PFs where DPDK is desired and bind these VFs to qede_pmd.
Binding of PFs simultaneously to DPDK and Linux drivers on a given
adapter is not supported.

44.4. Supported QLogic Adapters

	QLogic FastLinQ QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA) and Converged Network Adapters (CNA)

44.5. Prerequisites

	Requires storm firmware version 8.40.33.0. Firmware may be available
inbox in certain newer Linux distros under the standard directory
E.g. /lib/firmware/qed/qed_init_values-8.40.33.0.bin.
If the required firmware files are not available then download it from
linux-firmware git repository [http://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/qed].

	Requires the NIC be updated minimally with 8.30.x.x Management firmware(MFW) version supported for that NIC.
It is highly recommended that the NIC be updated with the latest available management firmware version to get latest feature set.
Management Firmware and Firmware Upgrade Utility for Cavium FastLinQ(r) branded adapters can be downloaded from
Driver Download Center [http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx].
For downloading Firmware Upgrade Utility, select NIC category, model and Linux distro.
To update the management firmware, refer to the instructions in the Firmware Upgrade Utility Readme document.
For OEM branded adapters please follow the instruction provided by the OEM to update the Management Firmware on the NIC.

	SR-IOV requires Linux PF driver version 8.20.x.x or higher.
If the required PF driver is not available then download it from
QLogic Driver Download Center [http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx].
For downloading PF driver, select adapter category, model and Linux distro.

44.5.1. Performance note

	For better performance, it is recommended to use 4K or higher RX/TX rings.

44.5.2. Config File Options

The following options can be modified in the .config file. Please note that
enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_QEDE_PMD (default y)

Toggle compilation of QEDE PMD driver.

	CONFIG_RTE_LIBRTE_QEDE_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

	CONFIG_RTE_LIBRTE_QEDE_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

	CONFIG_RTE_LIBRTE_QEDE_FW (default “”)

Gives absolute path of firmware file.
Eg: "/lib/firmware/qed/qed_init_values-8.40.33.0.bin"
Empty string indicates driver will pick up the firmware file
from the default location /lib/firmware/qed.
CAUTION this option is more for custom firmware, it is not
recommended for use under normal condition.

44.5.3. Config notes

When there are multiple adapters and/or large number of Rx/Tx queues
configured on the adapters, the default (2560) number of memzone
descriptors may not be enough. Please increase the number of memzone
descriptors to a higher number as needed. When sufficient number of
memzone descriptors are not configured, user can potentially run into
following error.

EAL: memzone_reserve_aligned_thread_unsafe(): No more room in config

44.6. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

44.7. RTE Flow Support

QLogic FastLinQ QL4xxxx NICs has support for the following patterns and
actions.

Patterns:

Table 44.1 Item types

	#

	Pattern Type

	1

	RTE_FLOW_ITEM_TYPE_IPV4

	2

	RTE_FLOW_ITEM_TYPE_IPV6

	3

	RTE_FLOW_ITEM_TYPE_UDP

	4

	RTE_FLOW_ITEM_TYPE_TCP

Actions:

Table 44.2 Ingress action types

	#

	Action Type

	1

	RTE_FLOW_ACTION_TYPE_QUEUE

	2

	RTE_FLOW_ACTION_TYPE_DROP

44.8. SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

Note: librte_pmd_qede will be used to bind to SR-IOV VF device and Linux native kernel driver (qede) will function as SR-IOV PF driver. Requires PF driver to be 8.20.x.x or higher.

	Verify SR-IOV and ARI capability is enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

	Load the kernel module:

modprobe qede

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

	Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

	Create VF device(s):

Echo the number of VFs to be created into "sriov_numvfs" sysfs entry
of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

	Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

	PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or
virsh. QEDE PMD should be used to bind the VF devices in the guest VM
using the instructions from Driver compilation and testing section above.

	Running testpmd
(Supply --log-level="pmd.net.qede.driver:info to view informational messages):

Refer to the document
compiling and testing a PMD for a NIC to run
testpmd application.

Example output:

 testpmd -l 0,4-11 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
 --txd=4096 --txfreet=4068 --enable-rx-cksum --rxq=4 --txq=4 \
 --rss-ip --rss-udp

 [...]

EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:88:00.0 on NUMA socket 1
EAL: probe driver: 1077:1656 rte_qede_pmd
EAL: PCI memory mapped at 0x7f738b200000
EAL: PCI memory mapped at 0x7f738b280000
EAL: PCI memory mapped at 0x7f738b300000
PMD: Chip details : BB1
PMD: Driver version : QEDE PMD 8.7.9.0_1.0.0
PMD: Firmware version : 8.7.7.0
PMD: Management firmware version : 8.7.8.0
PMD: Firmware file : /lib/firmware/qed/qed_init_values_zipped-8.7.7.0.bin
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_common_dev_init:macaddr \
 00:0e:1e:d2:09:9c
 [...]
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 0 num_desc 4096 \
 tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 1 num_desc 4096 \
 tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 2 num_desc 4096 \
 tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 3 num_desc 4096 \
 tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 0 num_desc 4096 \
 rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 1 num_desc 4096 \
 rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 2 num_desc 4096 \
 rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 3 num_desc 4096 \
 rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:port 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:link status: down
 [...]
Checking link statuses...
Port 0 Link Up - speed 25000 Mbps - full-duplex
Port 1 Link Up - speed 25000 Mbps - full-duplex
Port 2 Link Up - speed 25000 Mbps - full-duplex
Port 3 Link Up - speed 25000 Mbps - full-duplex
Done
testpmd>

45. Solarflare libefx-based Poll Mode Driver

The SFC EFX PMD (librte_pmd_sfc_efx) provides poll mode driver support
for Solarflare SFN7xxx and SFN8xxx family of 10/40 Gbps adapters and
Solarflare XtremeScale X2xxx family of 10/25/40/50/100 Gbps adapters.
SFC EFX PMD has support for the latest Linux and FreeBSD operating systems.

More information can be found at Solarflare Communications website [http://solarflare.com].

45.1. Features

SFC EFX PMD has support for:

	Multiple transmit and receive queues

	Link state information including link status change interrupt

	IPv4/IPv6 TCP/UDP transmit checksum offload

	Inner IPv4/IPv6 TCP/UDP transmit checksum offload

	Port hardware statistics

	Extended statistics (see Solarflare Server Adapter User’s Guide for
the statistics description)

	Basic flow control

	MTU update

	Jumbo frames up to 9K

	Promiscuous mode

	Allmulticast mode

	TCP segmentation offload (TSO) including VXLAN and GENEVE encapsulated

	Multicast MAC filter

	IPv4/IPv6 TCP/UDP receive checksum offload

	Inner IPv4/IPv6 TCP/UDP receive checksum offload

	Received packet type information

	Receive side scaling (RSS)

	RSS hash

	Scattered Rx DMA for packet that are larger that a single Rx descriptor

	Receive queue interrupts

	Deferred receive and transmit queue start

	Transmit VLAN insertion (if running firmware variant supports it)

	Flow API

	Loopback

45.2. Non-supported Features

The features not yet supported include:

	Priority-based flow control

	Configurable RX CRC stripping (always stripped)

	Header split on receive

	VLAN filtering

	VLAN stripping

	LRO

45.3. Limitations

Due to requirements on receive buffer alignment and usage of the receive
buffer for the auxiliary packet information provided by the NIC up to
extra 269 (14 bytes prefix plus up to 255 bytes for end padding) bytes may be
required in the receive buffer.
It should be taken into account when mbuf pool for receive is created.

45.3.1. Equal stride super-buffer mode

When the receive queue uses equal stride super-buffer DMA mode, one HW Rx
descriptor carries many Rx buffers which contiguously follow each other
with some stride (equal to total size of rte_mbuf as mempool object).
Each Rx buffer is an independent rte_mbuf.
However dedicated mempool manager must be used when mempool for the Rx
queue is created. The manager must support dequeue of the contiguous
block of objects and provide mempool info API to get the block size.

Another limitation of a equal stride super-buffer mode, imposed by the
firmware, is that it allows for a single RSS context.

45.4. Tunnels support

NVGRE, VXLAN and GENEVE tunnels are supported on SFN8xxx and X2xxx family
adapters with full-feature firmware variant running.
sfboot should be used to configure NIC to run full-feature firmware variant.
See Solarflare Server Adapter User’s Guide for details.

SFN8xxx and X2xxx family adapters provide either inner or outer packet classes.
If adapter firmware advertises support for tunnels then the PMD
configures the hardware to report inner classes, and outer classes are
not reported in received packets.
However, for VXLAN and GENEVE tunnels the PMD does report UDP as the
outer layer 4 packet type.

SFN8xxx and X2xxx family adapters report GENEVE packets as VXLAN.
If UDP ports are configured for only one tunnel type then it is safe to
treat VXLAN packet type indication as the corresponding UDP tunnel type.

45.5. Flow API support

Supported attributes:

	Ingress

Supported pattern items:

	VOID

	ETH (exact match of source/destination addresses, individual/group match
of destination address, EtherType in the outer frame and exact match of
destination addresses, individual/group match of destination address in
the inner frame)

	VLAN (exact match of VID, double-tagging is supported)

	IPV4 (exact match of source/destination addresses,
IP transport protocol)

	IPV6 (exact match of source/destination addresses,
IP transport protocol)

	TCP (exact match of source/destination ports)

	UDP (exact match of source/destination ports)

	VXLAN (exact match of VXLAN network identifier)

	GENEVE (exact match of virtual network identifier, only Ethernet (0x6558)
protocol type is supported)

	NVGRE (exact match of virtual subnet ID)

Supported actions:

	VOID

	QUEUE

	RSS

	DROP

	FLAG (supported only with ef10_essb Rx datapath)

	MARK (supported only with ef10_essb Rx datapath)

Validating flow rules depends on the firmware variant.

The Flow isolated mode is supported.

45.5.1. Ethernet destination individual/group match

Ethernet item supports I/G matching, if only the corresponding bit is set
in the mask of destination address. If destination address in the spec is
multicast, it matches all multicast (and broadcast) packets, otherwise it
matches unicast packets that are not filtered by other flow rules.

45.5.2. Exceptions to flow rules

There is a list of exceptional flow rule patterns which will not be
accepted by the PMD. A pattern will be rejected if at least one of the
conditions is met:

	Filtering by IPv4 or IPv6 EtherType without pattern items of internet
layer and above.

	The last item is IPV4 or IPV6, and it’s empty.

	Filtering by TCP or UDP IP transport protocol without pattern items of
transport layer and above.

	The last item is TCP or UDP, and it’s empty.

45.6. Supported NICs

	Solarflare XtremeScale Adapters:

	Solarflare X2522 Dual Port SFP28 10/25GbE Adapter

	Solarflare X2541 Single Port QSFP28 10/25G/100G Adapter

	Solarflare X2542 Dual Port QSFP28 10/25G/100G Adapter

	Solarflare Flareon [Ultra] Server Adapters:

	Solarflare SFN8522 Dual Port SFP+ Server Adapter

	Solarflare SFN8522M Dual Port SFP+ Server Adapter

	Solarflare SFN8042 Dual Port QSFP+ Server Adapter

	Solarflare SFN8542 Dual Port QSFP+ Server Adapter

	Solarflare SFN8722 Dual Port SFP+ OCP Server Adapter

	Solarflare SFN7002F Dual Port SFP+ Server Adapter

	Solarflare SFN7004F Quad Port SFP+ Server Adapter

	Solarflare SFN7042Q Dual Port QSFP+ Server Adapter

	Solarflare SFN7122F Dual Port SFP+ Server Adapter

	Solarflare SFN7124F Quad Port SFP+ Server Adapter

	Solarflare SFN7142Q Dual Port QSFP+ Server Adapter

	Solarflare SFN7322F Precision Time Synchronization Server Adapter

45.7. Prerequisites

	Requires firmware version:

	SFN7xxx: 4.7.1.1001 or higher

	SFN8xxx: 6.0.2.1004 or higher

Visit Solarflare Support Downloads [https://support.solarflare.com] to get
Solarflare Utilities (either Linux or FreeBSD) with the latest firmware.
Follow instructions from Solarflare Server Adapter User’s Guide to
update firmware and configure the adapter.

45.8. Pre-Installation Configuration

45.8.1. Config File Options

The following options can be modified in the .config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_SFC_EFX_PMD (default y)

Enable compilation of Solarflare libefx-based poll-mode driver.

	CONFIG_RTE_LIBRTE_SFC_EFX_DEBUG (default n)

Enable compilation of the extra run-time consistency checks.

45.8.2. Per-Device Parameters

The following per-device parameters can be passed via EAL PCI device
whitelist option like “-w 02:00.0,arg1=value1,…”.

Case-insensitive 1/y/yes/on or 0/n/no/off may be used to specify
boolean parameters value.

	rx_datapath [auto|efx|ef10|ef10_esps] (default auto)

Choose receive datapath implementation.
auto allows the driver itself to make a choice based on firmware
features available and required by the datapath implementation.
efx chooses libefx-based datapath which supports Rx scatter.
ef10 chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native datapath which is
more efficient than libefx-based and provides richer packet type
classification.
ef10_esps chooses SFNX2xxx equal stride packed stream datapath
which may be used on DPDK firmware variant only
(see notes about its limitations above).

	tx_datapath [auto|efx|ef10|ef10_simple] (default auto)

Choose transmit datapath implementation.
auto allows the driver itself to make a choice based on firmware
features available and required by the datapath implementation.
efx chooses libefx-based datapath which supports VLAN insertion
(full-feature firmware variant only), TSO and multi-segment mbufs.
Mbuf segments may come from different mempools, and mbuf reference
counters are treated responsibly.
ef10 chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native datapath which is
more efficient than libefx-based but has no VLAN insertion support yet.
Mbuf segments may come from different mempools, and mbuf reference
counters are treated responsibly.
ef10_simple chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native datapath which
is even more faster then ef10 but does not support multi-segment
mbufs, disallows multiple mempools and neglects mbuf reference counters.

	perf_profile [auto|throughput|low-latency] (default throughput)

Choose hardware tuning to be optimized for either throughput or
low-latency.
auto allows NIC firmware to make a choice based on
installed licenses and firmware variant configured using sfboot.

	stats_update_period_ms [long] (default 1000)

Adjust period in milliseconds to update port hardware statistics.
The accepted range is 0 to 65535. The value of 0 may be used
to disable periodic statistics update. One should note that it’s
only possible to set an arbitrary value on SFN8xxx and X2xxx provided that
firmware version is 6.2.1.1033 or higher, otherwise any positive
value will select a fixed update period of 1000 milliseconds

	fw_variant [dont-care|full-feature|ultra-low-latency|
capture-packed-stream|dpdk] (default dont-care)

Choose the preferred firmware variant to use. In order for the selected
option to have an effect, the sfboot utility must be configured with the
auto firmware-variant option. The preferred firmware variant applies to
all ports on the NIC.
dont-care ensures that the driver can attach to an unprivileged function.
The datapath firmware type to use is controlled by the sfboot
utility.
full-feature chooses full featured firmware.
ultra-low-latency chooses firmware with fewer features but lower latency.
capture-packed-stream chooses firmware for SolarCapture packed stream
mode.
dpdk chooses DPDK firmware with equal stride super-buffer Rx mode
for higher Rx packet rate and packet marks support and firmware subvariant
without checksumming on transmit for higher Tx packet rate if
checksumming is not required.

	rxd_wait_timeout_ns [long] (default 200 us)

Adjust timeout in nanoseconds to head-of-line block to wait for
Rx descriptors.
The accepted range is 0 to 400 ms.
Flow control should be enabled to make it work.
The value of 0 disables it and packets are dropped immediately.
When a packet is dropped because of no Rx descriptors,
rx_nodesc_drop_cnt counter grows.
The feature is supported only by the DPDK firmware variant when equal
stride super-buffer Rx mode is used.

45.8.3. Dynamic Logging Parameters

One may leverage EAL option “–log-level” to change default levels
for the log types supported by the driver. The option is used with
an argument typically consisting of two parts separated by a colon.

Level value is the last part which takes a symbolic name (or integer).
Log type is the former part which may shell match syntax.
Depending on the choice of the expression, the given log level may
be used either for some specific log type or for a subset of types.

SFC EFX PMD provides the following log types available for control:

	pmd.net.sfc.driver (default level is notice)

Affects driver-wide messages unrelated to any particular devices.

	pmd.net.sfc.main (default level is notice)

Matches a subset of per-port log types registered during runtime.
A full name for a particular type may be obtained by appending a
dot and a PCI device identifier (XXXX:XX:XX.X) to the prefix.

	pmd.net.sfc.mcdi (default level is notice)

Extra logging of the communication with the NIC’s management CPU.
The format of the log is consumed by the Solarflare netlogdecode
cross-platform tool. May be managed per-port, as explained above.

46. Soft NIC Poll Mode Driver

The Soft NIC allows building custom NIC pipelines in software. The Soft NIC pipeline
is DIY and reconfigurable through firmware (DPDK Packet Framework script).

The Soft NIC leverages the DPDK Packet Framework libraries (librte_port,
librte_table and librte_pipeline) to make it modular, flexible and extensible
with new functionality. Please refer to DPDK Programmer’s Guide, Chapter
Packet Framework and DPDK Sample Application User Guide,
Chapter IP Pipeline Application for more details.

The Soft NIC is configured through the standard DPDK ethdev API (ethdev, flow,
QoS, security). The internal framework is not externally visible.

	Key benefits:
	
	Can be used to augment missing features to HW NICs.

	Allows consumption of advanced DPDK features without application redesign.

	Allows out-of-the-box performance boost of DPDK consumers applications simply by
instantiating this type of Ethernet device.

46.1. Flow

	Device creation: Each Soft NIC instance is a virtual device.

	Device start: The Soft NIC firmware script is executed every time the device
is started. The firmware script typically creates several internal objects,
such as: memory pools, SW queues, traffic manager, action profiles, pipelines,
etc.

	Device stop: All the internal objects that were previously created by the
firmware script during device start are now destroyed.

	Device run: Each Soft NIC device needs one or several CPU cores to run.
The firmware script maps each internal pipeline to a CPU core. Multiple
pipelines can be mapped to the same CPU core. In order for a given pipeline
assigned to CPU core X to run, the application needs to periodically call on
CPU core X the rte_pmd_softnic_run() function for the current Soft NIC
device.

	Application run: The application reads packets from the Soft NIC device RX
queues and writes packets to the Soft NIC device TX queues.

46.2. Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements
section of the DPDK documentation or refer to DPDK
Release Notes.

46.3. Build options

The default PMD configuration available in the common_linux configuration file:

CONFIG_RTE_LIBRTE_PMD_SOFTNIC=y

Once the DPDK is built, all the DPDK applications include support for the
Soft NIC PMD.

46.4. Soft NIC PMD arguments

The user can specify below arguments in EAL --vdev options to create the
Soft NIC device instance:

–vdev “net_softnic0,firmware=firmware.cli,conn_port=8086”

	firmware: path to the firmware script used for Soft NIC configuration.
The example “firmware” script is provided at drivers/net/softnic/.
(Optional: No, Default = NA)

	conn_port: tcp connection port (non-zero value) used by remote client
(for examples- telnet, netcat, etc.) to connect and configure Soft NIC device in run-time.
(Optional: yes, Default value: 0, no connection with external client)

	cpu_id: numa node id. (Optional: yes, Default value: 0)

	tm_n_queues: number of traffic manager’s scheduler queues. The traffic manager
is based on DPDK librte_sched library. (Optional: yes, Default value: 65,536 queues)

	tm_qsize0: size of scheduler queue 0 per traffic class of the pipes/subscribers.
(Optional: yes, Default: 64)

	tm_qsize1: size of scheduler queue 1 per traffic class of the pipes/subscribers.
(Optional: yes, Default: 64)

	tm_qsize2: size of scheduler queue 2 per traffic class of the pipes/subscribers.
(Optional: yes, Default: 64)

	tm_qsize3: size of scheduler queue 3 per traffic class of the pipes/subscribers.
(Optional: yes, Default: 64)

46.5. Soft NIC testing

	Run testpmd application in Soft NIC forwarding mode with loopback feature
enabled on Soft NIC port:

./testpmd -c 0x3 --vdev 'net_softnic0,firmware=<script path>/firmware.cli,cpu_id=0,conn_port=8086' -- -i
 --forward-mode=softnic --portmask=0x2

...
Interactive-mode selected
Set softnic packet forwarding mode
...
Configuring Port 0 (socket 0)
Port 0: 90:E2:BA:37:9D:DC
Configuring Port 1 (socket 0)

; SPDX-License-Identifier: BSD-3-Clause
; Copyright(c) 2018 Intel Corporation

link LINK dev 0000:02:00.0

pipeline RX period 10 offset_port_id 0
pipeline RX port in bsz 32 link LINK rxq 0
pipeline RX port out bsz 32 swq RXQ0
pipeline RX table match stub
pipeline RX port in 0 table 0

pipeline TX period 10 offset_port_id 0
pipeline TX port in bsz 32 swq TXQ0
pipeline TX port out bsz 32 link LINK txq 0
pipeline TX table match stub
pipeline TX port in 0 table 0

thread 1 pipeline RX enable
thread 1 pipeline TX enable
Port 1: 00:00:00:00:00:00
Checking link statuses...
Done
testpmd>

	Start forwarding

testpmd> start
softnic packet forwarding - ports=1 - cores=1 - streams=1 - NUMA support enabled, MP over anonymous pages disabled
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=2/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:02

softnic packet forwarding packets/burst=32
nb forwarding cores=1 - nb forwarding ports=1
port 0: RX queue number: 1 Tx queue number: 1
Rx offloads=0x1000 Tx offloads=0x0
RX queue: 0
RX desc=512 - RX free threshold=32
RX threshold registers: pthresh=8 hthresh=8 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=512 - TX free threshold=32
TX threshold registers: pthresh=32 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=32
port 1: RX queue number: 1 Tx queue number: 1
Rx offloads=0x0 Tx offloads=0x0
RX queue: 0
RX desc=0 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=0 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=0

	Start remote client (e.g. telnet) to communicate with the softnic device:

$ telnet 127.0.0.1 8086
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Welcome to Soft NIC!

softnic>

	Add/update Soft NIC pipeline table match-action entries from telnet client:

softnic> pipeline RX table 0 rule add match default action fwd port 0
softnic> pipeline TX table 0 rule add match default action fwd port 0

46.6. Soft NIC Firmware

The Soft NIC firmware, for example- softnic/firmware.cli, consists of following CLI commands
for creating and managing software based NIC pipelines. For more details, please refer to CLI
command description provided in softnic/rte_eth_softnic_cli.c.

	Physical port for packets send/receive:

link LINK dev 0000:02:00.0

	Pipeline create:

pipeline RX period 10 offset_port_id 0 (Soft NIC rx-path pipeline)
pipeline TX period 10 offset_port_id 0 (Soft NIC tx-path pipeline)

	Pipeline input/output port create

pipeline RX port in bsz 32 link LINK rxq 0 (Soft NIC rx pipeline input port)
pipeline RX port out bsz 32 swq RXQ0 (Soft NIC rx pipeline output port)
pipeline TX port in bsz 32 swq TXQ0 (Soft NIC tx pipeline input port)
pipeline TX port out bsz 32 link LINK txq 0 (Soft NIC tx pipeline output port)

	Pipeline table create

pipeline RX table match stub (Soft NIC rx pipeline match-action table)
pipeline TX table match stub (Soft NIC tx pipeline match-action table)

	Pipeline input port connection with table

pipeline RX port in 0 table 0 (Soft NIC rx pipeline input port 0 connection with table 0)
pipeline TX port in 0 table 0 (Soft NIC tx pipeline input port 0 connection with table 0)

	Pipeline table match-action rules add

pipeline RX table 0 rule add match default action fwd port 0 (Soft NIC rx pipeline table 0 rule)
pipeline TX table 0 rule add match default action fwd port 0 (Soft NIC tx pipeline table 0 rule)

	Enable pipeline on CPU thread

thread 1 pipeline RX enable (Soft NIC rx pipeline enable on cpu thread id 1)
thread 1 pipeline TX enable (Soft NIC tx pipeline enable on cpu thread id 1)

46.7. QoS API Support:

SoftNIC PMD implements ethdev traffic management APIs rte_tm.h that
allow building and committing traffic manager hierarchy, configuring hierarchy
nodes of the Quality of Service (QoS) scheduler supported by DPDK librte_sched
library. Furthermore, APIs for run-time update to the traffic manager hierarchy
are supported by PMD.

SoftNIC PMD also implements ethdev traffic metering and policing APIs
rte_mtr.h that enables metering and marking of the packets with the
appropriate color (green, yellow or red), according to the traffic metering
algorithm. For the meter output color, policer actions like
keep the packet color same, change the packet color or drop the packet
can be configured.

Note

The SoftNIC does not support the meter object shared by several flows,
thus only supports creating meter object private to the flow. Once meter
object is successfully created, it can be linked to the specific flow by
specifying the meter flow action in the flow rule.

46.8. Flow API support:

The SoftNIC PMD implements ethdev flow APIs rte_flow.h that allow validating
flow rules, adding flow rules to the SoftNIC pipeline as table rules, deleting
and querying the flow rules. The PMD provides new cli command for creating the
flow group and their mapping to the SoftNIC pipeline and table. This cli should
be configured as part of firmware file.

flowapi map group <group_id> ingress | egress pipeline <pipeline_name> \
 table <table_id>

From the flow attributes of the flow, PMD uses the group id to get the mapped
pipeline and table. PMD supports number of flow actions such as
JMP, QUEUE, RSS, DROP, COUNT, METER, VXLAN etc.

Note

The flow must have one terminating actions i.e.
JMP or RSS or QUEUE or DROP. For the count and drop actions the
underlying PMD doesn’t support the functionality yet. So it is not
recommended for use.

The flow API can be tested with the help of testpmd application. The SoftNIC
firmware specifies CLI commands for port configuration, pipeline creation,
action profile creation and table creation. Once application gets initialized,
the flow rules can be added through the testpmd CLI.
The PMD will translate the flow rules to the SoftNIC pipeline tables rules.

46.8.1. Example:

Example demonstrates the flow queue action using the SoftNIC firmware and testpmd
commands.

	Prepare SoftNIC firmware

link LINK0 dev 0000:83:00.0
link LINK1 dev 0000:81:00.0
pipeline RX period 10 offset_port_id 0
pipeline RX port in bsz 32 link LINK0 rxq 0
pipeline RX port in bsz 32 link LINK1 rxq 0
pipeline RX port out bsz 32 swq RXQ0
pipeline RX port out bsz 32 swq RXQ1
table action profile AP0 ipv4 offset 278 fwd
pipeline RX table match hash ext key 16 mask
 00FF0000FFFFFFFFFFFFFFFFFFFFFFFF \
 offset 278 buckets 16K size 65K action AP0
pipeline RX port in 0 table 0
pipeline RX port in 1 table 0
flowapi map group 0 ingress pipeline RX table 0
pipeline TX period 10 offset_port_id 0
pipeline TX port in bsz 32 swq TXQ0
pipeline TX port in bsz 32 swq TXQ1
pipeline TX port out bsz 32 link LINK0 txq 0
pipeline TX port out bsz 32 link LINK1 txq 0
pipeline TX table match hash ext key 16 mask
 00FF0000FFFFFFFFFFFFFFFFFFFFFFFF \
 offset 278 buckets 16K size 65K action AP0
pipeline TX port in 0 table 0
pipeline TX port in 1 table 0
pipeline TX table 0 rule add match hash ipv4_5tuple
 1.10.11.12 2.20.21.22 100 200 6 action fwd port 0
pipeline TX table 0 rule add match hash ipv4_5tuple
 1.10.11.13 2.20.21.23 100 200 6 action fwd port 1
thread 25 pipeline RX enable
thread 25 pipeline TX enable

	Run testpmd:

./x86_64-native-linux-gcc/app/testpmd -l 23-25 -n 4 \
 --vdev 'net_softnic0, \
 firmware=./drivers/net/softnic/ \
 firmware.cli, \
 cpu_id=1,conn_port=8086' -- \
 -i --forward-mode=softnic --rxq=2, \
 --txq=2, --disable-rss --portmask=0x4

	Configure flow rules on softnic:

flow create 2 group 0 ingress pattern eth / ipv4 proto mask 255 src \
 mask 255.255.255.255 dst mask 255.255.255.255 src spec
 1.10.11.12 dst spec 2.20.21.22 proto spec 6 / tcp src mask 65535 \
 dst mask 65535 src spec 100 dst spec 200 / end actions queue \
 index 0 / end
flow create 2 group 0 ingress pattern eth / ipv4 proto mask 255 src \
 mask 255.255.255.255 dst mask 255.255.255.255 src spec 1.10.11.13 \
 dst spec 2.20.21.23 proto spec 6 / tcp src mask 65535 dst mask \
 65535 src spec 100 dst spec 200 / end actions queue index 1 / end

47. SZEDATA2 poll mode driver library

The SZEDATA2 poll mode driver library implements support for the Netcope
FPGA Boards (NFB-40G2, NFB-100G2, NFB-200G2QL) and Silicom FB2CGG3 card,
FPGA-based programmable NICs. The SZEDATA2 PMD uses interface provided by the libsze2
library to communicate with the NFB cards over the sze2 layer.

More information about the
NFB cards [http://www.netcope.com/en/products/fpga-boards]
and used technology
(Netcope Development Kit [http://www.netcope.com/en/products/fpga-development-kit])
can be found on the Netcope Technologies website [http://www.netcope.com/].

Note

This driver has external dependencies.
Therefore it is disabled in default configuration files.
It can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y
and recompiling.

Note

Currently the driver is supported only on x86_64 architectures.
Only x86_64 versions of the external libraries are provided.

47.1. Prerequisites

This PMD requires kernel modules which are responsible for initialization and
allocation of resources needed for sze2 layer function.
Communication between PMD and kernel modules is mediated by libsze2 library.
These kernel modules and library are not part of DPDK and must be installed
separately:

	libsze2 library

The library provides API for initialization of sze2 transfers, receiving and
transmitting data segments.

	Kernel modules

	combo6core

	combov3

	szedata2

	szedata2_cv3 or szedata2_cv3_fdt

Kernel modules manage initialization of hardware, allocation and
sharing of resources for user space applications.

Information about getting the dependencies can be found here [http://www.netcope.com/en/company/community-support/dpdk-libsze2].

47.1.1. Versions of the packages

The minimum version of the provided packages:

	for DPDK from 18.05: 4.4.1

	for DPDK up to 18.02 (including): 3.0.5

47.2. Configuration

These configuration options can be modified before compilation in the
.config file:

	CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

47.3. Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV.
SZEDATA2 device is automatically recognized during EAL initialization.
No special command line options are needed.

Kernel modules have to be loaded before running the DPDK application.

47.4. NFB card architecture

The NFB cards are multi-port multi-queue cards, where (generally) data from any
Ethernet port may be sent to any queue.
They were historically represented in DPDK as a single port.

However, the new NFB-200G2QL card employs an add-on cable which allows to connect
it to two physical PCI-E slots at the same time (see the diagram below).
This is done to allow 200 Gbps of traffic to be transferred through the PCI-E
bus (note that a single PCI-E 3.0 x16 slot provides only 125 Gbps theoretical
throughput).

Since each slot may be connected to a different CPU and therefore to a different
NUMA node, the card is represented as two ports in DPDK (each with half of the
queues), which allows DPDK to work with data from the individual queues on the
right NUMA node.

[image: ../_images/szedata2_nfb200g_architecture.svg]
Fig. 47.1 NFB-200G2QL high-level diagram

47.5. Limitations

The SZEDATA2 PMD does not support operations related to Ethernet ports
(link_up, link_down, set_mac_address, etc.).

NFB cards employ multiple Ethernet ports.
Until now, Ethernet port-related operations were performed on all of them
(since the whole card was represented as a single port).
With NFB-200G2QL card, this is no longer viable (see above).

Since there is no fixed mapping between the queues and Ethernet ports, and since
a single card can be represented as two ports in DPDK, there is no way of
telling which (if any) physical ports should be associated with individual
ports in DPDK.

47.6. Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1.
transmit channel:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)
PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding
 io packet forwarding - CRC stripping disabled - packets/burst=32
 nb forwarding cores=2 - nb forwarding ports=1
 RX queues=2 - RX desc=128 - RX free threshold=0
 RX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX queues=2 - TX desc=512 - TX free threshold=0
 TX threshold registers: pthresh=0 hthresh=0 wthresh=0
 TX RS bit threshold=0 - TXQ flags=0x0
testpmd>

48. Tun|Tap Poll Mode Driver

The rte_eth_tap.c PMD creates a device using TAP interfaces on the
local host. The PMD allows for DPDK and the host to communicate using a raw
device interface on the host and in the DPDK application.

The device created is a TAP device, which sends/receives packet in a raw
format with a L2 header. The usage for a TAP PMD is for connectivity to the
local host using a TAP interface. When the TAP PMD is initialized it will
create a number of tap devices in the host accessed via ifconfig -a or
ip command. The commands can be used to assign and query the virtual like
device.

These TAP interfaces can be used with Wireshark or tcpdump or Pktgen-DPDK
along with being able to be used as a network connection to the DPDK
application. The method enable one or more interfaces is to use the
--vdev=net_tap0 option on the DPDK application command line. Each
--vdev=net_tap1 option given will create an interface named dtap0, dtap1,
and so on.

The interface name can be changed by adding the iface=foo0, for example:

--vdev=net_tap0,iface=foo0 --vdev=net_tap1,iface=foo1, ...

Normally the PMD will generate a random MAC address, but when testing or with
a static configuration the developer may need a fixed MAC address style.
Using the option mac=fixed you can create a fixed known MAC address:

--vdev=net_tap0,mac=fixed

The MAC address will have a fixed value with the last octet incrementing by one
for each interface string containing mac=fixed. The MAC address is formatted
as 00:’d’:’t’:’a’:’p’:[00-FF]. Convert the characters to hex and you get the
actual MAC address: 00:64:74:61:70:[00-FF].

–vdev=net_tap0,mac=”00:64:74:61:70:11”

The MAC address will have a user value passed as string. The MAC address is in
format with delimiter :. The string is byte converted to hex and you get
the actual MAC address: 00:64:74:61:70:11.

It is possible to specify a remote netdevice to capture packets from by adding
remote=foo1, for example:

--vdev=net_tap,iface=tap0,remote=foo1

If a remote is set, the tap MAC address will be set to match the remote one
just after netdevice creation. Using TC rules, traffic from the remote netdevice
will be redirected to the tap. If the tap is in promiscuous mode, then all
packets will be redirected. In allmulti mode, all multicast packets will be
redirected.

Using the remote feature is especially useful for capturing traffic from a
netdevice that has no support in the DPDK. It is possible to add explicit
rte_flow rules on the tap PMD to capture specific traffic (see next section for
examples).

After the DPDK application is started you can send and receive packets on the
interface using the standard rx_burst/tx_burst APIs in DPDK. From the host
point of view you can use any host tool like tcpdump, Wireshark, ping, Pktgen
and others to communicate with the DPDK application. The DPDK application may
not understand network protocols like IPv4/6, UDP or TCP unless the
application has been written to understand these protocols.

If you need the interface as a real network interface meaning running and has
a valid IP address then you can do this with the following commands:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Please change the IP addresses as you see fit.

If routing is enabled on the host you can also communicate with the DPDK App
over the internet via a standard socket layer application as long as you
account for the protocol handling in the application.

If you have a Network Stack in your DPDK application or something like it you
can utilize that stack to handle the network protocols. Plus you would be able
to address the interface using an IP address assigned to the internal
interface.

The TUN PMD allows user to create a TUN device on host. The PMD allows user
to transmit and receive packets via DPDK API calls with L3 header and payload.
The devices in host can be accessed via ifconfig or ip command. TUN
interfaces are passed to DPDK rte_eal_init arguments as --vdev=net_tunX,
where X stands for unique id, example:

--vdev=net_tun0 --vdev=net_tun1,iface=foo1, ...

Unlike TAP PMD, TUN PMD does not support user arguments as MAC or remote user
options. Default interface name is dtunX, where X stands for unique id.

48.1. Flow API support

The tap PMD supports major flow API pattern items and actions, when running on
linux kernels above 4.2 (“Flower” classifier required).
The kernel support can be checked with this command:

zcat /proc/config.gz | (grep 'CLS_FLOWER=' || echo 'not supported') |
tee -a /dev/stderr | grep -q '=m' &&
lsmod | (grep cls_flower || echo 'try modprobe cls_flower')

Supported items:

	eth: src and dst (with variable masks), and eth_type (0xffff mask).

	vlan: vid, pcp, but not eid. (requires kernel 4.9)

	ipv4/6: src and dst (with variable masks), and ip_proto (0xffff mask).

	udp/tcp: src and dst port (0xffff) mask.

Supported actions:

	DROP

	QUEUE

	PASSTHRU

	RSS (requires kernel 4.9)

It is generally not possible to provide a “last” item. However, if the “last”
item, once masked, is identical to the masked spec, then it is supported.

Only IPv4/6 and MAC addresses can use a variable mask. All other items need a
full mask (exact match).

As rules are translated to TC, it is possible to show them with something like:

tc -s filter show dev tap1 parent 1:

48.1.1. Examples of testpmd flow rules

Drop packets for destination IP 192.0.2.1:

testpmd> flow create 0 priority 1 ingress pattern eth / ipv4 dst is 192.0.2.1 \
 / end actions drop / end

Ensure packets from a given MAC address are received on a queue 2:

testpmd> flow create 0 priority 2 ingress pattern eth src is 06:05:04:03:02:01 \
 / end actions queue index 2 / end

Drop UDP packets in vlan 3:

testpmd> flow create 0 priority 3 ingress pattern eth / vlan vid is 3 / \
 ipv4 proto is 17 / end actions drop / end

Distribute IPv4 TCP packets using RSS to a given MAC address over queues 0-3:

testpmd> flow create 0 priority 4 ingress pattern eth dst is 0a:0b:0c:0d:0e:0f \
 / ipv4 / tcp / end actions rss queues 0 1 2 3 end / end

48.2. Multi-process sharing

It is possible to attach an existing TAP device in a secondary process,
by declaring it as a vdev with the same name as in the primary process,
and without any parameter.

The port attached in a secondary process will give access to the
statistics and the queues.
Therefore it can be used for monitoring or Rx/Tx processing.

The IPC synchronization of Rx/Tx queues is currently limited:

	Maximum 8 queues shared

	Synchronized on probing, but not on later port update

48.3. Example

The following is a simple example of using the TAP PMD with the Pktgen
packet generator. It requires that the socat utility is installed on the
test system.

Build DPDK, then pull down Pktgen and build pktgen using the DPDK SDK/Target
used to build the dpdk you pulled down.

Run pktgen from the pktgen directory in a terminal with a commandline like the
following:

sudo ./app/app/x86_64-native-linux-gcc/app/pktgen -l 1-5 -n 4 \
 --proc-type auto --log-level debug --socket-mem 512,512 --file-prefix pg \
 --vdev=net_tap0 --vdev=net_tap1 -b 05:00.0 -b 05:00.1 \
 -b 04:00.0 -b 04:00.1 -b 04:00.2 -b 04:00.3 \
 -b 81:00.0 -b 81:00.1 -b 81:00.2 -b 81:00.3 \
 -b 82:00.0 -b 83:00.0 -- -T -P -m [2:3].0 -m [4:5].1 \
 -f themes/black-yellow.theme

Verify with ifconfig -a command in a different xterm window, should have a
dtap0 and dtap1 interfaces created.

Next set the links for the two interfaces to up via the commands below:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Then use socat to create a loopback for the two interfaces:

sudo socat interface:dtap0 interface:dtap1

Then on the Pktgen command line interface you can start sending packets using
the commands start 0 and start 1 or you can start both at the same
time with start all. The command str is an alias for start all and
stp is an alias for stop all.

While running you should see the 64 byte counters increasing to verify the
traffic is being looped back. You can use set all size XXX to change the
size of the packets after you stop the traffic. Use pktgen help
command to see a list of all commands. You can also use the -f option to
load commands at startup in command line or Lua script in pktgen.

48.4. RSS specifics

Packet distribution in TAP is done by the kernel which has a default
distribution. This feature is adding RSS distribution based on eBPF code.
The default eBPF code calculates RSS hash based on Toeplitz algorithm for
a fixed RSS key. It is calculated on fixed packet offsets. For IPv4 and IPv6 it
is calculated over src/dst addresses (8 or 32 bytes for IPv4 or IPv6
respectively) and src/dst TCP/UDP ports (4 bytes).

The RSS algorithm is written in file tap_bpf_program.c which
does not take part in TAP PMD compilation. Instead this file is compiled
in advance to eBPF object file. The eBPF object file is then parsed and
translated into eBPF byte code in the format of C arrays of eBPF
instructions. The C array of eBPF instructions is part of TAP PMD tree and
is taking part in TAP PMD compilation. At run time the C arrays are uploaded to
the kernel via BPF system calls and the RSS hash is calculated by the
kernel.

It is possible to support different RSS hash algorithms by updating file
tap_bpf_program.c In order to add a new RSS hash algorithm follow these
steps:

	Write the new RSS implementation in file tap_bpf_program.c

BPF programs which are uploaded to the kernel correspond to
C functions under different ELF sections.

	Install LLVM library and clang compiler versions 3.7 and above

	Compile tap_bpf_program.c via LLVM into an object file:

clang -O2 -emit-llvm -c tap_bpf_program.c -o - | llc -march=bpf \
-filetype=obj -o <tap_bpf_program.o>

4. Use a tool that receives two parameters: an eBPF object file and a section
name, and prints out the section as a C array of eBPF instructions.
Embed the C array in your TAP PMD tree.

The C arrays are uploaded to the kernel using BPF system calls.

tc (traffic control) is a well known user space utility program used to
configure the Linux kernel packet scheduler. It is usually packaged as
part of the iproute2 package.
Since commit 11c39b5e9 (“tc: add eBPF support to f_bpf”) tc can be used
to uploads eBPF code to the kernel and can be patched in order to print the
C arrays of eBPF instructions just before calling the BPF system call.
Please refer to iproute2 package file lib/bpf.c function
bpf_prog_load().

An example utility for eBPF instruction generation in the format of C arrays will
be added in next releases

TAP reports on supported RSS functions as part of dev_infos_get callback:
ETH_RSS_IP, ETH_RSS_UDP and ETH_RSS_TCP.
Known limitation: TAP supports all of the above hash functions together
and not in partial combinations.

48.5. Systems supporting flow API

	“tc flower” classifier requires linux kernel above 4.2

	eBPF/RSS requires linux kernel above 4.9

	RH7.3

	No flow rule support

	RH7.4

	No RSS action support

	RH7.5

	No RSS action support

	SLES 15,
kernel 4.12

	No limitation

	Azure Ubuntu 16.04,
kernel 4.13

	No limitation

49. ThunderX NICVF Poll Mode Driver

The ThunderX NICVF PMD (librte_pmd_thunderx_nicvf) provides poll mode driver
support for the inbuilt NIC found in the Cavium ThunderX SoC family
as well as their virtual functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website [http://www.cavium.com/ThunderX_ARM_Processors.html].

49.1. Features

Features of the ThunderX PMD are:

	Multiple queues for TX and RX

	Receive Side Scaling (RSS)

	Packet type information

	Checksum offload

	Promiscuous mode

	Multicast mode

	Port hardware statistics

	Jumbo frames

	Link state information

	Setting up link state.

	Scattered and gather for TX and RX

	VLAN stripping

	SR-IOV VF

	NUMA support

	Multi queue set support (up to 96 queues (12 queue sets)) per port

	Skip data bytes

49.2. Supported ThunderX SoCs

	CN88xx

	CN81xx

	CN83xx

49.3. Prerequisites

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

49.4. Pre-Installation Configuration

49.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_THUNDERX_NICVF_PMD (default y)

Toggle compilation of the librte_pmd_thunderx_nicvf driver.

	CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_RX (default n)

Toggle asserts of receive fast path.

	CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_TX (default n)

Toggle asserts of transmit fast path.

49.5. Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC
for details.

To compile the ThunderX NICVF PMD for Linux arm64 gcc,
use arm64-thunderx-linux-gcc as target.

49.6. Linux

49.6.1. SR-IOV: Prerequisites and sample Application Notes

Current ThunderX NIC PF/VF kernel modules maps each physical Ethernet port
automatically to virtual function (VF) and presented them as PCIe-like SR-IOV device.
This section provides instructions to configure SR-IOV with Linux OS.

	Verify PF devices capabilities using lspci:

lspci -vvv

Example output:

0002:01:00.0 Ethernet controller: Cavium Networks Device a01e (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Capabilities: [180 v1] Single Root I/O Virtualization (SR-IOV)
...
Kernel driver in use: thunder-nic
...

Note

Unless thunder-nic driver is in use make sure your kernel config includes CONFIG_THUNDER_NIC_PF setting.

	Verify VF devices capabilities and drivers using lspci:

lspci -vvv

Example output:

0002:01:00.1 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

0002:01:00.2 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

Note

Unless thunder-nicvf driver is in use make sure your kernel config includes CONFIG_THUNDER_NIC_VF setting.

	Pass VF device to VM context (PCIe Passthrough):

The VF devices may be passed through to the guest VM using qemu or
virt-manager or virsh etc.

Example qemu guest launch command:

sudo qemu-system-aarch64 -name vm1 \
-machine virt,gic_version=3,accel=kvm,usb=off \
-cpu host -m 4096 \
-smp 4,sockets=1,cores=8,threads=1 \
-nographic -nodefaults \
-kernel <kernel image> \
-append "root=/dev/vda console=ttyAMA0 rw hugepagesz=512M hugepages=3" \
-device vfio-pci,host=0002:01:00.1 \
-drive file=<rootfs.ext3>,if=none,id=disk1,format=raw \
-device virtio-blk-device,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-netdev tap,id=net0,ifname=tap0,script=/etc/qemu-ifup_thunder \
-device virtio-net-device,netdev=net0 \
-serial stdio \
-mem-path /dev/huge

	Enable VFIO-NOIOMMU mode (optional):

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Note

VFIO-NOIOMMU is required only when running in VM context and should not be enabled otherwise.

	Running testpmd:

Follow instructions available in the document
compiling and testing a PMD for a NIC
to run testpmd.

Example output:

./arm64-thunderx-linux-gcc/app/testpmd -l 0-3 -n 4 -w 0002:01:00.2 \
 -- -i --no-flush-rx \
 --port-topology=loop

...

PMD: rte_nicvf_pmd_init(): librte_pmd_thunderx nicvf version 1.0

...
EAL: probe driver: 177d:11 rte_nicvf_pmd
EAL: using IOMMU type 1 (Type 1)
EAL: PCI memory mapped at 0x3ffade50000
EAL: Trying to map BAR 4 that contains the MSI-X table.
 Trying offsets: 0x40000000000:0x0000, 0x10000:0x1f0000
EAL: PCI memory mapped at 0x3ffadc60000
PMD: nicvf_eth_dev_init(): nicvf: device (177d:11) 2:1:0:2
PMD: nicvf_eth_dev_init(): node=0 vf=1 mode=tns-bypass sqs=false
 loopback_supported=true
PMD: nicvf_eth_dev_init(): Port 0 (177d:11) mac=a6:c6:d9:17:78:01
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: nicvf_dev_configure(): Configured ethdev port0 hwcap=0x0
Port 0: A6:C6:D9:17:78:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

49.6.2. Multiple Queue Set per DPDK port configuration

There are two types of VFs:

	Primary VF

	Secondary VF

Each port consists of a primary VF and n secondary VF(s). Each VF provides 8 Tx/Rx queues to a port.
When a given port is configured to use more than 8 queues, it requires one (or more) secondary VF.
Each secondary VF adds 8 additional queues to the queue set.

During PMD driver initialization, the primary VF’s are enumerated by checking the
specific flag (see sqs message in DPDK boot log - sqs indicates secondary queue set).
They are at the beginning of VF list (the remain ones are secondary VF’s).

The primary VFs are used as master queue sets. Secondary VFs provide
additional queue sets for primary ones. If a port is configured for more then
8 queues than it will request for additional queues from secondary VFs.

Secondary VFs cannot be shared between primary VFs.

Primary VFs are present on the beginning of the ‘Network devices using kernel
driver’ list, secondary VFs are on the remaining on the remaining part of the list.

Note

The VNIC driver in the multiqueue setup works differently than other drivers like ixgbe.
We need to bind separately each specific queue set device with the usertools/dpdk-devbind.py utility.

Note

Depending on the hardware used, the kernel driver sets a threshold vf_id. VFs that try to attached with an id below or equal to
this boundary are considered primary VFs. VFs that try to attach with an id above this boundary are considered secondary VFs.

49.6.3. LBK HW Access

Loopback HW Unit (LBK) receives packets from NIC-RX and sends packets back to NIC-TX.
The loopback block has N channels and contains data buffering that is shared across
all channels. Four primary VFs are reserved as loopback ports.

49.6.4. Example device binding

If a system has three interfaces, a total of 18 VF devices will be created
on a non-NUMA machine.

Note

NUMA systems have 12 VFs per port and non-NUMA 6 VFs per port.

usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:01:10.0 'THUNDERX BGX (Common Ethernet Interface) a026' if= drv=thunder-BGX unused=vfio-pci
0000:01:10.1 'THUNDERX BGX (Common Ethernet Interface) a026' if= drv=thunder-BGX unused=vfio-pci
0001:01:00.0 'THUNDERX Network Interface Controller a01e' if= drv=thunder-nic unused=vfio-pci
0001:01:00.1 'Device a034' if=eth0 drv=thunder-nicvf unused=vfio-pci
0001:01:00.2 'Device a034' if=eth1 drv=thunder-nicvf unused=vfio-pci
0001:01:00.3 'Device a034' if=eth2 drv=thunder-nicvf unused=vfio-pci
0001:01:00.4 'Device a034' if=eth3 drv=thunder-nicvf unused=vfio-pci
0001:01:00.5 'Device a034' if=eth4 drv=thunder-nicvf unused=vfio-pci
0001:01:00.6 'Device a034' if=lbk0 drv=thunder-nicvf unused=vfio-pci
0001:01:00.7 'Device a034' if=lbk1 drv=thunder-nicvf unused=vfio-pci
0001:01:01.0 'Device a034' if=lbk2 drv=thunder-nicvf unused=vfio-pci
0001:01:01.1 'Device a034' if=lbk3 drv=thunder-nicvf unused=vfio-pci
0001:01:01.2 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.3 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.4 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.5 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.6 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.7 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.0 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.1 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.2 'Device a034' if= drv=thunder-nicvf unused=vfio-pci

Other network devices
=====================
0002:00:03.0 'Device a01f' unused=vfio-pci,uio_pci_generic

Note

Here total no of primary VFs = 5 (variable, depends on no of ethernet ports present) + 4 (fixed, loopback ports).
Ethernet ports are indicated as if=eth0 while loopback ports as if=lbk0.

We want to bind two physical interfaces with 24 queues each device, we attach two primary VFs
and four secondary VFs. In our example we choose two 10G interfaces eth1 (0002:01:00.2) and eth2 (0002:01:00.3).
We will choose four secondary queue sets from the ending of the list (0001:01:01.2-0002:01:02.2).

	Bind two primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.2
usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.3

	Bind four primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:01.7
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.0
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.1
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.2

The nicvf thunderx driver will make use of attached secondary VFs automatically during the interface configuration stage.

49.6.5. Thunder-nic VF’s

	Use sysfs to distinguish thunder-nic primary VFs and secondary VFs.
	ls -l /sys/bus/pci/drivers/thunder-nic/
total 0
drwxr-xr-x 2 root root 0 Jan 22 11:19 ./
drwxr-xr-x 86 root root 0 Jan 22 11:07 ../
lrwxrwxrwx 1 root root 0 Jan 22 11:19 0001:01:00.0 -> '../../../../devices/platform/soc@0/849000000000.pci/pci0001:00/0001:00:10.0/0001:01:00.0'/

cat /sys/bus/pci/drivers/thunder-nic/0001\:01\:00.0/sriov_sqs_assignment
12
0 0001:01:00.1 vfio-pci +: 12 13
1 0001:01:00.2 thunder-nicvf -:
2 0001:01:00.3 thunder-nicvf -:
3 0001:01:00.4 thunder-nicvf -:
4 0001:01:00.5 thunder-nicvf -:
5 0001:01:00.6 thunder-nicvf -:
6 0001:01:00.7 thunder-nicvf -:
7 0001:01:01.0 thunder-nicvf -:
8 0001:01:01.1 thunder-nicvf -:
9 0001:01:01.2 thunder-nicvf -:
10 0001:01:01.3 thunder-nicvf -:
11 0001:01:01.4 thunder-nicvf -:
12 0001:01:01.5 vfio-pci: 0
13 0001:01:01.6 vfio-pci: 0
14 0001:01:01.7 thunder-nicvf: 255
15 0001:01:02.0 thunder-nicvf: 255
16 0001:01:02.1 thunder-nicvf: 255
17 0001:01:02.2 thunder-nicvf: 255
18 0001:01:02.3 thunder-nicvf: 255
19 0001:01:02.4 thunder-nicvf: 255
20 0001:01:02.5 thunder-nicvf: 255
21 0001:01:02.6 thunder-nicvf: 255
22 0001:01:02.7 thunder-nicvf: 255
23 0001:01:03.0 thunder-nicvf: 255
24 0001:01:03.1 thunder-nicvf: 255
25 0001:01:03.2 thunder-nicvf: 255
26 0001:01:03.3 thunder-nicvf: 255
27 0001:01:03.4 thunder-nicvf: 255
28 0001:01:03.5 thunder-nicvf: 255
29 0001:01:03.6 thunder-nicvf: 255
30 0001:01:03.7 thunder-nicvf: 255
31 0001:01:04.0 thunder-nicvf: 255

Every column that ends with ‘thunder-nicvf: number’ can be used as secondary VF.
In printout above all entres after ‘14 0001:01:01.7 thunder-nicvf: 255’ can be used as secondary VF.

49.7. Debugging Options

	EAL command option to change log level
	--log-level=pmd.net.thunderx.driver:info
or
--log-level=pmd.net.thunderx.driver,7

49.8. Module params

49.8.1. skip_data_bytes

This feature is used to create a hole between HEADROOM and actual data. Size of hole is specified
in bytes as module param(“skip_data_bytes”) to pmd.
This scheme is useful when application would like to insert vlan header without disturbing HEADROOM.

	Example:
	-w 0002:01:00.2,skip_data_bytes=8

49.9. Limitations

49.9.1. CRC stripping

The ThunderX SoC family NICs strip the CRC for every packets coming into the
host interface irrespective of the offload configuration.

49.9.2. Maximum packet length

The ThunderX SoC family NICs support a maximum of a 9K jumbo frame. The value
is fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len
member of struct rte_eth_conf is set to a value lower than 9200, frames
up to 9200 bytes can still reach the host interface.

49.9.3. Maximum packet segments

The ThunderX SoC family NICs support up to 12 segments per packet when working
in scatter/gather mode. So, setting MTU will result with EINVAL when the
frame size does not fit in the maximum number of segments.

49.9.4. skip_data_bytes

Maximum limit of skip_data_bytes is 128 bytes and number of bytes should be multiple of 8.

50. VDEV_NETVSC driver

The VDEV_NETVSC driver (librte_pmd_vdev_netvsc) provides support for NetVSC
interfaces and associated SR-IOV virtual function (VF) devices found in
Linux virtual machines running on Microsoft Hyper-V [https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-hyper-v] (including Azure)
platforms.

50.1. Implementation details

Each instance of this driver effectively needs to drive two devices: the
NetVSC interface proper and its SR-IOV VF (referred to as “physical” from
this point on) counterpart sharing the same MAC address.

Physical devices are part of the host system and cannot be maintained during
VM migration. From a VM standpoint they appear as hot-plug devices that come
and go without prior notice.

When the physical device is present, egress and most of the ingress traffic
flows through it; only multicasts and other hypervisor control still flow
through NetVSC. Otherwise, NetVSC acts as a fallback for all traffic.

To avoid unnecessary code duplication and ensure maximum performance,
handling of physical devices is left to their original PMDs; this virtual
device driver (also known as vdev) manages other PMDs as summarized by the
following block diagram:

 .------------------.
 | DPDK application |
 `--------+---------'
 |
 .------+------.
 | DPDK ethdev |
 `------+------' Control
 | |
 .------------+------------. v .--------------------.
 | failsafe PMD +---------+ vdev_netvsc driver |
 `--+-------------------+--' `--------------------'
 | |
 | |.........
 | : | :
 .----+----. : .----+----. :
 | tap PMD | : | any PMD | :
 `----+----' : `----+----' : <-- Hot-pluggable
 | : | :
.------+-------. : .-----+-----. :
| NetVSC-based | : | SR-IOV VF | :
| netdevice | : | device | :
`--------------' : `-----------' :
 :.................:

This driver implementation may be temporary and should be improved or removed
either when hot-plug will be fully supported in EAL and bus drivers or when
a new NetVSC driver will be integrated.

50.2. Build options

	CONFIG_RTE_LIBRTE_VDEV_NETVSC_PMD (default y)

Toggle compilation of this driver.

50.3. Run-time parameters

This driver is invoked automatically in Hyper-V VM systems unless the user
invoked it by command line using --vdev=net_vdev_netvsc EAL option.

The following device parameters are supported:

	iface [string]

Provide a specific NetVSC interface (netdevice) name to attach this driver
to. Can be provided multiple times for additional instances.

	mac [string]

Same as iface except a suitable NetVSC interface is located using its
MAC address.

	force [int]

If nonzero, forces the use of specified interfaces even if not detected as
NetVSC.

	ignore [int]

If nonzero, ignores the driver running (actually used to disable the
auto-detection in Hyper-V VM).

Note

Not specifying either iface or mac makes this driver attach itself to
all unrouted NetVSC interfaces found on the system.
Specifying the device makes this driver attach itself to the device
regardless the device routes.

51. Poll Mode Driver for Emulated Virtio NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor.
In the Data Plane Development Kit (DPDK),
we provide a virtio Poll Mode Driver (PMD) as a software solution, comparing to SRIOV hardware solution,
for fast guest VM to guest VM communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend.
The DPDK extends kni to support vhost raw socket interface,
which enables vhost to directly read/ write packets from/to a physical port.
With this enhancement, virtio could achieve quite promising performance.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM,
please refer to Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends,
standard qemu vhost back end and vhost kni back end.

51.1. Virtio Implementation in DPDK

For details about the virtio spec, refer to the latest
VIRTIO (Virtual I/O) Device Specification [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=virtio].

As a PMD, virtio provides packet reception and transmission callbacks.

In Rx, packets described by the used descriptors in vring are available
for virtio to burst out.

In Tx, packets described by the used descriptors in vring are available
for virtio to clean. Virtio will enqueue to be transmitted packets into
vring, make them available to the device, and then notify the host back
end if necessary.

51.2. Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and transmission.

	It supports merge-able buffers per packet when receiving packets and scattered buffer per packet
when transmitting packets. The packet size supported is from 64 to 1518.

	It supports multicast packets and promiscuous mode.

	The descriptor number for the Rx/Tx queue is hard-coded to be 256 by qemu 2.7 and below.
If given a different descriptor number by the upper application,
the virtio PMD generates a warning and fall back to the hard-coded value.
Rx queue size can be configurable and up to 1024 since qemu 2.8 and above. Rx queue size is 256
by default. Tx queue size is still hard-coded to be 256.

	Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to support them.
When backend can’t support vlan filter, virtio app on guest should not enable vlan filter in order
to make sure the virtio port is configured correctly. E.g. do not specify ‘–enable-hw-vlan’ in testpmd
command line. Note that, mac/vlan filter is best effort: unwanted packets could still arrive.

	“RTE_PKTMBUF_HEADROOM” should be defined
no less than “sizeof(struct virtio_net_hdr_mrg_rxbuf)”, which is 12 bytes when mergeable or
“VIRTIO_F_VERSION_1” is set.
no less than “sizeof(struct virtio_net_hdr)”, which is 10 bytes, when using non-mergeable.

	Virtio does not support runtime configuration.

	Virtio supports Link State interrupt.

	Virtio supports Rx interrupt (so far, only support 1:1 mapping for queue/interrupt).

	Virtio supports software vlan stripping and inserting.

	Virtio supports using port IO to get PCI resource when uio/igb_uio module is not available.

51.3. Prerequisites

The following prerequisites apply:

	In the BIOS, turn VT-x and VT-d on

	Linux kernel with KVM module; vhost module loaded and ioeventfd supported.
Qemu standard backend without vhost support isn’t tested, and probably isn’t supported.

51.4. Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

[image: ../_images/host_vm_comms.png]

Fig. 51.1 Host2VM Communication Example Using kni vhost Back End

Host2VM communication example

	Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed here.
Please refer to the DPDK Getting Started Guide for detailed instructions.

	Launch the kni user application:

examples/kni/build/app/kni -l 0-3 -n 4 -- -p 0x1 -P --config="(0,1,3)"

This command generates one network device vEth0 for physical port.
If specify more physical ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads.
One thread loops to fetch packets from the physical NIC port into the kni receive queue.
The other user thread loops to send packets in the kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni receive queue,
place them onto kni’s raw socket’s queue and wake up the vhost kernel thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to Kernel NIC Interface.

	Enable the kni raw socket functionality for the specified physical NIC port,
get the generated file descriptor and set it in the qemu command line parameter.
Always remember to set ioeventfd_on and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which in turns corresponds to a physical port,
which means received packets come from vEth0, and transmitted packets is sent to vEth0.

	In the guest, bind the virtio device to the uio_pci_generic kernel module and start the forwarding application.
When the virtio port in guest bursts Rx, it is getting packets from the
raw socket’s receive queue.
When the virtio port bursts Tx, it is sending packet to the tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python usertools/dpdk-devbind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

[image: ../_images/console.png]

Fig. 51.2 Running testpmd

	Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI Rx queue->KNI raw socket queue->Guest
VM virtio port 0 Rx burst->Guest VM virtio port 0 Tx burst-> KNI Tx queue
->82599 PF-> IXIA packet generator

51.5. Virtio with qemu virtio Back End

[image: ../_images/host_vm_comms_qemu.png]

Fig. 51.3 Host2VM Communication Example Using qemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on
-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest
VM virtio port 0 Rx burst-> Guest VM 82599 VF port1 Tx burst-> IXIA packet
generator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 Rx burst-> Guest VM virtio
port 0 Tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

51.6. Virtio PMD Rx/Tx Callbacks

Virtio driver has 6 Rx callbacks and 3 Tx callbacks.

Rx callbacks:

	virtio_recv_pkts:
Regular version without mergeable Rx buffer support for split virtqueue.

	virtio_recv_mergeable_pkts:
Regular version with mergeable Rx buffer support for split virtqueue.

	virtio_recv_pkts_vec:
Vector version without mergeable Rx buffer support, also fixes the available
ring indexes and uses vector instructions to optimize performance for split
virtqueue.

	virtio_recv_pkts_inorder:
In-order version with mergeable and non-mergeable Rx buffer support
for split virtqueue.

	virtio_recv_pkts_packed:
Regular and in-order version without mergeable Rx buffer support for
packed virtqueue.

	virtio_recv_mergeable_pkts_packed:
Regular and in-order version with mergeable Rx buffer support for packed
virtqueue.

Tx callbacks:

	virtio_xmit_pkts:
Regular version for split virtqueue.

	virtio_xmit_pkts_inorder:
In-order version for split virtqueue.

	virtio_xmit_pkts_packed:
Regular and in-order version for packed virtqueue.

By default, the non-vector callbacks are used:

	For Rx: If mergeable Rx buffers is disabled then virtio_recv_pkts
or virtio_recv_pkts_packed will be used, otherwise
virtio_recv_mergeable_pkts or virtio_recv_mergeable_pkts_packed
will be used.

	For Tx: virtio_xmit_pkts or virtio_xmit_pkts_packed will be used.

Vector callbacks will be used when:

	Mergeable Rx buffers is disabled.

The corresponding callbacks are:

	For Rx: virtio_recv_pkts_vec.

There is no vector callbacks for packed virtqueue for now.

Example of using the vector version of the virtio poll mode driver in
testpmd:

testpmd -l 0-2 -n 4 -- -i --rxq=1 --txq=1 --nb-cores=1

In-order callbacks only work on simulated virtio user vdev.

For split virtqueue:

	For Rx: If in-order is enabled then virtio_recv_pkts_inorder is used.

	For Tx: If in-order is enabled then virtio_xmit_pkts_inorder is used.

For packed virtqueue, the default callbacks already support the
in-order feature.

51.7. Interrupt mode

There are three kinds of interrupts from a virtio device over PCI bus: config
interrupt, Rx interrupts, and Tx interrupts. Config interrupt is used for
notification of device configuration changes, especially link status (lsc).
Interrupt mode is translated into Rx interrupts in the context of DPDK.

Note

Virtio PMD already has support for receiving lsc from qemu when the link
status changes, especially when vhost user disconnects. However, it fails
to do that if the VM is created by qemu 2.6.2 or below, since the
capability to detect vhost user disconnection is introduced in qemu 2.7.0.

51.7.1. Prerequisites for Rx interrupts

To support Rx interrupts,
#. Check if guest kernel supports VFIO-NOIOMMU:

Linux started to support VFIO-NOIOMMU since 4.8.0. Make sure the guest
kernel is compiled with:

CONFIG_VFIO_NOIOMMU=y

	Properly set msix vectors when starting VM:

Enable multi-queue when starting VM, and specify msix vectors in qemu
cmdline. (N+1) is the minimum, and (2N+2) is mostly recommended.

$(QEMU) ... -device virtio-net-pci,mq=on,vectors=2N+2 ...

	In VM, insert vfio module in NOIOMMU mode:

modprobe vfio enable_unsafe_noiommu_mode=1
modprobe vfio-pci

	In VM, bind the virtio device with vfio-pci:

python usertools/dpdk-devbind.py -b vfio-pci 00:03.0

51.7.2. Example

Here we use l3fwd-power as an example to show how to get started.

Example:

$ l3fwd-power -l 0-1 -- -p 1 -P --config="(0,0,1)" \
 --no-numa --parse-ptype

51.8. Virtio PMD arguments

Below devargs are supported by the PCI virtio driver:

	vdpa:

A virtio device could also be driven by vDPA (vhost data path acceleration)
driver, and works as a HW vhost backend. This argument is used to specify
a virtio device needs to work in vDPA mode.
(Default: 0 (disabled))

	speed:

It is used to specify link speed of virtio device. Link speed is a part of
link status structure. It could be requested by application using
rte_eth_link_get_nowait function.
(Default: 10000 (10G))

	vectorized:

It is used to specify whether virtio device prefers to use vectorized path.
Afterwards, dependencies of vectorized path will be checked in path
election.
(Default: 0 (disabled))

Below devargs are supported by the virtio-user vdev:

	path:

It is used to specify a path to connect to vhost backend.

	mac:

It is used to specify the MAC address.

	cq:

It is used to enable the control queue. (Default: 0 (disabled))

	queue_size:

It is used to specify the queue size. (Default: 256)

	queues:

It is used to specify the queue number. (Default: 1)

	iface:

It is used to specify the host interface name for vhost-kernel
backend.

	server:

It is used to enable the server mode when using vhost-user backend.
(Default: 0 (disabled))

	mrg_rxbuf:

It is used to enable virtio device mergeable Rx buffer feature.
(Default: 1 (enabled))

	in_order:

It is used to enable virtio device in-order feature.
(Default: 1 (enabled))

	packed_vq:

It is used to enable virtio device packed virtqueue feature.
(Default: 0 (disabled))

	speed:

It is used to specify link speed of virtio device. Link speed is a part of
link status structure. It could be requested by application using
rte_eth_link_get_nowait function.
(Default: 10000 (10G))

	vectorized:

It is used to specify whether virtio device prefers to use vectorized path.
Afterwards, dependencies of vectorized path will be checked in path
election.
(Default: 0 (disabled))

51.9. Virtio paths Selection and Usage

Logically virtio-PMD has 9 paths based on the combination of virtio features
(Rx mergeable, In-order, Packed virtqueue), below is an introduction of these
features:

	Rx mergeable [https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-2140004]: With this feature negotiated, device
can receive large packets by combining individual descriptors.

	In-order [https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-690008]: Some devices always use descriptors
in the same order in which they have been made available, these
devices can offer the VIRTIO_F_IN_ORDER feature. With this feature negotiated,
driver will use descriptors in order.

	Packed virtqueue [https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-610007]: The structure of packed virtqueue is
different from split virtqueue, split virtqueue is composed of available ring,
used ring and descriptor table, while packed virtqueue is composed of descriptor
ring, driver event suppression and device event suppression. The idea behind
this is to improve performance by avoiding cache misses and make it easier
for hardware to implement.

51.9.1. Virtio paths Selection

If packed virtqueue is not negotiated, below split virtqueue paths will be selected
according to below configuration:

	Split virtqueue mergeable path: If Rx mergeable is negotiated, in-order feature is
not negotiated, this path will be selected.

	Split virtqueue non-mergeable path: If Rx mergeable and in-order feature are not
negotiated, also Rx offload(s) are requested, this path will be selected.

	Split virtqueue in-order mergeable path: If Rx mergeable and in-order feature are
both negotiated, this path will be selected.

	Split virtqueue in-order non-mergeable path: If in-order feature is negotiated and
Rx mergeable is not negotiated, this path will be selected.

	Split virtqueue vectorized Rx path: If Rx mergeable is disabled and no Rx offload
requested, this path will be selected.

If packed virtqueue is negotiated, below packed virtqueue paths will be selected
according to below configuration:

	Packed virtqueue mergeable path: If Rx mergeable is negotiated, in-order feature
is not negotiated, this path will be selected.

	Packed virtqueue non-mergeable path: If Rx mergeable and in-order feature are not
negotiated, this path will be selected.

	Packed virtqueue in-order mergeable path: If in-order and Rx mergeable feature are
both negotiated, this path will be selected.

	Packed virtqueue in-order non-mergeable path: If in-order feature is negotiated and
Rx mergeable is not negotiated, this path will be selected.

	Packed virtqueue vectorized Rx path: If building and running environment support
AVX512 && in-order feature is negotiated && Rx mergeable is not negotiated &&
TCP_LRO Rx offloading is disabled && vectorized option enabled,
this path will be selected.

	Packed virtqueue vectorized Tx path: If building and running environment support
AVX512 && in-order feature is negotiated && vectorized option enabled,
this path will be selected.

51.9.2. Rx/Tx callbacks of each Virtio path

Refer to above description, virtio path and corresponding Rx/Tx callbacks will
be selected automatically. Rx callbacks and Tx callbacks for each virtio path
are shown in below table:

Table 51.1 Virtio Paths and Callbacks

	Virtio paths

	Rx callbacks

	Tx callbacks

	Split virtqueue mergeable path

	virtio_recv_mergeable_pkts

	virtio_xmit_pkts

	Split virtqueue non-mergeable path

	virtio_recv_pkts

	virtio_xmit_pkts

	Split virtqueue in-order mergeable path

	virtio_recv_pkts_inorder

	virtio_xmit_pkts_inorder

	Split virtqueue in-order non-mergeable path

	virtio_recv_pkts_inorder

	virtio_xmit_pkts_inorder

	Split virtqueue vectorized Rx path

	virtio_recv_pkts_vec

	virtio_xmit_pkts

	Packed virtqueue mergeable path

	virtio_recv_mergeable_pkts_packed

	virtio_xmit_pkts_packed

	Packed virtqueue non-meregable path

	virtio_recv_pkts_packed

	virtio_xmit_pkts_packed

	Packed virtqueue in-order mergeable path

	virtio_recv_mergeable_pkts_packed

	virtio_xmit_pkts_packed

	Packed virtqueue in-order non-mergeable path

	virtio_recv_pkts_packed

	virtio_xmit_pkts_packed

	Packed virtqueue vectorized Rx path

	virtio_recv_pkts_packed_vec

	virtio_xmit_pkts_packed

	Packed virtqueue vectorized Tx path

	virtio_recv_pkts_packed

	virtio_xmit_pkts_packed_vec

51.9.3. Virtio paths Support Status from Release to Release

Virtio feature implementation:

	In-order feature is supported since DPDK 18.08 by adding new Rx/Tx callbacks
virtio_recv_pkts_inorder and virtio_xmit_pkts_inorder.

	Packed virtqueue is supported since DPDK 19.02 by adding new Rx/Tx callbacks
virtio_recv_pkts_packed , virtio_recv_mergeable_pkts_packed and
virtio_xmit_pkts_packed.

All virtio paths support status are shown in below table:

Table 51.2 Virtio Paths and Releases

	Virtio paths

	16.11 ~ 18.05

	18.08 ~ 18.11

	19.02 ~ 19.11

	20.05 ~

	Split virtqueue mergeable path

	Y

	Y

	Y

	Y

	Split virtqueue non-mergeable path

	Y

	Y

	Y

	Y

	Split virtqueue vectorized Rx path

	Y

	Y

	Y

	Y

	Split virtqueue simple Tx path

	Y

	N

	N

	N

	Split virtqueue in-order mergeable path

	
	Y

	Y

	Y

	Split virtqueue in-order non-mergeable path

	
	Y

	Y

	Y

	Packed virtqueue mergeable path

	
	
	Y

	Y

	Packed virtqueue non-mergeable path

	
	
	Y

	Y

	Packed virtqueue in-order mergeable path

	
	
	Y

	Y

	Packed virtqueue in-order non-mergeable path

	
	
	Y

	Y

	Packed virtqueue vectorized Rx path

	
	
	
	Y

	Packed virtqueue vectorized Tx path

	
	
	
	Y

51.9.4. QEMU Support Status

	Qemu now supports three paths of split virtqueue: Split virtqueue mergeable path,
Split virtqueue non-mergeable path, Split virtqueue vectorized Rx path.

	Since qemu 4.2.0, Packed virtqueue mergeable path and Packed virtqueue non-mergeable
path can be supported.

51.9.5. How to Debug

If you meet performance drop or some other issues after upgrading the driver
or configuration, below steps can help you identify which path you selected and
root cause faster.

	Run vhost/virtio test case;

	Run “perf top” and check virtio Rx/Tx callback names;

	Identify which virtio path is selected refer to above table.

52. Poll Mode Driver that wraps vhost library

This PMD is a thin wrapper of the DPDK vhost library.
The user can handle virtqueues as one of normal DPDK port.

52.1. Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

52.2. Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and event handling.

	It has multiple queues support.

	It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

	It supports Port Hotplug functionality.

	Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on guest.

52.3. Vhost PMD arguments

The user can specify below arguments in –vdev option.

	iface:

It is used to specify a path to connect to a QEMU virtio-net device.

	queues:

It is used to specify the number of queues virtio-net device has.
(Default: 1)

	iommu-support:

It is used to enable iommu support in vhost library.
(Default: 0 (disabled))

	postcopy-support:

It is used to enable postcopy live-migration support in vhost library.
(Default: 0 (disabled))

	tso:

It is used to enable tso support in vhost library.
(Default: 0 (disabled))

	linear-buffer:

It is used to enable linear buffer support in vhost library.
(Default: 0 (disabled))

	ext-buffer:

It is used to enable external buffer support in vhost library.
(Default: 0 (disabled))

52.4. Vhost PMD event handling

This section describes how to handle vhost PMD events.

The user can register an event callback handler with rte_eth_dev_callback_register().
The registered callback handler will be invoked with one of below event types.

	RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

	RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call rte_eth_vhost_get_queue_event() in the callback handler.
Because changing multiple statuses may occur only one event, call the function repeatedly as long as it doesn’t return negative value.

52.5. Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

	Launch the testpmd with vhost PMD:

./testpmd -l 0-3 -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here.
Please refer to the DPDK Getting Started Guide for detailed instructions.

	Launch the QEMU:

qemu-system-x86_64 <snip>
 -chardev socket,id=chr0,path=/tmp/sock0 \
 -netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
 -device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest.
After initialization processes between QEMU and DPDK vhost library are done, status of the port will be linked up.

53. Poll Mode Driver for Paravirtual VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware* ESXi.
It is designed for performance, offers all the features available in VMXNET2, and adds several new features such as,
multi-queue support (also known as Receive Side Scaling, RSS),
IPv6 offloads, and MSI/MSI-X interrupt delivery.
One can use the same device in a DPDK application with VMXNET3 PMD introduced in DPDK API.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

	Vmxnet3 with a native NIC connected to a vSwitch

	Vmxnet3 chaining VMs connected to a vSwitch

53.1. VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space
and it is solely responsible to free that memory when not needed.
The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs.
During RX/TX, the packet buffers are exchanged by their GPAs,
and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers.
The interface is similar to that of the other PMDs available in the DPDK API.
The driver pre-allocates the packet buffers and loads the command ring descriptors in advance.
The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors,
which are eventually pulled by the PMD.
After reception, the DPDK application frees the descriptors and loads new packet buffers for the coming packets.
The interrupts are disabled and there is no notification required.
This keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of the command ring
and notifies the hypervisor.
In response the hypervisor takes packets and passes them to the vSwitch, It writes into the completion descriptors ring.
The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory.

53.2. Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and transmission.
There are several options available for filtering packets at VMXNET3 device level including:

	MAC Address based filtering:

	Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

	Multicast with Multicast Filter table - NOT SUPPORTED

	Promiscuous mode - SUPPORTED

	RSS based load balancing between queues - SUPPORTED

	VLAN filtering:

	VLAN tag based filtering without load balancing - SUPPORTED

Note

	Release 1.6.0 does not support separate headers and body receive cmd_ring and hence,
multiple segment buffers are not supported.
Only cmd_ring_0 is used for packet buffers, one for each descriptor.

	Receive and transmit of scattered packets is not supported.

	Multicast with Multicast Filter table is not supported.

53.3. Prerequisites

The following prerequisites apply:

	Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client must be assigned.
This is shown in the figure below.

[image: ../_images/vmxnet3_int.png]

Fig. 53.1 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Note

Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet adaptors while adding an Ethernet device.
Ensure that the VM type used offers a VMXNET3 device. Refer to the VMware documentation for a listed of VMs.

Note

Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note

Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3 device.

53.4. VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

[image: ../_images/vswitch_vm.png]

Fig. 53.2 VMXNET3 with a Native NIC Connected to a vSwitch

Note

Other instructions on preparing to use DPDK such as, hugepage enabling, uio port binding are not listed here.
Please refer to DPDK Getting Started Guide and DPDK Sample Application’s User Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
 -> VMware ESXi vSwitch
 -> VMXNET3 device
 -> Guest VM VMXNET3 port 0 rx burst
 -> Guest VM 82599 VF port 0 tx burst
 -> 82599 VF
 -> Packet generator

53.5. VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-Phy communication channel.

[image: ../_images/vm_vm_comms.png]

Fig. 53.3 VMXNET3 Chaining VMs Connected to a vSwitch

Note

When using the L2 Forwarding or L3 Forwarding applications,
a destination MAC address needs to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
 -> Guest VM 82599 port 0 rx burst
 -> Guest VM VMXNET3 port 1 tx burst
 -> VMXNET3 device
 -> VMware ESXi vSwitch
 -> VMXNET3 device
 -> Guest VM VMXNET3 port 0 rx burst
 -> Guest VM 82599 VF port 1 tx burst
 -> 82599 VF
 -> Packet generator

54. Libpcap and Ring Based Poll Mode Drivers

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware,
the DPDK also includes pure-software PMDs, two of these drivers are:

	A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap,
- both from files on disk, as well as from physical NIC devices using standard Linux kernel drivers.

	A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring)
to be accessed using the PMD APIs, as though they were physical NICs.

Note

The libpcap -based PMD is disabled by default in the build configuration files,
owing to an external dependency on the libpcap development files which must be installed on the board.
Once the libpcap development files are installed,
the library can be enabled by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

54.1. Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices,
using one or more of these drivers,
to be created at application startup time during EAL initialization.

To do so, the –vdev= parameter must be passed to the EAL.
This takes take options to allow ring and pcap-based Ethernet to be allocated and used transparently by the application.
This can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

54.1.1. Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option.
The device name must start with the net_pcap prefix followed by numbers or letters.
The name is unique for each device. Each device can have multiple stream options and multiple devices can be used.
Multiple device definitions can be arranged using multiple –vdev.
Device name and stream options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,stream_opt0=..,stream_opt1=..' \
 --vdev='net_pcap1,stream_opt0=..'

54.1.1.1. Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following two rules are respected:

	A device is provided with two different streams - reception and transmission.

	A device is provided with one network interface name used for reading and writing packets.

The different stream types are:

	rx_pcap: Defines a reception stream based on a pcap file.
The driver reads each packet within the given pcap file as if it was receiving it from the wire.
The value is a path to a valid pcap file.

rx_pcap=/path/to/file.pcap

	tx_pcap: Defines a transmission stream based on a pcap file.
The driver writes each received packet to the given pcap file.
The value is a path to a pcap file.
The file is overwritten if it already exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

	rx_iface: Defines a reception stream based on a network interface name.
The driver reads packets from the given interface using the Linux kernel driver for that interface.
The driver captures both the incoming and outgoing packets on that interface.
The value is an interface name.

rx_iface=eth0

	rx_iface_in: Defines a reception stream based on a network interface name.
The driver reads packets from the given interface using the Linux kernel driver for that interface.
The driver captures only the incoming packets on that interface.
The value is an interface name.

rx_iface_in=eth0

	tx_iface: Defines a transmission stream based on a network interface name.
The driver sends packets to the given interface using the Linux kernel driver for that interface.
The value is an interface name.

tx_iface=eth0

	iface: Defines a device mapping a network interface.
The driver both reads and writes packets from and to the given interface.
The value is an interface name.

iface=eth0

54.1.1.2. Runtime Config Options

	Use PCAP interface physical MAC

In case iface= configuration is set, user may want to use the selected interface’s physical MAC
address. This can be done with a devarg phy_mac, for example:

--vdev 'net_pcap0,iface=eth0,phy_mac=1'

	Use the RX PCAP file to infinitely receive packets

In case rx_pcap= configuration is set, user may want to use the selected PCAP file for rudimental
performance testing. This can be done with a devarg infinite_rx, for example:

--vdev 'net_pcap0,rx_pcap=file_rx.pcap,infinite_rx=1'

When this mode is used, it is recommended to drop all packets on transmit by not providing a tx_pcap or tx_iface.

This option is device wide, so all queues on a device will either have this enabled or disabled.
This option should only be provided once per device.

	Drop all packets on transmit

The user may want to drop all packets on tx for a device. This can be done by not providing a tx_pcap or tx_iface, for example:

--vdev 'net_pcap0,rx_pcap=file_rx.pcap'

In this case, one tx drop queue is created for each rxq on that device.

	Receive no packets on Rx

The user may want to run without receiving any packets on Rx. This can be done by not providing a rx_pcap or rx_iface, for example:

--vdev 'net_pcap0,tx_pcap=file_tx.pcap'

In this case, one dummy rx queue is created for each tx queue argument passed

54.1.1.3. Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
 -- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_iface=eth0,tx_pcap=file_tx.pcap' \
 -- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_iface=eth1' \
 -- --port-topology=chained

Forward packets through two network interfaces:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,iface=eth0' --vdev='net_pcap1;iface=eth1'

Enable 2 tx queues on a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_iface=eth1,tx_iface=eth1,tx_iface=eth1' \
 -- --txq 2

Read only incoming packets from a network interface and write them back to the same network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_iface_in=eth1,tx_iface=eth1'

54.1.1.4. Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX streams
by reading the first 512 packets on every RX stream and discarding them.
When using a libpcap-based PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be discarded.
Otherwise, the first 512 packets from the input pcap file will be discarded by the RX flushing operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
 --vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
 -- --port-topology=chained --no-flush-rx

Note

The network interface provided to the PMD should be up. The PMD will return
an error if interface is down, and the PMD itself won’t change the status
of the external network interface.

54.1.2. Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based rte_ethdevs can be used as below.
The device names passed to the –vdev option must start with net_ring and take no additional parameters.
Multiple devices may be specified, separated by commas.

./testpmd -l 1-3 -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

[image: ../_images/forward_stats.png]
+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

54.1.3. Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is,
rte_ethdev structure, instances at run-time in the end-application,
for example, using rte_eth_from_rings() or rte_eth_from_pcaps() APIs.
For the rings-based PMD, this functionality could be used, for example,
to allow data exchange between cores using rings to be done in exactly the
same way as sending or receiving packets from an Ethernet device.
For the libpcap-based PMD, it allows an application to open one or more pcap files
and use these as a source of packet input to the application.

54.1.3.1. Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back
for reception on the same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2
#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("net_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them,
that is, traffic sent to port 0 is read back from port 1 and vice-versa,
the final two lines could be changed as below:

port0 = rte_eth_from_rings("net_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example,
where one may want to have inter-core communication using pseudo Ethernet devices rather than raw rings,
for reasons of API consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower than using the native rings API.
This is because DPDK Ethernet drivers make use of function pointers to call the appropriate enqueue or dequeue functions,
while the rte_ring specific functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD,
it should be configured and started in the same way as a regular Ethernet device, that is,
by calling rte_eth_dev_configure() to set the number of receive and transmit queues,
then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues and
finally calling rte_eth_dev_start() to allow transmission and reception of packets to begin.

55. Fail-safe poll mode driver library

The Fail-safe poll mode driver library (librte_pmd_failsafe) implements a
virtual device that allows using device supporting hotplug, without modifying
other components relying on such device (application, other PMDs).
In this context, hotplug support is meant as plugging or removing a device
from its bus suddenly.

Additionally to the Seamless Hotplug feature, the Fail-safe PMD offers the
ability to redirect operations to a secondary device when the primary has been
removed from the system.

Note

The library is enabled by default. You can enable it or disable it manually
by setting the CONFIG_RTE_LIBRTE_PMD_FAILSAFE configuration option.

55.1. Features

The Fail-safe PMD only supports a limited set of features. If you plan to use a
device underneath the Fail-safe PMD with a specific feature, this feature must
also be supported by the Fail-safe PMD.

A notable exception is the device removal feature. The fail-safe PMD is not
meant to be removed itself, unlike its sub-devices which should support it.
If a sub-device supports hotplugging, the fail-safe PMD will enable its use
automatically by detecting capable devices and registering the relevant handler.

Check the feature matrix for the complete set of supported features.

55.2. Compilation option

Available options within the $RTE_TARGET/build/.config file:

	CONFIG_RTE_LIBRTE_PMD_FAILSAFE (default y)

This option enables or disables compiling librte_pmd_failsafe.

55.3. Using the Fail-safe PMD from the EAL command line

The Fail-safe PMD can be used like most other DPDK virtual devices, by passing a
--vdev parameter to the EAL when starting the application. The device name
must start with the net_failsafe prefix, followed by numbers or letters. This
name must be unique for each device. Each fail-safe instance must have at least one
sub-device, and at most two.

A sub-device can be any DPDK device, including possibly another fail-safe device.

55.3.1. Fail-safe command line parameters

	dev(<iface>) parameter

This parameter allows the user to define a sub-device. The <iface> part of
this parameter must be a valid device definition. It follows the same format
provided to any -w or --vdev options.

Enclosing the device definition within parentheses here allows using
additional sub-device parameters if need be. They will be passed on to the
sub-device.

Note

In case where the sub-device is also used as a whitelist device, using -w
on the EAL command line, the fail-safe PMD will use the device with the
options provided to the EAL instead of its own parameters.

When trying to use a PCI device automatically probed by the blacklist mode,
the name for the fail-safe sub-device must be the full PCI id:
Domain:Bus:Device.Function, i.e. 00:00:00.0 instead of 00:00.0,
as the second form is historically accepted by the DPDK.

	exec(<shell command>) parameter

This parameter allows the user to provide a command to the fail-safe PMD to
execute and define a sub-device.
It is done within a regular shell context.
The first line of its output is read by the fail-safe PMD and otherwise
interpreted as if passed to a dev parameter.
Any other line is discarded.
If the command fails or output an incorrect string, the sub-device is not
initialized.
All commas within the shell command are replaced by spaces before
executing the command. This helps using scripts to specify devices.

	fd(<file descriptor number>) parameter

This parameter reads a device definition from an arbitrary file descriptor
number in <iface> format as described above.

The file descriptor is read in non-blocking mode and is never closed in
order to take only the last line into account (unlike exec()) at every
probe attempt.

	mac parameter [MAC address]

This parameter allows the user to set a default MAC address to the fail-safe
and all of its sub-devices.
If no default mac address is provided, the fail-safe PMD will read the MAC
address of the first of its sub-device to be successfully probed and use it as
its default MAC address, trying to set it to all of its other sub-devices.
If no sub-device was successfully probed at initialization, then a random MAC
address is generated, that will be subsequently applied to all sub-devices once
they are probed.

	hotplug_poll parameter [UINT64] (default 2000)

This parameter allows the user to configure the amount of time in milliseconds
between two sub-device upkeep round.

55.3.2. Usage example

This section shows some example of using testpmd with a fail-safe PMD.

	To build a PMD and configure DPDK, refer to the document
compiling and testing a PMD for a NIC.

	Start testpmd. The sub-device 84:00.0 should be blacklisted from normal EAL
operations to avoid probing it twice, as the PCI bus is in blacklist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
 --vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
 -b 84:00.0 -b 00:04.0 -- -i

If the sub-device 84:00.0 is not blacklisted, it will be probed by the
EAL first. When the fail-safe then tries to initialize it the probe operation
fails.

Note that PCI blacklist mode is the default PCI operating mode.

	Alternatively, it can be used alongside any other device in whitelist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
 --vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
 -w 81:00.0 -- -i

	Start testpmd using a flexible device definition

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 -w ff:ff.f \
 --vdev='net_failsafe0,exec(echo 84:00.0)' -- -i

	Start testpmd, automatically probing the device 84:00.0 and using it with
the fail-safe.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
 --vdev 'net_failsafe0,dev(0000:84:00.0),dev(net_ring0)' -- -i

55.4. Using the Fail-safe PMD from an application

This driver strives to be as seamless as possible to existing applications, in
order to propose the hotplug functionality in the easiest way possible.

Care must be taken, however, to respect the ether API concerning device
access, and in particular, using the RTE_ETH_FOREACH_DEV macro to iterate
over ethernet devices, instead of directly accessing them or by writing one’s
own device iterator.

unsigned int i;

/* VALID iteration over eth-dev. */
RTE_ETH_FOREACH_DEV(i) {
 [...]
}

/* INVALID iteration over eth-dev. */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
 [...]
}

55.5. Plug-in feature

A sub-device can be defined without existing on the system when the fail-safe
PMD is initialized. Upon probing this device, the fail-safe PMD will detect its
absence and postpone its use. It will then register for a periodic check on any
missing sub-device.

During this time, the fail-safe PMD can be used normally, configured and told to
emit and receive packets. It will store any applied configuration but will fail
to emit anything, returning 0 from its TX function. Any unsent packet must
be freed.

Upon the probing of its missing sub-device, the current stored configuration
will be applied. After this configuration pass, the new sub-device will be
synchronized with other sub-devices, i.e. be started if the fail-safe PMD has
been started by the user before.

55.6. Plug-out feature

A sub-device supporting the device removal event can be removed from its bus at
any time. The fail-safe PMD will register a callback for such event and react
accordingly. It will try to safely stop, close and uninit the sub-device having
emitted this event, allowing it to free its eventual resources.

55.7. Fail-safe glossary

	Fallback device
	Also called Secondary device.

The fail-safe will fail-over onto this device when the preferred device is
absent.

	Preferred device
	Also called Primary device.

The first declared sub-device in the fail-safe parameters.
When this device is plugged, it is always used as emitting device.
It is the main sub-device and is used as target for configuration
operations if there is any ambiguity.

	Upkeep round
	Periodical event during which sub-devices are serviced. Each devices having a state
different to that of the fail-safe device itself, is synchronized with it
(brought down or up accordingly). Additionally, any sub-device marked for
removal is cleaned-up.

	Slave
	In the context of the fail-safe PMD, synonymous to sub-device.

	Sub-device
	A device being utilized by the fail-safe PMD.
This is another PMD running underneath the fail-safe PMD.
Any sub-device can disappear at any time. The fail-safe will ensure
that the device removal happens gracefully.

Baseband Device Drivers

	1. Baseband Device Supported Functionality Matrices
	1.1. Supported Feature Flags

	2. BBDEV null Poll Mode Driver
	2.1. Limitations

	2.2. Installation

	2.3. Initialization

	3. SW Turbo Poll Mode Driver
	3.1. Features

	3.2. Limitations

	3.3. Installation

	3.4. Initialization

	4. Intel(R) FPGA LTE FEC Poll Mode Driver
	4.1. Features

	4.2. Limitations

	4.3. Installation

	4.4. Initialization

	4.5. Test Application

	5. Intel(R) FPGA 5GNR FEC Poll Mode Driver
	5.1. Features

	5.2. Limitations

	5.3. Installation

	5.4. Initialization

	5.5. Test Application

1. Baseband Device Supported Functionality Matrices

1.1. Supported Feature Flags

Table 1.2 Features availability in bbdev drivers

	Feature

	f
p
g
a
_
5
g
n
r
_
f
e
c

	f
p
g
a
_
l
t
e
_
f
e
c

	m
b
c

	n
u
l
l

	t
u
r
b
o
_
s
w

	Turbo Decoder (4G)

	
	Y

	Y

	
	Y

	Turbo Encoder (4G)

	
	Y

	Y

	
	Y

	LDPC Decoder (5G)

	Y

	
	Y

	
	Y

	LDPC Encoder (5G)

	Y

	
	Y

	
	Y

	LLR/HARQ Compression

	
	
	Y

	
	

	External DDR Access

	Y

	
	Y

	
	

	HW Accelerated

	Y

	Y

	Y

	
	

	BBDEV API

	Y

	Y

	Y

	Y

	Y

2. BBDEV null Poll Mode Driver

The (baseband_null) is a bbdev poll mode driver which provides a minimal
implementation of a software bbdev device. As a null device it does not modify
the data in the mbuf on which the bbdev operation is to operate and it only
works for operation type RTE_BBDEV_OP_NONE.

When a burst of mbufs is submitted to a bbdev null PMD for processing then
each mbuf in the burst will be enqueued in an internal buffer ring to be
collected on a dequeue call.

2.1. Limitations

	In-place operations for Turbo encode and decode are not supported

2.2. Installation

The bbdev null PMD is enabled and built by default in both the Linux and
FreeBSD builds.

2.3. Initialization

To use the PMD in an application, user must:

	Call rte_vdev_init("baseband_null") within the application.

	Use --vdev="baseband_null" in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queues: Specify the maximum number of queues in the device (default is RTE_MAX_LCORE).

2.3.1. Example:

./test-bbdev.py -e="--vdev=baseband_null,socket_id=0,max_nb_queues=8"

3. SW Turbo Poll Mode Driver

The SW Turbo PMD (baseband_turbo_sw) provides a software only poll mode bbdev
driver that can optionally utilize Intel optimized libraries for LTE and 5GNR
Layer 1 workloads acceleration.

Note that the driver can also be built without any dependency with reduced
functionality for maintenance purpose.

To enable linking to the SDK libraries see detailed installation section below.
Two flags can be enabled depending on whether the target machine can support
AVX2 and AVX512 instructions sets and the related SDK libraries for vectorized
signal processing functions are installed :
- CONFIG_RTE_BBDEV_SDK_AVX2
- CONFIG_RTE_BBDEV_SDK_AVX512
By default these 2 flags are disabled by default. For AVX2 machine and SDK
library installed then the first flag can be enabled. For AVX512 machine and
SDK library installed then both flags can be enabled for full real time capability.

This PMD supports the functions: FEC, Rate Matching and CRC functions detailed
in the Features section.

3.1. Features

SW Turbo PMD can support for the following capabilities when the SDK libraries
are used:

For the LTE encode operation:

	RTE_BBDEV_TURBO_CRC_24A_ATTACH

	RTE_BBDEV_TURBO_CRC_24B_ATTACH

	RTE_BBDEV_TURBO_RATE_MATCH

	RTE_BBDEV_TURBO_RV_INDEX_BYPASS

For the LTE decode operation:

	RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE

	RTE_BBDEV_TURBO_CRC_TYPE_24B

	RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN

	RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN

	RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP

	RTE_BBDEV_TURBO_EARLY_TERMINATION

For the 5G NR LDPC encode operation:

	RTE_BBDEV_LDPC_RATE_MATCH

	RTE_BBDEV_LDPC_CRC_24A_ATTACH

	RTE_BBDEV_LDPC_CRC_24B_ATTACH

For the 5G NR LDPC decode operation:

	RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK

	RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK

	RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP

	RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE

	RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE

	RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE

3.2. Limitations

	In-place operations for encode and decode are not supported

3.3. Installation

3.3.1. FlexRAN SDK Download

As an option it is possible to link this driver with FleXRAN SDK libraries
which can enable real time signal processing using AVX instructions.

These libraries are available through this link [https://software.intel.com/en-us/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules].

After download is complete, the user needs to unpack and compile on their
system before building DPDK.

The following table maps DPDK versions with past FlexRAN SDK releases:

Table 3.1 DPDK and FlexRAN FEC SDK releases compliance

	DPDK version

	FlexRAN FEC SDK release

	19.08

	19.04

3.3.2. FlexRAN SDK Installation

Note that the installation of these libraries is optional.

	The following are pre-requisites for building FlexRAN SDK Libraries:
	
	An AVX2 or AVX512 supporting machine

	CentOS Linux release 7.2.1511 (Core) operating system is advised

	Intel ICC 18.0.1 20171018 compiler or more recent and related libraries
ICC is available with a free community license [https://software.intel.com/en-us/system-studio/choose-download#technical].

The following instructions should be followed in this exact order:

	Set the environment variables:

source <path-to-icc-compiler-install-folder>/linux/bin/compilervars.sh intel64 -platform linux

	Run the SDK extractor script and accept the license:

cd <path-to-workspace>
./FlexRAN-FEC-SDK-19-04.sh

	Generate makefiles based on system configuration:

cd <path-to-workspace>/FlexRAN-FEC-SDK-19-04/sdk/
./create-makefiles-linux.sh

	A build folder is generated in this form build-<ISA>-<CC>, enter that
folder and install:

cd build-avx512-icc/
make && make install

3.4. Initialization

In order to enable this virtual bbdev PMD, the user may:

	Build the FLEXRAN SDK libraries (explained in Installation section).

	Export the environmental variables FLEXRAN_SDK to the path where the
FlexRAN SDK libraries were installed. And DIR_WIRELESS_SDK to the path
where the libraries were extracted.

Example:

export FLEXRAN_SDK=<path-to-workspace>/FlexRAN-FEC-SDK-19-04/sdk/build-avx2-icc/install
export DIR_WIRELESS_SDK=<path-to-workspace>/FlexRAN-FEC-SDK-19-04/sdk/build-avx2-icc/

	Set CONFIG_RTE_BBDEV_SDK_AVX2=y and CONFIG_RTE_BBDEV_SDK_AVX512=y
in DPDK common configuration file config/common_base to be able to use
the SDK libraries as mentioned above.
For AVX2 machine it is possible to only enable CONFIG_RTE_BBDEV_SDK_AVX2
for limited 4G functionality.
If no flag are set the PMD driver will still build but its capabilities
will be limited accordingly.

To use the PMD in an application, user must:

	Call rte_vdev_init("baseband_turbo_sw") within the application.

	Use --vdev="baseband_turbo_sw" in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queues: Specify the maximum number of queues in the device (default is RTE_MAX_LCORE).

3.4.1. Example:

./test-bbdev.py -e="--vdev=baseband_turbo_sw,socket_id=0,max_nb_queues=8" \
-c validation -v ./turbo_*_default.data

4. Intel(R) FPGA LTE FEC Poll Mode Driver

The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
Turbo Encode / Decode LTE wireless acceleration function, using Intel’s PCI-e and FPGA
based Vista Creek device.

4.1. Features

FPGA LTE FEC PMD supports the following features:

	Turbo Encode in the DL with total throughput of 4.5 Gbits/s

	Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations

	8 VFs per PF (physical device)

	Maximum of 32 UL queues per VF

	Maximum of 32 DL queues per VF

	PCIe Gen-3 x8 Interface

	MSI-X

	SR-IOV

FPGA LTE FEC PMD supports the following BBDEV capabilities:

	
	For the turbo encode operation:
	
	RTE_BBDEV_TURBO_CRC_24B_ATTACH : set to attach CRC24B to CB(s)

	RTE_BBDEV_TURBO_RATE_MATCH : if set then do not do Rate Match bypass

	RTE_BBDEV_TURBO_ENC_INTERRUPTS : set for encoder dequeue interrupts

	
	For the turbo decode operation:
	
	RTE_BBDEV_TURBO_CRC_TYPE_24B : check CRC24B from CB(s)

	RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE : perform subblock de-interleave

	RTE_BBDEV_TURBO_DEC_INTERRUPTS : set for decoder dequeue interrupts

	RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN : set if negative LLR encoder i/p is supported

	RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP : keep CRC24B bits appended while decoding

4.2. Limitations

FPGA LTE FEC does not support the following:

	Scatter-Gather function

4.3. Installation

Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The
default set of bbdev compile flags may be found in config/common_base, where for example
the flag to build the FPGA LTE FEC device, CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC, is already
set. It is assumed DPDK has been compiled using for instance:

make install T=x86_64-native-linuxapp-gcc

DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
hugepage configuration of a server may be examined using:

grep Huge* /proc/meminfo

4.4. Initialization

When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:

sudo lspci -vd1172:5052

The physical and virtual functions are compatible with Linux UIO drivers:
vfio and igb_uio. However, in order to work the FPGA LTE FEC device firstly needs
to be bound to one of these linux drivers through DPDK.

4.4.1. Bind PF UIO driver(s)

Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
lspci to confirm the PF device is under use by igb_uio DPDK UIO driver.

The igb_uio driver may be bound to the PF PCI device using one of three methods:

1. PCI functions (physical or virtual, depending on the use case) can be bound to
the UIO driver by repeating this command for every function.

cd <dpdk-top-level-directory>
insmod ./build/kmod/igb_uio.ko
echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vd1172:

	Another way to bind PF with DPDK UIO driver is by using the dpdk-devbind.py tool

cd <dpdk-top-level-directory>
./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0

where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172:

	A third way to bind is to use dpdk-setup.sh tool

cd <dpdk-top-level-directory>
./usertools/dpdk-setup.sh

select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module'
or
select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required
enter PCI device ID
select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding

In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not
support SR-IOV configuration right out of the box, so it will need to be patched.

4.4.2. Enable Virtual Functions

Now, it should be visible in the printouts that PCI PF is under igb_uio control
“Kernel driver in use: igb_uio”

To show the number of available VFs on the device, read sriov_totalvfs file..

cat /sys/bus/pci/devices/0000\:\:<d>.<f>/sriov_totalvfs

where 0000\:\:<d>.<f> is the PCI device ID

To enable VFs via igb_uio, echo the number of virtual functions intended to
enable to max_vfs file..

echo <num-of-vfs> > /sys/bus/pci/devices/0000\:\:<d>.<f>/max_vfs

Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
way it was done with the physical function previously.

Enabling SR-IOV via vfio driver is pretty much the same, except that the file
name is different:

echo <num-of-vfs> > /sys/bus/pci/devices/0000\:\:<d>.<f>/sriov_numvfs

4.4.3. Configure the VFs through PF

The PCI virtual functions must be configured before working or getting assigned
to VMs/Containers. The configuration involves allocating the number of hardware
queues, priorities, load balance, bandwidth and other settings necessary for the
device to perform FEC functions.

This configuration needs to be executed at least once after reboot or PCI FLR and can
be achieved by using the function fpga_lte_fec_configure(), which sets up the
parameters defined in fpga_lte_fec_conf structure:

struct fpga_lte_fec_conf {
 bool pf_mode_en;
 uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
 uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
 uint8_t ul_bandwidth;
 uint8_t dl_bandwidth;
 uint8_t ul_load_balance;
 uint8_t dl_load_balance;
 uint16_t flr_time_out;
};

	pf_mode_en: identifies whether only PF is to be used, or the VFs. PF and
VFs are mutually exclusive and cannot run simultaneously.
Set to 1 for PF mode enabled.
If PF mode is enabled all queues available in the device are assigned
exclusively to PF and 0 queues given to VFs.

	vf_*l_queues_number: defines the hardware queue mapping for every VF.

	*l_bandwidth: in case of congestion on PCIe interface. The device
allocates different bandwidth to UL and DL. The weight is configured by this
setting. The unit of weight is 3 code blocks. For example, if the code block
cbps (code block per second) ratio between UL and DL is 12:1, then the
configuration value should be set to 36:3. The schedule algorithm is based
on code block regardless the length of each block.

	*l_load_balance: hardware queues are load-balanced in a round-robin
fashion. Queues get filled first-in first-out until they reach a pre-defined
watermark level, if exceeded, they won’t get assigned new code blocks..
This watermark is defined by this setting.

If all hardware queues exceeds the watermark, no code blocks will be
streamed in from UL/DL code block FIFO.

	flr_time_out: specifies how many 16.384us to be FLR time out. The
time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
the FLR time out then set this setting to 0x262=610.

An example configuration code calling the function fpga_lte_fec_configure() is shown
below:

struct fpga_lte_fec_conf conf;
unsigned int i;

memset(&conf, 0, sizeof(struct fpga_lte_fec_conf));
conf.pf_mode_en = 1;

for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
 conf.vf_ul_queues_number[i] = 4;
 conf.vf_dl_queues_number[i] = 4;
}
conf.ul_bandwidth = 12;
conf.dl_bandwidth = 5;
conf.dl_load_balance = 64;
conf.ul_load_balance = 64;

/* setup FPGA PF */
ret = fpga_lte_fec_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
 "Failed to configure 4G FPGA PF for bbdev %s",
 info->dev_name);

4.5. Test Application

BBDEV provides a test application, test-bbdev.py and range of test data for testing
the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device’s
capabilities. The test application is located under app->test-bbdev folder and has the
following options:

"-p", "--testapp-path": specifies path to the bbdev test app.
"-e", "--eal-params" : EAL arguments which are passed to the test app.
"-t", "--timeout" : Timeout in seconds (default=300).
"-c", "--test-cases" : Defines test cases to run. Run all if not specified.
"-v", "--test-vector" : Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
"-n", "--num-ops" : Number of operations to process on device (default=32).
"-b", "--burst-size" : Operations enqueue/dequeue burst size (default=32).
"-l", "--num-lcores" : Number of lcores to run (default=16).
"-i", "--init-device" : Initialise PF device with default values.

To execute the test application tool using simple turbo decode or turbo encode data,
type one of the following:

./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data
./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data

The test application test-bbdev.py, supports the ability to configure the PF device with
a default set of values, if the “-i” or “- -init-device” option is included. The default values
are defined in test_bbdev_perf.c as:

	VF_UL_QUEUE_VALUE 4

	VF_DL_QUEUE_VALUE 4

	UL_BANDWIDTH 3

	DL_BANDWIDTH 3

	UL_LOAD_BALANCE 128

	DL_LOAD_BALANCE 128

	FLR_TIMEOUT 610

4.5.1. Test Vectors

In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides
a range of additional tests under the test_vectors folder, which may be useful. The results
of these tests will depend on the FPGA LTE FEC capabilities:

	
	turbo decoder tests:
	
	turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data

	turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data

	turbo_dec_c1_k6144_r0_e34560_negllr.data

	turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data

	turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data

	turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data

	
	turbo encoder tests:
	
	turbo_enc_c1_k40_r0_e1190_rm.data

	turbo_enc_c1_k40_r0_e1194_rm.data

	turbo_enc_c1_k40_r0_e1196_rm.data

	turbo_enc_c1_k40_r0_e272_rm.data

	turbo_enc_c1_k6144_r0_e18444.data

	turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

	turbo_enc_c2_k5952_r0_e17868_crc24b.data

	turbo_enc_c3_k4800_r2_e14412_crc24b.data

	turbo_enc_c4_k4800_r2_e14412_crc24b.data

5. Intel(R) FPGA 5GNR FEC Poll Mode Driver

The BBDEV FPGA 5GNR FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
LDPC Encode / Decode 5GNR wireless acceleration function, using Intel’s PCI-e and FPGA
based Vista Creek device.

5.1. Features

FPGA 5GNR FEC PMD supports the following features:

	LDPC Encode in the DL

	LDPC Decode in the UL

	8 VFs per PF (physical device)

	Maximum of 32 UL queues per VF

	Maximum of 32 DL queues per VF

	PCIe Gen-3 x8 Interface

	MSI-X

	SR-IOV

FPGA 5GNR FEC PMD supports the following BBDEV capabilities:

	
	For the LDPC encode operation:
	
	RTE_BBDEV_LDPC_CRC_24B_ATTACH : set to attach CRC24B to CB(s)

	RTE_BBDEV_LDPC_RATE_MATCH : if set then do not do Rate Match bypass

	
	For the LDPC decode operation:
	
	RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK : check CRC24B from CB(s)

	RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE : disable early termination

	RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP : drops CRC24B bits appended while decoding

	RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE : provides an input for HARQ combining

	RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE : provides an input for HARQ combining

	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE : HARQ memory input is internal

	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE : HARQ memory output is internal

	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK : loopback data to/from HARQ memory

	RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS : HARQ memory includes the fillers bits

5.2. Limitations

FPGA 5GNR FEC does not support the following:

	Scatter-Gather function

5.3. Installation

Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The
default set of bbdev compile flags may be found in config/common_base, where for example
the flag to build the FPGA 5GNR FEC device, CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC,
is already set. It is assumed DPDK has been compiled using for instance:

make install T=x86_64-native-linuxapp-gcc

DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
hugepage configuration of a server may be examined using:

grep Huge* /proc/meminfo

5.4. Initialization

When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:

sudo lspci -vd8086:0d8f

The physical and virtual functions are compatible with Linux UIO drivers:
vfio and igb_uio. However, in order to work the FPGA 5GNR FEC device firstly needs
to be bound to one of these linux drivers through DPDK.

5.4.1. Bind PF UIO driver(s)

Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
lspci to confirm the PF device is under use by igb_uio DPDK UIO driver.

The igb_uio driver may be bound to the PF PCI device using one of three methods:

1. PCI functions (physical or virtual, depending on the use case) can be bound to
the UIO driver by repeating this command for every function.

cd <dpdk-top-level-directory>
insmod ./build/kmod/igb_uio.ko
echo "8086 0d8f" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vd8086:0d8f

	Another way to bind PF with DPDK UIO driver is by using the dpdk-devbind.py tool

cd <dpdk-top-level-directory>
./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0

where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd8086:0d8f

	A third way to bind is to use dpdk-setup.sh tool

cd <dpdk-top-level-directory>
./usertools/dpdk-setup.sh

select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module'
or
select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required
enter PCI device ID
select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding

In the same way the FPGA 5GNR FEC PF can be bound with vfio, but vfio driver does not
support SR-IOV configuration right out of the box, so it will need to be patched.

5.4.2. Enable Virtual Functions

Now, it should be visible in the printouts that PCI PF is under igb_uio control
“Kernel driver in use: igb_uio”

To show the number of available VFs on the device, read sriov_totalvfs file..

cat /sys/bus/pci/devices/0000\:\:<d>.<f>/sriov_totalvfs

where 0000\:\:<d>.<f> is the PCI device ID

To enable VFs via igb_uio, echo the number of virtual functions intended to
enable to max_vfs file..

echo <num-of-vfs> > /sys/bus/pci/devices/0000\:\:<d>.<f>/max_vfs

Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
way it was done with the physical function previously.

Enabling SR-IOV via vfio driver is pretty much the same, except that the file
name is different:

echo <num-of-vfs> > /sys/bus/pci/devices/0000\:\:<d>.<f>/sriov_numvfs

5.4.3. Configure the VFs through PF

The PCI virtual functions must be configured before working or getting assigned
to VMs/Containers. The configuration involves allocating the number of hardware
queues, priorities, load balance, bandwidth and other settings necessary for the
device to perform FEC functions.

This configuration needs to be executed at least once after reboot or PCI FLR and can
be achieved by using the function fpga_5gnr_fec_configure(), which sets up the
parameters defined in fpga_5gnr_fec_conf structure:

struct fpga_5gnr_fec_conf {
 bool pf_mode_en;
 uint8_t vf_ul_queues_number[FPGA_5GNR_FEC_NUM_VFS];
 uint8_t vf_dl_queues_number[FPGA_5GNR_FEC_NUM_VFS];
 uint8_t ul_bandwidth;
 uint8_t dl_bandwidth;
 uint8_t ul_load_balance;
 uint8_t dl_load_balance;
 uint16_t flr_time_out;
};

	pf_mode_en: identifies whether only PF is to be used, or the VFs. PF and
VFs are mutually exclusive and cannot run simultaneously.
Set to 1 for PF mode enabled.
If PF mode is enabled all queues available in the device are assigned
exclusively to PF and 0 queues given to VFs.

	vf_*l_queues_number: defines the hardware queue mapping for every VF.

	*l_bandwidth: in case of congestion on PCIe interface. The device
allocates different bandwidth to UL and DL. The weight is configured by this
setting. The unit of weight is 3 code blocks. For example, if the code block
cbps (code block per second) ratio between UL and DL is 12:1, then the
configuration value should be set to 36:3. The schedule algorithm is based
on code block regardless the length of each block.

	*l_load_balance: hardware queues are load-balanced in a round-robin
fashion. Queues get filled first-in first-out until they reach a pre-defined
watermark level, if exceeded, they won’t get assigned new code blocks..
This watermark is defined by this setting.

If all hardware queues exceeds the watermark, no code blocks will be
streamed in from UL/DL code block FIFO.

	flr_time_out: specifies how many 16.384us to be FLR time out. The
time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
the FLR time out then set this setting to 0x262=610.

An example configuration code calling the function fpga_5gnr_fec_configure() is shown
below:

struct fpga_5gnr_fec_conf conf;
unsigned int i;

memset(&conf, 0, sizeof(struct fpga_5gnr_fec_conf));
conf.pf_mode_en = 1;

for (i = 0; i < FPGA_5GNR_FEC_NUM_VFS; ++i) {
 conf.vf_ul_queues_number[i] = 4;
 conf.vf_dl_queues_number[i] = 4;
}
conf.ul_bandwidth = 12;
conf.dl_bandwidth = 5;
conf.dl_load_balance = 64;
conf.ul_load_balance = 64;

/* setup FPGA PF */
ret = fpga_5gnr_fec_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
 "Failed to configure 4G FPGA PF for bbdev %s",
 info->dev_name);

5.5. Test Application

BBDEV provides a test application, test-bbdev.py and range of test data for testing
the functionality of FPGA 5GNR FEC encode and decode, depending on the device’s
capabilities. The test application is located under app->test-bbdev folder and has the
following options:

"-p", "--testapp-path": specifies path to the bbdev test app.
"-e", "--eal-params" : EAL arguments which are passed to the test app.
"-t", "--timeout" : Timeout in seconds (default=300).
"-c", "--test-cases" : Defines test cases to run. Run all if not specified.
"-v", "--test-vector" : Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
"-n", "--num-ops" : Number of operations to process on device (default=32).
"-b", "--burst-size" : Operations enqueue/dequeue burst size (default=32).
"-l", "--num-lcores" : Number of lcores to run (default=16).
"-i", "--init-device" : Initialise PF device with default values.

To execute the test application tool using simple decode or encode data,
type one of the following:

./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_dec_default.data
./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_enc_default.data

The test application test-bbdev.py, supports the ability to configure the PF device with
a default set of values, if the “-i” or “- -init-device” option is included. The default values
are defined in test_bbdev_perf.c as:

	VF_UL_QUEUE_VALUE 4

	VF_DL_QUEUE_VALUE 4

	UL_BANDWIDTH 3

	DL_BANDWIDTH 3

	UL_LOAD_BALANCE 128

	DL_LOAD_BALANCE 128

	FLR_TIMEOUT 610

5.5.1. Test Vectors

In addition to the simple LDPC decoder and LDPC encoder tests, bbdev also provides
a range of additional tests under the test_vectors folder, which may be useful. The results
of these tests will depend on the FPGA 5GNR FEC capabilities.

Crypto Device Drivers

	1. Crypto Device Supported Functionality Matrices
	1.1. Supported Feature Flags

	1.2. Supported Cipher Algorithms

	1.3. Supported Authentication Algorithms

	1.4. Supported AEAD Algorithms

	1.5. Supported Asymmetric Algorithms

	2. AESN-NI Multi Buffer Crypto Poll Mode Driver
	2.1. Features

	2.2. Limitations

	2.3. Installation

	2.4. Initialization

	2.5. Extra notes

	3. AES-NI GCM Crypto Poll Mode Driver
	3.1. Features

	3.2. Limitations

	3.3. Installation

	3.4. Initialization

	4. ARMv8 Crypto Poll Mode Driver
	4.1. Features

	4.2. Installation

	4.3. Initialization

	4.4. Limitations

	5. NXP CAAM JOB RING (caam_jr)
	5.1. Architecture

	5.2. Implementation

	5.3. Features

	5.4. Supported DPAA SoCs

	5.5. Limitations

	5.6. Prerequisites

	5.7. Pre-Installation Configuration

	5.8. Installations

	5.9. Enabling logs

	6. AMD CCP Poll Mode Driver
	6.1. Features

	6.2. Installation

	6.3. Initialization

	6.4. Limitations

	7. NXP DPAA2 CAAM (DPAA2_SEC)
	7.1. Architecture

	7.2. Implementation

	7.3. Features

	7.4. Supported DPAA2 SoCs

	7.5. Whitelisting & Blacklisting

	7.6. Limitations

	7.7. Prerequisites

	7.8. Pre-Installation Configuration

	7.9. Installations

	7.10. Enabling logs

	8. NXP DPAA CAAM (DPAA_SEC)
	8.1. Architecture

	8.2. Implementation

	8.3. Features

	8.4. Supported DPAA SoCs

	8.5. Whitelisting & Blacklisting

	8.6. Limitations

	8.7. Prerequisites

	8.8. Pre-Installation Configuration

	8.9. Installations

	8.10. Enabling logs

	9. KASUMI Crypto Poll Mode Driver
	9.1. Features

	9.2. Limitations

	9.3. Installation

	9.4. Initialization

	9.5. Extra notes on KASUMI F9

	10. Cavium OCTEON TX Crypto Poll Mode Driver
	10.1. Supported Symmetric Crypto Algorithms

	10.2. Supported Asymmetric Crypto Algorithms

	10.3. Config flags

	10.4. Compilation

	10.5. Execution

	10.6. Testing

	11. Marvell OCTEON TX2 Crypto Poll Mode Driver
	11.1. Features

	11.2. Installation

	11.3. Initialization

	11.4. Debugging Options

	11.5. Testing

	12. OpenSSL Crypto Poll Mode Driver
	12.1. Features

	12.2. Installation

	12.3. Initialization

	12.4. Limitations

	13. MVSAM Crypto Poll Mode Driver
	13.1. Features

	13.2. Limitations

	13.3. Installation

	13.4. Initialization

	14. Marvell NITROX Crypto Poll Mode Driver
	14.1. Features

	14.2. Limitations

	14.3. Installation

	14.4. Initialization

	15. Null Crypto Poll Mode Driver
	15.1. Features

	15.2. Limitations

	15.3. Installation

	15.4. Initialization

	16. Cryptodev Scheduler Poll Mode Driver Library
	16.1. Limitations

	16.2. Installation

	16.3. Initialization

	16.4. Cryptodev Scheduler Modes Overview

	17. SNOW 3G Crypto Poll Mode Driver
	17.1. Features

	17.2. Limitations

	17.3. Installation

	17.4. Initialization

	18. Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
	18.1. Symmetric Crypto Service on QAT

	18.2. Asymmetric Crypto Service on QAT

	18.3. Building PMDs on QAT

	19. Virtio Crypto Poll Mode Driver
	19.1. Features

	19.2. Limitations

	19.3. Virtio crypto PMD Rx/Tx Callbacks

	19.4. Installation

	19.5. Tests

	20. ZUC Crypto Poll Mode Driver
	20.1. Features

	20.2. Limitations

	20.3. Installation

	20.4. Initialization

1. Crypto Device Supported Functionality Matrices

1.1. Supported Feature Flags

Table 1.3 Features availability in crypto drivers

	Feature

	a
e
s
n
i
_
g
c
m

	a
e
s
n
i
_
m
b

	a
r
m
v
8

	c
a
a
m
_
j
r

	c
c
p

	d
p
a
a
2
_
s
e
c

	d
p
a
a
_
s
e
c

	k
a
s
u
m
i

	m
v
s
a
m

	n
i
t
r
o
x

	n
u
l
l

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
p
e
n
s
s
l

	q
a
t

	s
n
o
w
3
g

	v
i
r
t
i
o

	z
u
c

	Symmetric crypto

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Asymmetric crypto

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	
	
	
	

	Sym operation chaining

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	HW Accelerated

	
	
	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	
	Y

	
	
	

	Protocol offload

	
	
	
	Y

	
	Y

	Y

	
	
	
	
	
	
	
	
	
	
	

	CPU SSE

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU AVX

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU AVX2

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU AVX512

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU AESNI

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU NEON

	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CPU ARM CE

	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	In Place SGL

	Y

	
	
	Y

	
	Y

	Y

	
	
	Y

	Y

	Y

	Y

	Y

	Y

	
	
	

	OOP SGL In SGL Out

	
	
	
	Y

	
	Y

	Y

	
	
	Y

	
	Y

	Y

	
	Y

	
	
	

	OOP SGL In LB Out

	Y

	
	
	Y

	
	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	

	OOP LB In SGL Out

	
	
	
	Y

	
	Y

	Y

	
	
	Y

	
	
	
	
	Y

	
	
	

	OOP LB In LB Out

	Y

	Y

	
	Y

	
	Y

	Y

	
	Y

	Y

	
	
	
	Y

	Y

	
	Y

	

	RSA PRIV OP KEY EXP

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	RSA PRIV OP KEY QT

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	

	Digest encrypted

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	

	Asymmetric sessionless

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	

	CPU crypto

	Y

	Y

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Symmetric sessionless

	Y

	Y

	Y

	
	Y

	
	
	Y

	
	
	
	Y

	Y

	Y

	
	Y

	
	Y

	Non-Byte aligned data

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	
	
	Y

	
	Y

Note

	“In Place SGL” feature flag stands for “In place Scatter-gather list”,
which means that an input buffer can consist of multiple segments,
being the operation in-place (input address = output address).

	“OOP SGL In SGL Out” feature flag stands for
“Out-of-place Scatter-gather list Input, Scatter-gather list Output”,
which means pmd supports different scatter-gather styled input and output buffers
(i.e. both can consists of multiple segments).

	“OOP SGL In LB Out” feature flag stands for
“Out-of-place Scatter-gather list Input, Linear Buffers Output”,
which means PMD supports input from scatter-gathered styled buffers,
outputting linear buffers (i.e. single segment).

	“OOP LB In SGL Out” feature flag stands for
“Out-of-place Linear Buffers Input, Scatter-gather list Output”,
which means PMD supports input from linear buffer, outputting
scatter-gathered styled buffers.

	“OOP LB In LB Out” feature flag stands for
“Out-of-place Linear Buffers Input, Linear Buffers Output”,
which means that Out-of-place operation is supported,
with linear input and output buffers.

	“RSA PRIV OP KEY EXP” feature flag means PMD support RSA private key
operation (Sign and Decrypt) using exponent key type only.

	“RSA PRIV OP KEY QT” feature flag means PMD support RSA private key
operation (Sign and Decrypt) using quintuple (crt) type key only.

	“Digest encrypted” feature flag means PMD support hash-cipher cases,
where generated digest is appended to and encrypted with the data.

1.2. Supported Cipher Algorithms

Table 1.4 Cipher algorithms in crypto drivers

	Cipher algorithm

	a
e
s
n
i
_
g
c
m

	a
e
s
n
i
_
m
b

	a
r
m
v
8

	c
a
a
m
_
j
r

	c
c
p

	d
p
a
a
2
_
s
e
c

	d
p
a
a
_
s
e
c

	k
a
s
u
m
i

	m
v
s
a
m

	n
i
t
r
o
x

	n
u
l
l

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
p
e
n
s
s
l

	q
a
t

	s
n
o
w
3
g

	v
i
r
t
i
o

	z
u
c

	NULL

	
	
	
	
	
	
	
	
	Y

	
	Y

	Y

	Y

	
	Y

	
	
	

	AES CBC (128)

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	

	AES CBC (192)

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	

	AES CBC (256)

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	

	AES ECB (128)

	
	
	
	
	Y

	
	
	
	Y

	
	
	
	
	
	
	
	
	

	AES ECB (192)

	
	
	
	
	Y

	
	
	
	Y

	
	
	
	
	
	
	
	
	

	AES ECB (256)

	
	
	
	
	Y

	
	
	
	Y

	
	
	
	
	
	
	
	
	

	AES CTR (128)

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES CTR (192)

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES CTR (256)

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES XTS (128)

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	Y

	
	
	

	AES XTS (192)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	AES XTS (256)

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	Y

	
	
	

	AES DOCSIS BPI

	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	

	3DES CBC

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	

	3DES CTR

	
	
	
	
	
	
	
	
	Y

	
	
	
	
	Y

	Y

	
	
	

	3DES ECB

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	

	DES CBC

	
	Y

	
	
	
	
	
	
	
	
	
	Y

	Y

	
	Y

	
	
	

	DES DOCSIS BPI

	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	SNOW3G UEA2

	
	
	
	
	
	Y

	Y

	
	
	
	
	Y

	Y

	
	Y

	Y

	
	

	KASUMI F8

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	
	Y

	
	
	

	ZUC EEA3

	
	
	
	
	
	Y

	Y

	
	
	
	
	Y

	Y

	
	Y

	
	
	Y

1.3. Supported Authentication Algorithms

Table 1.5 Authentication algorithms in crypto drivers

	Authentication algorithm

	a
e
s
n
i
_
g
c
m

	a
e
s
n
i
_
m
b

	a
r
m
v
8

	c
a
a
m
_
j
r

	c
c
p

	d
p
a
a
2
_
s
e
c

	d
p
a
a
_
s
e
c

	k
a
s
u
m
i

	m
v
s
a
m

	n
i
t
r
o
x

	n
u
l
l

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
p
e
n
s
s
l

	q
a
t

	s
n
o
w
3
g

	v
i
r
t
i
o

	z
u
c

	NULL

	
	
	
	
	
	
	
	
	Y

	
	Y

	Y

	Y

	
	Y

	
	
	

	MD5

	
	
	
	
	
	
	
	
	Y

	
	
	Y

	Y

	Y

	
	
	
	

	MD5 HMAC

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA1

	
	Y

	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA1 HMAC

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	

	SHA224

	
	Y

	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA224 HMAC

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	

	SHA256

	
	Y

	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA256 HMAC

	
	Y

	Y

	Y

	Y

	Y

	Y

	
	Y

	Y

	
	Y

	Y

	Y

	Y

	
	
	

	SHA384

	
	Y

	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA384 HMAC

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA512

	
	Y

	
	
	Y

	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SHA512 HMAC

	
	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES XCBC MAC

	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	

	AES GMAC

	Y

	Y

	
	
	
	
	
	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	SNOW3G UIA2

	
	
	
	
	
	Y

	Y

	
	
	
	
	Y

	Y

	
	Y

	Y

	
	

	KASUMI F9

	
	
	
	
	
	
	
	Y

	
	
	
	Y

	Y

	
	Y

	
	
	

	ZUC EIA3

	
	
	
	
	
	Y

	Y

	
	
	
	
	Y

	Y

	
	Y

	
	
	Y

	AES CMAC (128)

	
	Y

	
	
	Y

	
	
	
	
	
	
	
	
	
	Y

	
	
	

	AES CMAC (192)

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	AES CMAC (256)

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_224

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_224 HMAC

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_256

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_256 HMAC

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_384

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_384 HMAC

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_512

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

	SHA3_512 HMAC

	
	
	
	
	Y

	
	
	
	
	
	
	
	
	
	
	
	
	

1.4. Supported AEAD Algorithms

Table 1.6 AEAD algorithms in crypto drivers

	AEAD algorithm

	a
e
s
n
i
_
g
c
m

	a
e
s
n
i
_
m
b

	a
r
m
v
8

	c
a
a
m
_
j
r

	c
c
p

	d
p
a
a
2
_
s
e
c

	d
p
a
a
_
s
e
c

	k
a
s
u
m
i

	m
v
s
a
m

	n
i
t
r
o
x

	n
u
l
l

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
p
e
n
s
s
l

	q
a
t

	s
n
o
w
3
g

	v
i
r
t
i
o

	z
u
c

	AES GCM (128)

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES GCM (192)

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES GCM (256)

	Y

	Y

	
	Y

	Y

	Y

	Y

	
	Y

	
	
	Y

	Y

	Y

	Y

	
	
	

	AES CCM (128)

	
	Y

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	AES CCM (192)

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	AES CCM (256)

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	CHACHA20-POLY1305

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1.5. Supported Asymmetric Algorithms

Table 1.7 Asymmetric algorithms in crypto drivers

	Asymmetric algorithm

	a
e
s
n
i
_
g
c
m

	a
e
s
n
i
_
m
b

	a
r
m
v
8

	c
a
a
m
_
j
r

	c
c
p

	d
p
a
a
2
_
s
e
c

	d
p
a
a
_
s
e
c

	k
a
s
u
m
i

	m
v
s
a
m

	n
i
t
r
o
x

	n
u
l
l

	o
c
t
e
o
n
t
x

	o
c
t
e
o
n
t
x
2

	o
p
e
n
s
s
l

	q
a
t

	s
n
o
w
3
g

	v
i
r
t
i
o

	z
u
c

	RSA

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	

	DSA

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	

	Modular Exponentiation

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	Y

	Y

	
	
	

	Modular Inversion

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	

	Diffie-hellman

	
	
	
	
	
	
	
	
	
	
	
	
	
	Y

	
	
	
	

	ECDSA

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	

	ECPM

	
	
	
	
	
	
	
	
	
	
	
	Y

	Y

	
	
	
	
	

2. AESN-NI Multi Buffer Crypto Poll Mode Driver

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver
support for utilizing Intel multi buffer library, see the white paper
Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors [https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf].

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

The AES-NI MB PMD supports synchronous mode of operation with
rte_cryptodev_sym_cpu_crypto_process function call.

2.1. Features

AESNI MB PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_AES128_CBC

	RTE_CRYPTO_CIPHER_AES192_CBC

	RTE_CRYPTO_CIPHER_AES256_CBC

	RTE_CRYPTO_CIPHER_AES128_CTR

	RTE_CRYPTO_CIPHER_AES192_CTR

	RTE_CRYPTO_CIPHER_AES256_CTR

	RTE_CRYPTO_CIPHER_AES_DOCSISBPI

	RTE_CRYPTO_CIPHER_DES_CBC

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_DES_DOCSISBPI

Hash algorithms:

	RTE_CRYPTO_HASH_MD5_HMAC

	RTE_CRYPTO_HASH_SHA1_HMAC

	RTE_CRYPTO_HASH_SHA224_HMAC

	RTE_CRYPTO_HASH_SHA256_HMAC

	RTE_CRYPTO_HASH_SHA384_HMAC

	RTE_CRYPTO_HASH_SHA512_HMAC

	RTE_CRYPTO_HASH_AES_XCBC_HMAC

	RTE_CRYPTO_HASH_AES_CMAC

	RTE_CRYPTO_HASH_AES_GMAC

	RTE_CRYPTO_HASH_SHA1

	RTE_CRYPTO_HASH_SHA224

	RTE_CRYPTO_HASH_SHA256

	RTE_CRYPTO_HASH_SHA384

	RTE_CRYPTO_HASH_SHA512

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_CCM

	RTE_CRYPTO_AEAD_AES_GCM

2.2. Limitations

	Chained mbufs are not supported.

2.3. Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the multi-buffer
library from here [https://github.com/01org/intel-ipsec-mb]
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v0.54, which
can be downloaded from https://github.com/01org/intel-ipsec-mb/archive/v0.54.zip.

make
make install

The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).

NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
NASM website [https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D].
Once it is downloaded, extract it and follow these steps:

./configure
make
make install

Note

Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: https://github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions
and the Multi-Buffer library version supported by them:

Table 2.1 DPDK and Multi-Buffer library version compatibility

	DPDK version

	Multi-buffer library version

	2.2 - 16.11

	0.43 - 0.44

	17.02

	0.44

	17.05 - 17.08

	0.45 - 0.48

	17.11

	0.47 - 0.48

	18.02

	0.48

	18.05 - 19.02

	0.49 - 0.52

	19.05 - 19.08

	0.52

	19.11+

	0.52 - 0.54

2.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Build the multi buffer library (explained in Installation section).

	Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_aesni_mb”) within the application.

	Use –vdev=”crypto_aesni_mb” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_aesni_mb,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_HASH --cipher_algo "aes-cbc" --auth_algo "sha1-hmac"

2.5. Extra notes

For AES Counter mode (AES-CTR), the library supports two different sizes for Initialization
Vector (IV):

	12 bytes: used mainly for IPsec, as it requires 12 bytes from the user, which internally
are appended the counter block (4 bytes), which is set to 1 for the first block
(no padding required from the user)

	16 bytes: when passing 16 bytes, the library will take them and use the last 4 bytes
as the initial counter block for the first block.

3. AES-NI GCM Crypto Poll Mode Driver

The AES-NI GCM PMD (librte_pmd_aesni_gcm) provides poll mode crypto driver
support for utilizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation
to learn more about it, including installation).

The AES-NI GCM PMD supports synchronous mode of operation with
rte_cryptodev_sym_cpu_crypto_process function call for both AES-GCM and
GMAC, however GMAC support is limited to one segment per operation. Please
refer to rte_crypto programmer’s guide for more detail.

3.1. Features

AESNI GCM PMD has support for:

Authentication algorithms:

	RTE_CRYPTO_AUTH_AES_GMAC

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

3.2. Limitations

	In out-of-place operations, chained destination mbufs are not supported.

	Chained mbufs are only supported by RTE_CRYPTO_AEAD_AES_GCM algorithm,
not RTE_CRYPTO_AUTH_AES_GMAC.

	Cipher only is not supported.

3.3. Installation

To build DPDK with the AESNI_GCM_PMD the user is required to download the multi-buffer
library from here [https://github.com/01org/intel-ipsec-mb]
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v0.54, which
can be downloaded in https://github.com/01org/intel-ipsec-mb/archive/v0.54.zip.

make
make install

The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).

NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
NASM website [https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D].
Once it is downloaded, extract it and follow these steps:

./configure
make
make install

Note

Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: https://github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions
and the external crypto libraries supported by them:

Table 3.2 DPDK and external crypto library version compatibility

	DPDK version

	Crypto library version

	16.04 - 16.11

	Multi-buffer library 0.43 - 0.44

	17.02 - 17.05

	ISA-L Crypto v2.18

	17.08 - 18.02

	Multi-buffer library 0.46 - 0.48

	18.05 - 19.02

	Multi-buffer library 0.49 - 0.52

	19.05+

	Multi-buffer library 0.52 - 0.54

3.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Build the multi buffer library (explained in Installation section).

	Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_aesni_gcm”) within the application.

	Use –vdev=”crypto_aesni_gcm” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_aesni_gcm,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain AEAD --aead_algo "aes-gcm"

4. ARMv8 Crypto Poll Mode Driver

This code provides the initial implementation of the ARMv8 crypto PMD.
The driver uses ARMv8 cryptographic extensions to process chained crypto
operations in an optimized way. The core functionality is provided by
a low-level library, written in the assembly code.

4.1. Features

ARMv8 Crypto PMD has support for the following algorithm pairs:

Supported cipher algorithms:

	RTE_CRYPTO_CIPHER_AES_CBC

Supported authentication algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

4.2. Installation

In order to enable this virtual crypto PMD, user must:

	Download AArch64 crypto library source code from
here [https://github.com/ARM-software/AArch64cryptolib]

	Export the environmental variable ARMV8_CRYPTO_LIB_PATH with
the path to AArch64cryptolib library.

	Build the library by invoking:

make -C $ARMV8_CRYPTO_LIB_PATH/

	Set CONFIG_RTE_LIBRTE_PMD_ARMV8_CRYPTO=y in
config/defconfig_arm64-armv8a-linux-gcc

The corresponding device can be created only if the following features
are supported by the CPU:

	RTE_CPUFLAG_AES

	RTE_CPUFLAG_SHA1

	RTE_CPUFLAG_SHA2

	RTE_CPUFLAG_NEON

4.3. Initialization

User can use app/test application to check how to use this PMD and to verify
crypto processing.

Test name is cryptodev_sw_armv8_autotest.

4.4. Limitations

	Maximum number of sessions is 2048.

	Only chained operations are supported.

	AES-128-CBC is the only supported cipher variant.

	Cipher input data has to be a multiple of 16 bytes.

	Digest input data has to be a multiple of 8 bytes.

5. NXP CAAM JOB RING (caam_jr)

The caam_jr PMD provides poll mode crypto driver support for NXP SEC 4.x+ (CAAM)
hardware accelerator. More information is available at:

NXP Cryptographic Acceleration Technology [https://www.nxp.com/applications/solutions/internet-of-things/secure-things/network-security-technology/cryptographic-acceleration-technology:NETWORK_SECURITY_CRYPTOG].

5.1. Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic
acceleration and offloading hardware. It combines functions previously
implemented in separate modules to create a modular and scalable acceleration
and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time
integrity checking, and a hardware random number generator. SEC performs
higher-level cryptographic operations than previous NXP cryptographic
accelerators. This provides significant improvement to system level performance.

SEC HW accelerator above 4.x+ version are also known as CAAM.

caam_jr PMD is one of DPAA drivers which uses uio interface to interact with
Linux kernel for configure and destroy the device instance (ring).

5.2. Implementation

SEC provides platform assurance by working with SecMon, which is a companion
logic block that tracks the security state of the SOC. SEC is programmed by
means of descriptors (not to be confused with frame descriptors (FDs)) that
indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors,
read the message data, and write the results of the operations. The DMA
engine provides a scatter/gather capability so that SEC can read and write
data scattered in memory. SEC may be configured by means of software for
dynamic changes in byte ordering. The default configuration for this version
of SEC is little-endian mode.

Note that one physical Job Ring represent one caam_jr device.

5.3. Features

The CAAM_JR PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_AES128_CBC

	RTE_CRYPTO_CIPHER_AES192_CBC

	RTE_CRYPTO_CIPHER_AES256_CBC

	RTE_CRYPTO_CIPHER_AES128_CTR

	RTE_CRYPTO_CIPHER_AES192_CTR

	RTE_CRYPTO_CIPHER_AES256_CTR

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_MD5_HMAC

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

5.4. Supported DPAA SoCs

	LS1046A/LS1026A

	LS1043A/LS1023A

	LS1028A

	LS1012A

5.5. Limitations

	Hash followed by Cipher mode is not supported

	Only supports the session-oriented API implementation (session-less APIs are not supported).

5.6. Prerequisites

caam_jr driver has following dependencies are not part of DPDK and must be installed separately:

	NXP Linux SDK

NXP Linux software development kit (SDK) includes support for the family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK [http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX].

Currently supported by DPDK:

	NXP SDK 18.09+.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

5.7. Pre-Installation Configuration

5.7.1. Config File Options

The following options can be modified in the config file
to enable caam_jr PMD.

Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_CAAM_JR (default n)
By default it is only enabled in common_linux config.
Toggle compilation of the librte_pmd_caam_jr driver.

	CONFIG_RTE_LIBRTE_PMD_CAAM_JR_BE (default n)
By default it is disabled.
It can be used when the underlying hardware supports the CAAM in BE mode.
LS1043A, LS1046A and LS1012A support CAAM in BE mode.
LS1028A supports CAAM in LE mode.

5.8. Installations

To compile the caam_jr PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-armv8a-linux-gcc install

5.9. Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> --log-level=pmd.crypto.caam,<level>

6. AMD CCP Poll Mode Driver

This code provides the initial implementation of the ccp poll mode driver.
The CCP poll mode driver library (librte_pmd_ccp) implements support for
AMD’s cryptographic co-processor (CCP). The CCP PMD is a virtual crypto
poll mode driver which schedules crypto operations to one or more available
CCP hardware engines on the platform. The CCP PMD provides poll mode crypto
driver support for the following hardware accelerator devices:

AMD Cryptographic Co-processor (0x1456)
AMD Cryptographic Co-processor (0x1468)

6.1. Features

CCP crypto PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_AES_ECB

	RTE_CRYPTO_CIPHER_AES_CTR

	RTE_CRYPTO_CIPHER_3DES_CBC

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_AES_CMAC

	RTE_CRYPTO_AUTH_SHA3_224

	RTE_CRYPTO_AUTH_SHA3_224_HMAC

	RTE_CRYPTO_AUTH_SHA3_256

	RTE_CRYPTO_AUTH_SHA3_256_HMAC

	RTE_CRYPTO_AUTH_SHA3_384

	RTE_CRYPTO_AUTH_SHA3_384_HMAC

	RTE_CRYPTO_AUTH_SHA3_512

	RTE_CRYPTO_AUTH_SHA3_512_HMAC

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

6.2. Installation

To compile ccp PMD, it has to be enabled in the config/common_base file and openssl
packages have to be installed in the build environment.

	CONFIG_RTE_LIBRTE_PMD_CCP=y

For Ubuntu 16.04 LTS use below to install openssl in the build system:

sudo apt-get install openssl

This code was verified on Ubuntu 16.04.

6.3. Initialization

Bind the CCP devices to DPDK UIO driver module before running the CCP PMD stack.
e.g. for the 0x1456 device:

cd to the top-level DPDK directory
modprobe uio
insmod ./build/kmod/igb_uio.ko
echo "1022 1456" > /sys/bus/pci/drivers/igb_uio/new_id

Another way to bind the CCP devices to DPDK UIO driver is by using the dpdk-devbind.py script.
The following command assumes BFD as 0000:09:00.2:

cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:09:00.2

In order to enable the ccp crypto PMD, user must set CONFIG_RTE_LIBRTE_PMD_CCP=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_ccp”) within the application.

	Use –vdev=”crypto_ccp” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated.
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device.

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

	ccp_auth_opt: Specify authentication operations to perform on CPU using openssl APIs.

To validate ccp pmd, l2fwd-crypto example can be used with following command:

sudo ./build/l2fwd-crypto -l 1 -n 4 --vdev "crypto_ccp" -- -p 0x1
--chain CIPHER_HASH --cipher_op ENCRYPT --cipher_algo aes-cbc
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f
--cipher_iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff
--auth_op GENERATE --auth_algo sha1-hmac
--auth_key 11:11
:11
:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11

The CCP PMD also supports computing authentication over CPU with cipher offloaded to CCP.
To enable this feature, pass an additional argument as ccp_auth_opt=1 to –vdev parameters as
following:

sudo ./build/l2fwd-crypto -l 1 -n 4 --vdev "crypto_ccp,ccp_auth_opt=1" -- -p 0x1
--chain CIPHER_HASH --cipher_op ENCRYPT --cipher_algo aes-cbc
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f
--cipher_iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff
--auth_op GENERATE --auth_algo sha1-hmac
--auth_key 11:11
:11
:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11

6.4. Limitations

	Chained mbufs are not supported.

	MD5_HMAC is supported only for CPU based authentication.

7. NXP DPAA2 CAAM (DPAA2_SEC)

The DPAA2_SEC PMD provides poll mode crypto driver support for NXP DPAA2 CAAM
hardware accelerator.

7.1. Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic
acceleration and offloading hardware. It combines functions previously
implemented in separate modules to create a modular and scalable acceleration
and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time
integrity checking, and a hardware random number generator. SEC performs
higher-level cryptographic operations than previous NXP cryptographic
accelerators. This provides significant improvement to system level performance.

DPAA2_SEC is one of the hardware resource in DPAA2 Architecture. More information
on DPAA2 Architecture is described in DPAA2 Overview.

DPAA2_SEC PMD is one of DPAA2 drivers which interacts with Management Complex (MC)
portal to access the hardware object - DPSECI. The MC provides access to create,
discover, connect, configure and destroy dpseci objects in DPAA2_SEC PMD.

DPAA2_SEC PMD also uses some of the other hardware resources like buffer pools,
queues, queue portals to store and to enqueue/dequeue data to the hardware SEC.

DPSECI objects are detected by PMD using a resource container called DPRC (like
in DPAA2 Overview).

For example:

DPRC.1 (bus)
 |
 +--+--------+-------+-------+-------+---------+
 | | | | | |
 DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1 DPSECI.1
 DPMCP.2 DPIO.2 DPNI.2 DPMAC.2 DPSECI.2
 DPMCP.3

7.2. Implementation

SEC provides platform assurance by working with SecMon, which is a companion
logic block that tracks the security state of the SOC. SEC is programmed by
means of descriptors (not to be confused with frame descriptors (FDs)) that
indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors,
read the message data, and write the results of the operations. The DMA
engine provides a scatter/gather capability so that SEC can read and write
data scattered in memory. SEC may be configured by means of software for
dynamic changes in byte ordering. The default configuration for this version
of SEC is little-endian mode.

A block diagram similar to dpaa2 NIC is shown below to show where DPAA2_SEC
fits in the DPAA2 Bus model

 +----------------+
 | DPDK DPAA2_SEC |
 | PMD |
 +----------------+ +------------+
 | MC SEC object |.......| Mempool |
 | (DPSECI) | | (DPBP) |
 . +---+---+--------+ +-----+------+
 . ^ | .
 . | |<enqueue, .
 . | | dequeue> .
 . | | .
 . +---+---V----+ .
 | DPIO driver| .
 . . | (DPIO) | .
 . . +-----+------+ .
 . . | QBMAN | .
 . . | Driver | .
+----+------+-------+ +-----+----- | .
| dpaa2 bus | | .
| VFIO fslmc-bus |....................|.........................
| | |
| /bus/fslmc | |
+-------------------+ |
 |
========================== HARDWARE =====|=======================
 DPIO
 |
 DPSECI---DPBP
===|========================

7.3. Features

The DPAA2_SEC PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_AES128_CBC

	RTE_CRYPTO_CIPHER_AES192_CBC

	RTE_CRYPTO_CIPHER_AES256_CBC

	RTE_CRYPTO_CIPHER_AES128_CTR

	RTE_CRYPTO_CIPHER_AES192_CTR

	RTE_CRYPTO_CIPHER_AES256_CTR

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_MD5_HMAC

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

7.4. Supported DPAA2 SoCs

	LS2160A

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

7.5. Whitelisting & Blacklisting

For blacklisting a DPAA2 SEC device, following commands can be used.

<dpdk app> <EAL args> -b "fslmc:dpseci.x" -- ...

Where x is the device object id as configured in resource container.

7.6. Limitations

	Hash followed by Cipher mode is not supported

	Only supports the session-oriented API implementation (session-less APIs are not supported).

7.7. Prerequisites

DPAA2_SEC driver has similar pre-requisites as described in DPAA2 Overview.
The following dependencies are not part of DPDK and must be installed separately:

See NXP QorIQ DPAA2 Board Support Package for setup information

Currently supported by DPDK:

	NXP SDK 19.09+.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

7.8. Pre-Installation Configuration

7.8.1. Config File Options

Basic DPAA2 config file options are described in DPAA2 Overview.
In addition to those, the following options can be modified in the config file
to enable DPAA2_SEC PMD.

Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_DPAA2_SEC (default n)
By default it is only enabled in defconfig_arm64-dpaa-* config.
Toggle compilation of the librte_pmd_dpaa2_sec driver.

7.9. Installations

To compile the DPAA2_SEC PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

7.10. Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> --log-level=pmd.crypto.dpaa2:<level>

Using crypto.dpaa2 as log matching criteria, all Crypto PMD logs can be
enabled which are lower than logging level.

8. NXP DPAA CAAM (DPAA_SEC)

The DPAA_SEC PMD provides poll mode crypto driver support for NXP DPAA CAAM
hardware accelerator.

8.1. Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic
acceleration and offloading hardware. It combines functions previously
implemented in separate modules to create a modular and scalable acceleration
and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time
integrity checking, and a hardware random number generator. SEC performs
higher-level cryptographic operations than previous NXP cryptographic
accelerators. This provides significant improvement to system level performance.

DPAA_SEC is one of the hardware resource in DPAA Architecture. More information
on DPAA Architecture is described in DPAA Overview.

DPAA_SEC PMD is one of DPAA drivers which interacts with QBMAN to create,
configure and destroy the device instance using queue pair with CAAM portal.

DPAA_SEC PMD also uses some of the other hardware resources like buffer pools,
queues, queue portals to store and to enqueue/dequeue data to the hardware SEC.

8.2. Implementation

SEC provides platform assurance by working with SecMon, which is a companion
logic block that tracks the security state of the SOC. SEC is programmed by
means of descriptors (not to be confused with frame descriptors (FDs)) that
indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors,
read the message data, and write the results of the operations. The DMA
engine provides a scatter/gather capability so that SEC can read and write
data scattered in memory. SEC may be configured by means of software for
dynamic changes in byte ordering. The default configuration for this version
of SEC is little-endian mode.

8.3. Features

The DPAA PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_AES128_CBC

	RTE_CRYPTO_CIPHER_AES192_CBC

	RTE_CRYPTO_CIPHER_AES256_CBC

	RTE_CRYPTO_CIPHER_AES128_CTR

	RTE_CRYPTO_CIPHER_AES192_CTR

	RTE_CRYPTO_CIPHER_AES256_CTR

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2

	RTE_CRYPTO_CIPHER_ZUC_EEA3

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_ZUC_EIA3

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

8.4. Supported DPAA SoCs

	LS1046A/LS1026A

	LS1043A/LS1023A

8.5. Whitelisting & Blacklisting

For blacklisting a DPAA device, following commands can be used.

<dpdk app> <EAL args> -b "dpaa:dpaa_sec-X" -- ...
e.g. "dpaa:dpaa_sec-1"

or to disable all 4 SEC devices
-b "dpaa:dpaa_sec-1" -b "dpaa:dpaa_sec-2" -b "dpaa:dpaa_sec-3" -b "dpaa:dpaa_sec-4"

8.6. Limitations

	Hash followed by Cipher mode is not supported

	Only supports the session-oriented API implementation (session-less APIs are not supported).

8.7. Prerequisites

DPAA_SEC driver has similar pre-requisites as described in DPAA Overview.

See NXP QorIQ DPAA Board Support Package for setup information

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

8.8. Pre-Installation Configuration

8.8.1. Config File Options

Basic DPAA config file options are described in DPAA Overview.
In addition to those, the following options can be modified in the config file
to enable DPAA_SEC PMD.

Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_DPAA_SEC (default n)
By default it is only enabled in defconfig_arm64-dpaa-* config.
Toggle compilation of the librte_pmd_dpaa_sec driver.

8.9. Installations

To compile the DPAA_SEC PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

8.10. Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> --log-level=pmd.crypto.dpaa:<level>

Using pmd.crypto.dpaa as log matching criteria, all Crypto PMD logs can be
enabled which are lower than logging level.

9. KASUMI Crypto Poll Mode Driver

The KASUMI PMD (librte_pmd_kasumi) provides poll mode crypto driver support for
utilizing Intel IPSec Multi-buffer library [https://github.com/01org/intel-ipsec-mb]
which implements F8 and F9 functions for KASUMI UEA1 cipher and UIA1 hash algorithms.

9.1. Features

KASUMI PMD has support for:

Cipher algorithm:

	RTE_CRYPTO_CIPHER_KASUMI_F8

Authentication algorithm:

	RTE_CRYPTO_AUTH_KASUMI_F9

9.2. Limitations

	Chained mbufs are not supported.

	KASUMI(F9) supported only if hash offset and length field is byte-aligned.

	In-place bit-level operations for KASUMI(F8) are not supported
(if length and/or offset of data to be ciphered is not byte-aligned).

9.3. Installation

To build DPDK with the KASUMI_PMD the user is required to download the multi-buffer
library from here [https://github.com/01org/intel-ipsec-mb]
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v0.54, which
can be downloaded from https://github.com/01org/intel-ipsec-mb/archive/v0.54.zip.

After downloading the library, the user needs to unpack and compile it
on their system before building DPDK:

make
make install

The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).

NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
NASM website [https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D].
Once it is downloaded, extract it and follow these steps:

./configure
make
make install

Note

Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: https://github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions
and the external crypto libraries supported by them:

Table 9.1 DPDK and external crypto library version compatibility

	DPDK version

	Crypto library version

	16.11 - 19.11

	LibSSO KASUMI

	20.02+

	Multi-buffer library 0.53 - 0.54

9.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Build the multi buffer library (explained in Installation section).

	Build DPDK as follows:

make config T=x86_64-native-linux-gcc
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_KASUMI\)=n,\1=y,' build/.config
make

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_kasumi”) within the application.

	Use –vdev=”crypto_kasumi” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_kasumi,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_ONLY --cipher_algo "kasumi-f8"

9.5. Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be
constructed according to the 3GPP KASUMI specifications (section 4.4, page 13):
http://cryptome.org/3gpp/35201-900.pdf.
Input buffer has to have COUNT (4 bytes), FRESH (4 bytes), MESSAGE and DIRECTION (1 bit)
concatenated. After the DIRECTION bit, a single ‘1’ bit is appended, followed by
between 0 and 7 ‘0’ bits, so that the total length of the buffer is multiple of 8 bits.
Note that the actual message can be any length, specified in bits.

Once this buffer is passed this way, when creating the crypto operation,
length of data to authenticate (op.sym.auth.data.length) must be the length
of all the items described above, including the padding at the end.
Also, offset of data to authenticate (op.sym.auth.data.offset)
must be such that points at the start of the COUNT bytes.

10. Cavium OCTEON TX Crypto Poll Mode Driver

The OCTEON TX crypto poll mode driver provides support for offloading
cryptographic operations to cryptographic accelerator units on
OCTEON TX ® family of processors (CN8XXX). The OCTEON TX crypto
poll mode driver enqueues the crypto request to this accelerator and dequeues
the response once the operation is completed.

10.1. Supported Symmetric Crypto Algorithms

10.1.1. Cipher Algorithms

	RTE_CRYPTO_CIPHER_NULL

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_3DES_ECB

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_AES_CTR

	RTE_CRYPTO_CIPHER_AES_XTS

	RTE_CRYPTO_CIPHER_DES_CBC

	RTE_CRYPTO_CIPHER_KASUMI_F8

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2

	RTE_CRYPTO_CIPHER_ZUC_EEA3

10.1.2. Hash Algorithms

	RTE_CRYPTO_AUTH_NULL

	RTE_CRYPTO_AUTH_AES_GMAC

	RTE_CRYPTO_AUTH_KASUMI_F9

	RTE_CRYPTO_AUTH_MD5

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

	RTE_CRYPTO_AUTH_ZUC_EIA3

10.1.3. AEAD Algorithms

	RTE_CRYPTO_AEAD_AES_GCM

10.2. Supported Asymmetric Crypto Algorithms

	RTE_CRYPTO_ASYM_XFORM_RSA

	RTE_CRYPTO_ASYM_XFORM_MODEX

10.3. Config flags

For compiling the OCTEON TX crypto poll mode driver, please check if the
CONFIG_RTE_LIBRTE_PMD_OCTEONTX_CRYPTO setting is set to y in
config/common_base file.

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX_CRYPTO=y

10.4. Compilation

The OCTEON TX crypto poll mode driver can be compiled either natively on
OCTEON TX ® board or cross-compiled on an x86 based platform.

Refer OCTEON TX Board Support Package for details about setting up the platform
and building DPDK applications.

Note

OCTEON TX crypto PF driver needs microcode to be available at /lib/firmware/ directory.
Refer SDK documents for further information.

SDK and related information can be obtained from: Cavium support site [https://support.cavium.com/].

10.5. Execution

The number of crypto VFs to be enabled can be controlled by setting sysfs entry,
sriov_numvfs, for the corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/devices/<dev_bus_id>/sriov_numvfs

The device bus ID, dev_bus_id, to be used in the above step can be found out
by using dpdk-devbind.py script. The OCTEON TX crypto PF device need to be
identified and the corresponding device number can be used to tune various PF
properties.

Once the required VFs are enabled, dpdk-devbind.py script can be used to
identify the VFs. To be accessible from DPDK, VFs need to be bound to vfio-pci
driver:

cd <dpdk directory>
./usertools/dpdk-devbind.py -u <vf device no>
./usertools/dpdk-devbind.py -b vfio-pci <vf device no>

Appropriate huge page need to be setup in order to run the DPDK example
applications.

echo 8 > /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages
mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

Example applications can now be executed with crypto operations offloaded to
OCTEON TX crypto PMD.

./build/ipsec-secgw --log-level=8 -c 0xff -- -P -p 0x3 -u 0x2 --config
"(1,0,0),(0,0,0)" -f ep1.cfg

10.6. Testing

The symmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx_autotest

The asymmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx_asym_autotest

11. Marvell OCTEON TX2 Crypto Poll Mode Driver

The OCTEON TX2 crypto poll mode driver provides support for offloading
cryptographic operations to cryptographic accelerator units on the
OCTEON TX2 ® family of processors (CN9XXX).

More information about OCTEON TX2 SoCs may be obtained from https://www.marvell.com

11.1. Features

The OCTEON TX2 crypto PMD has support for:

11.1.1. Symmetric Crypto Algorithms

Cipher algorithms:

	RTE_CRYPTO_CIPHER_NULL

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_3DES_ECB

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_AES_CTR

	RTE_CRYPTO_CIPHER_AES_XTS

	RTE_CRYPTO_CIPHER_DES_CBC

	RTE_CRYPTO_CIPHER_KASUMI_F8

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2

	RTE_CRYPTO_CIPHER_ZUC_EEA3

Hash algorithms:

	RTE_CRYPTO_AUTH_NULL

	RTE_CRYPTO_AUTH_AES_GMAC

	RTE_CRYPTO_AUTH_KASUMI_F9

	RTE_CRYPTO_AUTH_MD5

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

	RTE_CRYPTO_AUTH_ZUC_EIA3

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

11.1.2. Asymmetric Crypto Algorithms

	RTE_CRYPTO_ASYM_XFORM_RSA

	RTE_CRYPTO_ASYM_XFORM_MODEX

11.2. Installation

The OCTEON TX2 crypto PMD may be compiled natively on an OCTEON TX2 platform or
cross-compiled on an x86 platform.

Enable OCTEON TX2 crypto PMD in your config file:

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_CRYPTO=y

Refer to Marvell OCTEON TX2 Platform Guide for instructions to build your DPDK
application.

Note

The OCTEON TX2 crypto PMD uses services from the kernel mode OCTEON TX2
crypto PF driver in linux. This driver is included in the OCTEON TX SDK.

11.3. Initialization

List the CPT PF devices available on your OCTEON TX2 platform:

lspci -d:a0fd

a0fd is the CPT PF device id. You should see output similar to:

0002:10:00.0 Class 1080: Device 177d:a0fd

Set sriov_numvfs on the CPT PF device, to create a VF:

echo 1 > /sys/bus/pci/drivers/octeontx2-cpt/0002:10:00.0/sriov_numvfs

Bind the CPT VF device to the vfio_pci driver:

echo '177d a0fe' > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0002:10:00.1 > /sys/bus/pci/devices/0002:10:00.1/driver/unbind
echo 0002:10:00.1 > /sys/bus/pci/drivers/vfio-pci/bind

Another way to bind the VF would be to use the dpdk-devbind.py script:

cd <dpdk directory>
./usertools/dpdk-devbind.py -u 0002:10:00.1
./usertools/dpdk-devbind.py -b vfio-pci 0002:10.00.1

Note

Ensure that sufficient huge pages are available for your application:

echo 8 > /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

Refer to Use of Hugepages in the Linux Environment for more details.

11.4. Debugging Options

Table 11.1 OCTEON TX2 crypto PMD debug options

	#

	Component

	EAL log command

	1

	CPT

	–log-level=’pmd.crypto.octeontx2,8’

11.5. Testing

The symmetric crypto operations on OCTEON TX2 crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx2_autotest

The asymmetric crypto operations on OCTEON TX2 crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx2_asym_autotest

12. OpenSSL Crypto Poll Mode Driver

This code provides the initial implementation of the openssl poll mode
driver. All cryptography operations are using Openssl library crypto API.
Each algorithm uses EVP interface from openssl API - which is recommended
by Openssl maintainers.

For more details about openssl library please visit openssl webpage:
https://www.openssl.org/

12.1. Features

OpenSSL PMD has support for:

Supported cipher algorithms:

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_AES_CTR

	RTE_CRYPTO_CIPHER_3DES_CTR

	RTE_CRYPTO_CIPHER_DES_DOCSISBPI

Supported authentication algorithms:

	RTE_CRYPTO_AUTH_AES_GMAC

	RTE_CRYPTO_AUTH_MD5

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512_HMAC

Supported AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

	RTE_CRYPTO_AEAD_AES_CCM

Supported Asymmetric Crypto algorithms:

	RTE_CRYPTO_ASYM_XFORM_RSA

	RTE_CRYPTO_ASYM_XFORM_DSA

	RTE_CRYPTO_ASYM_XFORM_DH

	RTE_CRYPTO_ASYM_XFORM_MODINV

	RTE_CRYPTO_ASYM_XFORM_MODEX

12.2. Installation

To compile openssl PMD, it has to be enabled in the config/common_base file
and appropriate openssl packages have to be installed in the build environment.

The newest openssl library version is supported:

	1.0.2h-fips 3 May 2016.

Older versions that were also verified:

	1.0.1f 6 Jan 2014

	1.0.1 14 Mar 2012

For Ubuntu 14.04 LTS these packages have to be installed in the build system:

sudo apt-get install openssl
sudo apt-get install libc6-dev-i386 # for i686-native-linux-gcc target

This code was also verified on Fedora 24.
This code has NOT been verified on FreeBSD yet.

12.3. Initialization

User can use app/test application to check how to use this pmd and to verify
crypto processing.

Test name is cryptodev_openssl_autotest.
For asymmetric crypto operations testing, run cryptodev_openssl_asym_autotest.

To verify real traffic l2fwd-crypto example can be used with this command:

sudo ./build/l2fwd-crypto -l 0-1 -n 4 --vdev "crypto_openssl"
--vdev "crypto_openssl"-- -p 0x3 --chain CIPHER_HASH
--cipher_op ENCRYPT --cipher_algo AES_CBC
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f
--iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff
--auth_op GENERATE --auth_algo SHA1_HMAC
--auth_key 11:11
:11
:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11:11

12.4. Limitations

	Maximum number of sessions is 2048.

	Chained mbufs are supported only for source mbuf (destination must be
contiguous).

	Hash only is not supported for GCM and GMAC.

	Cipher only is not supported for GCM and GMAC.

13. MVSAM Crypto Poll Mode Driver

The MVSAM CRYPTO PMD (librte_crypto_mvsam_pmd) provides poll mode crypto driver
support by utilizing MUSDK library, which provides cryptographic operations
acceleration by using Security Acceleration Engine (EIP197) directly from
user-space with minimum overhead and high performance.

Detailed information about SoCs that use MVSAM crypto driver can be obtained here:

	https://www.marvell.com/embedded-processors/armada-70xx/

	https://www.marvell.com/embedded-processors/armada-80xx/

	https://www.marvell.com/embedded-processors/armada-3700/

13.1. Features

MVSAM CRYPTO PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_NULL

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_AES_CTR

	RTE_CRYPTO_CIPHER_AES_ECB

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_3DES_CTR

	RTE_CRYPTO_CIPHER_3DES_ECB

Hash algorithms:

	RTE_CRYPTO_AUTH_NULL

	RTE_CRYPTO_AUTH_MD5

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_AES_GMAC

AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

For supported feature flags please consult Crypto Device Supported Functionality Matrices.

13.2. Limitations

	Hardware only supports scenarios where ICV (digest buffer) is placed just
after the authenticated data. Other placement will result in error.

13.3. Installation

MVSAM CRYPTO PMD driver compilation is disabled by default due to external dependencies.
Currently there are two driver specific compilation options in
config/common_base available:

	CONFIG_RTE_LIBRTE_PMD_MVSAM_CRYPTO (default: n)

Toggle compilation of the librte_pmd_mvsam driver.

MVSAM CRYPTO PMD requires MUSDK built with EIP197 support thus following
extra option must be passed to the library configuration script:

--enable-sam [--enable-sam-statistics] [--enable-sam-debug]

For instructions how to build required kernel modules please refer
to doc/musdk_get_started.txt.

13.4. Initialization

After successfully building MVSAM CRYPTO PMD, the following modules need to be
loaded:

insmod musdk_cma.ko
insmod crypto_safexcel.ko rings=0,0
insmod mv_sam_uio.ko

The following parameters (all optional) are exported by the driver:

	max_nb_queue_pairs: maximum number of queue pairs in the device (default: 8 - A8K, 4 - A7K/A3K).

	max_nb_sessions: maximum number of sessions that can be created (default: 2048).

	socket_id: socket on which to allocate the device resources on.

l2fwd-crypto example application can be used to verify MVSAM CRYPTO PMD
operation:

./l2fwd-crypto --vdev=eth_mvpp2,iface=eth0 --vdev=crypto_mvsam -- \
 --cipher_op ENCRYPT --cipher_algo aes-cbc \
 --cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
 --auth_op GENERATE --auth_algo sha1-hmac \
 --auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1e:1f

14. Marvell NITROX Crypto Poll Mode Driver

The Nitrox crypto poll mode driver provides support for offloading
cryptographic operations to the NITROX V security processor. Detailed
information about the NITROX V security processor can be obtained here:

	https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-v/

14.1. Features

Nitrox crypto PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_AES_CBC

	RTE_CRYPTO_CIPHER_3DES_CBC

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256_HMAC

14.2. Limitations

	AES_CBC Cipher Only combination is not supported.

	3DES Cipher Only combination is not supported.

	Session-less APIs are not supported.

14.3. Installation

For compiling the Nitrox crypto PMD, please check if the
CONFIG_RTE_LIBRTE_PMD_NITROX setting is set to y in config/common_base file.

	CONFIG_RTE_LIBRTE_PMD_NITROX=y

14.4. Initialization

Nitrox crypto PMD depend on Nitrox kernel PF driver being installed on the
platform. Nitrox PF driver is required to create VF devices which will
be used by the PMD. Each VF device can enable one cryptodev PMD.

Nitrox kernel PF driver is available as part of CNN55XX-Driver SDK. The SDK
and it’s installation instructions can be obtained from:
Marvell Technical Documentation Portal [https://support.cavium.com/].

15. Null Crypto Poll Mode Driver

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode
driver which provides a minimal implementation for a software crypto device. As
a null device it does not modify the data in the mbuf on which the crypto
operation is to operate and it only has support for a single cipher and
authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then
each mbuf in the burst will be enqueued in an internal buffer for collection on
a dequeue call as long as the mbuf has a valid rte_mbuf_offload operation with
a valid rte_cryptodev_session or rte_crypto_xform chain of operations.

15.1. Features

Modes:

	RTE_CRYPTO_XFORM_CIPHER ONLY

	RTE_CRYPTO_XFORM_AUTH ONLY

	RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH

	RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER

Cipher algorithms:

	RTE_CRYPTO_CIPHER_NULL

Authentication algorithms:

	RTE_CRYPTO_AUTH_NULL

15.2. Limitations

	Only in-place is currently supported (destination address is the same as
source address).

15.3. Installation

The Null Crypto PMD is enabled and built by default in both the Linux and
FreeBSD builds.

15.4. Initialization

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_null”) within the application.

	Use –vdev=”crypto_null” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_null,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_ONLY --cipher_algo "null"

16. Cryptodev Scheduler Poll Mode Driver Library

Scheduler PMD is a software crypto PMD, which has the capabilities of
attaching hardware and/or software cryptodevs, and distributes ingress
crypto ops among them in a certain manner.

[image: ../_images/scheduler-overview.svg]
Fig. 16.4 Cryptodev Scheduler Overview

The Cryptodev Scheduler PMD library (librte_pmd_crypto_scheduler) acts as
a software crypto PMD and shares the same API provided by librte_cryptodev.
The PMD supports attaching multiple crypto PMDs, software or hardware, as
slaves, and distributes the crypto workload to them with certain behavior.
The behaviors are categorizes as different “modes”. Basically, a scheduling
mode defines certain actions for scheduling crypto ops to its slaves.

The librte_pmd_crypto_scheduler library exports a C API which provides an API
for attaching/detaching slaves, set/get scheduling modes, and enable/disable
crypto ops reordering.

16.1. Limitations

	Sessionless crypto operation is not supported

	OOP crypto operation is not supported when the crypto op reordering feature
is enabled.

16.2. Installation

To build DPDK with CRYTPO_SCHEDULER_PMD the user is required to set
CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER=y in config/common_base, and
recompile DPDK

16.3. Initialization

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_scheduler”) within the application.

	Use –vdev=”crypto_scheduler” in the EAL options, which will call
rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous
two calls:

	socket_id: Specify the socket where the memory for the device is going
to be allocated (by default, socket_id will be the socket where the core
that is creating the PMD is running on).

	max_nb_sessions: Specify the maximum number of sessions that can be
created. This value may be overwritten internally if there are too
many devices are attached.

	slave: If a cryptodev has been initialized with specific name, it can be
attached to the scheduler using this parameter, simply filling the name
here. Multiple cryptodevs can be attached initially by presenting this
parameter multiple times.

	mode: Specify the scheduling mode of the PMD. The supported scheduling
mode parameter values are specified in the “Cryptodev Scheduler Modes
Overview” section.

	mode_param: Specify the mode-specific parameter. Some scheduling modes
may be initialized with specific parameters other than the default ones,
such as the threshold packet size of packet-size-distr mode. This
parameter fulfills the purpose.

	ordering: Specify the status of the crypto operations ordering feature.
The value of this parameter can be “enable” or “disable”. This feature
is disabled by default.

Example:

... --vdev "crypto_aesni_mb0,name=aesni_mb_1" --vdev "crypto_aesni_mb1,name=aesni_mb_2" --vdev "crypto_scheduler,slave=aesni_mb_1,slave=aesni_mb_2" ...

Note

	The scheduler cryptodev cannot be started unless the scheduling mode
is set and at least one slave is attached. Also, to configure the
scheduler in the run-time, like attach/detach slave(s), change
scheduling mode, or enable/disable crypto op ordering, one should stop
the scheduler first, otherwise an error will be returned.

	The crypto op reordering feature requires using the userdata field of
every mbuf to be processed to store temporary data. By the end of
processing, the field is set to pointing to NULL, any previously
stored value of this field will be lost.

16.4. Cryptodev Scheduler Modes Overview

Currently the Crypto Scheduler PMD library supports following modes of
operation:

	CDEV_SCHED_MODE_ROUNDROBIN:

Initialization mode parameter: round-robin

Round-robin mode, which distributes the enqueued burst of crypto ops
among its slaves in a round-robin manner. This mode may help to fill
the throughput gap between the physical core and the existing cryptodevs
to increase the overall performance.

	CDEV_SCHED_MODE_PKT_SIZE_DISTR:

Initialization mode parameter: packet-size-distr

Packet-size based distribution mode, which works with 2 slaves, the primary
slave and the secondary slave, and distributes the enqueued crypto
operations to them based on their data lengths. A crypto operation will be
distributed to the primary slave if its data length is equal to or bigger
than the designated threshold, otherwise it will be handled by the secondary
slave.

A typical usecase in this mode is with the QAT cryptodev as the primary and
a software cryptodev as the secondary slave. This may help applications to
process additional crypto workload than what the QAT cryptodev can handle on
its own, by making use of the available CPU cycles to deal with smaller
crypto workloads.

The threshold is set to 128 bytes by default. It can be updated by calling
function rte_cryptodev_scheduler_option_set. The parameter of
option_type must be CDEV_SCHED_OPTION_THRESHOLD and option should
point to a rte_cryptodev_scheduler_threshold_option structure filled with
appropriate threshold value. Please NOTE this threshold has be a power-of-2
unsigned integer. It is possible to use mode_param initialization
parameter to achieve the same purpose. For example:

… –vdev “crypto_scheduler,mode=packet-size-distr,mode_param=threshold:512” …

The above parameter will overwrite the threshold value to 512.

	CDEV_SCHED_MODE_FAILOVER:

Initialization mode parameter: fail-over

Fail-over mode, which works with 2 slaves, the primary slave and the
secondary slave. In this mode, the scheduler will enqueue the incoming
crypto operation burst to the primary slave. When one or more crypto
operations fail to be enqueued, then they will be enqueued to the secondary
slave.

	CDEV_SCHED_MODE_MULTICORE:

Initialization mode parameter: multi-core

Multi-core mode, which distributes the workload with several (up to eight)
worker cores. The enqueued bursts are distributed among the worker cores in a
round-robin manner. If scheduler cannot enqueue entire burst to the same worker,
it will enqueue the remaining operations to the next available worker.
For pure small packet size (64 bytes) traffic however the multi-core mode is not
an optimal solution, as it doesn’t give significant per-core performance improvement.
For mixed traffic (IMIX) the optimal number of worker cores is around 2-3.
For large packets (1.5 kbytes) scheduler shows linear scaling in performance
up to eight cores.
Each worker uses its own slave cryptodev. Only software cryptodevs
are supported. Only the same type of cryptodevs should be used concurrently.

The multi-core mode uses one extra parameter:

	corelist: Semicolon-separated list of logical cores to be used as workers.
The number of worker cores should be equal to the number of slave cryptodevs.
These cores should be present in EAL core list parameter and
should not be used by the application or any other process.

	Example:
	… –vdev “crypto_aesni_mb1,name=aesni_mb_1” –vdev “crypto_aesni_mb_pmd2,name=aesni_mb_2” –vdev “crypto_scheduler,slave=aesni_mb_1,slave=aesni_mb_2,mode=multi-core,corelist=23;24” …

17. SNOW 3G Crypto Poll Mode Driver

The SNOW3G PMD (librte_snow3g_zuc) provides poll mode crypto driver support for
utilizing Intel IPSec Multi-buffer library [https://github.com/01org/intel-ipsec-mb]
which implements F8 and F8 functions for SNOW 3G UEA2 cipher and UIA2 hash algorithms.

17.1. Features

SNOW 3G PMD has support for:

Cipher algorithm:

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2

Authentication algorithm:

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

17.2. Limitations

	Chained mbufs are not supported.

	SNOW 3G (UIA2) supported only if hash offset field is byte-aligned.

	In-place bit-level operations for SNOW 3G (UEA2) are not supported
(if length and/or offset of data to be ciphered is not byte-aligned).

17.3. Installation

To build DPDK with the SNOW3G_PMD the user is required to download the multi-buffer
library from here [https://github.com/01org/intel-ipsec-mb]
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v0.54, which
can be downloaded from https://github.com/01org/intel-ipsec-mb/archive/v0.54.zip.

After downloading the library, the user needs to unpack and compile it
on their system before building DPDK:

make
make install

The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).

NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
NASM website [https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D].
Once it is downloaded, extract it and follow these steps:

./configure
make
make install

Note

Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: https://github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions
and the external crypto libraries supported by them:

Table 17.1 DPDK and external crypto library version compatibility

	DPDK version

	Crypto library version

	16.04 - 19.11

	LibSSO SNOW3G

	20.02+

	Multi-buffer library 0.53 - 0.54

17.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Build the multi buffer library (explained in Installation section).

	Build DPDK as follows:

make config T=x86_64-native-linux-gcc
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_SNOW3G\)=n,\1=y,' build/.config
make

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_snow3g”) within the application.

	Use –vdev=”crypto_snow3g” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_snow3g,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_ONLY --cipher_algo "snow3g-uea2"

18. Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver

QAT documentation consists of three parts:

	Details of the symmetric and asymmetric crypto services below.

	Details of the compression service
in the compressdev drivers section.

	Details of building the common QAT infrastructure and the PMDs to support the
above services. See Building PMDs on QAT below.

18.1. Symmetric Crypto Service on QAT

The QAT symmetric crypto PMD (hereafter referred to as QAT SYM [PMD]) provides
poll mode crypto driver support for the following hardware accelerator devices:

	Intel QuickAssist Technology DH895xCC

	Intel QuickAssist Technology C62x

	Intel QuickAssist Technology C3xxx

	Intel QuickAssist Technology D15xx

	Intel QuickAssist Technology P5xxx

18.1.1. Features

The QAT SYM PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_3DES_CBC

	RTE_CRYPTO_CIPHER_3DES_CTR

	RTE_CRYPTO_CIPHER_AES128_CBC

	RTE_CRYPTO_CIPHER_AES192_CBC

	RTE_CRYPTO_CIPHER_AES256_CBC

	RTE_CRYPTO_CIPHER_AES128_CTR

	RTE_CRYPTO_CIPHER_AES192_CTR

	RTE_CRYPTO_CIPHER_AES256_CTR

	RTE_CRYPTO_CIPHER_AES_XTS

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2

	RTE_CRYPTO_CIPHER_NULL

	RTE_CRYPTO_CIPHER_KASUMI_F8

	RTE_CRYPTO_CIPHER_DES_CBC

	RTE_CRYPTO_CIPHER_AES_DOCSISBPI

	RTE_CRYPTO_CIPHER_DES_DOCSISBPI

	RTE_CRYPTO_CIPHER_ZUC_EEA3

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1

	RTE_CRYPTO_AUTH_SHA1_HMAC

	RTE_CRYPTO_AUTH_SHA224

	RTE_CRYPTO_AUTH_SHA224_HMAC

	RTE_CRYPTO_AUTH_SHA256

	RTE_CRYPTO_AUTH_SHA256_HMAC

	RTE_CRYPTO_AUTH_SHA384

	RTE_CRYPTO_AUTH_SHA384_HMAC

	RTE_CRYPTO_AUTH_SHA512

	RTE_CRYPTO_AUTH_SHA512_HMAC

	RTE_CRYPTO_AUTH_AES_XCBC_MAC

	RTE_CRYPTO_AUTH_SNOW3G_UIA2

	RTE_CRYPTO_AUTH_MD5_HMAC

	RTE_CRYPTO_AUTH_NULL

	RTE_CRYPTO_AUTH_KASUMI_F9

	RTE_CRYPTO_AUTH_AES_GMAC

	RTE_CRYPTO_AUTH_ZUC_EIA3

	RTE_CRYPTO_AUTH_AES_CMAC

Supported AEAD algorithms:

	RTE_CRYPTO_AEAD_AES_GCM

	RTE_CRYPTO_AEAD_AES_CCM

18.1.2. Supported Chains

All the usual chains are supported and also some mixed chains:

Table 18.1 Supported hash-cipher chains for wireless digest-encrypted cases

	Cipher algorithm

	NULL AUTH

	SNOW3G UIA2

	ZUC EIA3

	AES CMAC

	NULL CIPHER

	Y

	2&3

	2&3

	Y

	SNOW3G UEA2

	2&3

	Y

	2&3

	2&3

	ZUC EEA3

	2&3

	2&3

	2&3

	2&3

	AES CTR

	Y

	2&3

	2&3

	Y

	The combinations marked as “Y” are supported on all QAT hardware versions.

	The combinations marked as “2&3” are supported on GEN2/GEN3 QAT hardware only.

18.1.3. Limitations

	Only supports the session-oriented API implementation (session-less APIs are not supported).

	SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEA3) supported only if cipher length and offset fields are byte-multiple.

	SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are byte-multiple.

	No BSD support as BSD QAT kernel driver not available.

	ZUC EEA3/EIA3 is not supported by dh895xcc devices

	Maximum additional authenticated data (AAD) for GCM is 240 bytes long and must be passed to the device in a buffer rounded up to the nearest block-size multiple (x16) and padded with zeros.

	Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single
queue-pair all enqueues to the TX queue must be done from one thread and all dequeues
from the RX queue must be done from one thread, but enqueues and dequeues may be done
in different threads.)

	A GCM limitation exists, but only in the case where there are multiple
generations of QAT devices on a single platform.
To optimise performance, the GCM crypto session should be initialised for the
device generation to which the ops will be enqueued. Specifically if a GCM
session is initialised on a GEN2 device, but then attached to an op enqueued
to a GEN3 device, it will work but cannot take advantage of hardware
optimisations in the GEN3 device. And if a GCM session is initialised on a
GEN3 device, then attached to an op sent to a GEN1/GEN2 device, it will not be
enqueued to the device and will be marked as failed. The simplest way to
mitigate this is to use the bdf whitelist to avoid mixing devices of different
generations in the same process if planning to use for GCM.

	The mixed algo feature on GEN2 is not supported by all kernel drivers. Check
the notes under the Available Kernel Drivers table below for specific details.

18.1.4. Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be
constructed according to the
3GPP KASUMI specification [http://cryptome.org/3gpp/35201-900.pdf]
(section 4.4, page 13). The input buffer has to have COUNT (4 bytes),
FRESH (4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION
bit, a single ‘1’ bit is appended, followed by between 0 and 7 ‘0’ bits, so that
the total length of the buffer is multiple of 8 bits. Note that the actual
message can be any length, specified in bits.

Once this buffer is passed this way, when creating the crypto operation,
length of data to authenticate “op.sym.auth.data.length” must be the length
of all the items described above, including the padding at the end.
Also, offset of data to authenticate “op.sym.auth.data.offset”
must be such that points at the start of the COUNT bytes.

18.2. Asymmetric Crypto Service on QAT

The QAT asymmetric crypto PMD (hereafter referred to as QAT ASYM [PMD]) provides
poll mode crypto driver support for the following hardware accelerator devices:

	Intel QuickAssist Technology DH895xCC

	Intel QuickAssist Technology C62x

	Intel QuickAssist Technology C3xxx

	Intel QuickAssist Technology D15xx

	Intel QuickAssist Technology P5xxx

The QAT ASYM PMD has support for:

	RTE_CRYPTO_ASYM_XFORM_MODEX

	RTE_CRYPTO_ASYM_XFORM_MODINV

18.2.1. Limitations

	Big integers longer than 4096 bits are not supported.

	Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single
queue-pair all enqueues to the TX queue must be done from one thread and all dequeues
from the RX queue must be done from one thread, but enqueues and dequeues may be done
in different threads.)

	RSA-2560, RSA-3584 are not supported

18.3. Building PMDs on QAT

A QAT device can host multiple acceleration services:

	symmetric cryptography

	data compression

	asymmetric cryptography

These services are provided to DPDK applications via PMDs which register to
implement the corresponding cryptodev and compressdev APIs. The PMDs use
common QAT driver code which manages the QAT PCI device. They also depend on a
QAT kernel driver being installed on the platform, see Dependency on the QAT kernel driver below.

18.3.1. Configuring and Building the DPDK QAT PMDs

Further information on configuring, building and installing DPDK is described
here.

Quick instructions for QAT cryptodev PMD are as follows:

cd to the top-level DPDK directory
make defconfig
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_SYM\)=n,\1=y,' build/.config
or/and
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_ASYM\)=n,\1=y,' build/.config
make

Quick instructions for QAT compressdev PMD are as follows:

cd to the top-level DPDK directory
make defconfig
make

18.3.2. Build Configuration

These are the build configuration options affecting QAT, and their default values:

CONFIG_RTE_LIBRTE_PMD_QAT=y
CONFIG_RTE_LIBRTE_PMD_QAT_SYM=n
CONFIG_RTE_LIBRTE_PMD_QAT_ASYM=n
CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES=48
CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE=65536

CONFIG_RTE_LIBRTE_PMD_QAT must be enabled for any QAT PMD to be built.

Both QAT SYM PMD and QAT ASYM PMD have an external dependency on libcrypto, so are not
built by default. CONFIG_RTE_LIBRTE_PMD_QAT_SYM/ASYM should be enabled to build them.

The QAT compressdev PMD has no external dependencies, so needs no configuration
options and is built by default.

The number of VFs per PF varies - see table below. If multiple QAT packages are
installed on a platform then CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES should be
adjusted to the number of VFs which the QAT common code will need to handle.

Note

There are separate config items (not QAT-specific) for max cryptodevs
CONFIG_RTE_CRYPTO_MAX_DEVS and max compressdevs CONFIG_RTE_COMPRESS_MAX_DEVS,
if necessary these should be adjusted to handle the total of QAT and other
devices which the process will use. In particular for crypto, where each
QAT VF may expose two crypto devices, sym and asym, it may happen that the
number of devices will be bigger than MAX_DEVS and the process will show an error
during PMD initialisation. To avoid this problem CONFIG_RTE_CRYPTO_MAX_DEVS may be
increased or -w, pci-whitelist domain:bus:devid:func option may be used.

QAT compression PMD needs intermediate buffers to support Deflate compression
with Dynamic Huffman encoding. CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE
specifies the size of a single buffer, the PMD will allocate a multiple of these,
plus some extra space for associated meta-data. For GEN2 devices, 20 buffers are
allocated while for GEN1 devices, 12 buffers are allocated, plus 1472 bytes overhead.

Note

If the compressed output of a Deflate operation using Dynamic Huffman
Encoding is too big to fit in an intermediate buffer, then the
operation will be split into smaller operations and their results will
be merged afterwards.
This is not possible if any checksum calculation was requested - in such
case the code falls back to fixed compression.
To avoid this less performant case, applications should configure
the intermediate buffer size to be larger than the expected input data size
(compressed output size is usually unknown, so the only option is to make
larger than the input size).

18.3.3. Running QAT PMD with minimum threshold for burst size

If only a small number or packets can be enqueued. Each enqueue causes an expensive MMIO write.
These MMIO write occurrences can be optimised by setting any of the following parameters:

	qat_sym_enq_threshold

	qat_asym_enq_threshold

	qat_comp_enq_threshold

When any of these parameters is set rte_cryptodev_enqueue_burst function will
return 0 (thereby avoiding an MMIO) if the device is congested and number of packets
possible to enqueue is smaller.
To use this feature the user must set the parameter on process start as a device additional parameter:

-w 03:01.1,qat_sym_enq_threshold=32,qat_comp_enq_threshold=16

All parameters can be used with the same device regardless of order. Parameters are separated
by comma. When the same parameter is used more than once first occurrence of the parameter
is used.
Maximum threshold that can be set is 32.

18.3.4. Device and driver naming

	The qat cryptodev symmetric crypto driver name is “crypto_qat”.

	The qat cryptodev asymmetric crypto driver name is “crypto_qat_asym”.

The “rte_cryptodev_devices_get()” returns the devices exposed by either of these drivers.

	Each qat sym crypto device has a unique name, in format
“<pci bdf>_<service>”, e.g. “0000:41:01.0_qat_sym”.

	Each qat asym crypto device has a unique name, in format
“<pci bdf>_<service>”, e.g. “0000:41:01.0_qat_asym”.
This name can be passed to “rte_cryptodev_get_dev_id()” to get the device_id.

Note

The cryptodev driver name is passed to the dpdk-test-crypto-perf tool in the “-devtype” parameter.

The qat crypto device name is in the format of the slave parameter passed to the crypto scheduler.

	The qat compressdev driver name is “compress_qat”.
The rte_compressdev_devices_get() returns the devices exposed by this driver.

	Each qat compression device has a unique name, in format
<pci bdf>_<service>, e.g. “0000:41:01.0_qat_comp”.
This name can be passed to rte_compressdev_get_dev_id() to get the device_id.

18.3.5. Dependency on the QAT kernel driver

To use QAT an SRIOV-enabled QAT kernel driver is required. The VF
devices created and initialised by this driver will be used by the QAT PMDs.

Instructions for installation are below, but first an explanation of the
relationships between the PF/VF devices and the PMDs visible to
DPDK applications.

Each QuickAssist PF device exposes a number of VF devices. Each VF device can
enable one symmetric cryptodev PMD and/or one asymmetric cryptodev PMD and/or
one compressdev PMD.
These QAT PMDs share the same underlying device and pci-mgmt code, but are
enumerated independently on their respective APIs and appear as independent
devices to applications.

Note

Each VF can only be used by one DPDK process. It is not possible to share
the same VF across multiple processes, even if these processes are using
different acceleration services.

Conversely one DPDK process can use one or more QAT VFs and can expose both
cryptodev and compressdev instances on each of those VFs.

18.3.6. Available kernel drivers

Kernel drivers for each device for each service are listed in the following table. (Scroll right
to see the full table)

Table 18.2 QAT device generations, devices and drivers

	S

	A

	C

	Gen

	Device

	Driver/ver

	Kernel Module

	Pci Driver

	PF Did

	#PFs

	VF Did

	VFs/PF

	Yes

	No

	No

	1

	DH895xCC

	linux/4.4+

	qat_dh895xcc

	dh895xcc

	435

	1

	443

	32

	Yes

	Yes

	No

	“

	“

	01.org/4.2.0+

	“

	“

	“

	“

	“

	“

	Yes

	Yes

	Yes

	“

	“

	01.org/4.3.0+

	“

	“

	“

	“

	“

	“

	Yes

	No

	No

	2

	C62x

	linux/4.5+

	qat_c62x

	c6xx

	37c8

	3

	37c9

	16

	Yes

	Yes

	Yes

	“

	“

	01.org/4.2.0+

	“

	“

	“

	“

	“

	“

	Yes

	No

	No

	2

	C3xxx

	linux/4.5+

	qat_c3xxx

	c3xxx

	19e2

	1

	19e3

	16

	Yes

	Yes

	Yes

	“

	“

	01.org/4.2.0+

	“

	“

	“

	“

	“

	“

	Yes

	No

	No

	2

	D15xx

	p

	qat_d15xx

	d15xx

	6f54

	1

	6f55

	16

	Yes

	No

	No

	3

	P5xxx

	p

	qat_p5xxx

	p5xxx

	18a0

	1

	18a1

	128

	Note: Symmetric mixed crypto algorithms feature on Gen 2 works only with 01.org driver version 4.9.0+

The first 3 columns indicate the service:

	S = Symmetric crypto service (via cryptodev API)

	A = Asymmetric crypto service (via cryptodev API)

	C = Compression service (via compressdev API)

The Driver column indicates either the Linux kernel version in which
support for this device was introduced or a driver available on Intel’s 01.org
website. There are both linux in-tree and 01.org kernel drivers available for some
devices. p = release pending.

If you are running on a kernel which includes a driver for your device, see
Installation using kernel.org driver below. Otherwise see
Installation using 01.org QAT driver.

18.3.7. Installation using kernel.org driver

The examples below are based on the C62x device, if you have a different device
use the corresponding values in the above table.

In BIOS ensure that SRIOV is enabled and either:

	Disable VT-d or

	Enable VT-d and set "intel_iommu=on iommu=pt" in the grub file.

Check that the QAT driver is loaded on your system, by executing:

lsmod | grep qa

You should see the kernel module for your device listed, e.g.:

qat_c62x 5626 0
intel_qat 82336 1 qat_c62x

Next, you need to expose the Virtual Functions (VFs) using the sysfs file system.

First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of
your device, e.g.:

lspci -d:37c8

You should see output similar to:

1a:00.0 Co-processor: Intel Corporation Device 37c8
3d:00.0 Co-processor: Intel Corporation Device 37c8
3f:00.0 Co-processor: Intel Corporation Device 37c8

Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver:

echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3f:00.0/sriov_numvfs

Check that the VFs are available for use. For example lspci -d:37c9 should
list 48 VF devices available for a C62x device.

To complete the installation follow the instructions in
Binding the available VFs to the DPDK UIO driver.

Note

If the QAT kernel modules are not loaded and you see an error like Failed
to load MMP firmware qat_895xcc_mmp.bin in kernel logs, this may be as a
result of not using a distribution, but just updating the kernel directly.

Download firmware from the kernel firmware repo [http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/].

Copy qat binaries to /lib/firmware:

cp qat_895xcc.bin /lib/firmware
cp qat_895xcc_mmp.bin /lib/firmware

Change to your linux source root directory and start the qat kernel modules:

insmod ./drivers/crypto/qat/qat_common/intel_qat.ko
insmod ./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko

Note

If you see the following warning in /var/log/messages it can be ignored:
IOMMU should be enabled for SR-IOV to work correctly.

18.3.8. Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org [https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches].
Consult the Getting Started Guide at the same URL for further information.

The steps below assume you are:

	Building on a platform with one C62x device.

	Using package qat1.7.l.4.2.0-000xx.tar.gz.

	On Fedora26 kernel 4.11.11-300.fc26.x86_64.

In the BIOS ensure that SRIOV is enabled and VT-d is disabled.

Uninstall any existing QAT driver, for example by running:

	./installer.sh uninstall in the directory where originally installed.

Build and install the SRIOV-enabled QAT driver:

mkdir /QAT
cd /QAT

Copy the package to this location and unpack
tar zxof qat1.7.l.4.2.0-000xx.tar.gz

./configure --enable-icp-sriov=host
make install

You can use cat /sys/kernel/debug/qat<your device type and bdf>/version/fw to confirm the driver is correctly installed and is using firmware version 4.2.0.
You can use lspci -d:37c9 to confirm the presence of the 16 VF devices available per C62x PF.

Confirm the driver is correctly installed and is using firmware version 4.2.0:

cat /sys/kernel/debug/qat<your device type and bdf>/version/fw

Confirm the presence of 48 VF devices - 16 per PF:

lspci -d:37c9

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO driver.

Note

If using a later kernel and the build fails with an error relating to
strict_stroul not being available apply the following patch:

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5)
+ #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64(str, base, num, endPtr) \
 do { \
 if (str[0] == '-') \
 { \
 *(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \
 }else { \
 *(num) = simple_strtoull((str), &(endPtr), (base)); \
 } \
 } while(0)
+ #endif
#endif
#endif

Note

If the build fails due to missing header files you may need to do following:

sudo yum install zlib-devel
sudo yum install openssl-devel
sudo yum install libudev-devel

Note

If the build or install fails due to mismatching kernel sources you may need to do the following:

sudo yum install kernel-headers-`uname -r`
sudo yum install kernel-src-`uname -r`
sudo yum install kernel-devel-`uname -r`

18.3.9. Binding the available VFs to the DPDK UIO driver

Unbind the VFs from the stock driver so they can be bound to the uio driver.

18.3.9.1. For an Intel(R) QuickAssist Technology DH895xCC device

The unbind command below assumes BDFs of 03:01.00-03:04.07, if your
VFs are different adjust the unbind command below:

for device in $(seq 1 4); do \
 for fn in $(seq 0 7); do \
 echo -n 0000:03:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
 done; \
done

18.3.9.2. For an Intel(R) QuickAssist Technology C62x device

The unbind command below assumes BDFs of 1a:01.00-1a:02.07,
3d:01.00-3d:02.07 and 3f:01.00-3f:02.07, if your VFs are different
adjust the unbind command below:

for device in $(seq 1 2); do \
 for fn in $(seq 0 7); do \
 echo -n 0000:1a:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \

 echo -n 0000:3d:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \

 echo -n 0000:3f:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \
 done; \
done

18.3.9.3. For Intel(R) QuickAssist Technology C3xxx or D15xx device

The unbind command below assumes BDFs of 01:01.00-01:02.07, if your
VFs are different adjust the unbind command below:

for device in $(seq 1 2); do \
 for fn in $(seq 0 7); do \
 echo -n 0000:01:0${device}.${fn} > \
 /sys/bus/pci/devices/0000\:01\:0${device}.${fn}/driver/unbind; \
 done; \
done

18.3.9.4. Bind to the DPDK uio driver

Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use lspci
to confirm the VF devices are now in use by igb_uio kernel driver,
e.g. for the C62x device:

cd to the top-level DPDK directory
modprobe uio
insmod ./build/kmod/igb_uio.ko
echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vvd:37c9

Another way to bind the VFs to the DPDK UIO driver is by using the
dpdk-devbind.py script:

cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1

18.3.10. Testing

QAT SYM crypto PMD can be tested by running the test application:

make defconfig
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>cryptodev_qat_autotest

QAT ASYM crypto PMD can be tested by running the test application:

make defconfig
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>cryptodev_qat_asym_autotest

QAT compression PMD can be tested by running the test application:

make defconfig
sed -i 's,\(CONFIG_RTE_COMPRESSDEV_TEST\)=n,\1=y,' build/.config
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>compressdev_autotest

18.3.11. Debugging

There are 2 sets of trace available via the dynamic logging feature:

	pmd.qat_dp exposes trace on the data-path.

	pmd.qat_general exposes all other trace.

pmd.qat exposes both sets of traces.
They can be enabled using the log-level option (where 8=maximum log level) on
the process cmdline, e.g. using any of the following:

--log-level="pmd.qat_general,8"
--log-level="pmd.qat_dp,8"
--log-level="pmd.qat,8"

Note

The global RTE_LOG_DP_LEVEL overrides data-path trace so must be set to
RTE_LOG_DEBUG to see all the trace. This variable is in config/rte_config.h
for meson build and config/common_base for gnu make.
Also the dynamic global log level overrides both sets of trace, so e.g. no
QAT trace would display in this case:

--log-level="7" --log-level="pmd.qat_general,8"

19. Virtio Crypto Poll Mode Driver

The virtio crypto PMD provides poll mode driver support for the virtio crypto
device.

19.1. Features

The virtio crypto PMD has support for:

Cipher algorithms:

	RTE_CRYPTO_CIPHER_AES_CBC

Hash algorithms:

	RTE_CRYPTO_AUTH_SHA1_HMAC

19.2. Limitations

	Only supports the session-oriented API implementation (session-less APIs are
not supported).

	Only supports modern mode since virtio crypto conforms to virtio-1.0.

	Only has two types of queues: data queue and control queue. These two queues
only support indirect buffers to communication with the virtio backend.

	Only supports AES_CBC cipher only algorithm and AES_CBC with HMAC_SHA1
chaining algorithm since the vhost crypto backend only these algorithms
are supported.

	Does not support Link State interrupt.

	Does not support runtime configuration.

19.3. Virtio crypto PMD Rx/Tx Callbacks

Rx callbacks:

	virtio_crypto_pkt_rx_burst

Tx callbacks:

	virtio_crypto_pkt_tx_burst

19.4. Installation

Quick instructions are as follows:

Firstly run DPDK vhost crypto sample as a server side and build QEMU with
vhost crypto enabled.
QEMU can then be started using the following parameters:

qemu-system-x86_64 \
[...] \
 -chardev socket,id=charcrypto0,path=/path/to/your/socket \
 -object cryptodev-vhost-user,id=cryptodev0,chardev=charcrypto0 \
 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0
[...]

Secondly bind the uio_generic driver for the virtio-crypto device.
For example, 0000:00:04.0 is the domain, bus, device and function
number of the virtio-crypto device:

modprobe uio_pci_generic
echo -n 0000:00:04.0 > /sys/bus/pci/drivers/virtio-pci/unbind
echo "1af4 1054" > /sys/bus/pci/drivers/uio_pci_generic/new_id

Finally the front-end virtio crypto PMD driver can be installed:

cd to the top-level DPDK directory
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_VIRTIO_CRYPTO\)=n,\1=y,' config/common_base
make config T=x86_64-native-linux-gcc
make install T=x86_64-native-linux-gcc

19.5. Tests

The unit test cases can be tested as below:

reserve enough huge pages
cd to the top-level DPDK directory
export RTE_TARGET=x86_64-native-linux-gcc
export RTE_SDK=`pwd`
cd to app/test
type the command "make" to compile
run the tests with "./test"
type the command "cryptodev_virtio_autotest" to test

The performance can be tested as below:

reserve enough huge pages
cd to the top-level DPDK directory
export RTE_TARGET=x86_64-native-linux-gcc
export RTE_SDK=`pwd`
cd to app/test-crypto-perf
type the command "make" to compile
run the tests with the following command:

./dpdk-test-crypto-perf -l 0,1 -- --devtype crypto_virtio \
 --ptest throughput --optype cipher-then-auth --cipher-algo aes-cbc \
 --cipher-op encrypt --cipher-key-sz 16 --auth-algo sha1-hmac \
 --auth-op generate --auth-key-sz 64 --digest-sz 12 \
 --total-ops 100000000 --burst-sz 64 --buffer-sz 2048

20. ZUC Crypto Poll Mode Driver

The ZUC PMD (librte_pmd_zuc) provides poll mode crypto driver support for
utilizing Intel IPSec Multi-buffer library [https://github.com/01org/intel-ipsec-mb]
which implements F8 and F9 functions for ZUC EEA3 cipher and EIA3 hash algorithms.

20.1. Features

ZUC PMD has support for:

Cipher algorithm:

	RTE_CRYPTO_CIPHER_ZUC_EEA3

Authentication algorithm:

	RTE_CRYPTO_AUTH_ZUC_EIA3

20.2. Limitations

	Chained mbufs are not supported.

	ZUC (EIA3) supported only if hash offset field is byte-aligned.

	ZUC (EEA3) supported only if cipher length, cipher offset fields are byte-aligned.

20.3. Installation

To build DPDK with the ZUC_PMD the user is required to download the multi-buffer
library from here [https://github.com/01org/intel-ipsec-mb]
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v0.54, which
can be downloaded from https://github.com/01org/intel-ipsec-mb/archive/v0.54.zip.

After downloading the library, the user needs to unpack and compile it
on their system before building DPDK:

make
make install

The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).

NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
NASM website [https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D].
Once it is downloaded, extract it and follow these steps:

./configure
make
make install

Note

Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: https://github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions
and the external crypto libraries supported by them:

Table 20.1 DPDK and external crypto library version compatibility

	DPDK version

	Crypto library version

	16.11 - 19.11

	LibSSO ZUC

	20.02+

	Multi-buffer library 0.53 - 0.54

20.4. Initialization

In order to enable this virtual crypto PMD, user must:

	Build the multi buffer library (explained in Installation section).

	Build DPDK as follows:

make config T=x86_64-native-linux-gcc
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_ZUC\)=n,\1=y,' build/.config
make

To use the PMD in an application, user must:

	Call rte_vdev_init(“crypto_zuc”) within the application.

	Use –vdev=”crypto_zuc” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

	max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).

	max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./l2fwd-crypto -l 1 -n 4 --vdev="crypto_zuc,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_ONLY --cipher_algo "zuc-eea3"

Compression Device Drivers

	1. Compression Device Supported Functionality Matrices
	1.1. Supported Feature Flags

	2. ISA-L Compression Poll Mode Driver
	2.1. Features

	2.2. Limitations

	2.3. Installation

	2.4. Initialization

	3. OCTEON TX ZIP Compression Poll Mode Driver
	3.1. Features

	3.2. Limitations

	3.3. Supported OCTEON TX SoCs

	3.4. Steps To Setup Platform

	3.5. Installation

	3.6. Initialization

	4. Intel(R) QuickAssist (QAT) Compression Poll Mode Driver
	4.1. Features

	4.2. Limitations

	4.3. Installation

	5. ZLIB Compression Poll Mode Driver
	5.1. Features

	5.2. Limitations

	5.3. Installation

	5.4. Initialization

1. Compression Device Supported Functionality Matrices

1.1. Supported Feature Flags

Table 1.8 Features availability in compression drivers

	Feature

	i
s
a
l

	o
c
t
e
o
n
t
x

	q
a
t

	z
l
i
b

	HW Accelerated

	
	Y

	Y

	

	CPU SSE

	Y

	
	
	

	CPU AVX

	Y

	
	
	

	CPU AVX2

	Y

	
	
	

	CPU AVX512

	Y

	
	
	

	CPU NEON

	
	
	
	

	Stateful Compression

	
	
	
	

	Stateful Decompression

	
	
	Y

	

	Pass-through

	
	
	
	Y

	OOP SGL In SGL Out

	Y

	
	Y

	

	OOP SGL In LB Out

	Y

	
	Y

	

	OOP LB In SGL Out

	Y

	
	Y

	

	Deflate

	Y

	Y

	Y

	Y

	LZS

	
	
	
	

	Adler32

	Y

	
	Y

	

	Crc32

	Y

	
	Y

	

	Adler32&Crc32

	
	
	Y

	

	Fixed

	Y

	Y

	Y

	Y

	Dynamic

	Y

	Y

	Y

	Y

Note

	“Pass-through” feature flag refers to the ability of the PMD
to let input buffers pass-through it, copying the input to the output,
without making any modifications to it (no compression done).

	“OOP SGL In SGL Out” feature flag stands for
“Out-of-place Scatter-gather list Input, Scatter-gather list Output”,
which means PMD supports different scatter-gather styled input and output buffers
(i.e. both can consists of multiple segments).

	“OOP SGL In LB Out” feature flag stands for
“Out-of-place Scatter-gather list Input, Linear Buffers Output”,
which means PMD supports input from scatter-gathered styled buffers, outputting linear buffers
(i.e. single segment).

	“OOP LB In SGL Out” feature flag stands for
“Out-of-place Linear Buffers Input, Scatter-gather list Output”,
which means PMD supports input from linear buffer, outputting scatter-gathered styled buffers.

2. ISA-L Compression Poll Mode Driver

The ISA-L PMD (librte_pmd_isal_comp) provides poll mode compression &
decompression driver support for utilizing Intel ISA-L library,
which implements the deflate algorithm for both Deflate(compression) and Inflate(decompression).

2.1. Features

ISA-L PMD has support for:

Compression/Decompression algorithm:

	DEFLATE

Huffman code type:

	FIXED

	DYNAMIC

Window size support:

	32K

Checksum:

	CRC32

	ADLER32

To enable a checksum in the driver, the compression and/or decompression xform
structure, rte_comp_xform, must be filled with either of the CompressDev
checksum flags supported.

compress_xform->compress.chksum = RTE_COMP_CHECKSUM_CRC32

decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_CRC32

compress_xform->compress.chksum = RTE_COMP_CHECKSUM_ADLER32

decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_ADLER32

If you request a checksum for compression or decompression,
the checksum field in the operation structure, op->output_chksum,
will be filled with the checksum.

Note

For the compression case above, your output buffer will need to be large enough to hold the compressed data plus a scratchpad for the checksum at the end, the scratchpad is 8 bytes for CRC32 and 4 bytes for Adler32.

Level guide:

The ISA-L levels have been mapped to somewhat correspond to the same ZLIB level,
i.e. ZLIB L1 gives a compression ratio similar to ISA-L L1.
Compressdev level 0 enables “No Compression”, which passes the uncompressed
data to the output buffer, plus deflate headers.
The ISA-L library does not support this, therefore compressdev level 0 is not supported.

The compressdev API has 10 levels, 0-9. ISA-L has 4 levels of compression, 0-3.
As a result the level mappings from the API to the PMD are shown below.

Table 2.2 Level mapping from Compressdev to ISA-L PMD.

	Compressdev
API Level

	PMD Functionality

	Internal ISA-L
Level

	0

	No compression, Not Supported

	—

	1

	Dynamic (Fast compression)

	1

	2

	Dynamic
(Higher compression ratio)

	2

	3

	Dynamic
(Best compression ratio)

	3
(Level 2 if
no AVX512/AVX2)

	4

	Dynamic (Best compression ratio)

	Same as above

	5

	Dynamic (Best compression ratio)

	Same as above

	6

	Dynamic (Best compression ratio)

	Same as above

	7

	Dynamic (Best compression ratio)

	Same as above

	8

	Dynamic (Best compression ratio)

	Same as above

	9

	Dynamic (Best compression ratio)

	Same as above

Note

The above table only shows mapping when API calls for dynamic compression.
For fixed compression, regardless of API level, internally ISA-L level 0 is always used.

2.2. Limitations

	Compressdev level 0, no compression, is not supported.

2.3. Installation

	To build DPDK with Intel’s ISA-L library, the user is required to download the library from https://github.com/01org/isa-l.

	Once downloaded, the user needs to build the library, the ISA-L autotools are usually sufficient:

./autogen.sh
./configure

	make can be used to install the library on their system, before building DPDK:

make
sudo make install

	To build with meson, the libisal.pc file, must be copied into “pkgconfig”,
e.g. /usr/lib/pkgconfig or /usr/lib64/pkgconfig depending on your system,
for meson to find the ISA-L library. The libisal.pc is located in library sources:

cp isal/libisal.pc /usr/lib/pkgconfig/

2.4. Initialization

In order to enable this virtual compression PMD, user must:

	Set CONFIG_RTE_LIBRTE_PMD_ISAL=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_vdev_init("compress_isal") within the application.

	Use --vdev="compress_isal" in the EAL options, which will call rte_vdev_init() internally.

The following parameter (optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

3. OCTEON TX ZIP Compression Poll Mode Driver

The OCTEON TX ZIP PMD (librte_pmd_octeontx_zip) provides poll mode
compression & decompression driver for ZIP HW offload device, found in
Cavium OCTEON TX SoC family.

More information can be found at Cavium, Inc Official Website [http://www.cavium.com/OCTEON-TX_ARM_Processors.html].

3.1. Features

OCTEON TX ZIP PMD has support for:

Compression/Decompression algorithm:

	DEFLATE

Huffman code type:

	FIXED

	DYNAMIC

Window size support:

	2 to 2^14

3.2. Limitations

	Chained mbufs are not supported.

3.3. Supported OCTEON TX SoCs

	CN83xx

3.4. Steps To Setup Platform

OCTEON TX SDK includes kernel image which provides OCTEON TX ZIP PF
driver to manage configuration of ZIPVF device
Required version of SDK is “OCTEONTX-SDK-6.2.0-build35” or above.

SDK can be install by using below command.
#rpm -ivh OCTEONTX-SDK-6.2.0-build35.x86_64.rpm –force –nodeps
It will install OCTEONTX-SDK at following default location
/usr/local/Cavium_Networks/OCTEONTX-SDK/

For more information on building and booting linux kernel on OCTEON TX
please refer /usr/local/Cavium_Networks/OCTEONTX-SDK/docs/OcteonTX-SDK-UG_6.2.0.pdf.

SDK and related information can be obtained from: Cavium support site [https://support.cavium.com/].

3.5. Installation

3.5.1. Driver Compilation

To compile the OCTEON TX ZIP PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc install

3.6. Initialization

The OCTEON TX zip is exposed as pci device which consists of a set of
PCIe VF devices. On EAL initialization, ZIP PCIe VF devices will be
probed. To use the PMD in an application, user must:

	run dev_bind script to bind eight ZIP PCIe VFs to the vfio-pci driver:

./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.1
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.2
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.3
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.4
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.5
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.6
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:00.7
./usertools/dpdk-devbind.py -b vfio-pci 0001:04:01.0

	The unit test cases can be tested as below:

reserve enough huge pages
cd to the top-level DPDK directory
export RTE_TARGET=arm64-thunderx-linux-gcc
export RTE_SDK=`pwd`
cd to app/test
type the command "make" to compile
run the tests with "./test"
type the command "compressdev_autotest" to test

4. Intel(R) QuickAssist (QAT) Compression Poll Mode Driver

The QAT compression PMD provides poll mode compression & decompression driver
support for the following hardware accelerator devices:

	Intel QuickAssist Technology C62x

	Intel QuickAssist Technology C3xxx

	Intel QuickAssist Technology DH895x

4.1. Features

QAT compression PMD has support for:

Compression/Decompression algorithm:

	DEFLATE - using Fixed and Dynamic Huffman encoding

Window size support:

	32K

Checksum generation:

	CRC32, Adler and combined checksum

Stateful operation:

	Decompression only

4.2. Limitations

	Compressdev level 0, no compression, is not supported.

	Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single
queue-pair all enqueues to the TX queue must be done from one thread and all dequeues
from the RX queue must be done from one thread, but enqueues and dequeues may be done
in different threads.)

	No BSD support as BSD QAT kernel driver not available.

	Stateful compression is not supported.

4.3. Installation

The QAT compression PMD is built by default with a standard DPDK build.

It depends on a QAT kernel driver, see Building PMDs on QAT.

5. ZLIB Compression Poll Mode Driver

The ZLIB PMD (librte_pmd_zlib) provides poll mode compression &
decompression driver based on SW zlib library,

5.1. Features

ZLIB PMD has support for:

Compression/Decompression algorithm:

	DEFLATE

Huffman code type:

	FIXED

	DYNAMIC

Window size support:

	Min - 256 bytes

	Max - 32K

5.2. Limitations

	Scatter-Gather and Stateful not supported.

5.3. Installation

	To build DPDK with ZLIB library, the user is required to download the libz library.

	Use following command for installation.

	
	For Fedora users::
	sudo yum install zlib-devel

	
	For Ubuntu users::
	sudo apt-get install zlib1g-dev

	Once downloaded, the user needs to build the library.

	To build from sources
download zlib sources from http://zlib.net/ and do following before building DPDK:

make
sudo make install

5.4. Initialization

In order to enable this virtual compression PMD, user must:

	Set CONFIG_RTE_LIBRTE_PMD_ZLIB=y in config/common_base.

To use the PMD in an application, user must:

	Call rte_vdev_init("compress_zlib") within the application.

	Use --vdev="compress_zlib" in the EAL options, which will call rte_vdev_init() internally.

The following parameter (optional) can be provided in the previous two calls:

	socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).

vDPA Device Drivers

The following are a list of vDPA (vHost Data Path Acceleration) device drivers,
which can be used from an application through vhost API.

	1. Overview of vDPA Drivers Features

	2. References

	3. Features Table

	4. IFCVF vDPA driver
	4.1. Pre-Installation Configuration

	4.2. IFCVF vDPA Implementation

	4.3. Features

	4.4. Prerequisites

	4.5. Limitations

	5. MLX5 vDPA driver
	5.1. Design

	5.2. Supported NICs

	5.3. Prerequisites

1. Overview of vDPA Drivers Features

This section explains the supported features that are listed in the table below.

	csum
	Device can handle packets with partial checksum.

	guest csum
	Guest can handle packets with partial checksum.

	mac
	Device has given MAC address.

	gso
	Device can handle packets with any GSO type.

	guest tso4
	Guest can receive TSOv4.

	guest tso6
	Guest can receive TSOv6.

	ecn
	Device can receive TSO with ECN.

	ufo
	Device can receive UFO.

	host tso4
	Device can receive TSOv4.

	host tso6
	Device can receive TSOv6.

	mrg rxbuf
	Guest can merge receive buffers.

	ctrl vq
	Control channel is available.

	ctrl rx
	Control channel RX mode support.

	any layout
	Device can handle any descriptor layout.

	guest announce
	Guest can send gratuitous packets.

	mq
	Device supports Receive Flow Steering.

	version 1
	v1.0 compliant.

	log all
	Device can log all write descriptors (live migration).

	indirect desc
	Indirect buffer descriptors support.

	event idx
	Support for avail_idx and used_idx fields.

	mtu
	Host can advise the guest with its maximum supported MTU.

	in_order
	Device can use descriptors in ring order.

	IOMMU platform
	Device support IOMMU addresses.

	packed
	Device support packed virtio queues.

	proto mq
	Support the number of queues query.

	proto log shmfd
	Guest support setting log base.

	proto rarp
	Host can broadcast a fake RARP after live migration.

	proto reply ack
	Host support requested operation status ack.

	proto host notifier
	Host can register memory region based host notifiers.

	proto pagefault
	Slave expose page-fault FD for migration process.

	BSD nic_uio
	BSD nic_uio module supported.

	Linux VFIO
	Works with vfio-pci kernel module.

	Other kdrv
	Kernel module other than above ones supported.

	ARMv7
	Support armv7 architecture.

	ARMv8
	Support armv8a (64bit) architecture.

	Power8
	Support PowerPC architecture.

	x86-32
	Support 32bits x86 architecture.

	x86-64
	Support 64bits x86 architecture.

	Usage doc
	Documentation describes usage, In doc/guides/vdpadevs/.

	Design doc
	Documentation describes design. In doc/guides/vdpadevs/.

	Perf doc
	Documentation describes performance values, In doc/perf/.

Note

Most of the features capabilities should be provided by the drivers via the
next vDPA operations: get_features and get_protocol_features.

2. References

	OASIS: Virtual I/O Device (VIRTIO) Version 1.1 [https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html]

	QEMU: Vhost-user Protocol [https://qemu.weilnetz.de/doc/interop/vhost-user.html]

3. Features Table

Table 3.3 Features availability in vDPA drivers

	Feature

	i
f
c
v
f

	m
l
x
5

	csum

	
	Y

	guest csum

	
	Y

	mac

	
	

	gso

	
	

	guest tso4

	
	

	guest tso6

	
	

	ecn

	
	

	ufo

	
	

	host tso4

	
	Y

	host tso6

	
	Y

	mrg rxbuf

	
	

	ctrl vq

	
	

	ctrl rx

	
	

	any layout

	
	Y

	guest announce

	
	Y

	mq

	
	Y

	version 1

	
	Y

	log all

	
	Y

	indirect desc

	
	

	event idx

	
	

	mtu

	
	

	in_order

	
	

	IOMMU platform

	
	

	packed

	
	Y

	proto mq

	
	Y

	proto log shmfd

	
	Y

	proto rarp

	
	

	proto reply ack

	
	

	proto host notifier

	
	Y

	proto pagefault

	
	

	BSD nic_uio

	
	

	Linux VFIO

	
	

	Other kdrv

	
	Y

	ARMv7

	
	

	ARMv8

	
	Y

	Power8

	
	Y

	x86-32

	Y

	Y

	x86-64

	Y

	Y

	Usage doc

	
	Y

	Design doc

	
	Y

	Perf doc

	
	

Note

Features marked with “P” are partially supported. Refer to the appropriate
driver guide in the following sections for details.

4. IFCVF vDPA driver

The IFCVF vDPA (vhost data path acceleration) driver provides support for the
Intel FPGA 100G VF (IFCVF). IFCVF’s datapath is virtio ring compatible, it
works as a HW vhost backend which can send/receive packets to/from virtio
directly by DMA. Besides, it supports dirty page logging and device state
report/restore, this driver enables its vDPA functionality.

4.1. Pre-Installation Configuration

4.1.1. Config File Options

The following option can be modified in the config file.

	CONFIG_RTE_LIBRTE_IFC_PMD (default y for linux)

Toggle compilation of the librte_pmd_ifc driver.

4.2. IFCVF vDPA Implementation

IFCVF’s vendor ID and device ID are same as that of virtio net pci device,
with its specific subsystem vendor ID and device ID. To let the device be
probed by IFCVF driver, adding “vdpa=1” parameter helps to specify that this
device is to be used in vDPA mode, rather than polling mode, virtio pmd will
skip when it detects this message. If no this parameter specified, device
will not be used as a vDPA device, and it will be driven by virtio pmd.

Different VF devices serve different virtio frontends which are in different
VMs, so each VF needs to have its own DMA address translation service. During
the driver probe a new container is created for this device, with this
container vDPA driver can program DMA remapping table with the VM’s memory
region information.

The device argument “sw-live-migration=1” will configure the driver into SW
assisted live migration mode. In this mode, the driver will set up a SW relay
thread when LM happens, this thread will help device to log dirty pages. Thus
this mode does not require HW to implement a dirty page logging function block,
but will consume some percentage of CPU resource depending on the network
throughput. If no this parameter specified, driver will rely on device’s logging
capability.

4.2.1. Key IFCVF vDPA driver ops

	ifcvf_dev_config:
Enable VF data path with virtio information provided by vhost lib, including
IOMMU programming to enable VF DMA to VM’s memory, VFIO interrupt setup to
route HW interrupt to virtio driver, create notify relay thread to translate
virtio driver’s kick to a MMIO write onto HW, HW queues configuration.

This function gets called to set up HW data path backend when virtio driver
in VM gets ready.

	ifcvf_dev_close:
Revoke all the setup in ifcvf_dev_config.

This function gets called when virtio driver stops device in VM.

4.2.2. To create a vhost port with IFC VF

	Create a vhost socket and assign a VF’s device ID to this socket via
vhost API. When QEMU vhost connection gets ready, the assigned VF will
get configured automatically.

4.3. Features

Features of the IFCVF driver are:

	Compatibility with virtio 0.95 and 1.0.

	SW assisted vDPA live migration.

4.4. Prerequisites

	Platform with IOMMU feature. IFC VF needs address translation service to
Rx/Tx directly with virtio driver in VM.

4.5. Limitations

4.5.1. Dependency on vfio-pci

vDPA driver needs to setup VF MSIX interrupts, each queue’s interrupt vector
is mapped to a callfd associated with a virtio ring. Currently only vfio-pci
allows multiple interrupts, so the IFCVF driver is dependent on vfio-pci.

4.5.2. Live Migration with VIRTIO_NET_F_GUEST_ANNOUNCE

IFC VF doesn’t support RARP packet generation, virtio frontend supporting
VIRTIO_NET_F_GUEST_ANNOUNCE feature can help to do that.

5. MLX5 vDPA driver

The MLX5 vDPA (vhost data path acceleration) driver library
(librte_pmd_mlx5_vdpa) provides support for Mellanox ConnectX-6,
Mellanox ConnectX-6 Dx and Mellanox BlueField families of
10/25/40/50/100/200 Gb/s adapters as well as their virtual functions (VF) in
SR-IOV context.

Note

Due to external dependencies, this driver is disabled in default
configuration of the “make” build. It can be enabled with
CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD=y or by using “meson” build system which
will detect dependencies.

5.1. Design

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel,
combined with hardware specifications that allow to handle virtual memory
addresses directly, ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

The PMD can use libibverbs and libmlx5 to access the device firmware
or directly the hardware components.
There are different levels of objects and bypassing abilities
to get the best performances:

	Verbs is a complete high-level generic API

	Direct Verbs is a device-specific API

	DevX allows to access firmware objects

	Direct Rules manages flow steering at low-level hardware layer

Enabling librte_pmd_mlx5_vdpa causes DPDK applications to be linked against
libibverbs.

A Mellanox mlx5 PCI device can be probed by either net/mlx5 driver or vdpa/mlx5
driver but not in parallel. Hence, the user should decide the driver by the
class parameter in the device argument list.
By default, the mlx5 device will be probed by the net/mlx5 driver.

5.2. Supported NICs

	Mellanox® ConnectX®-6 200G MCX654106A-HCAT (2x200G)

	Mellanox® ConnectX®-6 Dx EN 100G MCX623106AN-CDAT (2x100G)

	Mellanox® ConnectX®-6 Dx EN 200G MCX623105AN-VDAT (1x200G)

	Mellanox® BlueField SmartNIC 25G MBF1M332A-ASCAT (2x25G)

5.3. Prerequisites

	Mellanox OFED version: 5.0
see MLX5 poll mode driver guide for more Mellanox OFED details.

5.3.1. Compilation options

These options can be modified in the .config file.

	CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

	CONFIG_RTE_IBVERBS_LINK_DLOPEN (default n)

Build PMD with additional code to make it loadable without hard
dependencies on libibverbs nor libmlx5, which may not be installed
on the target system.

In this mode, their presence is still required for it to run properly,
however their absence won’t prevent a DPDK application from starting (with
CONFIG_RTE_BUILD_SHARED_LIB disabled) and they won’t show up as
missing with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue”
plug-in which must either be installed in a directory whose name is based
on CONFIG_RTE_EAL_PMD_PATH suffixed with -glue if set, or in a
standard location for the dynamic linker (e.g. /lib) if left to the
default empty string ("").

This option has no performance impact.

	CONFIG_RTE_IBVERBS_LINK_STATIC (default n)

Embed static flavor of the dependencies libibverbs and libmlx5
in the PMD shared library or the executable static binary.

Note

For BlueField, target should be set to arm64-bluefield-linux-gcc. This
will enable CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD and set
RTE_CACHE_LINE_SIZE to 64. Default armv8a configuration of make build and
meson build set it to 128 then brings performance degradation.

5.3.2. Run-time configuration

	ethtool operations on related kernel interfaces also affect the PMD.

	class parameter [string]

Select the class of the driver that should probe the device.
vdpa for the mlx5 vDPA driver.

Event Device Drivers

The following are a list of event device PMDs, which can be used from an
application through the eventdev API.

	1. NXP DPAA Eventdev Driver
	1.1. Features

	1.2. Supported DPAA SoCs

	1.3. Prerequisites

	1.4. Pre-Installation Configuration

	1.5. Initialization

	1.6. Limitations

	2. NXP DPAA2 Eventdev Driver
	2.1. Features

	2.2. Supported DPAA2 SoCs

	2.3. Prerequisites

	2.4. Pre-Installation Configuration

	2.5. Initialization

	2.6. Enabling logs

	2.7. Limitations

	3. Distributed Software Eventdev Poll Mode Driver
	3.1. Features

	3.2. Configuration and Options

	3.3. Limitations

	4. Software Eventdev Poll Mode Driver
	4.1. Features

	4.2. Configuration and Options

	4.3. Limitations

	5. OCTEON TX SSOVF Eventdev Driver
	5.1. Features

	5.2. Supported OCTEON TX SoCs

	5.3. Prerequisites

	5.4. Pre-Installation Configuration

	5.5. Initialization

	5.6. Selftest

	5.7. Enable TIMvf stats

	5.8. Limitations

	6. OCTEON TX2 SSO Eventdev Driver
	6.1. Features

	6.2. Prerequisites and Compilation procedure

	6.3. Pre-Installation Configuration

	7. OPDL Eventdev Poll Mode Driver
	7.1. Features

	7.2. Configuration and Options

	7.3. Limitations

1. NXP DPAA Eventdev Driver

The dpaa eventdev is an implementation of the eventdev API, that provides a
wide range of the eventdev features. The eventdev relies on a dpaa based
platform to perform event scheduling.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

1.1. Features

The DPAA EVENTDEV implements many features in the eventdev API;

	Hardware based event scheduler

	4 event ports

	4 event queues

	Parallel flows

	Atomic flows

1.2. Supported DPAA SoCs

	LS1046A/LS1026A

	LS1043A/LS1023A

1.3. Prerequisites

See NXP QorIQ DPAA Board Support Package for setup information

Currently supported by DPDK:

	NXP SDK 2.0+ or LSDK 18.09+

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

1.4. Pre-Installation Configuration

1.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_DPAA_EVENTDEV (default y)

Toggle compilation of the librte_pmd_dpaa_event driver.

1.4.2. Driver Compilation

To compile the DPAA EVENTDEV PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

1.5. Initialization

The dpaa eventdev is exposed as a vdev device which consists of a set of channels
and queues. On EAL initialization, dpaa components will be
probed and then vdev device can be created from the application code by

	Invoking rte_vdev_init("event_dpaa1") from the application

	Using --vdev="event_dpaa1" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_dpaa1"

	Use dev arg option disable_intr=1 to disable the interrupt mode

1.6. Limitations

	DPAA eventdev can not work with DPAA PUSH mode queues configured for ethdev.
Please configure export DPAA_NUM_PUSH_QUEUES=0

1.6.1. Platform Requirement

DPAA drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA SoCs.

1.6.2. Port-core Binding

DPAA EVENTDEV driver requires event port ‘x’ to be used on core ‘x’.

2. NXP DPAA2 Eventdev Driver

The dpaa2 eventdev is an implementation of the eventdev API, that provides a
wide range of the eventdev features. The eventdev relies on a dpaa2 hw to
perform event scheduling.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

2.1. Features

The DPAA2 EVENTDEV implements many features in the eventdev API;

	Hardware based event scheduler

	8 event ports

	8 event queues

	Parallel flows

	Atomic flows

2.2. Supported DPAA2 SoCs

	LX2160A

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

2.3. Prerequisites

See NXP QorIQ DPAA2 Board Support Package for setup information

Currently supported by DPDK:

	NXP SDK 19.09+.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note

Some part of fslmc bus code (mc flib - object library) routines are
dual licensed (BSD & GPLv2).

2.4. Pre-Installation Configuration

2.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_DPAA2_EVENTDEV (default y)

Toggle compilation of the lrte_pmd_dpaa2_event driver.

2.4.2. Driver Compilation

To compile the DPAA2 EVENTDEV PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

2.5. Initialization

The dpaa2 eventdev is exposed as a vdev device which consists of a set of dpcon
devices and dpci devices. On EAL initialization, dpcon and dpci devices will be
probed and then vdev device can be created from the application code by

	Invoking rte_vdev_init("event_dpaa2") from the application

	Using --vdev="event_dpaa2" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_dpaa2"

2.6. Enabling logs

For enabling logs, use the following EAL parameter:

./your_eventdev_application <EAL args> --log-level=pmd.event.dpaa2,<level>

Using eventdev.dpaa2 as log matching criteria, all Event PMD logs can be
enabled which are lower than logging level.

2.7. Limitations

2.7.1. Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA2 SoCs.

2.7.2. Port-core binding

DPAA2 EVENTDEV can support only one eventport per core.

3. Distributed Software Eventdev Poll Mode Driver

The distributed software event device is an eventdev driver which
distributes the task of scheduling events among all the eventdev ports
and the lcore threads using them.

3.1. Features

	Queues
	
	Atomic

	Parallel

	Single-Link

	Ports
	
	Load balanced (for Atomic, Ordered, Parallel queues)

	Single Link (for single-link queues)

3.2. Configuration and Options

The distributed software eventdev is a vdev device, and as such can be
created from the application code, or from the EAL command line:

	Call rte_vdev_init("event_dsw0") from the application

	Use --vdev="event_dsw0" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_dsw0"

3.3. Limitations

3.3.1. Unattended Ports

The distributed software eventdev uses an internal signaling schema
between the ports to achieve load balancing. In order for this to
work, the application must perform enqueue and/or dequeue operations
on all ports.

Producer-only ports which currently have no events to enqueue should
periodically call rte_event_enqueue_burst() with a zero-sized burst.

Ports left unattended for longer periods of time will prevent load
balancing, and also cause traffic interruptions on the flows which
are in the process of being migrated.

3.3.2. Output Buffering

For efficiency reasons, the distributed software eventdev might not
send enqueued events immediately to the destination port, but instead
store them in an internal buffer in the source port.

In case no more events are enqueued on a port with buffered events,
these events will be sent after the application has performed a number
of enqueue and/or dequeue operations.

For explicit flushing, an application may call
rte_event_enqueue_burst() with a zero-sized burst.

3.3.3. Priorities

The distributed software eventdev does not support event priorities.

3.3.4. Ordered Queues

The distributed software eventdev does not support the ordered queue type.

3.3.5. “All Types” Queues

The distributed software eventdev does not support queues of type
RTE_EVENT_QUEUE_CFG_ALL_TYPES, which allow both atomic, ordered, and
parallel events on the same queue.

3.3.6. Dynamic Link/Unlink

The distributed software eventdev does not support calls to
rte_event_port_link() or rte_event_port_unlink() after
rte_event_dev_start() has been called.

4. Software Eventdev Poll Mode Driver

The software eventdev is an implementation of the eventdev API, that provides a
wide range of the eventdev features. The eventdev relies on a CPU core to
perform event scheduling. This PMD can use the service core library to run the
scheduling function, allowing an application to utilize the power of service
cores to multiplex other work on the same core if required.

4.1. Features

The software eventdev implements many features in the eventdev API;

	Queues
	
	Atomic

	Ordered

	Parallel

	Single-Link

	Ports
	
	Load balanced (for Atomic, Ordered, Parallel queues)

	Single Link (for single-link queues)

	Event Priorities
	
	Each event has a priority, which can be used to provide basic QoS

4.2. Configuration and Options

The software eventdev is a vdev device, and as such can be created from the
application code, or from the EAL command line:

	Call rte_vdev_init("event_sw0") from the application

	Use --vdev="event_sw0" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_sw0"

4.2.1. Scheduling Quanta

The scheduling quanta sets the number of events that the device attempts to
schedule in a single schedule call performed by the service core. Note that
is a hint only, and that fewer or more events may be scheduled in a given
iteration.

The scheduling quanta can be set using a string argument to the vdev
create call:

--vdev="event_sw0,sched_quanta=64"

4.2.2. Credit Quanta

The credit quanta is the number of credits that a port will fetch at a time from
the instance’s credit pool. Higher numbers will cause less overhead in the
atomic credit fetch code, however it also reduces the overall number of credits
in the system faster. A balanced number (e.g. 32) ensures that only small numbers
of credits are pre-allocated at a time, while also mitigating performance impact
of the atomics.

Experimentation with higher values may provide minor performance improvements,
at the cost of the whole system having less credits. On the other hand,
reducing the quanta may cause measurable performance impact but provide the
system with a higher number of credits at all times.

A value of 32 seems a good balance however your specific application may
benefit from a higher or reduced quanta size, experimentation is required to
verify possible gains.

--vdev="event_sw0,credit_quanta=64"

4.3. Limitations

The software eventdev implementation has a few limitations. The reason for
these limitations is usually that the performance impact of supporting the
feature would be significant.

4.3.1. “All Types” Queues

The software eventdev does not support creating queues that handle all types of
traffic. An eventdev with this capability allows enqueuing Atomic, Ordered and
Parallel traffic to the same queue, but scheduling each of them appropriately.

The reason to not allow Atomic, Ordered and Parallel event types in the
same queue is that it causes excessive branching in the code to enqueue packets
to the queue, causing a significant performance impact.

The RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES flag is not set in the
event_dev_cap field of the rte_event_dev_info struct for the software
eventdev.

4.3.2. Distributed Scheduler

The software eventdev is a centralized scheduler, requiring a service core to
perform the required event distribution. This is not really a limitation but
rather a design decision.

The RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED flag is not set in the
event_dev_cap field of the rte_event_dev_info struct for the software
eventdev.

4.3.3. Dequeue Timeout

The eventdev API supports a timeout when dequeuing packets using the
rte_event_dequeue_burst function.
This allows a core to wait for an event to arrive, or until timeout number
of ticks have passed. Timeout ticks is not supported by the software eventdev
for performance reasons.

5. OCTEON TX SSOVF Eventdev Driver

The OCTEON TX SSOVF PMD (librte_pmd_octeontx_ssovf) provides poll mode
eventdev driver support for the inbuilt event device found in the Cavium OCTEON TX
SoC family as well as their virtual functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website [http://www.cavium.com/OCTEON-TX_ARM_Processors.html].

5.1. Features

Features of the OCTEON TX SSOVF PMD are:

	64 Event queues

	32 Event ports

	HW event scheduler

	Supports 1M flows per event queue

	Flow based event pipelining

	Flow pinning support in flow based event pipelining

	Queue based event pipelining

	Supports ATOMIC, ORDERED, PARALLEL schedule types per flow

	Event scheduling QoS based on event queue priority

	Open system with configurable amount of outstanding events

	HW accelerated dequeue timeout support to enable power management

	SR-IOV VF

	HW managed event timers support through TIMVF, with high precision and
time granularity of 1us.

	Up to 64 event timer adapters.

5.2. Supported OCTEON TX SoCs

	CN83xx

5.3. Prerequisites

See OCTEON TX Board Support Package for setup information.

5.4. Pre-Installation Configuration

5.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX_SSOVF (default y)

Toggle compilation of the librte_pmd_octeontx_ssovf driver.

5.4.2. Driver Compilation

To compile the OCTEON TX SSOVF PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc install

5.5. Initialization

The OCTEON TX eventdev is exposed as a vdev device which consists of a set
of SSO group and work-slot PCIe VF devices. On EAL initialization,
SSO PCIe VF devices will be probed and then the vdev device can be created
from the application code, or from the EAL command line based on
the number of probed/bound SSO PCIe VF device to DPDK by

	Invoking rte_vdev_init("event_octeontx") from the application

	Using --vdev="event_octeontx" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_octeontx"

5.6. Selftest

The functionality of OCTEON TX eventdev can be verified using this option,
various unit and functional tests are run to verify the sanity.
The tests are run once the vdev creation is successfully complete.

--vdev="event_octeontx,selftest=1"

5.7. Enable TIMvf stats

TIMvf stats can be enabled by using this option, by default the stats are
disabled.

--vdev="event_octeontx,timvf_stats=1"

5.8. Limitations

5.8.1. Burst mode support

Burst mode is not supported. Dequeue and Enqueue functions accepts only single
event at a time.

5.8.2. Rx adapter support

When eth_octeontx is used as Rx adapter event schedule type
RTE_SCHED_TYPE_PARALLEL is not supported.

5.8.3. Event timer adapter support

When timvf is used as Event timer adapter the clock source mapping is as
follows:

RTE_EVENT_TIMER_ADAPTER_CPU_CLK = TIM_CLK_SRC_SCLK
RTE_EVENT_TIMER_ADAPTER_EXT_CLK0 = TIM_CLK_SRC_GPIO
RTE_EVENT_TIMER_ADAPTER_EXT_CLK1 = TIM_CLK_SRC_GTI
RTE_EVENT_TIMER_ADAPTER_EXT_CLK2 = TIM_CLK_SRC_PTP

When timvf is used as Event timer adapter event schedule type
RTE_SCHED_TYPE_PARALLEL is not supported.

5.8.4. Max mempool size

Max mempool size when using OCTEON TX Eventdev (SSO) should be limited to 128K.
When running dpdk-test-eventdev on OCTEON TX the application can limit the
number of mbufs by using the option --pool_sz 131072

6. OCTEON TX2 SSO Eventdev Driver

The OCTEON TX2 SSO PMD (librte_pmd_octeontx2_event) provides poll mode
eventdev driver support for the inbuilt event device found in the Marvell OCTEON TX2
SoC family.

More information about OCTEON TX2 SoC can be found at Marvell Official Website [https://www.marvell.com/embedded-processors/infrastructure-processors/].

6.1. Features

Features of the OCTEON TX2 SSO PMD are:

	256 Event queues

	26 (dual) and 52 (single) Event ports

	HW event scheduler

	Supports 1M flows per event queue

	Flow based event pipelining

	Flow pinning support in flow based event pipelining

	Queue based event pipelining

	Supports ATOMIC, ORDERED, PARALLEL schedule types per flow

	Event scheduling QoS based on event queue priority

	Open system with configurable amount of outstanding events limited only by
DRAM

	HW accelerated dequeue timeout support to enable power management

	HW managed event timers support through TIM, with high precision and
time granularity of 2.5us.

	Up to 256 TIM rings aka event timer adapters.

	Up to 8 rings traversed in parallel.

	HW managed packets enqueued from ethdev to eventdev exposed through event eth
RX adapter.

	N:1 ethernet device Rx queue to Event queue mapping.

	Lockfree Tx from event eth Tx adapter using DEV_TX_OFFLOAD_MT_LOCKFREE
capability while maintaining receive packet order.

	Full Rx/Tx offload support defined through ethdev queue config.

6.2. Prerequisites and Compilation procedure

See Marvell OCTEON TX2 Platform Guide for setup information.

6.3. Pre-Installation Configuration

6.3.1. Compile time Config Options

The following option can be modified in the config file.

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EVENTDEV (default y)

Toggle compilation of the librte_pmd_octeontx2_event driver.

6.3.2. Runtime Config Options

	Maximum number of in-flight events (default 8192)

In Marvell OCTEON TX2 the max number of in-flight events are only limited
by DRAM size, the xae_cnt devargs parameter is introduced to provide
upper limit for in-flight events.
For example:

-w 0002:0e:00.0,xae_cnt=16384

	Force legacy mode

The single_ws devargs parameter is introduced to force legacy mode i.e
single workslot mode in SSO and disable the default dual workslot mode.
For example:

-w 0002:0e:00.0,single_ws=1

	Event Group QoS support

SSO GGRPs i.e. queue uses DRAM & SRAM buffers to hold in-flight
events. By default the buffers are assigned to the SSO GGRPs to
satisfy minimum HW requirements. SSO is free to assign the remaining
buffers to GGRPs based on a preconfigured threshold.
We can control the QoS of SSO GGRP by modifying the above mentioned
thresholds. GGRPs that have higher importance can be assigned higher
thresholds than the rest. The dictionary format is as follows
[Qx-XAQ-TAQ-IAQ][Qz-XAQ-TAQ-IAQ] expressed in percentages, 0 represents
default.
For example:

-w 0002:0e:00.0,qos=[1-50-50-50]

	Selftest

The functionality of OCTEON TX2 eventdev can be verified using this option,
various unit and functional tests are run to verify the sanity.
The tests are run once the vdev creation is successfully complete.
For example:

-w 0002:0e:00.0,selftest=1

	TIM disable NPA

By default chunks are allocated from NPA then TIM can automatically free
them when traversing the list of chunks. The tim_disable_npa devargs
parameter disables NPA and uses software mempool to manage chunks
For example:

-w 0002:0e:00.0,tim_disable_npa=1

	TIM modify chunk slots

The tim_chnk_slots devargs can be used to modify number of chunk slots.
Chunks are used to store event timers, a chunk can be visualised as an array
where the last element points to the next chunk and rest of them are used to
store events. TIM traverses the list of chunks and enqueues the event timers
to SSO. The default value is 255 and the max value is 4095.
For example:

-w 0002:0e:00.0,tim_chnk_slots=1023

	TIM enable arm/cancel statistics

The tim_stats_ena devargs can be used to enable arm and cancel stats of
event timer adapter.
For example:

-w 0002:0e:00.0,tim_stats_ena=1

	TIM limit max rings reserved

The tim_rings_lmt devargs can be used to limit the max number of TIM
rings i.e. event timer adapter reserved on probe. Since, TIM rings are HW
resources we can avoid starving other applications by not grabbing all the
rings.
For example:

-w 0002:0e:00.0,tim_rings_lmt=5

	TIM ring control internal parameters

When using multiple TIM rings the tim_ring_ctl devargs can be used to
control each TIM rings internal parameters uniquely. The following dict
format is expected [ring-chnk_slots-disable_npa-stats_ena]. 0 represents
default values.
For Example:

-w 0002:0e:00.0,tim_ring_ctl=[2-1023-1-0]

	Lock NPA contexts in NDC

Lock NPA aura and pool contexts in NDC cache.
The device args take hexadecimal bitmask where each bit represent the
corresponding aura/pool id.

For example:

-w 0002:0e:00.0,npa_lock_mask=0xf

6.3.3. Debugging Options

Table 6.1 OCTEON TX2 event device debug options

	#

	Component

	EAL log command

	1

	SSO

	–log-level=’pmd.event.octeontx2,8’

	2

	TIM

	–log-level=’pmd.event.octeontx2.timer,8’

7. OPDL Eventdev Poll Mode Driver

The OPDL (Ordered Packet Distribution Library) eventdev is a specificimplementation of the eventdev API. It is particularly suited to packetprocessing workloads that have high throughput and low latency requirements.All packets follow the same path through the device. The order in whichpackets follow is determined by the order in which queues are set up.Events are left on the ring until they are transmitted. As a result packetsdo not go out of order

7.1. Features

The OPDL eventdev implements a subset of features of the eventdev API;

	Queues
	
	Atomic

	Ordered (Parallel is supported as parallel is a subset of Ordered)

	Single-Link

	Ports
	
	Load balanced (for Atomic, Ordered, Parallel queues)

	Single Link (for single-link queues)

7.2. Configuration and Options

The software eventdev is a vdev device, and as such can be created from the
application code, or from the EAL command line:

	Call rte_vdev_init("event_opdl0") from the application

	Use --vdev="event_opdl0" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_eventdev_application --vdev="event_opdl0"

7.2.1. Single Port Queue

It is possible to create a Single Port Queue RTE_EVENT_QUEUE_CFG_SINGLE_LINK.
Packets dequeued from this queue do not need to be re-enqueued (as is the
case with an ordered queue). The purpose of this queue is to allow for
asynchronous handling of packets in the middle of a pipeline. Ordered
queues in the middle of a pipeline cannot delete packets.

7.2.2. Queue Dependencies

As stated the order in which packets travel through queues is static in
nature. They go through the queues in the order the queues are setup at
initialisation rte_event_queue_setup(). For example if an application
sets up 3 queues, Q0, Q1, Q2 and has 3 associated ports P0, P1, P2 and
P3 then packets must be

	Enqueued onto Q0 (typically through P0), then

	Dequeued from Q0 (typically through P1), then

	Enqueued onto Q1 (also through P1), then

	Dequeued from Q2 (typically through P2), then

	Enqueued onto Q3 (also through P2), then

	Dequeued from Q3 (typically through P3) and then transmitted on the relevant eth port

7.3. Limitations

The opdl implementation has a number of limitations. These limitations are
due to the static nature of the underlying queues. It is because of this
that the implementation can achieve such high throughput and low latency

The following list is a comprehensive outline of the what is supported and
the limitations / restrictions imposed by the opdl pmd

	The order in which packets moved between queues is static and fixed (dynamic scheduling is not supported).

	NEW, RELEASE are not explicitly supported. RX (first enqueue) implicitly adds NEW event types, and TX (last dequeue) implicitly does RELEASE event types.

	All packets follow the same path through device queues.

	Flows within queues are NOT supported.

	Event priority is NOT supported.

	Once the device is stopped all inflight events are lost. Applications should clear all inflight events before stopping it.

	Each port can only be associated with one queue.

	Each queue can have multiple ports associated with it.

	Each worker core has to dequeue the maximum burst size for that port.

	For performance, the rte_event flow_id should not be updated once packetis enqueued on RX.

7.3.1. Validation & Statistics

Validation can be turned on through a command line parameter

--vdev="event_opdl0,do_validation=1,self_test=1"

If validation is turned on every packet (as opposed to just the first in
each burst), is validated to have come from the right queue. Statistics
are also produced in this mode. The statistics are available through the
eventdev xstats API. Statistics are per port as follows:

	claim_pkts_requested

	claim_pkts_granted

	claim_non_empty

	claim_empty

	total_cycles

Rawdev Drivers

The following are a list of raw device PMDs, which can be used from an
application through rawdev API.

	1. NXP DPAA2 CMDIF Driver
	1.1. Features

	1.2. Supported DPAA2 SoCs

	1.3. Prerequisites

	1.4. Pre-Installation Configuration

	1.5. Enabling logs

	1.6. Initialization

	2. NXP DPAA2 QDMA Driver
	2.1. Features

	2.2. Supported DPAA2 SoCs

	2.3. Prerequisites

	2.4. Pre-Installation Configuration

	2.5. Enabling logs

	2.6. Initialization

	3. IFPGA Rawdev Driver
	3.1. Implementation details

	3.2. Build options

	3.3. Run-time parameters

	4. IOAT Rawdev Driver for Intel® QuickData Technology
	4.1. Hardware Requirements

	4.2. Compilation

	4.3. Device Setup

	4.4. Using IOAT Rawdev Devices

	5. NTB Rawdev Driver
	5.1. BIOS setting on Intel Skylake

	5.2. Build Options

	5.3. Device Setup

	5.4. Prerequisites

	5.5. Ring Layout

	5.6. Limitation

	6. OCTEON TX2 DMA Driver
	6.1. Features

	6.2. Prerequisites and Compilation procedure

	6.3. Pre-Installation Configuration

	6.4. Enabling logs

	6.5. Initialization

	6.6. Device Setup

	6.7. Device Configuration

	6.8. Performing Data Transfer

	6.9. Self test

	7. Marvell OCTEON TX2 End Point Rawdev Driver
	7.1. Features

	7.2. Initialization

	7.3. Device Setup

	7.4. Device Configuration

	7.5. Performing Data Transfer

	7.6. Self test

1. NXP DPAA2 CMDIF Driver

The DPAA2 CMDIF is an implementation of the rawdev API, that provides
communication between the GPP and AIOP (Firmware). This is achieved
via using the DPCI devices exposed by MC for GPP <–> AIOP interaction.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

1.1. Features

The DPAA2 CMDIF implements following features in the rawdev API;

	Getting the object ID of the device (DPCI) using attributes

	I/O to and from the AIOP device using DPCI

1.2. Supported DPAA2 SoCs

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

1.3. Prerequisites

See NXP QorIQ DPAA2 Board Support Package for setup information

Currently supported by DPDK:

	NXP SDK 19.09+.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note

Some part of fslmc bus code (mc flib - object library) routines are
dual licensed (BSD & GPLv2).

1.4. Pre-Installation Configuration

1.4.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_PMD_DPAA2_CMDIF_RAWDEV (default y)

Toggle compilation of the lrte_pmd_dpaa2_cmdif driver.

1.5. Enabling logs

For enabling logs, use the following EAL parameter:

./your_cmdif_application <EAL args> --log-level=pmd.raw.dpaa2.cmdif,<level>

Using pmd.raw.dpaa2.cmdif as log matching criteria, all Event PMD logs can be
enabled which are lower than logging level.

1.5.1. Driver Compilation

To compile the DPAA2 CMDIF PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

1.6. Initialization

The DPAA2 CMDIF is exposed as a vdev device which consists of dpci devices.
On EAL initialization, dpci devices will be probed and then vdev device
can be created from the application code by

	Invoking rte_vdev_init("dpaa2_dpci") from the application

	Using --vdev="dpaa2_dpci" in the EAL options, which will call
rte_vdev_init() internally

Example:

./your_cmdif_application <EAL args> --vdev="dpaa2_dpci"

1.6.1. Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA2 SoCs.

2. NXP DPAA2 QDMA Driver

The DPAA2 QDMA is an implementation of the rawdev API, that provide means
to initiate a DMA transaction from CPU. The initiated DMA is performed
without CPU being involved in the actual DMA transaction. This is achieved
via using the DPDMAI device exposed by MC.

More information can be found at NXP Official Website [http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM].

2.1. Features

The DPAA2 QDMA implements following features in the rawdev API;

	Supports issuing DMA of data within memory without hogging CPU while
performing DMA operation.

	Supports configuring to optionally get status of the DMA translation on
per DMA operation basis.

2.2. Supported DPAA2 SoCs

	LX2160A

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

2.3. Prerequisites

See NXP QorIQ DPAA2 Board Support Package for setup information

Currently supported by DPDK:

	NXP SDK 19.09+.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note

Some part of fslmc bus code (mc flib - object library) routines are
dual licensed (BSD & GPLv2).

2.4. Pre-Installation Configuration

2.4.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_PMD_DPAA2_QDMA_RAWDEV (default y)

Toggle compilation of the lrte_pmd_dpaa2_qdma driver.

2.5. Enabling logs

For enabling logs, use the following EAL parameter:

./your_qdma_application <EAL args> --log-level=pmd.raw.dpaa2.qdma,<level>

Using pmd.raw.dpaa2.qdma as log matching criteria, all Event PMD logs can be
enabled which are lower than logging level.

2.5.1. Driver Compilation

To compile the DPAA2 QDMA PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

2.6. Initialization

The DPAA2 QDMA is exposed as a vdev device which consists of dpdmai devices.
On EAL initialization, dpdmai devices will be probed and populated into the
rawdevices. The rawdev ID of the device can be obtained using

	Invoking rte_rawdev_get_dev_id("dpdmai.x") from the application
where x is the object ID of the DPDMAI object created by MC. Use can
use this index for further rawdev function calls.

2.6.1. Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the
Supported DPAA2 SoCs.

3. IFPGA Rawdev Driver

FPGA is used more and more widely in Cloud and NFV, one primary reason is
that FPGA not only provides ASIC performance but also it’s more flexible
than ASIC.

FPGA uses Partial Reconfigure (PR) Parts of Bit Stream to achieve its
flexibility. That means one FPGA Device Bit Stream is divided into many Parts
of Bit Stream(each Part of Bit Stream is defined as AFU-Accelerated Function
Unit), and each AFU is a hardware acceleration unit which can be dynamically
reloaded respectively.

By PR (Partial Reconfiguration) AFUs, one FPGA resources can be time-shared by
different users. FPGA hot upgrade and fault tolerance can be provided easily.

The SW IFPGA Rawdev Driver (ifpga_rawdev) provides a Rawdev driver
that utilizes Intel FPGA Software Stack OPAE(Open Programmable Acceleration
Engine) for FPGA management.

3.1. Implementation details

Each instance of IFPGA Rawdev Driver is probed by Intel FpgaDev. In coordination
with OPAE share code IFPGA Rawdev Driver provides common FPGA management ops
for FPGA operation, OPAE provides all following operations:
- FPGA PR (Partial Reconfiguration) management
- FPGA AFUs Identifying
- FPGA Thermal Management
- FPGA Power Management
- FPGA Performance reporting
- FPGA Remote Debug

All configuration parameters are taken by vdev_ifpga_cfg driver. Besides
configuration, vdev_ifpga_cfg driver also hot plugs in IFPGA Bus.

All of the AFUs of one FPGA may share same PCI BDF and AFUs scan depend on
IFPGA Rawdev Driver so IFPGA Bus takes AFU device scan and AFU drivers probe.
All AFU device driver bind to AFU device by its UUID (Universally Unique
Identifier).

To avoid unnecessary code duplication and ensure maximum performance,
handling of AFU devices is left to different PMDs; all the design as
summarized by the following block diagram:

+---+
| Application(s) |
+----------------------------.----------------------------------+
 |
 |
+----------------------------'----------------------------------+
| DPDK Framework (APIs) |
+----------|------------|--------.---------------------|--------+
 / \ |
 / \ |
+-------'-------+ +-------'-------+ +--------'--------+
| Eth PMD | | Crypto PMD | | |
+-------.-------+ +-------.-------+ | |
 | | | |
 | | | |
+-------'-------+ +-------'-------+ | IFPGA |
| Eth AFU Dev | |Crypto AFU Dev | | Rawdev Driver |
+-------.-------+ +-------.-------+ |(OPAE Share Code)|
 | | | |
 | | Rawdev | |
+-------'------------------'-------+ Ops | |
| IFPGA Bus | -------->| |
+-----------------.----------------+ +--------.--------+
 | |
 Hot-plugin -->| |
 | |
+-----------------'------------------+ +--------'--------+
| vdev_ifpga_cfg driver | | Intel FpgaDev |
+------------------------------------+ +-----------------+

3.2. Build options

	CONFIG_RTE_LIBRTE_IFPGA_BUS (default y)

Toggle compilation of IFPGA Bus library.

	CONFIG_RTE_LIBRTE_IFPGA_RAWDEV (default y)

Toggle compilation of the ifpga_rawdev driver.

3.3. Run-time parameters

This driver is invoked automatically in systems added with Intel FPGA,
but PR and IFPGA Bus scan is triggered by command line using
--vdev 'ifpga_rawdev_cfg EAL option.

The following device parameters are supported:

	ifpga [string]

Provide a specific Intel FPGA device PCI BDF. Can be provided multiple
times for additional instances.

	port [int]

Each FPGA can provide many channels to PR AFU by software, each channels
is identified by this parameter.

	afu_bts [string]

If null, the AFU Bit Stream has been PR in FPGA, if not forces PR and
identifies AFU Bit Stream file.

4. IOAT Rawdev Driver for Intel® QuickData Technology

The ioat rawdev driver provides a poll-mode driver (PMD) for Intel®
QuickData Technology, part of Intel® I/O Acceleration Technology
(Intel I/OAT) [https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html].
This PMD, when used on supported hardware, allows data copies, for example,
cloning packet data, to be accelerated by that hardware rather than having to
be done by software, freeing up CPU cycles for other tasks.

4.1. Hardware Requirements

On Linux, the presence of an Intel® QuickData Technology hardware can
be detected by checking the output of the lspci command, where the
hardware will be often listed as “Crystal Beach DMA” or “CBDMA”. For
example, on a system with Intel® Xeon® CPU E5-2699 v4 @2.20GHz,
lspci shows:

lspci | grep DMA
00:04.0 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 0 (rev 01)
00:04.1 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 1 (rev 01)
00:04.2 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 2 (rev 01)
00:04.3 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 3 (rev 01)
00:04.4 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 4 (rev 01)
00:04.5 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 5 (rev 01)
00:04.6 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 6 (rev 01)
00:04.7 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA Channel 7 (rev 01)

On a system with Intel® Xeon® Gold 6154 CPU @ 3.00GHz, lspci
shows:

lspci | grep DMA
00:04.0 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.1 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.2 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.3 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.4 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.5 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.6 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.7 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)

4.2. Compilation

For builds done with make, the driver compilation is enabled by the
CONFIG_RTE_LIBRTE_PMD_IOAT_RAWDEV build configuration option. This is
enabled by default in builds for x86 platforms, and disabled in other
configurations.

For builds using meson and ninja, the driver will be built when the
target platform is x86-based.

4.3. Device Setup

The Intel® QuickData Technology HW devices will need to be bound to a
user-space IO driver for use. The script dpdk-devbind.py script
included with DPDK can be used to view the state of the devices and to bind
them to a suitable DPDK-supported kernel driver. When querying the status
of the devices, they will appear under the category of “Misc (rawdev)
devices”, i.e. the command dpdk-devbind.py --status-dev misc can be
used to see the state of those devices alone.

4.3.1. Device Probing and Initialization

Once bound to a suitable kernel device driver, the HW devices will be found
as part of the PCI scan done at application initialization time. No vdev
parameters need to be passed to create or initialize the device.

Once probed successfully, the device will appear as a rawdev, that is a
“raw device type” inside DPDK, and can be accessed using APIs from the
rte_rawdev library.

4.4. Using IOAT Rawdev Devices

To use the devices from an application, the rawdev API can be used, along
with definitions taken from the device-specific header file
rte_ioat_rawdev.h. This header is needed to get the definition of
structure parameters used by some of the rawdev APIs for IOAT rawdev
devices, as well as providing key functions for using the device for memory
copies.

4.4.1. Getting Device Information

Basic information about each rawdev device can be queried using the
rte_rawdev_info_get() API. For most applications, this API will be
needed to verify that the rawdev in question is of the expected type. For
example, the following code snippet can be used to identify an IOAT
rawdev device for use by an application:

for (i = 0; i < count && !found; i++) {
 struct rte_rawdev_info info = { .dev_private = NULL };
 found = (rte_rawdev_info_get(i, &info) == 0 &&
 strcmp(info.driver_name,
 IOAT_PMD_RAWDEV_NAME_STR) == 0);
}

When calling the rte_rawdev_info_get() API for an IOAT rawdev device,
the dev_private field in the rte_rawdev_info struct should either
be NULL, or else be set to point to a structure of type
rte_ioat_rawdev_config, in which case the size of the configured device
input ring will be returned in that structure.

4.4.2. Device Configuration

Configuring an IOAT rawdev device is done using the
rte_rawdev_configure() API, which takes the same structure parameters
as the, previously referenced, rte_rawdev_info_get() API. The main
difference is that, because the parameter is used as input rather than
output, the dev_private structure element cannot be NULL, and must
point to a valid rte_ioat_rawdev_config structure, containing the ring
size to be used by the device. The ring size must be a power of two,
between 64 and 4096.

The following code shows how the device is configured in
test_ioat_rawdev.c:

#define IOAT_TEST_RINGSIZE 512
 struct rte_ioat_rawdev_config p = { .ring_size = -1 };
 struct rte_rawdev_info info = { .dev_private = &p };

 /* ... */

 p.ring_size = IOAT_TEST_RINGSIZE;
 if (rte_rawdev_configure(dev_id, &info) != 0) {
 printf("Error with rte_rawdev_configure()\n");
 return -1;
 }

Once configured, the device can then be made ready for use by calling the
rte_rawdev_start() API.

4.4.3. Performing Data Copies

To perform data copies using IOAT rawdev devices, the functions
rte_ioat_enqueue_copy() and rte_ioat_do_copies() should be used.
Once copies have been completed, the completion will be reported back when
the application calls rte_ioat_completed_copies().

The rte_ioat_enqueue_copy() function enqueues a single copy to the
device ring for copying at a later point. The parameters to that function
include the IOVA addresses of both the source and destination buffers,
as well as two “handles” to be returned to the user when the copy is
completed. These handles can be arbitrary values, but two are provided so
that the library can track handles for both source and destination on
behalf of the user, e.g. virtual addresses for the buffers, or mbuf
pointers if packet data is being copied.

While the rte_ioat_enqueue_copy() function enqueues a copy operation on
the device ring, the copy will not actually be performed until after the
application calls the rte_ioat_do_copies() function. This function
informs the device hardware of the elements enqueued on the ring, and the
device will begin to process them. It is expected that, for efficiency
reasons, a burst of operations will be enqueued to the device via multiple
enqueue calls between calls to the rte_ioat_do_copies() function.

The following code from test_ioat_rawdev.c demonstrates how to enqueue
a burst of copies to the device and start the hardware processing of them:

struct rte_mbuf *srcs[32], *dsts[32];
unsigned int j;

for (i = 0; i < RTE_DIM(srcs); i++) {
 char *src_data;

 srcs[i] = rte_pktmbuf_alloc(pool);
 dsts[i] = rte_pktmbuf_alloc(pool);
 srcs[i]->data_len = srcs[i]->pkt_len = length;
 dsts[i]->data_len = dsts[i]->pkt_len = length;
 src_data = rte_pktmbuf_mtod(srcs[i], char *);

 for (j = 0; j < length; j++)
 src_data[j] = rand() & 0xFF;

 if (rte_ioat_enqueue_copy(dev_id,
 srcs[i]->buf_iova + srcs[i]->data_off,
 dsts[i]->buf_iova + dsts[i]->data_off,
 length,
 (uintptr_t)srcs[i],
 (uintptr_t)dsts[i],
 0 /* nofence */) != 1) {
 printf("Error with rte_ioat_enqueue_copy for buffer %u\n",
 i);
 return -1;
 }
}
rte_ioat_do_copies(dev_id);

To retrieve information about completed copies, the API
rte_ioat_completed_copies() should be used. This API will return to the
application a set of completion handles passed in when the relevant copies
were enqueued.

The following code from test_ioat_rawdev.c shows the test code
retrieving information about the completed copies and validating the data
is correct before freeing the data buffers using the returned handles:

if (rte_ioat_completed_copies(dev_id, 64, (void *)completed_src,
 (void *)completed_dst) != RTE_DIM(srcs)) {
 printf("Error with rte_ioat_completed_copies\n");
 return -1;
}
for (i = 0; i < RTE_DIM(srcs); i++) {
 char *src_data, *dst_data;

 if (completed_src[i] != srcs[i]) {
 printf("Error with source pointer %u\n", i);
 return -1;
 }
 if (completed_dst[i] != dsts[i]) {
 printf("Error with dest pointer %u\n", i);
 return -1;
 }

 src_data = rte_pktmbuf_mtod(srcs[i], char *);
 dst_data = rte_pktmbuf_mtod(dsts[i], char *);
 for (j = 0; j < length; j++)
 if (src_data[j] != dst_data[j]) {
 printf("Error with copy of packet %u, byte %u\n",
 i, j);
 return -1;
 }
 rte_pktmbuf_free(srcs[i]);
 rte_pktmbuf_free(dsts[i]);
}

4.4.4. Querying Device Statistics

The statistics from the IOAT rawdev device can be got via the xstats
functions in the rte_rawdev library, i.e.
rte_rawdev_xstats_names_get(), rte_rawdev_xstats_get() and
rte_rawdev_xstats_by_name_get. The statistics returned for each device
instance are:

	failed_enqueues

	successful_enqueues

	copies_started

	copies_completed

5. NTB Rawdev Driver

The ntb rawdev driver provides a non-transparent bridge between two
separate hosts so that they can communicate with each other. Thus, many
user cases can benefit from this, such as fault tolerance and visual
acceleration.

This PMD allows two hosts to handshake for device start and stop, memory
allocation for the peer to access and read/write allocated memory from peer.
Also, the PMD allows to use doorbell registers to notify the peer and share
some information by using scratchpad registers.

5.1. BIOS setting on Intel Skylake

Intel Non-transparent Bridge needs special BIOS setting. Since the PMD only
supports Intel Skylake platform, introduce BIOS setting here. The referencce
is https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf

	Set the needed PCIe port as NTB to NTB mode on both hosts.

	Enable NTB bars and set bar size of bar 23 and bar 45 as 12-29 (2K-512M)
on both hosts. Note that bar size on both hosts should be the same.

	Disable split bars for both hosts.

	Set crosslink control override as DSD/USP on one host, USD/DSP on
another host.

	Disable PCIe PII SSC (Spread Spectrum Clocking) for both hosts. This
is a hardware requirement.

5.2. Build Options

	CONFIG_RTE_LIBRTE_PMD_NTB_RAWDEV (default y)

Toggle compilation of the ntb driver.

5.3. Device Setup

The Intel NTB devices need to be bound to a DPDK-supported kernel driver
to use, i.e. igb_uio, vfio. The dpdk-devbind.py script can be used to
show devices status and to bind them to a suitable kernel driver. They will
appear under the category of “Misc (rawdev) devices”.

5.4. Prerequisites

NTB PMD needs kernel PCI driver to support write combining (WC) to get
better performance. The difference will be more than 10 times.
To enable WC, there are 2 ways.

	Insert igb_uio with wc_activate=1 flag if use igb_uio driver.

insmod igb_uio.ko wc_activate=1

	Enable WC for NTB device’s Bar 2 and Bar 4 (Mapped memory) manually.
The reference is https://www.kernel.org/doc/html/latest/x86/mtrr.html
Get bar base address using lspci -vvv -s ae:00.0 | grep Region.

lspci -vvv -s ae:00.0 | grep Region
Region 0: Memory at 39bfe0000000 (64-bit, prefetchable) [size=64K]
Region 2: Memory at 39bfa0000000 (64-bit, prefetchable) [size=512M]
Region 4: Memory at 39bfc0000000 (64-bit, prefetchable) [size=512M]

Using the following command to enable WC.

echo "base=0x39bfa0000000 size=0x20000000 type=write-combining" >> /proc/mtrr
echo "base=0x39bfc0000000 size=0x20000000 type=write-combining" >> /proc/mtrr

And the results:

cat /proc/mtrr
reg00: base=0x000000000 (0MB), size= 2048MB, count=1: write-back
reg01: base=0x07f000000 (2032MB), size= 16MB, count=1: uncachable
reg02: base=0x39bfa0000000 (60553728MB), size= 512MB, count=1: write-combining
reg03: base=0x39bfc0000000 (60554240MB), size= 512MB, count=1: write-combining

To disable WC for these regions, using the following.

echo "disable=2" >> /proc/mtrr
echo "disable=3" >> /proc/mtrr

5.5. Ring Layout

Since read/write remote system’s memory are through PCI bus, remote read
is much more expensive than remote write. Thus, the enqueue and dequeue
based on ntb ring should avoid remote read. The ring layout for ntb is
like the following:

	Ring Format:

desc_ring:

 0 16 64
 +---+
 | buffer address |
 +---------------+---+
 | buffer length | resv |
 +---------------+---+

used_ring:

 0 16 32
 +---------------+---------------+
 | packet length | flags |
 +---------------+---------------+

	Ring Layout:

+------------------------+ +------------------------+
used_ring		desc_ring				
+---+		+---+				
+---+ +--------+		+---+				
		--->	buffer	<+---+-		
+---+ +--------+		+---+				
+---+		+---+				
...		...				
+---------+		+---------+				
	tx_tail				rx_tail	
System A +---------+		System B +---------+				
+------------------------+ +------------------------+
 <---------traffic---------

	Enqueue and Dequeue
Based on this ring layout, enqueue reads rx_tail to get how many free
buffers and writes used_ring and tx_tail to tell the peer which buffers
are filled with data.
And dequeue reads tx_tail to get how many packets are arrived, and
writes desc_ring and rx_tail to tell the peer about the new allocated
buffers.
So in this way, only remote write happens and remote read can be avoid
to get better performance.

5.6. Limitation

	This PMD only supports Intel Skylake platform.

6. OCTEON TX2 DMA Driver

OCTEON TX2 has an internal DMA unit which can be used by applications to initiate
DMA transaction internally, from/to host when OCTEON TX2 operates in PCIe End
Point mode. The DMA PF function supports 8 VFs corresponding to 8 DMA queues.
Each DMA queue was exposed as a VF function when SRIOV enabled.

6.1. Features

This DMA PMD supports below 3 modes of memory transfers

	Internal - OCTEON TX2 DRAM to DRAM without core intervention

	Inbound - Host DRAM to OCTEON TX2 DRAM without host/OCTEON TX2 cores involvement

	Outbound - OCTEON TX2 DRAM to Host DRAM without host/OCTEON TX2 cores involvement

6.2. Prerequisites and Compilation procedure

See Marvell OCTEON TX2 Platform Guide for setup information.

6.3. Pre-Installation Configuration

6.3.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_DMA_RAWDEV (default y)

Toggle compilation of the lrte_pmd_octeontx2_dma driver.

6.4. Enabling logs

For enabling logs, use the following EAL parameter:

./your_dma_application <EAL args> --log-level=pmd.raw.octeontx2.dpi,<level>

Using pmd.raw.octeontx2.dpi as log matching criteria, all Event PMD logs
can be enabled which are lower than logging level.

6.5. Initialization

The number of DMA VFs (queues) enabled can be controlled by setting sysfs
entry, sriov_numvfs for the corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/drivers/octeontx2-dpi/0000\:05\:00.0/sriov_numvfs

Once the required VFs are enabled, to be accessible from DPDK, VFs need to be
bound to vfio-pci driver.

6.6. Device Setup

The OCTEON TX2 DPI DMA HW devices will need to be bound to a
user-space IO driver for use. The script dpdk-devbind.py script
included with DPDK can be used to view the state of the devices and to bind
them to a suitable DPDK-supported kernel driver. When querying the status
of the devices, they will appear under the category of “Misc (rawdev)
devices”, i.e. the command dpdk-devbind.py --status-dev misc can be
used to see the state of those devices alone.

6.7. Device Configuration

Configuring DMA rawdev device is done using the rte_rawdev_configure()
API, which takes the mempool as parameter. PMD uses this pool to submit DMA
commands to HW.

The following code shows how the device is configured

struct dpi_rawdev_conf_s conf = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &conf};

conf.chunk_pool = (void *)rte_mempool_create_empty(...);
rte_mempool_set_ops_byname(conf.chunk_pool, rte_mbuf_platform_mempool_ops(), NULL);
rte_mempool_populate_default(conf.chunk_pool);

rte_rawdev_configure(dev_id, (rte_rawdev_obj_t)&rdev_info);

6.8. Performing Data Transfer

To perform data transfer using OCTEON TX2 DMA rawdev devices use standard
rte_rawdev_enqueue_buffers() and rte_rawdev_dequeue_buffers() APIs.

6.9. Self test

On EAL initialization, dma devices will be probed and populated into the
raw devices. The rawdev ID of the device can be obtained using

	Invoke rte_rawdev_get_dev_id("DPI:x") from the application
where x is the VF device’s bus id specified in “bus:device.func” format. Use this
index for further rawdev function calls.

	This PMD supports driver self test, to test DMA internal mode from test
application one can directly calls
rte_rawdev_selftest(rte_rawdev_get_dev_id("DPI:x"))

7. Marvell OCTEON TX2 End Point Rawdev Driver

OCTEON TX2 has an internal SDP unit which provides End Point mode of operation
by exposing its IOQs to Host, IOQs are used for packet I/O between Host and
OCTEON TX2. Each OCTEON TX2 SDP PF supports a max of 128 VFs and Each VF is
associated with a set of IOQ pairs.

7.1. Features

This OCTEON TX2 End Point mode PMD supports

	Packet Input - Host to OCTEON TX2 with direct data instruction mode.

	Packet Output - OCTEON TX2 to Host with info pointer mode.

7.1.1. Config File Options

The following options can be modified in the config file.

	CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EP_RAWDEV (default y)

Toggle compilation of the lrte_pmd_octeontx2_ep driver.

7.2. Initialization

The number of SDP VFs enabled, can be controlled by setting sysfs
entry sriov_numvfs for the corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/drivers/octeontx2-ep/0000\:04\:00.0/sriov_numvfs

Once the required VFs are enabled, to be accessible from DPDK, VFs need to be
bound to vfio-pci driver.

7.3. Device Setup

The OCTEON TX2 SDP End Point VF devices will need to be bound to a
user-space IO driver for use. The script dpdk-devbind.py script
included with DPDK can be used to view the state of the devices and to bind
them to a suitable DPDK-supported kernel driver. When querying the status
of the devices, they will appear under the category of “Misc (rawdev)
devices”, i.e. the command dpdk-devbind.py --status-dev misc can be
used to see the state of those devices alone.

7.4. Device Configuration

Configuring SDP EP rawdev device is done using the rte_rawdev_configure()
API, which takes the mempool as parameter. PMD uses this pool to send/receive
packets to/from the HW.

The following code shows how the device is configured

struct sdp_rawdev_info config = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &config};
config.enqdeq_mpool = (void *)rte_mempool_create(...);

rte_rawdev_configure(dev_id, (rte_rawdev_obj_t)&rdev_info);

7.5. Performing Data Transfer

To perform data transfer using SDP VF EP rawdev devices use standard
rte_rawdev_enqueue_buffers() and rte_rawdev_dequeue_buffers() APIs.

7.6. Self test

On EAL initialization, SDP VF devices will be probed and populated into the
raw devices. The rawdev ID of the device can be obtained using

	Invoke rte_rawdev_get_dev_id("SDPEP:x") from the test application
where x is the VF device’s bus id specified in “bus:device.func”(BDF)
format. Use this index for further rawdev function calls.

	The driver’s selftest rawdev API can be used to verify the SDP EP mode
functional tests which can send/receive the raw data packets to/from the
EP device.

Mempool Device Driver

The following are a list of mempool PMDs, which can be used from an
application through the mempool API.

	1. OCTEON TX FPAVF Mempool Driver
	1.1. Features

	1.2. Supported OCTEON TX SoCs

	1.3. Prerequisites

	1.4. Pre-Installation Configuration

	1.5. Initialization

	2. OCTEON TX2 NPA Mempool Driver
	2.1. Features

	2.2. Prerequisites and Compilation procedure

	2.3. Pre-Installation Configuration

1. OCTEON TX FPAVF Mempool Driver

The OCTEON TX FPAVF PMD (librte_mempool_octeontx) is a mempool
driver for offload mempool device found in Cavium OCTEON TX SoC
family.

More information can be found at Cavium, Inc Official Website [http://www.cavium.com/OCTEON-TX_ARM_Processors.html].

1.1. Features

Features of the OCTEON TX FPAVF PMD are:

	32 SR-IOV Virtual functions

	32 Pools

	HW mempool manager

1.2. Supported OCTEON TX SoCs

	CN83xx

1.3. Prerequisites

See :doc: ../platform/octeontx.rst for setup information.

1.4. Pre-Installation Configuration

1.4.1. Config File Options

The following options can be modified in the config file.
Please note that enabling debugging options may affect system performance.

	CONFIG_RTE_MBUF_DEFAULT_MEMPOOL_OPS (set to octeontx_fpavf)

Set default mempool ops to octeontx_fpavf.

	CONFIG_RTE_LIBRTE_OCTEONTX_MEMPOOL (default y)

Toggle compilation of the librte_mempool_octeontx driver.

1.4.2. Driver Compilation

To compile the OCTEON TX FPAVF MEMPOOL PMD for Linux arm64 gcc target, run the
following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc

1.5. Initialization

The OCTEON TX fpavf mempool initialization similar to other mempool
drivers like ring. However user need to pass –base-virtaddr as
command line input to application example test_mempool.c application.

Example:

./build/app/test -c 0xf --base-virtaddr=0x100000000000 \
 --mbuf-pool-ops-name="octeontx_fpavf"

2. OCTEON TX2 NPA Mempool Driver

The OCTEON TX2 NPA PMD (librte_mempool_octeontx2) provides mempool
driver support for the integrated mempool device found in Marvell OCTEON TX2 SoC family.

More information about OCTEON TX2 SoC can be found at Marvell Official Website [https://www.marvell.com/embedded-processors/infrastructure-processors/].

2.1. Features

OCTEON TX2 NPA PMD supports:

	Up to 128 NPA LFs

	1M Pools per LF

	HW mempool manager

	Ethdev Rx buffer allocation in HW to save CPU cycles in the Rx path.

	Ethdev Tx buffer recycling in HW to save CPU cycles in the Tx path.

2.2. Prerequisites and Compilation procedure

See Marvell OCTEON TX2 Platform Guide for setup information.

2.3. Pre-Installation Configuration

2.3.1. Compile time Config Options

The following option can be modified in the config file.

	CONFIG_RTE_LIBRTE_OCTEONTX2_MEMPOOL (default y)

Toggle compilation of the librte_mempool_octeontx2 driver.

2.3.2. Runtime Config Options

	Maximum number of mempools per application (default 128)

The maximum number of mempools per application needs to be configured on
HW during mempool driver initialization. HW can support up to 1M mempools,
Since each mempool costs set of HW resources, the max_pools devargs
parameter is being introduced to configure the number of mempools required
for the application.
For example:

-w 0002:02:00.0,max_pools=512

With the above configuration, the driver will set up only 512 mempools for
the given application to save HW resources.

Note

Since this configuration is per application, the end user needs to
provide max_pools parameter to the first PCIe device probed by the given
application.

	Lock NPA contexts in NDC

Lock NPA aura and pool contexts in NDC cache.
The device args take hexadecimal bitmask where each bit represent the
corresponding aura/pool id.

For example:

-w 0002:02:00.0,npa_lock_mask=0xf

2.3.3. Debugging Options

Table 2.3 OCTEON TX2 mempool debug options

	#

	Component

	EAL log command

	1

	NPA

	–log-level=’pmd.mempool.octeontx2,8’

2.3.4. Standalone mempool device

The usertools/dpdk-devbind.py script shall enumerate all the mempool devices
available in the system. In order to avoid, the end user to bind the mempool
device prior to use ethdev and/or eventdev device, the respective driver
configures an NPA LF and attach to the first probed ethdev or eventdev device.
In case, if end user need to run mempool as a standalone device
(without ethdev or eventdev), end user needs to bind a mempool device using
usertools/dpdk-devbind.py

Example command to run mempool_autotest test with standalone OCTEONTX2 NPA device:

echo "mempool_autotest" | build/app/test -c 0xf0 --mbuf-pool-ops-name="octeontx2_npa"

Platform Specific Guides

The following are platform specific guides and setup information.

	1. Mellanox BlueField Board Support Package
	1.1. Supported BlueField family SoCs

	1.2. Supported BlueField Platforms

	1.3. Common Offload HW Drivers

	1.4. Steps To Setup Platform

	1.5. Compile DPDK

	2. NXP QorIQ DPAA Board Support Package
	2.1. Supported DPAA SoCs

	2.2. Common Offload HW Block Drivers

	2.3. Steps To Setup Platform

	3. NXP QorIQ DPAA2 Board Support Package
	3.1. Supported DPAA2 SoCs

	3.2. Common Offload HW Block Drivers

	3.3. Steps To Setup Platform

	4. OCTEON TX Board Support Package
	4.1. Common Offload HW Block Drivers

	4.2. Steps To Setup Platform

	4.3. Setup Platform Using OCTEON TX SDK

	5. Marvell OCTEON TX2 Platform Guide
	5.1. Supported OCTEON TX2 SoCs

	5.2. OCTEON TX2 Resource Virtualization Unit architecture

	5.3. LBK HW Access

	5.4. SDP interface

	5.5. OCTEON TX2 packet flow

	5.6. HW Offload Drivers

	5.7. Procedure to Setup Platform

	5.8. Debugging Options

	5.9. Compile DPDK

1. Mellanox BlueField Board Support Package

This document has information about steps to setup Mellanox BlueField platform
and common offload HW drivers of Mellanox BlueField family SoC.

1.1. Supported BlueField family SoCs

	BlueField [http://www.mellanox.com/page/products_dyn?product_family=256&mtag=soc_overview]

1.2. Supported BlueField Platforms

	BlueField SmartNIC [http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic]

	BlueField Reference Platforms [http://www.mellanox.com/page/products_dyn?product_family=286&mtag=bluefield_platforms]

	BlueField Controller Card [http://www.mellanox.com/page/products_dyn?product_family=288&mtag=bluefield_controller_card]

1.3. Common Offload HW Drivers

	NIC Driver

See MLX5 poll mode driver for Mellanox mlx5 NIC driver information.

	Cryptodev Driver

This is based on the crypto extension support of armv8. See
ARMv8 Crypto Poll Mode Driver for armv8 crypto driver information.

Note

BlueField has a variant having no armv8 crypto extension support.

1.4. Steps To Setup Platform

Toolchains, OS and drivers can be downloaded and installed individually from the
Web. But it is recommended to follow instructions at
Mellanox BlueField Software Website [http://www.mellanox.com/page/products_dyn?product_family=279&mtag=bluefield_software].

1.5. Compile DPDK

DPDK can be compiled either natively on BlueField platforms or cross-compiled on
an x86 based platform.

1.5.1. Native Compilation

Refer to MLX5 poll mode driver for prerequisites. Either Mellanox OFED/EN or
rdma-core library with corresponding kernel drivers is required.

1.5.1.1. make build

make config T=arm64-bluefield-linux-gcc
make -j

1.5.1.2. meson build

meson build
ninja -C build

1.5.2. Cross Compilation

Refer to Cross compile DPDK for ARM64 to install the cross
toolchain for ARM64. Base on that, additional header files and libraries are
required:

	libibverbs

	libmlx5

	libnl-3

	libnl-route-3

Such header files and libraries can be cross-compiled and installed on to the
cross toolchain directory like depicted in
Getting the prerequisite library, but those can also be
simply copied from the filesystem of a working BlueField platform. The following
script can be run on a BlueField platform in order to create a supplementary
tarball for the cross toolchain.

mkdir -p aarch64-linux-gnu/libc
pushd $PWD
cd aarch64-linux-gnu/libc

Copy libraries
mkdir -p lib64
cp -a /lib64/libibverbs* lib64/
cp -a /lib64/libmlx5* lib64/
cp -a /lib64/libnl-3* lib64/
cp -a /lib64/libnl-route-3* lib64/

Copy header files
mkdir -p usr/include/infiniband
cp -a /usr/include/infiniband/ib_user_ioctl_verbs.h usr/include/infiniband/
cp -a /usr/include/infiniband/mlx5*.h usr/include/infiniband/
cp -a /usr/include/infiniband/tm_types.h usr/include/infiniband/
cp -a /usr/include/infiniband/verbs*.h usr/include/infiniband/

Create supplementary tarball
popd
tar cf aarch64-linux-gnu-mlx.tar aarch64-linux-gnu/

Then, untar the tarball at the cross toolchain directory on the x86 host.

cd $(dirname $(which aarch64-linux-gnu-gcc))/..
tar xf aarch64-linux-gnu-mlx.tar

1.5.2.1. make build

make config T=arm64-bluefield-linux-gcc
make -j CROSS=aarch64-linux-gnu- CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n

1.5.2.2. meson build

meson build --cross-file config/arm/arm64_bluefield_linux_gcc
ninja -C build

2. NXP QorIQ DPAA Board Support Package

This doc has information about steps to setup QorIQ dpaa
based layerscape platform and information about common offload
hw block drivers of NXP QorIQ DPAA SoC family.

2.1. Supported DPAA SoCs

	LS1046A/LS1026A

	LS1043A/LS1023A

More information about SoC can be found at NXP Official Website [https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors:QORIQ-ARM].

2.2. Common Offload HW Block Drivers

	Nics Driver

See DPAA Poll Mode Driver for NXP dpaa nic driver information.

	Cryptodev Driver

See NXP DPAA CAAM (DPAA_SEC) for NXP dpaa cryptodev driver information.

	Eventdev Driver

See NXP DPAA Eventdev Driver for NXP dpaa eventdev driver information.

2.3. Steps To Setup Platform

There are four main pre-requisites for executing DPAA PMD on a DPAA
compatible board:

	ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain [https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz].

	Linux Kernel

It can be obtained from NXP’s Github hosting [https://source.codeaurora.org/external/qoriq/qoriq-components/linux].

	Rootfile system

Any aarch64 supporting filesystem can be used. For example,
Ubuntu 16.04 LTS (Xenial) or 18.04 (Bionic) userland which can be obtained
from here [http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz].

	FMC Tool

Before any DPDK application can be executed, the Frame Manager Configuration
Tool (FMC) need to be executed to set the configurations of the queues. This
includes the queue state, RSS and other policies.
This tool can be obtained from NXP (Freescale) Public Git Repository [https://source.codeaurora.org/external/qoriq/qoriq-components/fmc].

This tool needs configuration files which are available in the
DPDK Extra Scripts, described below for DPDK usages.

As an alternative method, DPAA PMD can also be executed using images provided
as part of SDK from NXP. The SDK includes all the above prerequisites necessary
to bring up a DPAA board.

The following dependencies are not part of DPDK and must be installed
separately:

	NXP Linux SDK

NXP Linux software development kit (SDK) includes support for family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK [http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX].

	DPDK Extra Scripts

DPAA based resources can be configured easily with the help of ready scripts
as provided in the DPDK Extra repository.

DPDK Extras Scripts [https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk-extras].

Currently supported by DPDK:

	NXP SDK 2.0+ (preferred: LSDK 18.09).

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux
to setup the basic DPDK environment.

3. NXP QorIQ DPAA2 Board Support Package

This doc has information about steps to setup NXP QorIQ DPAA2 platform
and information about common offload hw block drivers of
NXP QorIQ DPAA2 SoC family.

3.1. Supported DPAA2 SoCs

	LX2160A

	LS2084A/LS2044A

	LS2088A/LS2048A

	LS1088A/LS1048A

More information about SoC can be found at NXP Official Website [https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors:QORIQ-ARM].

3.2. Common Offload HW Block Drivers

	Nics Driver

See DPAA2 Poll Mode Driver for NXP dpaa2 nic driver information.

	Cryptodev Driver

See NXP DPAA2 CAAM (DPAA2_SEC) for NXP dpaa2 cryptodev driver information.

	Eventdev Driver

See NXP DPAA2 Eventdev Driver for NXP dpaa2 eventdev driver information.

	Rawdev AIOP CMDIF Driver

See NXP DPAA2 CMDIF Driver for NXP dpaa2 AIOP command interface driver information.

	Rawdev QDMA Driver

See NXP DPAA2 QDMA Driver for NXP dpaa2 QDMA driver information.

3.3. Steps To Setup Platform

There are four main pre-requisites for executing DPAA2 PMD on a DPAA2
compatible board:

	ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain [https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz].

	Linux Kernel

It can be obtained from NXP’s Github hosting [https://source.codeaurora.org/external/qoriq/qoriq-components/linux].

	Rootfile system

Any aarch64 supporting filesystem can be used. For example,
Ubuntu 16.04 LTS (Xenial) or 18.04 (Bionic) userland which can be obtained
from here [http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz].

	Resource Scripts

DPAA2 based resources can be configured easily with the help of ready scripts
as provided in the DPDK Extra repository.

	Build Config

Use dpaa build configs, they work for both DPAA2 and DPAA platforms.

As an alternative method, DPAA2 PMD can also be executed using images provided
as part of SDK from NXP. The SDK includes all the above prerequisites necessary
to bring up a DPAA2 board.

The following dependencies are not part of DPDK and must be installed
separately:

	NXP Linux SDK

NXP Linux software development kit (SDK) includes support for family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK [http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX].

	DPDK Extra Scripts

DPAA2 based resources can be configured easily with the help of ready scripts
as provided in the DPDK Extra repository.

DPDK Extras Scripts [https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk-extras].

Currently supported by DPDK:

	NXP SDK LSDK 19.09++.

	MC Firmware version 10.18.0 and higher.

	Supported architectures: arm64 LE.

	Follow the DPDK Getting Started Guide for Linux
to setup the basic DPDK environment.

4. OCTEON TX Board Support Package

This doc has information about steps to setup OCTEON TX platform
and information about common offload hw block drivers of
Cavium OCTEON TX SoC family.

More information about SoC can be found at Cavium, Inc Official Website [http://www.cavium.com/OCTEON-TX_ARM_Processors.html].

4.1. Common Offload HW Block Drivers

	Crypto Driver
See Cavium OCTEON TX Crypto Poll Mode Driver for octeontx crypto driver
information.

	Eventdev Driver
See OCTEON TX SSOVF Eventdev Driver for octeontx ssovf eventdev driver
information.

	Mempool Driver
See OCTEON TX FPAVF Mempool Driver for octeontx fpavf mempool driver
information.

4.2. Steps To Setup Platform

There are three main pre-prerequisites for setting up Platform drivers on
OCTEON TX compatible board:

	OCTEON TX Linux kernel PF driver for Network acceleration HW blocks

The OCTEON TX Linux kernel drivers (includes the required PF driver for the
Platform drivers) are available on Github at octeontx-kmod [https://github.com/caviumnetworks/octeontx-kmod]
along with build, install and dpdk usage instructions.

Note

The PF driver and the required microcode for the crypto offload block will be
available with OCTEON TX SDK only. So for using crypto offload, follow the steps
mentioned in Setup Platform Using OCTEON TX SDK.

	ARM64 Tool Chain

For example, the aarch64 Linaro Toolchain, which can be obtained from
here [https://releases.linaro.org/components/toolchain/binaries/4.9-2017.01/aarch64-linux-gnu].

	Rootfile system

Any aarch64 supporting filesystem can be used. For example,
Ubuntu 15.10 (Wily) or 16.04 LTS (Xenial) userland which can be obtained
from http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz.

As an alternative method, Platform drivers can also be executed using images provided
as part of SDK from Cavium. The SDK includes all the above prerequisites necessary
to bring up a OCTEON TX board. Please refer Setup Platform Using OCTEON TX SDK.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

4.3. Setup Platform Using OCTEON TX SDK

The OCTEON TX platform drivers can be compiled either natively on
OCTEON TX ® board or cross-compiled on an x86 based platform.

The OCTEON TX ® board must be running the linux kernel based on
OCTEON TX SDK 6.2.0 patch 3. In this, the PF drivers for all hardware
offload blocks are already built in.

4.3.1. Native Compilation

If the kernel and modules are cross-compiled and copied to the target board,
some intermediate binaries required for native build would be missing on the
target board. To make sure all the required binaries are available in the
native architecture, the linux sources need to be compiled once natively.

cd /lib/modules/$(uname -r)/source
make menuconfig
make

The above steps would rebuild the modules and the required intermediate binaries.
Once the target is ready for native compilation, the OCTEON TX platform
drivers can be compiled with the following steps,

cd <dpdk directory>
make config T=arm64-thunderx-linux-gcc
make

The example applications can be compiled using the following:

cd <dpdk directory>
export RTE_SDK=$PWD
export RTE_TARGET=build
cd examples/<application>
make

4.3.2. Cross Compilation

The DPDK applications can be cross-compiled on any x86 based platform. The
OCTEON TX SDK need to be installed on the build system. The SDK package will
provide the required toolchain etc.

Refer to Cross compile DPDK for ARM64 for further steps on
compilation. The ‘host’ & ‘CC’ to be used in the commands would change,
in addition to the paths to which libnuma related files have to be
copied.

The following steps can be used to perform cross-compilation with OCTEON TX
SDK 6.2.0 patch 3:

cd <sdk_install_dir>
source env-setup

git clone https://github.com/numactl/numactl.git
cd numactl
git checkout v2.0.11 -b v2.0.11
./autogen.sh
autoconf -i
./configure --host=aarch64-thunderx-linux CC=aarch64-thunderx-linux-gnu-gcc --prefix=<numa install dir>
make install

The above steps will prepare build system with numa additions. Now this build system can be used
to build applications for OCTEON TX ® platforms.

cd <dpdk directory>
export RTE_SDK=$PWD
export RTE_KERNELDIR=$THUNDER_ROOT/linux/kernel/linux
make config T=arm64-thunderx-linux-gcc
make -j CROSS=aarch64-thunderx-linux-gnu- CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n EXTRA_CFLAGS="-isystem <numa_install_dir>/include" EXTRA_LDFLAGS="-L<numa_install_dir>/lib -lnuma"

If NUMA support is not required, it can be disabled as explained in
Cross compile DPDK for ARM64.

Following steps could be used in that case.

make config T=arm64-thunderx-linux-gcc
make CROSS=aarch64-thunderx-linux-gnu-

SDK and related information can be obtained from: Cavium support site [https://support.cavium.com/].

5. Marvell OCTEON TX2 Platform Guide

This document gives an overview of Marvell OCTEON TX2 RVU H/W block,
packet flow and procedure to build DPDK on OCTEON TX2 platform.

More information about OCTEON TX2 SoC can be found at Marvell Official Website [https://www.marvell.com/embedded-processors/infrastructure-processors/].

5.1. Supported OCTEON TX2 SoCs

	CN96xx

	CN93xx

5.2. OCTEON TX2 Resource Virtualization Unit architecture

The Fig. 5.2 diagram depicts the
RVU architecture and a resource provisioning example.

[image: ../_images/octeontx2_resource_virtualization.svg]
Fig. 5.2 OCTEON TX2 Resource virtualization architecture and provisioning example

Resource Virtualization Unit (RVU) on Marvell’s OCTEON TX2 SoC maps HW
resources belonging to the network, crypto and other functional blocks onto
PCI-compatible physical and virtual functions.

Each functional block has multiple local functions (LFs) for
provisioning to different PCIe devices. RVU supports multiple PCIe SRIOV
physical functions (PFs) and virtual functions (VFs).

The Table 5.5 shows the various local
functions (LFs) provided by the RVU and its functional mapping to
DPDK subsystem.

Table 5.5 RVU managed functional blocks and its mapping to DPDK subsystem

	#

	LF

	DPDK subsystem mapping

	1

	NIX

	rte_ethdev, rte_tm, rte_event_eth_[rt]x_adapter, rte_security

	2

	NPA

	rte_mempool

	3

	NPC

	rte_flow

	4

	CPT

	rte_cryptodev, rte_event_crypto_adapter

	5

	SSO

	rte_eventdev

	6

	TIM

	rte_event_timer_adapter

	7

	LBK

	rte_ethdev

	8

	DPI

	rte_rawdev

	9

	SDP

	rte_ethdev

PF0 is called the administrative / admin function (AF) and has exclusive
privileges to provision RVU functional block’s LFs to each of the PF/VF.

PF/VFs communicates with AF via a shared memory region (mailbox).Upon receiving
requests from PF/VF, AF does resource provisioning and other HW configuration.

AF is always attached to host, but PF/VFs may be used by host kernel itself,
or attached to VMs or to userspace applications like DPDK, etc. So, AF has to
handle provisioning/configuration requests sent by any device from any domain.

The AF driver does not receive or process any data.
It is only a configuration driver used in control path.

The Fig. 5.2 diagram also shows a
resource provisioning example where,

	PFx and PFx-VF0 bound to Linux netdev driver.

	PFx-VF1 ethdev driver bound to the first DPDK application.

	PFy ethdev driver, PFy-VF0 ethdev driver, PFz eventdev driver, PFm-VF0 cryptodev driver bound to the second DPDK application.

5.3. LBK HW Access

Loopback HW Unit (LBK) receives packets from NIX-RX and sends packets back to NIX-TX.
The loopback block has N channels and contains data buffering that is shared across
all channels. The LBK HW Unit is abstracted using ethdev subsystem, Where PF0’s
VFs are exposed as ethdev device and odd-even pairs of VFs are tied together,
that is, packets sent on odd VF end up received on even VF and vice versa.
This would enable HW accelerated means of communication between two domains
where even VF bound to the first domain and odd VF bound to the second domain.

Typical application usage models are,

	Communication between the Linux kernel and DPDK application.

	Exception path to Linux kernel from DPDK application as SW KNI replacement.

	Communication between two different DPDK applications.

5.4. SDP interface

System DPI Packet Interface unit(SDP) provides PCIe endpoint support for remote host
to DMA packets into and out of OCTEON TX2 SoC. SDP interface comes in to live only when
OCTEON TX2 SoC is connected in PCIe endpoint mode. It can be used to send/receive
packets to/from remote host machine using input/output queue pairs exposed to it.
SDP interface receives input packets from remote host from NIX-RX and sends packets
to remote host using NIX-TX. Remote host machine need to use corresponding driver
(kernel/user mode) to communicate with SDP interface on OCTEON TX2 SoC. SDP supports
single PCIe SRIOV physical function(PF) and multiple virtual functions(VF’s). Users
can bind PF or VF to use SDP interface and it will be enumerated as ethdev ports.

The primary use case for SDP is to enable the smart NIC use case. Typical usage models are,

	Communication channel between remote host and OCTEON TX2 SoC over PCIe.

	Transfer packets received from network interface to remote host over PCIe and
vice-versa.

5.5. OCTEON TX2 packet flow

The Fig. 5.3 diagram depicts
the packet flow on OCTEON TX2 SoC in conjunction with use of various HW accelerators.

[image: ../_images/octeontx2_packet_flow_hw_accelerators.svg]
Fig. 5.3 OCTEON TX2 packet flow in conjunction with use of HW accelerators

5.6. HW Offload Drivers

This section lists dataplane H/W block(s) available in OCTEON TX2 SoC.

	Ethdev Driver
See OCTEON TX2 Poll Mode driver for NIX Ethdev driver information.

	Mempool Driver
See OCTEON TX2 NPA Mempool Driver for NPA mempool driver information.

	Event Device Driver
See OCTEON TX2 SSO Eventdev Driver for SSO event device driver information.

	DMA Rawdev Driver
See OCTEON TX2 DMA Driver for DMA driver information.

	Crypto Device Driver
See Marvell OCTEON TX2 Crypto Poll Mode Driver for CPT crypto device driver information.

5.7. Procedure to Setup Platform

There are three main prerequisites for setting up DPDK on OCTEON TX2
compatible board:

	OCTEON TX2 Linux kernel driver

The dependent kernel drivers can be obtained from the
kernel.org [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/marvell/octeontx2].

Alternatively, the Marvell SDK also provides the required kernel drivers.

Linux kernel should be configured with the following features enabled:

64K pages enabled for better performance
CONFIG_ARM64_64K_PAGES=y
CONFIG_ARM64_VA_BITS_48=y
huge pages support enabled
CONFIG_HUGETLBFS=y
CONFIG_HUGETLB_PAGE=y
VFIO enabled with TYPE1 IOMMU at minimum
CONFIG_VFIO_IOMMU_TYPE1=y
CONFIG_VFIO_VIRQFD=y
CONFIG_VFIO=y
CONFIG_VFIO_NOIOMMU=y
CONFIG_VFIO_PCI=y
CONFIG_VFIO_PCI_MMAP=y
SMMUv3 driver
CONFIG_ARM_SMMU_V3=y
ARMv8.1 LSE atomics
CONFIG_ARM64_LSE_ATOMICS=y
OCTEONTX2 drivers
CONFIG_OCTEONTX2_MBOX=y
CONFIG_OCTEONTX2_AF=y
Enable if netdev PF driver required
CONFIG_OCTEONTX2_PF=y
Enable if netdev VF driver required
CONFIG_OCTEONTX2_VF=y
CONFIG_CRYPTO_DEV_OCTEONTX2_CPT=y
Enable if OCTEONTX2 DMA PF driver required
CONFIG_OCTEONTX2_DPI_PF=n

	ARM64 Linux Tool Chain

For example, the aarch64 Linaro Toolchain, which can be obtained from
here [https://releases.linaro.org/components/toolchain/binaries/7.4-2019.02/aarch64-linux-gnu/].

Alternatively, the Marvell SDK also provides GNU GCC toolchain, which is
optimized for OCTEON TX2 CPU.

	Rootfile system

Any aarch64 supporting filesystem may be used. For example,
Ubuntu 15.10 (Wily) or 16.04 LTS (Xenial) userland which can be obtained
from http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz.

Alternatively, the Marvell SDK provides the buildroot based root filesystem.
The SDK includes all the above prerequisites necessary to bring up the OCTEON TX2 board.

	Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

5.8. Debugging Options

Table 5.6 OCTEON TX2 common debug options

	#

	Component

	EAL log command

	1

	Common

	–log-level=’pmd.octeontx2.base,8’

	2

	Mailbox

	–log-level=’pmd.octeontx2.mbox,8’

5.8.1. Debugfs support

The OCTEON TX2 Linux kernel driver provides support to dump RVU blocks
context or stats using debugfs.

Enable debugfs by:

	Compile kernel with debugfs enabled, i.e CONFIG_DEBUGFS=y.

	Boot OCTEON TX2 with debugfs supported kernel.

	Verify debugfs mounted by default “mount | grep -i debugfs” or mount it manually by using.

mount -t debugfs none /sys/kernel/debug

Currently debugfs supports the following RVU blocks NIX, NPA, NPC, NDC,
SSO & CGX.

The file structure under /sys/kernel/debug is as follows

octeontx2/
|-- cgx
| |-- cgx0
| | '-- lmac0
| | '-- stats
| |-- cgx1
| | |-- lmac0
| | | '-- stats
| | '-- lmac1
| | '-- stats
| '-- cgx2
| '-- lmac0
| '-- stats
|-- cpt
| |-- cpt_engines_info
| |-- cpt_engines_sts
| |-- cpt_err_info
| |-- cpt_lfs_info
| '-- cpt_pc
|---- nix
| |-- cq_ctx
| |-- ndc_rx_cache
| |-- ndc_rx_hits_miss
| |-- ndc_tx_cache
| |-- ndc_tx_hits_miss
| |-- qsize
| |-- rq_ctx
| |-- sq_ctx
| '-- tx_stall_hwissue
|-- npa
| |-- aura_ctx
| |-- ndc_cache
| |-- ndc_hits_miss
| |-- pool_ctx
| '-- qsize
|-- npc
| |-- mcam_info
| '-- rx_miss_act_stats
|-- rsrc_alloc
'-- sso
 |-- hws
 | '-- sso_hws_info
 '-- hwgrp
 |-- sso_hwgrp_aq_thresh
 |-- sso_hwgrp_iaq_walk
 |-- sso_hwgrp_pc
 |-- sso_hwgrp_free_list_walk
 |-- sso_hwgrp_ient_walk
 '-- sso_hwgrp_taq_walk

RVU block LF allocation:

cat /sys/kernel/debug/octeontx2/rsrc_alloc

pcifunc NPA NIX SSO GROUP SSOWS TIM CPT
PF1 0 0
PF4 1
PF13 0, 1 0, 1 0

CGX example usage:

cat /sys/kernel/debug/octeontx2/cgx/cgx2/lmac0/stats

=======Link Status======
Link is UP 40000 Mbps
=======RX_STATS======
Received packets: 0
Octets of received packets: 0
Received PAUSE packets: 0
Received PAUSE and control packets: 0
Filtered DMAC0 (NIX-bound) packets: 0
Filtered DMAC0 (NIX-bound) octets: 0
Packets dropped due to RX FIFO full: 0
Octets dropped due to RX FIFO full: 0
Error packets: 0
Filtered DMAC1 (NCSI-bound) packets: 0
Filtered DMAC1 (NCSI-bound) octets: 0
NCSI-bound packets dropped: 0
NCSI-bound octets dropped: 0
=======TX_STATS======
Packets dropped due to excessive collisions: 0
Packets dropped due to excessive deferral: 0
Multiple collisions before successful transmission: 0
Single collisions before successful transmission: 0
Total octets sent on the interface: 0
Total frames sent on the interface: 0
Packets sent with an octet count < 64: 0
Packets sent with an octet count == 64: 0
Packets sent with an octet count of 65127: 0
Packets sent with an octet count of 128-255: 0
Packets sent with an octet count of 256-511: 0
Packets sent with an octet count of 512-1023: 0
Packets sent with an octet count of 1024-1518: 0
Packets sent with an octet count of > 1518: 0
Packets sent to a broadcast DMAC: 0
Packets sent to the multicast DMAC: 0
Transmit underflow and were truncated: 0
Control/PAUSE packets sent: 0

CPT example usage:

cat /sys/kernel/debug/octeontx2/cpt/cpt_pc

CPT instruction requests 0
CPT instruction latency 0
CPT NCB read requests 0
CPT NCB read latency 0
CPT read requests caused by UC fills 0
CPT active cycles pc 1395642
CPT clock count pc 5579867595493

NIX example usage:

Usage: echo <nixlf> [cq number/all] > /sys/kernel/debug/octeontx2/nix/cq_ctx
 cat /sys/kernel/debug/octeontx2/nix/cq_ctx
echo 0 0 > /sys/kernel/debug/octeontx2/nix/cq_ctx
cat /sys/kernel/debug/octeontx2/nix/cq_ctx

=====cq_ctx for nixlf:0 and qidx:0 is=====
W0: base 158ef1a00

W1: wrptr 0
W1: avg_con 0
W1: cint_idx 0
W1: cq_err 0
W1: qint_idx 0
W1: bpid 0
W1: bp_ena 0

W2: update_time 31043
W2:avg_level 255
W2: head 0
W2:tail 0

W3: cq_err_int_ena 5
W3:cq_err_int 0
W3: qsize 4
W3:caching 1
W3: substream 0x000
W3: ena 1
W3: drop_ena 1
W3: drop 64
W3: bp 0

NPA example usage:

Usage: echo <npalf> [pool number/all] > /sys/kernel/debug/octeontx2/npa/pool_ctx
 cat /sys/kernel/debug/octeontx2/npa/pool_ctx
echo 0 0 > /sys/kernel/debug/octeontx2/npa/pool_ctx
cat /sys/kernel/debug/octeontx2/npa/pool_ctx

======POOL : 0=======
W0: Stack base 1375bff00
W1: ena 1
W1: nat_align 1
W1: stack_caching 1
W1: stack_way_mask 0
W1: buf_offset 1
W1: buf_size 19
W2: stack_max_pages 24315
W2: stack_pages 24314
W3: op_pc 267456
W4: stack_offset 2
W4: shift 5
W4: avg_level 255
W4: avg_con 0
W4: fc_ena 0
W4: fc_stype 0
W4: fc_hyst_bits 0
W4: fc_up_crossing 0
W4: update_time 62993
W5: fc_addr 0
W6: ptr_start 1593adf00
W7: ptr_end 180000000
W8: err_int 0
W8: err_int_ena 7
W8: thresh_int 0
W8: thresh_int_ena 0
W8: thresh_up 0
W8: thresh_qint_idx 0
W8: err_qint_idx 0

NPC example usage:

cat /sys/kernel/debug/octeontx2/npc/mcam_info

NPC MCAM info:
RX keywidth : 224bits
TX keywidth : 224bits

MCAM entries : 2048
Reserved : 158
Available : 1890

MCAM counters : 512
Reserved : 1
Available : 511

SSO example usage:

Usage: echo [<hws>/all] > /sys/kernel/debug/octeontx2/sso/hws/sso_hws_info
echo 0 > /sys/kernel/debug/octeontx2/sso/hws/sso_hws_info

==
SSOW HWS[0] Arbitration State 0x0
SSOW HWS[0] Guest Machine Control 0x0
SSOW HWS[0] SET[0] Group Mask[0] 0xffffffffffffffff
SSOW HWS[0] SET[0] Group Mask[1] 0xffffffffffffffff
SSOW HWS[0] SET[0] Group Mask[2] 0xffffffffffffffff
SSOW HWS[0] SET[0] Group Mask[3] 0xffffffffffffffff
SSOW HWS[0] SET[1] Group Mask[0] 0xffffffffffffffff
SSOW HWS[0] SET[1] Group Mask[1] 0xffffffffffffffff
SSOW HWS[0] SET[1] Group Mask[2] 0xffffffffffffffff
SSOW HWS[0] SET[1] Group Mask[3] 0xffffffffffffffff
==

5.9. Compile DPDK

DPDK may be compiled either natively on OCTEON TX2 platform or cross-compiled on
an x86 based platform.

5.9.1. Native Compilation

5.9.1.1. make build

make config T=arm64-octeontx2-linux-gcc
make -j

The example applications can be compiled using the following:

cd <dpdk directory>
export RTE_SDK=$PWD
export RTE_TARGET=build
cd examples/<application>
make -j

5.9.1.2. meson build

meson build
ninja -C build

5.9.2. Cross Compilation

Refer to Cross compile DPDK for ARM64 for generic arm64 details.

5.9.2.1. make build

make config T=arm64-octeontx2-linux-gcc
make -j CROSS=aarch64-marvell-linux-gnu- CONFIG_RTE_KNI_KMOD=n

5.9.2.2. meson build

meson build --cross-file config/arm/arm64_octeontx2_linux_gcc
ninja -C build

Note

By default, meson cross compilation uses aarch64-linux-gnu-gcc toolchain,
if Marvell toolchain is available then it can be used by overriding the
c, cpp, ar, strip binaries attributes to respective Marvell
toolchain binaries in config/arm/arm64_octeontx2_linux_gcc file.

Contributor’s Guidelines

	1. DPDK Coding Style
	1.1. Description

	1.2. General Guidelines

	1.3. C Comment Style

	1.4. C Preprocessor Directives

	1.5. C Types

	1.6. C Indentation

	1.7. C Function Definition, Declaration and Use

	1.8. C Statement Style and Conventions

	1.9. Dynamic Logging

	1.10. Python Code

	1.11. Integrating with the Build System

	2. Design
	2.1. Environment or Architecture-specific Sources

	2.2. Library Statistics

	2.3. PF and VF Considerations

	3. ABI Policy
	3.1. Description

	3.2. General Guidelines

	3.3. The DPDK ABI policy

	3.4. Experimental

	4. ABI Versioning
	4.1. What is a library’s soname?

	4.2. Major ABI versions

	4.3. Versioning Macros

	4.4. Running the ABI Validator

	5. DPDK Documentation Guidelines
	5.1. Structure of the Documentation

	5.2. Role of the Documentation

	5.3. Building the Documentation

	5.4. Document Guidelines

	5.5. RST Guidelines

	5.6. Doxygen Guidelines

	6. Contributing Code to DPDK
	6.1. The DPDK Development Process

	6.2. Source License

	6.3. Maintainers and Sub-trees

	6.4. Getting the Source Code

	6.5. Make your Changes

	6.6. Commit Messages: Subject Line

	6.7. Commit Messages: Body

	6.8. Creating Patches

	6.9. Checking the Patches

	6.10. Checking Compilation

	6.11. Checking ABI compatibility

	6.12. Sending Patches

	6.13. The Review Process

	7. DPDK Vulnerability Management Process
	7.1. Scope

	7.2. Finding

	7.3. Report

	7.4. Confirmation

	7.5. CVE Request

	7.6. Fix Development and Review

	7.7. Pre-Release Disclosure

	7.8. Private Disclosure

	7.9. Public Disclosure

	7.10. References

	8. DPDK Stable Releases and Long Term Support
	8.1. Introduction

	8.2. Stable Releases

	8.3. LTS Release

	8.4. What changes should be backported

	8.5. The Stable Mailing List

	8.6. Releasing

	9. Patch Cheatsheet

1. DPDK Coding Style

1.1. Description

This document specifies the preferred style for source files in the DPDK source tree.
It is based on the Linux Kernel coding guidelines and the FreeBSD 7.2 Kernel Developer’s Manual (see man style(9)), but was heavily modified for the needs of the DPDK.

1.2. General Guidelines

The rules and guidelines given in this document cannot cover every situation, so the following general guidelines should be used as a fallback:

	The code style should be consistent within each individual file.

	In the case of creating new files, the style should be consistent within each file in a given directory or module.

	The primary reason for coding standards is to increase code readability and comprehensibility, therefore always use whatever option will make the code easiest to read.

Line length is recommended to be not more than 80 characters, including comments.
[Tab stop size should be assumed to be 8-characters wide].

Note

The above is recommendation, and not a hard limit.
However, it is expected that the recommendations should be followed in all but the rarest situations.

1.3. C Comment Style

1.3.1. Usual Comments

These comments should be used in normal cases.
To document a public API, a doxygen-like format must be used: refer to Doxygen Guidelines.

/*
 * VERY important single-line comments look like this.
 */

/* Most single-line comments look like this. */

/*
 * Multi-line comments look like this. Make them real sentences. Fill
 * them so they look like real paragraphs.
 */

1.3.2. License Header

Each file should begin with a special comment containing the appropriate copyright and license for the file.
Generally this is the BSD License, except for code for Linux Kernel modules.
After any copyright header, a blank line should be left before any other contents, e.g. include statements in a C file.

1.4. C Preprocessor Directives

1.4.1. Header Includes

In DPDK sources, the include files should be ordered as following:

	libc includes (system includes first)

	DPDK EAL includes

	DPDK misc libraries includes

	application-specific includes

Include files from the local application directory are included using quotes, while includes from other paths are included using angle brackets: “<>”.

Example:

#include <stdio.h>
#include <stdlib.h>

#include <rte_eal.h>

#include <rte_ring.h>
#include <rte_mempool.h>

#include "application.h"

1.4.2. Header File Guards

Headers should be protected against multiple inclusion with the usual:

#ifndef _FILE_H_
#define _FILE_H_

/* Code */

#endif /* _FILE_H_ */

1.4.3. Macros

Do not #define or declare names except with the standard DPDK prefix: RTE_.
This is to ensure there are no collisions with definitions in the application itself.

The names of “unsafe” macros (ones that have side effects), and the names of macros for manifest constants, are all in uppercase.

The expansions of expression-like macros are either a single token or have outer parentheses.
If a macro is an inline expansion of a function, the function name is all in lowercase and the macro has the same name all in uppercase.
If the macro encapsulates a compound statement, enclose it in a do-while loop, so that it can be used safely in if statements.
Any final statement-terminating semicolon should be supplied by the macro invocation rather than the macro, to make parsing easier for pretty-printers and editors.

For example:

#define MACRO(x, y) do { \
 variable = (x) + (y); \
 (y) += 2; \
} while(0)

Note

Wherever possible, enums and inline functions should be preferred to macros, since they provide additional degrees of type-safety and can allow compilers to emit extra warnings about unsafe code.

1.4.4. Conditional Compilation

	When code is conditionally compiled using #ifdef or #if, a comment may be added following the matching
#endif or #else to permit the reader to easily discern where conditionally compiled code regions end.

	This comment should be used only for (subjectively) long regions, regions greater than 20 lines, or where a series of nested #ifdef’s may be confusing to the reader.
Exceptions may be made for cases where code is conditionally not compiled for the purposes of lint(1), or other tools, even though the uncompiled region may be small.

	The comment should be separated from the #endif or #else by a single space.

	For short conditionally compiled regions, a closing comment should not be used.

	The comment for #endif should match the expression used in the corresponding #if or #ifdef.

	The comment for #else and #elif should match the inverse of the expression(s) used in the preceding #if and/or #elif statements.

	In the comments, the subexpression defined(FOO) is abbreviated as “FOO”.
For the purposes of comments, #ifndef FOO is treated as #if !defined(FOO).

#ifdef KTRACE
#include <sys/ktrace.h>
#endif

#ifdef COMPAT_43
/* A large region here, or other conditional code. */
#else /* !COMPAT_43 */
/* Or here. */
#endif /* COMPAT_43 */

#ifndef COMPAT_43
/* Yet another large region here, or other conditional code. */
#else /* COMPAT_43 */
/* Or here. */
#endif /* !COMPAT_43 */

Note

Conditional compilation should be used only when absolutely necessary, as it increases the number of target binaries that need to be built and tested.

1.5. C Types

1.5.1. Integers

For fixed/minimum-size integer values, the project uses the form uintXX_t (from stdint.h) instead of older BSD-style integer identifiers of the form u_intXX_t.

1.5.2. Enumerations

	Enumeration values are all uppercase.

enum enumtype { ONE, TWO } et;

	Enum types should be used in preference to macros #defining a set of (sequential) values.

	Enum types should be prefixed with rte_ and the elements by a suitable prefix [generally starting RTE_<enum>_ - where <enum> is a shortname for the enum type] to avoid namespace collisions.

1.5.3. Bitfields

The developer should group bitfields that are included in the same integer, as follows:

struct grehdr {
 uint16_t rec:3,
 srr:1,
 seq:1,
 key:1,
 routing:1,
 csum:1,
 version:3,
 reserved:4,
 ack:1;
/* ... */
}

1.5.4. Variable Declarations

In declarations, do not put any whitespace between asterisks and adjacent tokens, except for tokens that are identifiers related to types.
(These identifiers are the names of basic types, type qualifiers, and typedef-names other than the one being declared.)
Separate these identifiers from asterisks using a single space.

For example:

int *x; /* no space after asterisk */
int * const x; /* space after asterisk when using a type qualifier */

	All externally-visible variables should have an rte_ prefix in the name to avoid namespace collisions.

	Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase - in variable names.
Lower-case letters and underscores only.

1.5.5. Structure Declarations

	In general, when declaring variables in new structures, declare them sorted by use, then by size (largest to smallest), and then in alphabetical order.
Sorting by use means that commonly used variables are used together and that the structure layout makes logical sense.
Ordering by size then ensures that as little padding is added to the structure as possible.

	For existing structures, additions to structures should be added to the end so for backward compatibility reasons.

	Each structure element gets its own line.

	Try to make the structure readable by aligning the member names using spaces as shown below.

	Names following extremely long types, which therefore cannot be easily aligned with the rest, should be separated by a single space.

struct foo {
 struct foo *next; /* List of active foo. */
 struct mumble amumble; /* Comment for mumble. */
 int bar; /* Try to align the comments. */
 struct verylongtypename *baz; /* Won't fit with other members */
};

	Major structures should be declared at the top of the file in which they are used, or in separate header files if they are used in multiple source files.

	Use of the structures should be by separate variable declarations and those declarations must be extern if they are declared in a header file.

	Externally visible structure definitions should have the structure name prefixed by rte_ to avoid namespace collisions.

Note

Uses of bool in structures are not preferred as is wastes space and
it’s also not clear as to what type size the bool is. A preferred use of
bool is mainly as a return type from functions that return true/false,
and maybe local variable functions.

Ref: LKML [https://lkml.org/lkml/2017/11/21/384]

1.5.6. Queues

Use queue(3) macros rather than rolling your own lists, whenever possible.
Thus, the previous example would be better written:

#include <sys/queue.h>

struct foo {
 LIST_ENTRY(foo) link; /* Use queue macros for foo lists. */
 struct mumble amumble; /* Comment for mumble. */
 int bar; /* Try to align the comments. */
 struct verylongtypename *baz; /* Won't fit with other members */
};
LIST_HEAD(, foo) foohead; /* Head of global foo list. */

DPDK also provides an optimized way to store elements in lockless rings.
This should be used in all data-path code, when there are several consumer and/or producers to avoid locking for concurrent access.

1.5.7. Typedefs

Avoid using typedefs for structure types.

For example, use:

struct my_struct_type {
/* ... */
};

struct my_struct_type my_var;

rather than:

typedef struct my_struct_type {
/* ... */
} my_struct_type;

my_struct_type my_var

Typedefs are problematic because they do not properly hide their underlying type;
for example, you need to know if the typedef is the structure itself, as shown above, or a pointer to the structure.
In addition, they must be declared exactly once, whereas an incomplete structure type can be mentioned as many times as necessary.
Typedefs are difficult to use in stand-alone header files.
The header that defines the typedef must be included before the header that uses it, or by the header that uses it (which causes namespace pollution),
or there must be a back-door mechanism for obtaining the typedef.

Note that #defines used instead of typedefs also are problematic (since they do not propagate the pointer type correctly due to direct text replacement).
For example, #define pint int * does not work as expected, while typedef int *pint does work.
As stated when discussing macros, typedefs should be preferred to macros in cases like this.

When convention requires a typedef; make its name match the struct tag.
Avoid typedefs ending in _t, except as specified in Standard C or by POSIX.

Note

It is recommended to use typedefs to define function pointer types, for reasons of code readability.
This is especially true when the function type is used as a parameter to another function.

For example:

/**
 * Definition of a remote launch function.
 */
typedef int (lcore_function_t)(void *);

/* launch a function of lcore_function_t type */
int rte_eal_remote_launch(lcore_function_t *f, void *arg, unsigned slave_id);

1.6. C Indentation

1.6.1. General

	Indentation is a hard tab, that is, a tab character, not a sequence of spaces,

Note

Global whitespace rule in DPDK, use tabs for indentation, spaces for alignment.

	Do not put any spaces before a tab for indentation.

	If you have to wrap a long statement, put the operator at the end of the line, and indent again.

	For control statements (if, while, etc.), continuation it is recommended that the next line be indented by two tabs, rather than one,
to prevent confusion as to whether the second line of the control statement forms part of the statement body or not.
Alternatively, the line continuation may use additional spaces to line up to an appropriately point on the preceding line, for example, to align to an opening brace.

Note

As with all style guidelines, code should match style already in use in an existing file.

while (really_long_variable_name_1 == really_long_variable_name_2 &&
 var3 == var4){ /* confusing to read as */
 x = y + z; /* control stmt body lines up with second line of */
 a = b + c; /* control statement itself if single indent used */
}

if (really_long_variable_name_1 == really_long_variable_name_2 &&
 var3 == var4){ /* two tabs used */
 x = y + z; /* statement body no longer lines up */
 a = b + c;
}

z = a + really + long + statement + that + needs +
 two + lines + gets + indented + on + the +
 second + and + subsequent + lines;

	Do not add whitespace at the end of a line.

	Do not add whitespace or a blank line at the end of a file.

1.6.2. Control Statements and Loops

	Include a space after keywords (if, while, for, return, switch).

	Do not use braces ({ and }) for control statements with zero or just a single statement, unless that statement is more than a single line in which case the braces are permitted.

for (p = buf; *p != '\0'; ++p)
 ; /* nothing */
for (;;)
 stmt;
for (;;) {
 z = a + really + long + statement + that + needs +
 two + lines + gets + indented + on + the +
 second + and + subsequent + lines;
}
for (;;) {
 if (cond)
 stmt;
}
if (val != NULL)
 val = realloc(val, newsize);

	Parts of a for loop may be left empty.

for (; cnt < 15; cnt++) {
 stmt1;
 stmt2;
}

	Closing and opening braces go on the same line as the else keyword.

	Braces that are not necessary should be left out.

if (test)
 stmt;
else if (bar) {
 stmt;
 stmt;
} else
 stmt;

1.6.3. Function Calls

	Do not use spaces after function names.

	Commas should have a space after them.

	No spaces after (or [or preceding the] or) characters.

error = function(a1, a2);
if (error != 0)
 exit(error);

1.6.4. Operators

	Unary operators do not require spaces, binary operators do.

	Do not use parentheses unless they are required for precedence or unless the statement is confusing without them.
However, remember that other people may be more easily confused than you.

1.6.5. Exit

Exits should be 0 on success, or 1 on failure.

 exit(0); /*
 * Avoid obvious comments such as
 * "Exit 0 on success."
 */
}

1.6.6. Local Variables

	Variables should be declared at the start of a block of code rather than in the middle.
The exception to this is when the variable is const in which case the declaration must be at the point of first use/assignment.

	When declaring variables in functions, multiple variables per line are OK.
However, if multiple declarations would cause the line to exceed a reasonable line length, begin a new set of declarations on the next line rather than using a line continuation.

	Be careful to not obfuscate the code by initializing variables in the declarations, only the last variable on a line should be initialized.
If multiple variables are to be initialized when defined, put one per line.

	Do not use function calls in initializers, except for const variables.

int i = 0, j = 0, k = 0; /* bad, too many initializer */

char a = 0; /* OK, one variable per line with initializer */
char b = 0;

float x, y = 0.0; /* OK, only last variable has initializer */

1.6.7. Casts and sizeof

	Casts and sizeof statements are not followed by a space.

	Always write sizeof statements with parenthesis.
The redundant parenthesis rules do not apply to sizeof(var) instances.

1.7. C Function Definition, Declaration and Use

1.7.1. Prototypes

	It is recommended (and generally required by the compiler) that all non-static functions are prototyped somewhere.

	Functions local to one source module should be declared static, and should not be prototyped unless absolutely necessary.

	Functions used from other parts of code (external API) must be prototyped in the relevant include file.

	Function prototypes should be listed in a logical order, preferably alphabetical unless there is a compelling reason to use a different ordering.

	Functions that are used locally in more than one module go into a separate header file, for example, “extern.h”.

	Do not use the __P macro.

	Functions that are part of an external API should be documented using Doxygen-like comments above declarations. See Doxygen Guidelines for details.

	Functions that are part of the external API must have an rte_ prefix on the function name.

	Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase - in function names. Lower-case letters and underscores only.

	When prototyping functions, associate names with parameter types, for example:

void function1(int fd); /* good */
void function2(int); /* bad */

	Short function prototypes should be contained on a single line.
Longer prototypes, e.g. those with many parameters, can be split across multiple lines.
The second and subsequent lines should be further indented as for line statement continuations as described in the previous section.

static char *function1(int _arg, const char *_arg2,
 struct foo *_arg3,
 struct bar *_arg4,
 struct baz *_arg5);
static void usage(void);

Note

Unlike function definitions, the function prototypes do not need to place the function return type on a separate line.

1.7.2. Definitions

	The function type should be on a line by itself preceding the function.

	The opening brace of the function body should be on a line by itself.

static char *
function(int a1, int a2, float fl, int a4)
{

	Do not declare functions inside other functions.
ANSI C states that such declarations have file scope regardless of the nesting of the declaration.
Hiding file declarations in what appears to be a local scope is undesirable and will elicit complaints from a good compiler.

	Old-style (K&R) function declaration should not be used, use ANSI function declarations instead as shown below.

	Long argument lists should be wrapped as described above in the function prototypes section.

/*
 * All major routines should have a comment briefly describing what
 * they do. The comment before the "main" routine should describe
 * what the program does.
 */
int
main(int argc, char *argv[])
{
 char *ep;
 long num;
 int ch;

1.8. C Statement Style and Conventions

1.8.1. NULL Pointers

	NULL is the preferred null pointer constant.
Use NULL instead of (type *)0 or (type *)NULL, except where the compiler does not know the destination type e.g. for variadic args to a function.

	Test pointers against NULL, for example, use:

if (p == NULL) /* Good, compare pointer to NULL */

if (!p) /* Bad, using ! on pointer */

	Do not use ! for tests unless it is a boolean, for example, use:

if (*p == '\0') /* check character against (char)0 */

1.8.2. Return Value

	Functions which create objects, or allocate memory, should return pointer types, and NULL on error.
The error type should be indicated may setting the variable rte_errno appropriately.

	Functions which work on bursts of packets, such as RX-like or TX-like functions, should return the number of packets handled.

	Other functions returning int should generally behave like system calls:
returning 0 on success and -1 on error, setting rte_errno to indicate the specific type of error.

	Where already standard in a given library, the alternative error approach may be used where the negative value is not -1 but is instead -errno if relevant, for example, -EINVAL.
Note, however, to allow consistency across functions returning integer or pointer types, the previous approach is preferred for any new libraries.

	For functions where no error is possible, the function type should be void not int.

	Routines returning void * should not have their return values cast to any pointer type.
(Typecasting can prevent the compiler from warning about missing prototypes as any implicit definition of a function returns int,
which, unlike void *, needs a typecast to assign to a pointer variable.)

Note

The above rule about not typecasting void * applies to malloc, as well as to DPDK functions.

	Values in return statements should not be enclosed in parentheses.

1.8.3. Logging and Errors

In the DPDK environment, use the logging interface provided:

/* register log types for this application */
int my_logtype1 = rte_log_register("myapp.log1");
int my_logtype2 = rte_log_register("myapp.log2");

/* set global log level to INFO */
rte_log_set_global_level(RTE_LOG_INFO);

/* only display messages higher than NOTICE for log2 (default
 * is DEBUG) */
rte_log_set_level(my_logtype2, RTE_LOG_NOTICE);

/* enable all PMD logs (whose identifier string starts with "pmd.") */
rte_log_set_level_pattern("pmd.*", RTE_LOG_DEBUG);

/* log in debug level */
rte_log_set_global_level(RTE_LOG_DEBUG);
RTE_LOG(DEBUG, my_logtype1, "this is a debug level message\n");
RTE_LOG(INFO, my_logtype1, "this is a info level message\n");
RTE_LOG(WARNING, my_logtype1, "this is a warning level message\n");
RTE_LOG(WARNING, my_logtype2, "this is a debug level message (not displayed)\n");

/* log in info level */
rte_log_set_global_level(RTE_LOG_INFO);
RTE_LOG(DEBUG, my_logtype1, "debug level message (not displayed)\n");

1.8.4. Branch Prediction

	When a test is done in a critical zone (called often or in a data path) the code can use the likely() and unlikely() macros to indicate the expected, or preferred fast path.
They are expanded as a compiler builtin and allow the developer to indicate if the branch is likely to be taken or not. Example:

#include <rte_branch_prediction.h>
if (likely(x > 1))
 do_stuff();

Note

The use of likely() and unlikely() should only be done in performance critical paths,
and only when there is a clearly preferred path, or a measured performance increase gained from doing so.
These macros should be avoided in non-performance-critical code.

1.8.5. Static Variables and Functions

	All functions and variables that are local to a file must be declared as static because it can often help the compiler to do some optimizations (such as, inlining the code).

	Functions that should be inlined should to be declared as static inline and can be defined in a .c or a .h file.

Note

Static functions defined in a header file must be declared as static inline in order to prevent compiler warnings about the function being unused.

1.8.6. Const Attribute

The const attribute should be used as often as possible when a variable is read-only.

1.8.7. Inline ASM in C code

The asm and volatile keywords do not have underscores. The AT&T syntax should be used.
Input and output operands should be named to avoid confusion, as shown in the following example:

asm volatile("outb %[val], %[port]"
 : :
 [port] "dN" (port),
 [val] "a" (val));

1.8.8. Control Statements

	Forever loops are done with for statements, not while statements.

	Elements in a switch statement that cascade should have a FALLTHROUGH comment. For example:

switch (ch) { /* Indent the switch. */
case 'a': /* Don't indent the case. */
 aflag = 1; /* Indent case body one tab. */
 /* FALLTHROUGH */
case 'b':
 bflag = 1;
 break;
case '?':
default:
 usage();
 /* NOTREACHED */
}

1.9. Dynamic Logging

DPDK provides infrastructure to perform logging during runtime. This is very
useful for enabling debug output without recompilation. To enable or disable
logging of a particular topic, the --log-level parameter can be provided
to EAL, which will change the log level. DPDK code can register topics,
which allows the user to adjust the log verbosity for that specific topic.

In general, the naming scheme is as follows: type.section.name

	Type is the type of component, where lib, pmd, bus and user
are the common options.

	Section refers to a specific area, for example a poll-mode-driver for an
ethernet device would use pmd.net, while an eventdev PMD uses
pmd.event.

	The name identifies the individual item that the log applies to.
The name section must align with
the directory that the PMD code resides. See examples below for clarity.

Examples:

	The virtio network PMD in drivers/net/virtio uses pmd.net.virtio

	The eventdev software poll mode driver in drivers/event/sw uses pmd.event.sw

	The octeontx mempool driver in drivers/mempool/octeontx uses pmd.mempool.octeontx

	The DPDK hash library in lib/librte_hash uses lib.hash

1.9.1. Specializations

In addition to the above logging topic, any PMD or library can further split
logging output by using “specializations”. A specialization could be the
difference between initialization code, and logs of events that occur at runtime.

An example could be the initialization log messages getting one
specialization, while another specialization handles mailbox command logging.
Each PMD, library or component can create as many specializations as required.

A specialization looks like this:

	Initialization output: type.section.name.init

	PF/VF mailbox output: type.section.name.mbox

A real world example is the i40e poll mode driver which exposes two
specializations, one for initialization pmd.net.i40e.init and the other for
the remaining driver logs pmd.net.i40e.driver.

Note that specializations have no formatting rules, but please follow
a precedent if one exists. In order to see all current log topics and
specializations, run the app/test binary, and use the dump_log_types

1.10. Python Code

All Python code should work with Python 2.7+ and 3.2+ and be compliant with
PEP8 (Style Guide for Python Code) [https://www.python.org/dev/peps/pep-0008/].

The pep8 tool can be used for testing compliance with the guidelines.

1.11. Integrating with the Build System

DPDK supports being built in two different ways:

	using make - or more specifically “GNU make”, i.e. gmake on FreeBSD

	using the tools meson and ninja

Any new library or driver to be integrated into DPDK should support being
built with both systems. While building using make is a legacy approach, and
most build-system enhancements are being done using meson and ninja
there are no plans at this time to deprecate the legacy make build system.

Therefore all new component additions should include both a Makefile and a
meson.build file, and should be added to the component lists in both the
Makefile and meson.build files in the relevant top-level directory:
either lib directory or a driver subdirectory.

1.11.1. Makefile Contents

The Makefile for the component should be of the following format, where
<name> corresponds to the name of the library in question, e.g. hash,
lpm, etc. For drivers, the same format of Makefile is used.

pull in basic DPDK definitions, including whether library is to be
built or not
include $(RTE_SDK)/mk/rte.vars.mk

library name
LIB = librte_<name>.a

any library cflags needed. Generally add "-O3 $(WERROR_FLAGS)"
CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)

the symbol version information for the library
EXPORT_MAP := rte_<name>_version.map

all source filenames are stored in SRCS-y
SRCS-$(CONFIG_RTE_LIBRTE_<NAME>) += rte_<name>.c

install includes
SYMLINK-$(CONFIG_RTE_LIBRTE_<NAME>)-include += rte_<name>.h

pull in rules to build the library
include $(RTE_SDK)/mk/rte.lib.mk

1.11.2. Meson Build File Contents - Libraries

The meson.build file for a new DPDK library should be of the following basic
format.

sources = files('file1.c', ...)
headers = files('file1.h', ...)

This will build based on a number of conventions and assumptions within the DPDK
itself, for example, that the library name is the same as the directory name in
which the files are stored.

For a library meson.build file, there are number of variables which can be
set, some mandatory, others optional. The mandatory fields are:

	sources
	Default Value = [].
This variable should list out the files to be compiled up to create the
library. Files must be specified using the meson files() function.

The optional fields are:

	build
	Default Value = true
Used to optionally compile a library, based on its dependencies or
environment. When set to “false” the reason value, explained below, should
also be set to explain to the user why the component is not being built.
A simple example of use would be:

if not is_linux
 build = false
 reason = 'only supported on Linux'
endif

	cflags
	Default Value = [<-march/-mcpu flags>].
Used to specify any additional cflags that need to be passed to compile
the sources in the library.

	deps
	Default Value = [‘eal’].
Used to list the internal library dependencies of the library. It should
be assigned to using += rather than overwriting using =. The
dependencies should be specified as strings, each one giving the name of
a DPDK library, without the librte_ prefix. Dependencies are handled
recursively, so specifying e.g. mempool, will automatically also
make the library depend upon the mempool library’s dependencies too -
ring and eal. For libraries that only depend upon EAL, this
variable may be omitted from the meson.build file. For example:

deps += ['ethdev']

	ext_deps
	Default Value = [].
Used to specify external dependencies of this library. They should be
returned as dependency objects, as returned from the meson
dependency() or find_library() functions. Before returning
these, they should be checked to ensure the dependencies have been
found, and, if not, the build variable should be set to false.
For example:

my_dep = dependency('libX', required: 'false')
if my_dep.found()
 ext_deps += my_dep
else
 build = false
endif

	headers
	Default Value = [].
Used to return the list of header files for the library that should be
installed to $PREFIX/include when ninja install is run. As with
source files, these should be specified using the meson files()
function.

	includes:
	Default Value = [].
Used to indicate any additional header file paths which should be
added to the header search path for other libs depending on this
library. EAL uses this so that other libraries building against it
can find the headers in subdirectories of the main EAL directory. The
base directory of each library is always given in the include path,
it does not need to be specified here.

	name
	Default Value = library name derived from the directory name.
If a library’s .so or .a file differs from that given in the directory
name, the name should be specified using this variable. In practice,
since the convention is that for a library called librte_xyz.so, the
sources are stored in a directory lib/librte_xyz, this value should
never be needed for new libraries.

Note

The name value also provides the name used to find the function version
map file, as part of the build process, so if the directory name and
library names differ, the version.map file should be named
consistently with the library, not the directory

	objs
	Default Value = [].
This variable can be used to pass to the library build some pre-built
objects that were compiled up as part of another target given in the
included library meson.build file.

	reason
	Default Value = ‘<unknown reason>’.
This variable should be used when a library is not to be built i.e. when
build is set to “false”, to specify the reason why a library will not be
built. For missing dependencies this should be of the form
'missing dependency, "libname"'.

	use_function_versioning
	Default Value = false.
Specifies if the library in question has ABI versioned functions. If it
has, this value should be set to ensure that the C files are compiled
twice with suitable parameters for each of shared or static library
builds.

1.11.3. Meson Build File Contents - Drivers

For drivers, the values are largely the same as for libraries. The variables
supported are:

	build
	As above.

	cflags
	As above.

	deps
	As above.

	ext_deps
	As above.

	includes
	Default Value = <driver directory> Some drivers include a base
directory for additional source files and headers, so we have this
variable to allow the headers from that base directory to be found when
compiling driver sources. Should be appended to using += rather than
overwritten using =. The values appended should be meson include
objects got using the include_directories() function. For example:

includes += include_directories('base')

	name
	As above, though note that each driver class can define it’s own naming
scheme for the resulting .so files.

	objs
	As above, generally used for the contents of the base directory.

	pkgconfig_extra_libs
	Default Value = []
This variable is used to pass additional library link flags through to
the DPDK pkgconfig file generated, for example, to track any additional
libraries that may need to be linked into the build - especially when
using static libraries. Anything added here will be appended to the end
of the pkgconfig --libs output.

	reason
	As above.

	sources [mandatory]
	As above

	version
	As above

2. Design

2.1. Environment or Architecture-specific Sources

In DPDK and DPDK applications, some code is specific to an architecture (i686, x86_64) or to an executive environment (freebsd or linux) and so on.
As far as is possible, all such instances of architecture or env-specific code should be provided via standard APIs in the EAL.

By convention, a file is common if it is not located in a directory indicating that it is specific.
For instance, a file located in a subdir of “x86_64” directory is specific to this architecture.
A file located in a subdir of “linux” is specific to this execution environment.

Note

Code in DPDK libraries and applications should be generic.
The correct location for architecture or executive environment specific code is in the EAL.

When absolutely necessary, there are several ways to handle specific code:

	Use a #ifdef with the CONFIG option in the C code.
This can be done when the differences are small and they can be embedded in the same C file:

#ifdef RTE_ARCH_I686
toto();
#else
titi();
#endif

	Use the CONFIG option in the Makefile. This is done when the differences are more significant.
In this case, the code is split into two separate files that are architecture or environment specific.
This should only apply inside the EAL library.

Note

As in the linux kernel, the CONFIG_ prefix is not used in C code.
This is only needed in Makefiles or shell scripts.

2.1.1. Per Architecture Sources

The following config options can be used:

	CONFIG_RTE_ARCH is a string that contains the name of the architecture.

	CONFIG_RTE_ARCH_I686, CONFIG_RTE_ARCH_X86_64, CONFIG_RTE_ARCH_X86_64_32 or CONFIG_RTE_ARCH_PPC_64 are defined only if we are building for those architectures.

2.1.2. Per Execution Environment Sources

The following config options can be used:

	CONFIG_RTE_EXEC_ENV is a string that contains the name of the executive environment.

	CONFIG_RTE_EXEC_ENV_FREEBSD or CONFIG_RTE_EXEC_ENV_LINUX are defined only if we are building for this execution environment.

2.2. Library Statistics

2.2.1. Description

This document describes the guidelines for DPDK library-level statistics counter
support. This includes guidelines for turning library statistics on and off and
requirements for preventing ABI changes when implementing statistics.

2.2.2. Mechanism to allow the application to turn library statistics on and off

Each library that maintains statistics counters should provide a single build
time flag that decides whether the statistics counter collection is enabled or
not. This flag should be exposed as a variable within the DPDK configuration
file. When this flag is set, all the counters supported by current library are
collected for all the instances of every object type provided by the library.
When this flag is cleared, none of the counters supported by the current library
are collected for any instance of any object type provided by the library:

DPDK file config/common_linux, config/common_freebsd, etc.
CONFIG_RTE_<LIBRARY_NAME>_STATS_COLLECT=y/n

The default value for this DPDK configuration file variable (either “yes” or
“no”) is decided by each library.

2.2.3. Prevention of ABI changes due to library statistics support

The layout of data structures and prototype of functions that are part of the
library API should not be affected by whether the collection of statistics
counters is turned on or off for the current library. In practical terms, this
means that space should always be allocated in the API data structures for
statistics counters and the statistics related API functions are always built
into the code, regardless of whether the statistics counter collection is turned
on or off for the current library.

When the collection of statistics counters for the current library is turned
off, the counters retrieved through the statistics related API functions should
have a default value of zero.

2.2.4. Motivation to allow the application to turn library statistics on and off

It is highly recommended that each library provides statistics counters to allow
an application to monitor the library-level run-time events. Typical counters
are: number of packets received/dropped/transmitted, number of buffers
allocated/freed, number of occurrences for specific events, etc.

However, the resources consumed for library-level statistics counter collection
have to be spent out of the application budget and the counters collected by
some libraries might not be relevant to the current application. In order to
avoid any unwanted waste of resources and/or performance impacts, the
application should decide at build time whether the collection of library-level
statistics counters should be turned on or off for each library individually.

Library-level statistics counters can be relevant or not for specific
applications:

	For Application A, counters maintained by Library X are always relevant and
the application needs to use them to implement certain features, such as traffic
accounting, logging, application-level statistics, etc. In this case,
the application requires that collection of statistics counters for Library X is
always turned on.

	For Application B, counters maintained by Library X are only useful during the
application debug stage and are not relevant once debug phase is over. In this
case, the application may decide to turn on the collection of Library X
statistics counters during the debug phase and at a later stage turn them off.

	For Application C, counters maintained by Library X are not relevant at all.
It might be that the application maintains its own set of statistics counters
that monitor a different set of run-time events (e.g. number of connection
requests, number of active users, etc). It might also be that the application
uses multiple libraries (Library X, Library Y, etc) and it is interested in the
statistics counters of Library Y, but not in those of Library X. In this case,
the application may decide to turn the collection of statistics counters off for
Library X and on for Library Y.

The statistics collection consumes a certain amount of CPU resources (cycles,
cache bandwidth, memory bandwidth, etc) that depends on:

	Number of libraries used by the current application that have statistics
counters collection turned on.

	Number of statistics counters maintained by each library per object type
instance (e.g. per port, table, pipeline, thread, etc).

	Number of instances created for each object type supported by each library.

	Complexity of the statistics logic collection for each counter: when only
some occurrences of a specific event are valid, additional logic is typically
needed to decide whether the current occurrence of the event should be counted
or not. For example, in the event of packet reception, when only TCP packets
with destination port within a certain range should be recorded, conditional
branches are usually required. When processing a burst of packets that have been
validated for header integrity, counting the number of bits set in a bitmask
might be needed.

2.3. PF and VF Considerations

The primary goal of DPDK is to provide a userspace dataplane. Managing VFs from
a PF driver is a control plane feature and developers should generally rely on
the Linux Kernel for that.

Developers should work with the Linux Kernel community to get the required
functionality upstream. PF functionality should only be added to DPDK for
testing and prototyping purposes while the kernel work is ongoing. It should
also be marked with an “EXPERIMENTAL” tag. If the functionality isn’t
upstreamable then a case can be made to maintain the PF functionality in DPDK
without the EXPERIMENTAL tag.

3. ABI Policy

3.1. Description

This document details the management policy that ensures the long-term stability
of the DPDK ABI and API.

3.2. General Guidelines

	Major ABI versions are declared no more frequently than yearly. Compatibility
with the major ABI version is mandatory in subsequent releases until a new
major ABI version is declared.

	Major ABI versions are usually but not always declared aligned with a
LTS release.

	The ABI version is managed at a project level in DPDK, and is reflected in
all non-experimental library’s soname.

	The ABI should be preserved and not changed lightly. ABI changes must follow
the outlined deprecation process.

	The addition of symbols is generally not problematic. The modification of
symbols is managed with ABI Versioning.

	The removal of symbols is considered an ABI breakage,
once approved these will form part of the next ABI version.

	Libraries or APIs marked as experimental may
change without constraint, as they are not considered part of an ABI version.
Experimental libraries have the major ABI version 0.

	Updates to the minimum hardware requirements, which drop
support for hardware which was previously supported, should be treated as an
ABI change.

Note

In 2019, the DPDK community stated its intention to move to ABI stable
releases, over a number of release cycles. This change begins with
maintaining ABI stability through one year of DPDK releases starting from
DPDK 19.11. This policy will be reviewed in 2020, with intention of
lengthening the stability period. Additional implementation detail can be
found in the release notes.

3.2.1. What is an ABI?

An ABI (Application Binary Interface) is the set of runtime interfaces exposed
by a library. It is similar to an API (Application Programming Interface) but
is the result of compilation. It is also effectively cloned when applications
link to dynamic libraries. That is to say when an application is compiled to
link against dynamic libraries, it is assumed that the ABI remains constant
between the time the application is compiled/linked, and the time that it runs.
Therefore, in the case of dynamic linking, it is critical that an ABI is
preserved, or (when modified), done in such a way that the application is unable
to behave improperly or in an unexpected fashion.

[image: ../_images/what_is_an_abi.svg]
Fig. 3.4 Illustration of DPDK API and ABI.

3.2.2. What is an ABI version?

An ABI version is an instance of a library’s ABI at a specific release. Certain
releases are considered to be milestone releases, the yearly LTS release for
example. The ABI of a milestone release may be declared as a ‘major ABI
version’, where this ABI version is then supported for some number of subsequent
releases and is annotated in the library’s soname.

ABI version support in subsequent releases facilitates application upgrades, by
enabling applications built against the milestone release to upgrade to
subsequent releases of a library without a rebuild.

More details on major ABI version can be found in the ABI versioning guide.

3.3. The DPDK ABI policy

A new major ABI version is declared no more frequently than yearly, with
declarations usually aligning with a LTS release, e.g. ABI 20 for DPDK 19.11.
Compatibility with the major ABI version is then mandatory in subsequent
releases until the next major ABI version is declared, e.g. ABI 21 for DPDK
20.11.

At the declaration of a major ABI version, major version numbers encoded in
libraries’ sonames are bumped to indicate the new version, with the minor
version reset to 0. An example would be librte_eal.so.20.3 would become
librte_eal.so.21.0.

The ABI may then change multiple times, without warning, between the last major
ABI version increment and the HEAD label of the git tree, with the condition
that ABI compatibility with the major ABI version is preserved and therefore
sonames do not change.

Minor versions are incremented to indicate the release of a new ABI compatible
DPDK release, typically the DPDK quarterly releases. An example of this, might
be that librte_eal.so.20.1 would indicate the first ABI compatible DPDK
release, following the declaration of the new major ABI version 20.

An ABI version is supported in all new releases until the next major ABI version
is declared. When changing the major ABI version, the release notes will detail
all ABI changes.

[image: ../_images/abi_stability_policy.svg]
Fig. 3.5 Mapping of new ABI versions and ABI version compatibility to DPDK
releases.

3.3.1. ABI Changes

The ABI may still change after the declaration of a major ABI version, that is
new APIs may be still added or existing APIs may be modified.

Warning

Note that, this policy details the method by which the ABI may be changed,
with due regard to preserving compatibility and observing deprecation
notices. This process however should not be undertaken lightly, as a general
rule ABI stability is extremely important for downstream consumers of DPDK.
The API should only be changed for significant reasons, such as performance
enhancements. API breakages due to changes such as reorganizing public
structure fields for aesthetic or readability purposes should be avoided.

The requirements for changing the ABI are:

	At least 3 acknowledgments of the need to do so must be made on the
dpdk.org mailing list.

	The acknowledgment of the maintainer of the component is mandatory, or if
no maintainer is available for the component, the tree/sub-tree maintainer
for that component must acknowledge the ABI change instead.

	The acknowledgment of three members of the technical board, as delegates
of the technical board [https://core.dpdk.org/techboard/] acknowledging
the need for the ABI change, is also mandatory.

	It is also recommended that acknowledgments from different “areas of
interest” be sought for each deprecation, for example: from NIC vendors,
CPU vendors, end-users, etc.

	Backward compatibility with the major ABI version must be maintained through
ABI Versioning, with forward-only compatibility
offered for any ABI changes that are indicated to be part of the next ABI
version.

	In situations where backward compatibility is not possible, read the
section on ABI Breakages.

	No backward or forward compatibility is offered for API changes marked as
experimental, as described in the section on Experimental APIs
and Libraries.

	In situations in which an experimental symbol has been stable for some
time. When promoting the symbol to become part of the next ABI version, the
maintainer may choose to provide an alias to the experimental tag, so
as not to break consuming applications.

	If a newly proposed API functionally replaces an existing one, when the new
API becomes non-experimental, then the old one is marked with
__rte_deprecated.

	The depreciated API should follow the notification process to be removed,
see Examples of Deprecation Notices.

	At the declaration of the next major ABI version, those ABI changes then
become a formal part of the new ABI and the requirement to preserve ABI
compatibility with the last major ABI version is then dropped.

	The responsibility for removing redundant ABI compatibility code rests
with the original contributor of the ABI changes, failing that, then with
the contributor’s company and then finally with the maintainer.

Note

Note that forward-only compatibility is offered for those changes made
between major ABI versions. As a library’s soname can only describe
compatibility with the last major ABI version, until the next major ABI
version is declared, these changes therefore cannot be resolved as a runtime
dependency through the soname. Therefore any application wishing to make use
of these ABI changes can only ensure that its runtime dependencies are met
through Operating System package versioning.

Note

Updates to the minimum hardware requirements, which drop support for hardware
which was previously supported, should be treated as an ABI change, and
follow the relevant deprecation policy procedures as above: 3 acks, technical
board approval and announcement at least one release in advance.

3.3.2. ABI Breakages

For those ABI changes that are too significant to reasonably maintain multiple
symbol versions, there is an amended process. In these cases, ABIs may be
updated without the requirement of backward compatibility being provided. These
changes must follow the same process described above as non-breaking
changes, however with the following additional requirements:

	ABI breaking changes (including an alternative map file) can be included with
deprecation notice, in wrapped way by the RTE_NEXT_ABI option, to provide
more details about oncoming changes. RTE_NEXT_ABI wrapper will be removed
at the declaration of the next major ABI version.

	Once approved, and after the deprecation notice has been observed these
changes will form part of the next declared major ABI version.

3.3.3. Examples of ABI Changes

The following are examples of allowable ABI changes occurring between
declarations of major ABI versions.

	DPDK 19.11 release defines the function rte_foo() ; rte_foo()
is part of the major ABI version 20.

	DPDK 20.02 release defines a new function rte_foo(uint8_t bar).
This is not a problem as long as the symbol rte_foo@DPDK20 is
preserved through ABI Versioning.

	The new function may be marked with the __rte_experimental tag for a
number of releases, as described in the section Experimental.

	Once rte_foo(uint8_t bar) becomes non-experimental, rte_foo() is
declared as __rte_deprecated and an deprecation notice is provided.

	DPDK 19.11 is not re-released to include rte_foo(uint8_t bar), the new
version of rte_foo only exists from DPDK 20.02 onwards as described in the
note on forward-only compatibility.

	DPDK 20.02 release defines the experimental function __rte_experimental
rte_baz(). This function may or may not exist in the DPDK 20.05 release.

	An application dPacket wishes to use rte_foo(uint8_t bar), before the
declaration of the DPDK 21 major ABI version. The application can only
ensure its runtime dependencies are met by specifying DPDK (>= 20.2) as
an explicit package dependency, as the soname can only indicate the
supported major ABI version.

	At the release of DPDK 20.11, the function rte_foo(uint8_t bar) becomes
formally part of then new major ABI version DPDK 21 and rte_foo() may be
removed.

3.3.4. Examples of Deprecation Notices

The following are some examples of ABI deprecation notices which would be
added to the Release Notes:

	The Macro #RTE_FOO is deprecated and will be removed with ABI version
21, to be replaced with the inline function rte_foo().

	The function rte_mbuf_grok() has been updated to include a new parameter
in version 20.2. Backwards compatibility will be maintained for this function
until the release of the new DPDK major ABI version 21, in DPDK version
20.11.

	The members of struct rte_foo have been reorganized in DPDK 20.02 for
performance reasons. Existing binary applications will have backwards
compatibility in release 20.02, while newly built binaries will need to
reference the new structure variant struct rte_foo2. Compatibility will be
removed in release 20.11, and all applications will require updating and
rebuilding to the new structure at that time, which will be renamed to the
original struct rte_foo.

	Significant ABI changes are planned for the librte_dostuff library. The
upcoming release 20.02 will not contain these changes, but release 20.11 will,
and no backwards compatibility is planned due to the extensive nature of
these changes. Binaries using this library built prior to ABI version 21 will
require updating and recompilation.

3.4. Experimental

3.4.1. APIs

APIs marked as experimental are not considered part of an ABI version and
may change without warning at any time. Since changes to APIs are most likely
immediately after their introduction, as users begin to take advantage of those
new APIs and start finding issues with them, new DPDK APIs will be automatically
marked as experimental to allow for a period of stabilization before they
become part of a tracked ABI version.

Note that marking an API as experimental is a multi step process.
To mark an API as experimental, the symbols which are desired to be exported
must be placed in an EXPERIMENTAL version block in the corresponding libraries’
version map script.
Secondly, the corresponding prototypes of those exported functions (in the
development header files), must be marked with the __rte_experimental tag
(see rte_compat.h).
The DPDK build makefiles perform a check to ensure that the map file and the
C code reflect the same list of symbols.
This check can be circumvented by defining ALLOW_EXPERIMENTAL_API
during compilation in the corresponding library Makefile.

In addition to tagging the code with __rte_experimental,
the doxygen markup must also contain the EXPERIMENTAL string,
and the MAINTAINERS file should note the EXPERIMENTAL libraries.

For removing the experimental tag associated with an API, deprecation notice is
not required. Though, an API should remain in experimental state for at least
one release. Thereafter, the normal process of posting patch for review to
mailing list can be followed.

After the experimental tag has been formally removed, a tree/sub-tree maintainer
may choose to offer an alias to the experimental tag so as not to break
applications using the symbol. The alias is then dropped at the declaration of
next major ABI version.

3.4.2. Libraries

Libraries marked as experimental are entirely not considered part of an ABI
version, and may change without warning at any time. Experimental libraries
always have a major ABI version of 0 to indicate they exist outside of
ABI Versioning , with the minor version incremented with each ABI change
to library.

4. ABI Versioning

This document details the mechanics of ABI version management in DPDK.

4.1. What is a library’s soname?

System libraries usually adopt the familiar major and minor version naming
convention, where major versions (e.g. librte_eal 20.x, 21.x) are presumed
to be ABI incompatible with each other and minor versions (e.g. librte_eal
20.1, 20.2) are presumed to be ABI compatible. A library’s soname [https://en.wikipedia.org/wiki/Soname]. is typically used to provide backward
compatibility information about a given library, describing the lowest common
denominator ABI supported by the library. The soname or logical name for the
library, is typically comprised of the library’s name and major version e.g.
librte_eal.so.20.

During an application’s build process, a library’s soname is noted as a runtime
dependency of the application. This information is then used by the dynamic
linker [https://en.wikipedia.org/wiki/Dynamic_linker] when resolving the
applications dependencies at runtime, to load a library supporting the correct
ABI version. The library loaded at runtime therefore, may be a minor revision
supporting the same major ABI version (e.g. librte_eal.20.2), as the library
used to link the application (e.g librte_eal.20.0).

4.2. Major ABI versions

An ABI version change to a given library, especially in core libraries such as
librte_mbuf, may cause an implicit ripple effect on the ABI of it’s
consuming libraries, causing ABI breakages. There may however be no explicit
reason to bump a dependent library’s ABI version, as there may have been no
obvious change to the dependent library’s API, even though the library’s ABI
compatibility will have been broken.

This interdependence of DPDK libraries, means that ABI versioning of libraries
is more manageable at a project level, with all project libraries sharing a
single ABI version. In addition, the need to maintain a stable ABI for some
number of releases as described in the section ABI Policy, means
that ABI version increments need to carefully planned and managed at a project
level.

Major ABI versions are therefore declared typically aligned with an LTS release
and is then supported some number of subsequent releases, shared across all
libraries. This means that a single project level ABI version, reflected in all
individual library’s soname, library filenames and associated version maps
persists over multiple releases.

$ head ./lib/librte_acl/rte_acl_version.map
DPDK_20 {
 global:
...

$ head ./lib/librte_eal/rte_eal_version.map
DPDK_20 {
 global:
...

When an ABI change is made between major ABI versions to a given library, a new
section is added to that library’s version map describing the impending new ABI
version, as described in the section Examples of ABI Macro use. The
library’s soname and filename however do not change, e.g. libacl.so.20, as
ABI compatibility with the last major ABI version continues to be preserved for
that library.

$ head ./lib/librte_acl/rte_acl_version.map
DPDK_20 {
 global:
...

DPDK_21 {
 global:

} DPDK_20;
...

$ head ./lib/librte_eal/rte_eal_version.map
DPDK_20 {
 global:
...

However when a new ABI version is declared, for example DPDK 21, old
depreciated functions may be safely removed at this point and the entire old
major ABI version removed, see the section Deprecating an entire ABI version on
how this may be done.

$ head ./lib/librte_acl/rte_acl_version.map
DPDK_21 {
 global:
...

$ head ./lib/librte_eal/rte_eal_version.map
DPDK_21 {
 global:
...

At the same time, the major ABI version is changed atomically across all
libraries by incrementing the major version in the ABI_VERSION file. This is
done globally for all libraries that declare a stable ABI. For libraries marked
as EXPERIMENTAL, their major ABI version is always set to 0.

4.2.1. Minor ABI versions

Each non-LTS release will also increment minor ABI version, to permit multiple
DPDK versions being installed alongside each other. Both stable and
experimental ABI’s are versioned using the global version file that is updated
at the start of each release cycle, and are managed at the project level.

4.3. Versioning Macros

When a symbol is exported from a library to provide an API, it also provides a
calling convention (ABI) that is embodied in its name, return type and
arguments. Occasionally that function may need to change to accommodate new
functionality or behavior. When that occurs, it is may be required to allow for
backward compatibility for a time with older binaries that are dynamically
linked to the DPDK.

To support backward compatibility the rte_function_versioning.h
header file provides macros to use when updating exported functions. These
macros are used in conjunction with the rte_<library>_version.map file for
a given library to allow multiple versions of a symbol to exist in a shared
library so that older binaries need not be immediately recompiled.

The macros exported are:

	VERSION_SYMBOL(b, e, n): Creates a symbol version table entry binding
versioned symbol b@DPDK_n to the internal function be.

	BIND_DEFAULT_SYMBOL(b, e, n): Creates a symbol version entry instructing
the linker to bind references to symbol b to the internal symbol
be.

	MAP_STATIC_SYMBOL(f, p): Declare the prototype f, and map it to the
fully qualified function p, so that if a symbol becomes versioned, it
can still be mapped back to the public symbol name.

	__vsym: Annotation to be used in a declaration of the internal symbol
be to signal that it is being used as an implementation of a particular
version of symbol b.

	VERSION_SYMBOL_EXPERIMENTAL(b, e): Creates a symbol version table entry
binding versioned symbol b@EXPERIMENTAL to the internal function be.
The macro is used when a symbol matures to become part of the stable ABI, to
provide an alias to experimental for some time.

4.3.1. Examples of ABI Macro use

4.3.1.1. Updating a public API

Assume we have a function as follows

/*
 * Create an acl context object for apps to
 * manipulate
 */
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
 ...
}

Assume that struct rte_acl_ctx is a private structure, and that a developer
wishes to enhance the acl api so that a debugging flag can be enabled on a
per-context basis. This requires an addition to the structure (which, being
private, is safe), but it also requires modifying the code as follows

/*
 * Create an acl context object for apps to
 * manipulate
 */
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param, int debug)
{
 ...
}

Note also that, being a public function, the header file prototype must also be
changed, as must all the call sites, to reflect the new ABI footprint. We will
maintain previous ABI versions that are accessible only to previously compiled
binaries.

The addition of a parameter to the function is ABI breaking as the function is
public, and existing application may use it in its current form. However, the
compatibility macros in DPDK allow a developer to use symbol versioning so that
multiple functions can be mapped to the same public symbol based on when an
application was linked to it. To see how this is done, we start with the
requisite libraries version map file. Initially the version map file for the acl
library looks like this

DPDK_20 {
 global:

 rte_acl_add_rules;
 rte_acl_build;
 rte_acl_classify;
 rte_acl_classify_alg;
 rte_acl_classify_scalar;
 rte_acl_create;
 rte_acl_dump;
 rte_acl_find_existing;
 rte_acl_free;
 rte_acl_ipv4vlan_add_rules;
 rte_acl_ipv4vlan_build;
 rte_acl_list_dump;
 rte_acl_reset;
 rte_acl_reset_rules;
 rte_acl_set_ctx_classify;

 local: *;
};

This file needs to be modified as follows

DPDK_20 {
 global:

 rte_acl_add_rules;
 rte_acl_build;
 rte_acl_classify;
 rte_acl_classify_alg;
 rte_acl_classify_scalar;
 rte_acl_create;
 rte_acl_dump;
 rte_acl_find_existing;
 rte_acl_free;
 rte_acl_ipv4vlan_add_rules;
 rte_acl_ipv4vlan_build;
 rte_acl_list_dump;
 rte_acl_reset;
 rte_acl_reset_rules;
 rte_acl_set_ctx_classify;

 local: *;
};

DPDK_21 {
 global:
 rte_acl_create;

} DPDK_20;

The addition of the new block tells the linker that a new version node
DPDK_21 is available, which contains the symbol rte_acl_create, and inherits
the symbols from the DPDK_20 node. This list is directly translated into a
list of exported symbols when DPDK is compiled as a shared library.

Next, we need to specify in the code which function maps to the rte_acl_create
symbol at which versions. First, at the site of the initial symbol definition,
we need to update the function so that it is uniquely named, and not in conflict
with the public symbol name

-struct rte_acl_ctx *
-rte_acl_create(const struct rte_acl_param *param)
+struct rte_acl_ctx * __vsym
+rte_acl_create_v20(const struct rte_acl_param *param)
{
 size_t sz;
 struct rte_acl_ctx *ctx;
 ...

Note that the base name of the symbol was kept intact, as this is conducive to
the macros used for versioning symbols and we have annotated the function as
__vsym, an implementation of a versioned symbol . That is our next step,
mapping this new symbol name to the initial symbol name at version node 20.
Immediately after the function, we add the VERSION_SYMBOL macro.

#include <rte_function_versioning.h>

...
VERSION_SYMBOL(rte_acl_create, _v20, 20);

Remembering to also add the rte_function_versioning.h header to the requisite c
file where these changes are being made. The macro instructs the linker to
create a new symbol rte_acl_create@DPDK_20, which matches the symbol created
in older builds, but now points to the above newly named function. We have now
mapped the original rte_acl_create symbol to the original function (but with a
new name).

Please see the section Enabling versioning macros to enable this macro in the meson/ninja build.
Next, we need to create the new v21 version of the symbol. We create a new
function name, with the v21 suffix, and implement it appropriately.

struct rte_acl_ctx * __vsym
rte_acl_create_v21(const struct rte_acl_param *param, int debug);
{
 struct rte_acl_ctx *ctx = rte_acl_create_v20(param);

 ctx->debug = debug;

 return ctx;
}

This code serves as our new API call. Its the same as our old call, but adds the
new parameter in place. Next we need to map this function to the new default
symbol rte_acl_create@DPDK_21. To do this, immediately after the function,
we add the BIND_DEFAULT_SYMBOL macro.

#include <rte_function_versioning.h>

...
BIND_DEFAULT_SYMBOL(rte_acl_create, _v21, 21);

The macro instructs the linker to create the new default symbol
rte_acl_create@DPDK_21, which points to the above newly named function.

We finally modify the prototype of the call in the public header file,
such that it contains both versions of the symbol and the public API.

struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param);

struct rte_acl_ctx * __vsym
rte_acl_create_v20(const struct rte_acl_param *param);

struct rte_acl_ctx * __vsym
rte_acl_create_v21(const struct rte_acl_param *param, int debug);

And that’s it, on the next shared library rebuild, there will be two versions of
rte_acl_create, an old DPDK_20 version, used by previously built applications,
and a new DPDK_21 version, used by future built applications.

Note

Before you leave, please take care reviewing the sections on
mapping static symbols,
enabling versioning macros,
and ABI deprecation.

4.3.1.2. Mapping static symbols

Now we’ve taken what was a public symbol, and duplicated it into two uniquely
and differently named symbols. We’ve then mapped each of those back to the
public symbol rte_acl_create with different version tags. This only applies
to dynamic linking, as static linking has no notion of versioning. That leaves
this code in a position of no longer having a symbol simply named
rte_acl_create and a static build will fail on that missing symbol.

To correct this, we can simply map a function of our choosing back to the public
symbol in the static build with the MAP_STATIC_SYMBOL macro. Generally the
assumption is that the most recent version of the symbol is the one you want to
map. So, back in the C file where, immediately after rte_acl_create_v21 is
defined, we add this

struct rte_acl_ctx * __vsym
rte_acl_create_v21(const struct rte_acl_param *param, int debug)
{
 ...
}
MAP_STATIC_SYMBOL(struct rte_acl_ctx *rte_acl_create(const struct rte_acl_param *param, int debug), rte_acl_create_v21);

That tells the compiler that, when building a static library, any calls to the
symbol rte_acl_create should be linked to rte_acl_create_v21

4.3.1.3. Enabling versioning macros

Finally, we need to indicate to the meson/ninja build system to enable versioning macros when building the
library or driver. In the libraries or driver where we have added symbol
versioning, in the meson.build file we add the following

use_function_versioning = true

at the start of the head of the file. This will indicate to the tool-chain to
enable the function version macros when building. There is no corresponding
directive required for the make build system.

4.3.1.4. Aliasing experimental symbols

In situations in which an experimental symbol has been stable for some time,
and it becomes a candidate for promotion to the stable ABI. At this time, when
promoting the symbol, maintainer may choose to provide an alias to the
experimental symbol version, so as not to break consuming applications.

The process to provide an alias to experimental is similar to that, of
symbol versioning described above.
Assume we have an experimental function rte_acl_create as follows:

#include <rte_compat.h>

/*
 * Create an acl context object for apps to
 * manipulate
 */
__rte_experimental
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
...
}

In the map file, experimental symbols are listed as part of the EXPERIMENTAL
version node.

DPDK_20 {
 global:
 ...

 local: *;
};

EXPERIMENTAL {
 global:

 rte_acl_create;
};

When we promote the symbol to the stable ABI, we simply strip the
__rte_experimental annotation from the function and move the symbol from the
EXPERIMENTAL node, to the node of the next major ABI version as follow.

/*
 * Create an acl context object for apps to
 * manipulate
 */
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
 ...
}

We then update the map file, adding the symbol rte_acl_create
to the DPDK_21 version node.

DPDK_20 {
 global:
 ...

 local: *;
};

DPDK_21 {
 global:

 rte_acl_create;
} DPDK_20;

Although there are strictly no guarantees or commitments associated with
experimental symbols, a maintainer may wish to offer
an alias to experimental. The process to add an alias to experimental,
is similar to the symbol versioning process. Assuming we have an experimental
symbol as before, we now add the symbol to both the EXPERIMENTAL
and DPDK_21 version nodes.

#include <rte_compat.h>;
#include <rte_function_versioning.h>

/*
 * Create an acl context object for apps to
 * manipulate
 */
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
...
}

__rte_experimental
struct rte_acl_ctx *
rte_acl_create_e(const struct rte_acl_param *param)
{
 return rte_acl_create(param);
}
VERSION_SYMBOL_EXPERIMENTAL(rte_acl_create, _e);

struct rte_acl_ctx *
rte_acl_create_v21(const struct rte_acl_param *param)
{
 return rte_acl_create(param);
}
BIND_DEFAULT_SYMBOL(rte_acl_create, _v21, 21);

In the map file, we map the symbol to both the EXPERIMENTAL
and DPDK_21 version nodes.

DPDK_20 {
 global:
 ...

 local: *;
};

DPDK_21 {
 global:

 rte_acl_create;
} DPDK_20;

EXPERIMENTAL {
 global:

 rte_acl_create;
};

Note

Please note, similar to symbol versioning,
when aliasing to experimental you will also need to take care of
mapping static symbols.

4.3.1.5. Deprecating part of a public API

Lets assume that you’ve done the above updates, and in preparation for the next
major ABI version you decide you would like to retire the old version of the
function. After having gone through the ABI deprecation announcement process,
removal is easy. Start by removing the symbol from the requisite version map
file:

 DPDK_20 {
 global:

 rte_acl_add_rules;
 rte_acl_build;
 rte_acl_classify;
 rte_acl_classify_alg;
 rte_acl_classify_scalar;
 rte_acl_dump;
- rte_acl_create
 rte_acl_find_existing;
 rte_acl_free;
 rte_acl_ipv4vlan_add_rules;
 rte_acl_ipv4vlan_build;
 rte_acl_list_dump;
 rte_acl_reset;
 rte_acl_reset_rules;
 rte_acl_set_ctx_classify;

 local: *;
 };

 DPDK_21 {
 global:
 rte_acl_create;
 } DPDK_20;

Next remove the corresponding versioned export.

-VERSION_SYMBOL(rte_acl_create, _v20, 20);

Note that the internal function definition could also be removed, but its used
in our example by the newer version v21, so we leave it in place and declare
it as static. This is a coding style choice.

4.3.1.6. Deprecating an entire ABI version

While removing a symbol from an ABI may be useful, it is more practical to
remove an entire version node at once, as is typically done at the declaration
of a major ABI version. If a version node completely specifies an API, then
removing part of it, typically makes it incomplete. In those cases it is better
to remove the entire node.

To do this, start by modifying the version map file, such that all symbols from
the node to be removed are merged into the next node in the map.

In the case of our map above, it would transform to look as follows

 DPDK_21 {
 global:

 rte_acl_add_rules;
 rte_acl_build;
 rte_acl_classify;
 rte_acl_classify_alg;
 rte_acl_classify_scalar;
 rte_acl_dump;
 rte_acl_create
 rte_acl_find_existing;
 rte_acl_free;
 rte_acl_ipv4vlan_add_rules;
 rte_acl_ipv4vlan_build;
 rte_acl_list_dump;
 rte_acl_reset;
 rte_acl_reset_rules;
 rte_acl_set_ctx_classify;

 local: *;
};

Then any uses of BIND_DEFAULT_SYMBOL that pointed to the old node should be
updated to point to the new version node in any header files for all affected
symbols.

-BIND_DEFAULT_SYMBOL(rte_acl_create, _v20, 20);
+BIND_DEFAULT_SYMBOL(rte_acl_create, _v21, 21);

Lastly, any VERSION_SYMBOL macros that point to the old version node should be
removed, taking care to keep, where need old code in place to support newer
versions of the symbol.

4.4. Running the ABI Validator

The devtools directory in the DPDK source tree contains a utility program,
check-abi.sh, for validating the DPDK ABI based on the libabigail
abidiff utility [https://sourceware.org/libabigail/manual/abidiff.html].

The syntax of the check-abi.sh utility is:

devtools/check-abi.sh <refdir> <newdir>

Where <refdir> specifies the directory housing the reference build of DPDK,
and <newdir> specifies the DPDK build directory to check the ABI of.

The ABI compatibility is automatically verified when using a build script
from devtools, if the variable DPDK_ABI_REF_VERSION is set with a tag,
as described in ABI check recommendations.

5. DPDK Documentation Guidelines

This document outlines the guidelines for writing the DPDK Guides and API documentation in RST and Doxygen format.

It also explains the structure of the DPDK documentation and shows how to build the Html and PDF versions of the documents.

5.1. Structure of the Documentation

The DPDK source code repository contains input files to build the API documentation and User Guides.

The main directories that contain files related to documentation are shown below:

lib
|-- librte_acl
|-- librte_cfgfile
|-- librte_cmdline
|-- librte_eal
| |-- ...
...
doc
|-- api
+-- guides
 |-- freebsd_gsg
 |-- linux_gsg
 |-- prog_guide
 |-- sample_app_ug
 |-- guidelines
 |-- testpmd_app_ug
 |-- rel_notes
 |-- nics
 |-- ...

The API documentation is built from Doxygen [http://www.doxygen.nl] comments in the header files.
These files are mainly in the lib/librte_* directories although some of the Poll Mode Drivers in drivers/net
are also documented with Doxygen.

The configuration files that are used to control the Doxygen output are in the doc/api directory.

The user guides such as The Programmers Guide and the FreeBSD and Linux Getting Started Guides are generated
from RST markup text files using the Sphinx [http://sphinx-doc.org] Documentation Generator.

These files are included in the doc/guides/ directory.
The output is controlled by the doc/guides/conf.py file.

5.2. Role of the Documentation

The following items outline the roles of the different parts of the documentation and when they need to be updated or
added to by the developer.

	Release Notes

The Release Notes document which features have been added in the current and previous releases of DPDK and highlight
any known issues.
The Releases Notes also contain notifications of features that will change ABI compatibility in the next release.

Developers should include updates to the Release Notes with patch sets that relate to any of the following sections:

	New Features

	Resolved Issues (see below)

	Known Issues

	API Changes

	ABI Changes

	Shared Library Versions

Resolved Issues should only include issues from previous releases that have been resolved in the current release.
Issues that are introduced and then fixed within a release cycle do not have to be included here.

Refer to the Release Notes from the previous DPDK release for the correct format of each section.

	API documentation

The API documentation explains how to use the public DPDK functions.
The API index page [https://doc.dpdk.org/api/] shows the generated API documentation with related groups of functions.

The API documentation should be updated via Doxygen comments when new functions are added.

	Getting Started Guides

The Getting Started Guides show how to install and configure DPDK and how to run DPDK based applications on different OSes.

A Getting Started Guide should be added when DPDK is ported to a new OS.

	The Programmers Guide

The Programmers Guide explains how the API components of DPDK such as the EAL, Memzone, Rings and the Hash Library work.
It also explains how some higher level functionality such as Packet Distributor, Packet Framework and KNI work.
It also shows the build system and explains how to add applications.

The Programmers Guide should be expanded when new functionality is added to DPDK.

	App Guides

The app guides document the DPDK applications in the app directory such as testpmd.

The app guides should be updated if functionality is changed or added.

	Sample App Guides

The sample app guides document the DPDK example applications in the examples directory.
Generally they demonstrate a major feature such as L2 or L3 Forwarding, Multi Process or Power Management.
They explain the purpose of the sample application, how to run it and step through some of the code to explain the
major functionality.

A new sample application should be accompanied by a new sample app guide.
The guide for the Skeleton Forwarding app is a good starting reference.

	Network Interface Controller Drivers

The NIC Drivers document explains the features of the individual Poll Mode Drivers, such as software requirements,
configuration and initialization.

New documentation should be added for new Poll Mode Drivers.

	Guidelines

The guideline documents record community process, expectations and design directions.

They can be extended, amended or discussed by submitting a patch and getting community approval.

5.3. Building the Documentation

5.3.1. Dependencies

The following dependencies must be installed to build the documentation:

	Doxygen.

	Sphinx (also called python-sphinx).

	TexLive (at least TexLive-core and the extra Latex support).

	Inkscape.

Doxygen [http://www.doxygen.nl] generates documentation from commented source code.
It can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install doxygen

Red Hat/Fedora.
sudo dnf -y install doxygen

Sphinx [http://sphinx-doc.org] is a Python documentation tool for converting RST files to Html or to PDF (via LaTeX).
For full support with figure and table captioning the latest version of Sphinx can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install python-pip
sudo pip install --upgrade sphinx
sudo pip install --upgrade sphinx_rtd_theme

Red Hat/Fedora.
sudo dnf -y install python-pip
sudo pip install --upgrade sphinx
sudo pip install --upgrade sphinx_rtd_theme

For further information on getting started with Sphinx see the
Sphinx Getting Started [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Note

To get full support for Figure and Table numbering it is best to install Sphinx 1.3.1 or later.

Inkscape [http://inkscape.org] is a vector based graphics program which is used to create SVG images and also to convert SVG images to PDF images.
It can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install inkscape

Red Hat/Fedora.
sudo dnf -y install inkscape

TexLive [http://www.tug.org/texlive/] is an installation package for Tex/LaTeX.
It is used to generate the PDF versions of the documentation.
The main required packages can be installed as follows:

Ubuntu/Debian.
sudo apt-get -y install texlive-latex-extra texlive-lang-greek

Red Hat/Fedora, selective install.
sudo dnf -y install texlive-collection-latexextra texlive-greek-fontenc

Latexmk [http://personal.psu.edu/jcc8/software/latexmk-jcc/] is a perl script
for running LaTeX for resolving cross references,
and it also runs auxiliary programs like bibtex, makeindex if necessary, and dvips.
It has also a number of other useful capabilities (see man 1 latexmk).

Ubuntu/Debian.
sudo apt-get -y install latexmk

Red Hat/Fedora.
sudo dnf -y install latexmk

5.3.2. Build commands

The documentation is built using the standard DPDK build system.
Some examples are shown below:

	Generate all the documentation targets:

make doc

	Generate the Doxygen API documentation in Html:

make doc-api-html

	Generate the guides documentation in Html:

make doc-guides-html

	Generate the guides documentation in Pdf:

make doc-guides-pdf

The output of these commands is generated in the build directory:

build/doc
 |-- html
 | |-- api
 | +-- guides
 |
 +-- pdf
 +-- guides

Note

Make sure to fix any Sphinx or Doxygen warnings when adding or updating documentation.

The documentation output files can be removed as follows:

make doc-clean

5.4. Document Guidelines

Here are some guidelines in relation to the style of the documentation:

	Document the obvious as well as the obscure since it won’t always be obvious to the reader.
For example an instruction like “Set up 64 2MB Hugepages” is better when followed by a sample commandline or a link to
the appropriate section of the documentation.

	Use American English spellings throughout.
This can be checked using the aspell utility:

aspell --lang=en_US --check doc/guides/sample_app_ug/mydoc.rst

5.5. RST Guidelines

The RST (reStructuredText) format is a plain text markup format that can be converted to Html, PDF or other formats.
It is most closely associated with Python but it can be used to document any language.
It is used in DPDK to document everything apart from the API.

The Sphinx documentation contains a very useful RST Primer [http://sphinx-doc.org/rest.html#rst-primer] which is a
good place to learn the minimal set of syntax required to format a document.

The official reStructuredText [http://docutils.sourceforge.net/rst.html] website contains the specification for the
RST format and also examples of how to use it.
However, for most developers the RST Primer is a better resource.

The most common guidelines for writing RST text are detailed in the
Documenting Python [https://docs.python.org/devguide/documenting.html] guidelines.
The additional guidelines below reiterate or expand upon those guidelines.

5.5.1. Line Length

	Lines in sentences should be less than 80 characters and wrapped at
words. Multiple sentences which are not separated by a blank line are joined
automatically into paragraphs.

	Lines in literal blocks must be less than 80 characters since
they are not wrapped by the document formatters and can exceed the page width
in PDF documents.

Long literal command lines can be shown wrapped with backslashes. For
example:

testpmd -l 2-3 -n 4 \
 --vdev=virtio_user0,path=/dev/vhost-net,queues=2,queue_size=1024 \
 -- -i --tx-offloads=0x0000002c --enable-lro --txq=2 --rxq=2 \
 --txd=1024 --rxd=1024

5.5.2. Whitespace

	Standard RST indentation is 3 spaces.
Code can be indented 4 spaces, especially if it is copied from source files.

	No tabs.
Convert tabs in embedded code to 4 or 8 spaces.

	No trailing whitespace.

	Add 2 blank lines before each section header.

	Add 1 blank line after each section header.

	Add 1 blank line between each line of a list.

5.5.3. Section Headers

	Section headers should use the following underline formats:

Level 1 Heading
===============

Level 2 Heading

Level 3 Heading
~~~~~~~~~~~~~~~


Level 4 Heading
^^^^^^^^^^^^^^^







	Level 4 headings should be used sparingly.


	The underlines should match the length of the text.


	In general, the heading should be less than 80 characters, for conciseness.


	As noted above:



	Add 2 blank lines before each section header.


	Add 1 blank line after each section header.













5.5.4. Lists


	Bullet lists should be formatted with a leading * as follows:

* Item one.

* Item two is a long line that is wrapped and then indented to match
  the start of the previous line.

* One space character between the bullet and the text is preferred.







	Numbered lists can be formatted with a leading number but the preference is to use #. which will give automatic numbering.
This is more convenient when adding or removing items:

#. Item one.

#. Item two is a long line that is wrapped and then indented to match
   the start of the previous line.

#. Item three.







	Definition lists can be written with or without a bullet:

* Item one.

  Some text about item one.

* Item two.

  Some text about item two.







	All lists, and sub-lists, must be separated from the preceding text by a blank line.
This is a syntax requirement.


	All list items should be separated by a blank line for readability.






5.5.5. Code and Literal block sections


	Inline text that is required to be rendered with a fixed width font should be enclosed in backquotes like this:
``text``, so that it appears like this: text.


	Fixed width, literal blocks of texts should be indented at least 3 spaces and prefixed with :: like this:

Here is some fixed width text::

   0x0001 0x0001 0x00FF 0x00FF







	It is also possible to specify an encoding for a literal block using the .. code-block:: directive so that syntax
highlighting can be applied.
Examples of supported highlighting are:

.. code-block:: console
.. code-block:: c
.. code-block:: python
.. code-block:: diff
.. code-block:: none





That can be applied as follows:

.. code-block:: c

   #include<stdio.h>

   int main() {

      printf("Hello World\n");

      return 0;
   }





Which would be rendered as:

#include<stdio.h>

int main() {

   printf("Hello World\n");

   return 0;
}







	The default encoding for a literal block using the simplified ::
directive is none.


	Lines in literal blocks must be less than 80 characters since they can exceed the page width when converted to PDF documentation.
For long literal lines that exceed that limit try to wrap the text at sensible locations.
For example a long command line could be documented like this and still work if copied directly from the docs:

build/app/testpmd -l 0-2 -n3 --vdev=net_pcap0,iface=eth0     \
                          --vdev=net_pcap1,iface=eth1     \
                          -- -i --nb-cores=2 --nb-ports=2 \
                             --total-num-mbufs=2048







	Long lines that cannot be wrapped, such as application output, should be truncated to be less than 80 characters.






5.5.6. Images


	All images should be in SVG scalar graphics format.
They should be true SVG XML files and should not include binary formats embedded in a SVG wrapper.


	The DPDK documentation contains some legacy images in PNG format.
These will be converted to SVG in time.


	Inkscape [http://inkscape.org] is the recommended graphics editor for creating the images.
Use some of the older images in doc/guides/prog_guide/img/ as a template, for example mbuf1.svg
or ring-enqueue1.svg.


	The SVG images should include a copyright notice, as an XML comment.


	Images in the documentation should be formatted as follows:



	The image should be preceded by a label in the format .. _figure_XXXX: with a leading underscore and
where XXXX is a unique descriptive name.


	Images should be included using the .. figure:: directive and the file type should be set to * (not .svg).
This allows the format of the image to be changed if required, without updating the documentation.


	Images must have a caption as part of the .. figure:: directive.









	Here is an example of the previous three guidelines:

.. _figure_mempool:

.. figure:: img/mempool.*

   A mempool in memory with its associated ring.










	Images can then be linked to using the :numref: directive:

The mempool layout is shown in :numref:`figure_mempool`.





This would be rendered as: The mempool layout is shown in Fig 6.3.

Note: The :numref: directive requires Sphinx 1.3.1 or later.
With earlier versions it will still be rendered as a link but won’t have an automatically generated number.



	The caption of the image can be generated, with a link, using the :ref: directive:

:ref:`figure_mempool`





This would be rendered as: A mempool in memory with its associated ring.







5.5.7. Tables


	RST tables should be used sparingly.
They are hard to format and to edit, they are often rendered incorrectly in PDF format, and the same information
can usually be shown just as clearly with a definition or bullet list.


	Tables in the documentation should be formatted as follows:



	The table should be preceded by a label in the format .. _table_XXXX: with a leading underscore and where
XXXX is a unique descriptive name.


	Tables should be included using the .. table:: directive and must have a caption.









	Here is an example of the previous two guidelines:

.. _table_qos_pipes:

.. table:: Sample configuration for QOS pipes.

   +----------+----------+----------+
   | Header 1 | Header 2 | Header 3 |
   |          |          |          |
   +==========+==========+==========+
   | Text     | Text     | Text     |
   +----------+----------+----------+
   | ...      | ...      | ...      |
   +----------+----------+----------+







	Tables can be linked to using the :numref: and :ref: directives, as shown in the previous section for images.
For example:

The QOS configuration is shown in :numref:`table_qos_pipes`.







	Tables should not include merged cells since they are not supported by the PDF renderer.






5.5.8. Hyperlinks


	Links to external websites can be plain URLs.
The following is rendered as https://dpdk.org:

https://dpdk.org







	They can contain alternative text.
The following is rendered as Check out DPDK [https://dpdk.org]:

`Check out DPDK <https://dpdk.org>`_







	An internal link can be generated by placing labels in the document with the format .. _label_name.


	The following links to the top of this section: Hyperlinks:

.. _links:

Hyperlinks
~~~~~~~~~~

* The following links to the top of this section: :ref:`links`:

Note

The label must have a leading underscore but the reference to it must omit it.
This is a frequent cause of errors and warnings.

	The use of a label is preferred since it works across files and will still work if the header text changes.

5.6. Doxygen Guidelines

The DPDK API is documented using Doxygen comment annotations in the header files.
Doxygen is a very powerful tool, it is extremely configurable and with a little effort can be used to create expressive documents.
See the Doxygen website [http://www.doxygen.nl] for full details on how to use it.

The following are some guidelines for use of Doxygen in the DPDK API documentation:

	New libraries that are documented with Doxygen should be added to the Doxygen configuration file: doc/api/doxy-api.conf.
It is only required to add the directory that contains the files.
It isn’t necessary to explicitly name each file since the configuration matches all rte_*.h files in the directory.

	Use proper capitalization and punctuation in the Doxygen comments since they will become sentences in the documentation.
This in particular applies to single line comments, which is the case the is most often forgotten.

	Use @ style Doxygen commands instead of \ style commands.

	Add a general description of each library at the head of the main header files:

/**
 * @file
 * RTE Mempool.
 *
 * A memory pool is an allocator of fixed-size object. It is
 * identified by its name, and uses a ring to store free objects.
 * ...
 */

	Document the purpose of a function, the parameters used and the return
value:

/**
 * Try to take the lock.
 *
 * @param sl
 * A pointer to the spinlock.
 * @return
 * 1 if the lock is successfully taken; 0 otherwise.
 */
int rte_spinlock_trylock(rte_spinlock_t *sl);

	Doxygen supports Markdown style syntax such as bold, italics, fixed width text and lists.
For example the second line in the devargs parameter in the previous example will be rendered as:

The strings should be a pci address like 0000:01:00.0 or virtual device name like net_pcap0.

	Use - instead of * for lists within the Doxygen comment since the latter can get confused with the comment delimiter.

	Add an empty line between the function description, the @params and @return for readability.

	Place the @params description on separate line and indent it by 2 spaces.
(It would be better to use no indentation since this is more common and also because checkpatch complains about leading
whitespace in comments.
However this is the convention used in the existing DPDK code.)

	Documented functions can be linked to simply by adding () to the function name:

/**
 * The functions exported by the application Ethernet API to setup
 * a device designated by its port identifier must be invoked in
 * the following order:
 * - rte_eth_dev_configure()
 * - rte_eth_tx_queue_setup()
 * - rte_eth_rx_queue_setup()
 * - rte_eth_dev_start()
 */

In the API documentation the functions will be rendered as links, see the
online section of the rte_ethdev.h docs [https://doc.dpdk.org/api/rte__ethdev_8h.html] that contains the above text.

	The @see keyword can be used to create a see also link to another file or library.
This directive should be placed on one line at the bottom of the documentation section.

/**
 * ...
 *
 * Some text that references mempools.
 *
 * @see eal_memzone.c
 */

	Doxygen supports two types of comments for documenting variables, constants and members: prefix and postfix:

/** This is a prefix comment. */
#define RTE_FOO_ERROR 0x023.

#define RTE_BAR_ERROR 0x024. /**< This is a postfix comment. */

	Postfix comments are preferred for struct members and constants if they can be documented in the same way:

struct rte_eth_stats {
 uint64_t ipackets; /**< Total number of received packets. */
 uint64_t opackets; /**< Total number of transmitted packets.*/
 uint64_t ibytes; /**< Total number of received bytes. */
 uint64_t obytes; /**< Total number of transmitted bytes. */
 uint64_t imissed; /**< Total of RX missed packets. */
 uint64_t ibadcrc; /**< Total of RX packets with CRC error. */
 uint64_t ibadlen; /**< Total of RX packets with bad length. */
}

Note: postfix comments should be aligned with spaces not tabs in accordance
with the DPDK Coding Style.

	If a single comment type can’t be used, due to line length limitations then
prefix comments should be preferred.
For example this section of the code contains prefix comments, postfix comments on the same line and postfix
comments on a separate line:

/** Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
uint32_t pg_shift; /**< LOG2 of the physical pages. */
uintptr_t pg_mask; /**< Physical page mask value. */
uintptr_t elt_va_start;
/**< Virtual address of the first mempool object. */
uintptr_t elt_va_end;
/**< Virtual address of the <size + 1> mempool object. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];
/**< Array of physical page addresses for the mempool buffer. */

This doesn’t have an effect on the rendered documentation but it is confusing for the developer reading the code.
It this case it would be clearer to use prefix comments throughout:

/** Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
/** LOG2 of the physical pages. */
uint32_t pg_shift;
/** Physical page mask value. */
uintptr_t pg_mask;
/** Virtual address of the first mempool object. */
uintptr_t elt_va_start;
/** Virtual address of the <size + 1> mempool object. */
uintptr_t elt_va_end;
/** Array of physical page addresses for the mempool buffer. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];

	Check for Doxygen warnings in new code by checking the API documentation build:

make doc-api-html >/dev/null

	Read the rendered section of the documentation that you have added for correctness, clarity and consistency
with the surrounding text.

6. Contributing Code to DPDK

This document outlines the guidelines for submitting code to DPDK.

The DPDK development process is modeled (loosely) on the Linux Kernel development model so it is worth reading the
Linux kernel guide on submitting patches:
How to Get Your Change Into the Linux Kernel [https://www.kernel.org/doc/html/latest/process/submitting-patches.html].
The rationale for many of the DPDK guidelines is explained in greater detail in the kernel guidelines.

6.1. The DPDK Development Process

The DPDK development process has the following features:

	The code is hosted in a public git repository.

	There is a mailing list where developers submit patches.

	There are maintainers for hierarchical components.

	Patches are reviewed publicly on the mailing list.

	Successfully reviewed patches are merged to the repository.

	Patches should be sent to the target repository or sub-tree, see below.

	All sub-repositories are merged into main repository for -rc1 and -rc2 versions of the release.

	After the -rc2 release all patches should target the main repository.

The mailing list for DPDK development is dev@dpdk.org [https://mails.dpdk.org/archives/dev/].
Contributors will need to register for the mailing list [https://mails.dpdk.org/listinfo/dev] in order to submit patches.
It is also worth registering for the DPDK Patchwork [https://patches.dpdk.org/project/dpdk/list/]

If you are using the GitHub service, you can link your repository to
the travis-ci.org build service. When you push patches to your GitHub
repository, the travis service will automatically build your changes.

The development process requires some familiarity with the git version control system.
Refer to the Pro Git Book [http://www.git-scm.com/book/] for further information.

6.2. Source License

The DPDK uses the Open Source BSD-3-Clause license for the core libraries and
drivers. The kernel components are GPL-2.0 licensed. DPDK uses single line
reference to Unique License Identifiers in source files as defined by the Linux
Foundation’s SPDX project [http://spdx.org/].

DPDK uses first line of the file to be SPDX tag. In case of #! scripts, SPDX
tag can be placed in 2nd line of the file.

For example, to label a file as subject to the BSD-3-Clause license,
the following text would be used:

SPDX-License-Identifier: BSD-3-Clause

To label a file as dual-licensed with BSD-3-Clause and GPL-2.0 (e.g., for code
that is shared between the kernel and userspace), the following text would be
used:

SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)

Refer to licenses/README for more details.

6.3. Maintainers and Sub-trees

The DPDK maintenance hierarchy is divided into a main repository dpdk and sub-repositories dpdk-next-*.

There are maintainers for the trees and for components within the tree.

Trees and maintainers are listed in the MAINTAINERS file. For example:

Crypto Drivers

M: Some Name <some.name@email.com>
T: git://dpdk.org/next/dpdk-next-crypto

Intel AES-NI GCM PMD
M: Some One <some.one@email.com>
F: drivers/crypto/aesni_gcm/
F: doc/guides/cryptodevs/aesni_gcm.rst

Where:

	M is a tree or component maintainer.

	T is a repository tree.

	F is a maintained file or directory.

Additional details are given in the MAINTAINERS file.

The role of the component maintainers is to:

	Review patches for the component or delegate the review.
The review should be done, ideally, within 1 week of submission to the mailing list.

	Add an acked-by to patches, or patchsets, that are ready for committing to a tree.

	Reply to questions asked about the component.

Component maintainers can be added or removed by submitting a patch to the MAINTAINERS file.
Maintainers should have demonstrated a reasonable level of contributions or reviews to the component area.
The maintainer should be confirmed by an ack from an established contributor.
There can be more than one component maintainer if desired.

The role of the tree maintainers is to:

	Maintain the overall quality of their tree.
This can entail additional review, compilation checks or other tests deemed necessary by the maintainer.

	Commit patches that have been reviewed by component maintainers and/or other contributors.
The tree maintainer should determine if patches have been reviewed sufficiently.

	Ensure that patches are reviewed in a timely manner.

	Prepare the tree for integration.

	Ensure that there is a designated back-up maintainer and coordinate a handover for periods where the
tree maintainer can’t perform their role.

Tree maintainers can be added or removed by submitting a patch to the MAINTAINERS file.
The proposer should justify the need for a new sub-tree and should have demonstrated a sufficient level of contributions in the area or to a similar area.
The maintainer should be confirmed by an ack from an existing tree maintainer.
Disagreements on trees or maintainers can be brought to the Technical Board.

The backup maintainer for the master tree should be selected from the existing sub-tree maintainers from the project.
The backup maintainer for a sub-tree should be selected from among the component maintainers within that sub-tree.

6.4. Getting the Source Code

The source code can be cloned using either of the following:

main repository:

git clone git://dpdk.org/dpdk
git clone https://dpdk.org/git/dpdk

sub-repositories (list [https://git.dpdk.org/next]):

git clone git://dpdk.org/next/dpdk-next-*
git clone https://dpdk.org/git/next/dpdk-next-*

6.5. Make your Changes

Make your planned changes in the cloned dpdk repo. Here are some guidelines and requirements:

	Follow the DPDK Coding Style guidelines.

	If you add new files or directories you should add your name to the MAINTAINERS file.

	Initial submission of new PMDs should be prepared against a corresponding repo.

	Thus, for example, initial submission of a new network PMD should be
prepared against dpdk-next-net repo.

	Likewise, initial submission of a new crypto or compression PMD should be
prepared against dpdk-next-crypto repo.

	For other PMDs and more info, refer to the MAINTAINERS file.

	New external functions should be added to the local version.map file. See
the ABI policy and ABI versioning
guides. New external functions should also be added in alphabetical order.

	Important changes will require an addition to the release notes in doc/guides/rel_notes/.
See the Release Notes section of the Documentation Guidelines for details.

	Test the compilation works with different targets, compilers and options, see Checking Compilation.

	Don’t break compilation between commits with forward dependencies in a patchset.
Each commit should compile on its own to allow for git bisect and continuous integration testing.

	Add tests to the app/test unit test framework where possible.

	Add documentation, if relevant, in the form of Doxygen comments or a User Guide in RST format.
See the Documentation Guidelines.

Once the changes have been made you should commit them to your local repo.

For small changes, that do not require specific explanations, it is better to keep things together in the
same patch.
Larger changes that require different explanations should be separated into logical patches in a patchset.
A good way of thinking about whether a patch should be split is to consider whether the change could be
applied without dependencies as a backport.

It is better to keep the related documentation changes in the same patch
file as the code, rather than one big documentation patch at the end of a
patchset. This makes it easier for future maintenance and development of the
code.

As a guide to how patches should be structured run git log on similar files.

6.6. Commit Messages: Subject Line

The first, summary, line of the git commit message becomes the subject line of the patch email.
Here are some guidelines for the summary line:

	The summary line must capture the area and the impact of the change.

	The summary line should be around 50 characters.

	The summary line should be lowercase apart from acronyms.

	It should be prefixed with the component name (use git log to check existing components).
For example:

ixgbe: fix offload config option name

config: increase max queues per port

	Use the imperative of the verb (like instructions to the code base).

	Don’t add a period/full stop to the subject line or you will end up two in the patch name: dpdk_description..patch.

The actual email subject line should be prefixed by [PATCH] and the version, if greater than v1,
for example: PATCH v2.
The is generally added by git send-email or git format-patch, see below.

If you are submitting an RFC draft of a feature you can use [RFC] instead of [PATCH].
An RFC patch doesn’t have to be complete.
It is intended as a way of getting early feedback.

6.7. Commit Messages: Body

Here are some guidelines for the body of a commit message:

	The body of the message should describe the issue being fixed or the feature being added.
It is important to provide enough information to allow a reviewer to understand the purpose of the patch.

	When the change is obvious the body can be blank, apart from the signoff.

	The commit message must end with a Signed-off-by: line which is added using:

git commit --signoff # or -s

The purpose of the signoff is explained in the
Developer’s Certificate of Origin [https://www.kernel.org/doc/html/latest/process/submitting-patches.html#developer-s-certificate-of-origin-1-1]
section of the Linux kernel guidelines.

Note

All developers must ensure that they have read and understood the
Developer’s Certificate of Origin section of the documentation prior
to applying the signoff and submitting a patch.

	The signoff must be a real name and not an alias or nickname.
More than one signoff is allowed.

	The text of the commit message should be wrapped at 72 characters.

	When fixing a regression, it is required to reference the id of the commit
which introduced the bug, and put the original author of that commit on CC.
You can generate the required lines using the following git alias, which prints
the commit SHA and the author of the original code:

git config alias.fixline "log -1 --abbrev=12 --format='Fixes: %h (\"%s\")%nCc: %ae'"

The output of git fixline <SHA> must then be added to the commit message:

doc: fix some parameter description

Update the docs, fixing description of some parameter.

Fixes: abcdefgh1234 ("doc: add some parameter")
Cc: author@example.com

Signed-off-by: Alex Smith <alex.smith@example.com>

	When fixing an error or warning it is useful to add the error message and instructions on how to reproduce it.

	Use correct capitalization, punctuation and spelling.

In addition to the Signed-off-by: name the commit messages can also have
tags for who reported, suggested, tested and reviewed the patch being
posted. Please refer to the Tested, Acked and Reviewed by section.

6.7.1. Patch Fix Related Issues

Coverity [https://scan.coverity.com/projects/dpdk-data-plane-development-kit]
is a tool for static code analysis.
It is used as a cloud-based service used to scan the DPDK source code,
and alert developers of any potential defects in the source code.
When fixing an issue found by Coverity, the patch must contain a Coverity issue ID
in the body of the commit message. For example:

doc: fix some parameter description

Update the docs, fixing description of some parameter.

Coverity issue: 12345
Fixes: abcdefgh1234 ("doc: add some parameter")
Cc: author@example.com

Signed-off-by: Alex Smith <alex.smith@example.com>

Bugzilla [https://bugs.dpdk.org]
is a bug- or issue-tracking system.
Bug-tracking systems allow individual or groups of developers
effectively to keep track of outstanding problems with their product.
When fixing an issue raised in Bugzilla, the patch must contain
a Bugzilla issue ID in the body of the commit message.
For example:

doc: fix some parameter description

Update the docs, fixing description of some parameter.

Bugzilla ID: 12345
Fixes: abcdefgh1234 ("doc: add some parameter")
Cc: author@example.com

Signed-off-by: Alex Smith <alex.smith@example.com>

6.7.2. Patch for Stable Releases

All fix patches to the master branch that are candidates for backporting
should also be CCed to the stable@dpdk.org [https://mails.dpdk.org/listinfo/stable]
mailing list.
In the commit message body the Cc: stable@dpdk.org should be inserted as follows:

doc: fix some parameter description

Update the docs, fixing description of some parameter.

Fixes: abcdefgh1234 ("doc: add some parameter")
Cc: stable@dpdk.org

Signed-off-by: Alex Smith <alex.smith@example.com>

For further information on stable contribution you can go to
Stable Contribution Guide.

6.8. Creating Patches

It is possible to send patches directly from git but for new contributors it is recommended to generate the
patches with git format-patch and then when everything looks okay, and the patches have been checked, to
send them with git send-email.

Here are some examples of using git format-patch to generate patches:

Generate a patch from the last commit.
git format-patch -1

Generate a patch from the last 3 commits.
git format-patch -3

Generate the patches in a directory.
git format-patch -3 -o ~/patch/

Add a cover letter to explain a patchset.
git format-patch -3 -o ~/patch/ --cover-letter

Add a prefix with a version number.
git format-patch -3 -o ~/patch/ -v 2

Cover letters are useful for explaining a patchset and help to generate a logical threading to the patches.
Smaller notes can be put inline in the patch after the --- separator, for example:

Subject: [PATCH] fm10k/base: add FM10420 device ids

Add the device ID for Boulder Rapids and Atwood Channel to enable
drivers to support those devices.

Signed-off-by: Alex Smith <alex.smith@example.com>

ADD NOTES HERE.

 drivers/net/fm10k/base/fm10k_api.c | 6 ++++++
 drivers/net/fm10k/base/fm10k_type.h | 6 ++++++
 2 files changed, 12 insertions(+)
...

Version 2 and later of a patchset should also include a short log of the changes so the reviewer knows what has changed.
This can be added to the cover letter or the annotations.
For example:

v3:
* Fixed issued with version.map.

v2:
* Added i40e support.
* Renamed ethdev functions from rte_eth_ieee15888_*() to rte_eth_timesync_*()
 since 802.1AS can be supported through the same interfaces.

6.9. Checking the Patches

Patches should be checked for formatting and syntax issues using the checkpatches.sh script in the devtools
directory of the DPDK repo.
This uses the Linux kernel development tool checkpatch.pl which can be obtained by cloning, and periodically,
updating the Linux kernel sources.

The path to the original Linux script must be set in the environment variable DPDK_CHECKPATCH_PATH.

Spell checking of commonly misspelled words
can be enabled by downloading the codespell dictionary:

https://raw.githubusercontent.com/codespell-project/codespell/master/codespell_lib/data/dictionary.txt

The path to the downloaded dictionary.txt must be set
in the environment variable DPDK_CHECKPATCH_CODESPELL.

Environment variables required by the development tools,
are loaded from the following files, in order of preference:

.develconfig
~/.config/dpdk/devel.config
/etc/dpdk/devel.config.

Once the environment variable is set, the script can be run as follows:

devtools/checkpatches.sh ~/patch/

The script usage is:

checkpatches.sh [-h] [-q] [-v] [patch1 [patch2] ...]]"

Where:

	-h: help, usage.

	-q: quiet. Don’t output anything for files without issues.

	-v: verbose.

	patchX: path to one or more patches.

Then the git logs should be checked using the check-git-log.sh script.

The script usage is:

check-git-log.sh [range]

Where the range is a git log option.

6.10. Checking Compilation

6.10.1. Makefile System

Compilation of patches and changes should be tested using the test-build.sh script in the devtools
directory of the DPDK repo:

devtools/test-build.sh x86_64-native-linux-gcc+next+shared

The script usage is:

test-build.sh [-h] [-jX] [-s] [config1 [config2] ...]]

Where:

	-h: help, usage.

	-jX: use X parallel jobs in “make”.

	-s: short test with only first config and without examples/doc.

	config: default config name plus config switches delimited with a + sign.

Examples of configs are:

x86_64-native-linux-gcc
x86_64-native-linux-gcc+next+shared
x86_64-native-linux-clang+shared

The builds can be modified via the following environmental variables:

	DPDK_BUILD_TEST_CONFIGS (target1+option1+option2 target2)

	DPDK_BUILD_TEST_DIR

	DPDK_DEP_CFLAGS

	DPDK_DEP_LDFLAGS

	DPDK_DEP_PCAP (y/[n])

	DPDK_NOTIFY (notify-send)

These can be set from the command line or in the config files shown above in the Checking the Patches.

The recommended configurations and options to test compilation prior to submitting patches are:

x86_64-native-linux-gcc+shared+next
x86_64-native-linux-clang+shared
i686-native-linux-gcc

export DPDK_DEP_ZLIB=y
export DPDK_DEP_PCAP=y
export DPDK_DEP_SSL=y

6.10.2. Meson System

Compilation of patches is to be tested with devtools/test-meson-builds.sh script.

The script internally checks for dependencies, then builds for several
combinations of compilation configuration.
By default, each build will be put in a subfolder of the current working directory.
However, if it is preferred to place the builds in a different location,
the environment variable DPDK_BUILD_TEST_DIR can be set to that desired location.
For example, setting DPDK_BUILD_TEST_DIR=__builds will put all builds
in a single subfolder called “__builds” created in the current directory.
Setting DPDK_BUILD_TEST_DIR to an absolute directory path e.g. /tmp is also supported.

6.11. Checking ABI compatibility

By default, ABI compatibility checks are disabled.

To enable them, a reference version must be selected via the environment
variable DPDK_ABI_REF_VERSION.

The devtools/test-build.sh and devtools/test-meson-builds.sh scripts
then build this reference version in a temporary directory and store the
results in a subfolder of the current working directory.
The environment variable DPDK_ABI_REF_DIR can be set so that the results go
to a different location.

6.12. Sending Patches

Patches should be sent to the mailing list using git send-email.
You can configure an external SMTP with something like the following:

[sendemail]
 smtpuser = name@domain.com
 smtpserver = smtp.domain.com
 smtpserverport = 465
 smtpencryption = ssl

See the Git send-email [https://git-scm.com/docs/git-send-email] documentation for more details.

The patches should be sent to dev@dpdk.org.
If the patches are a change to existing files then you should send them TO the maintainer(s) and CC dev@dpdk.org.
The appropriate maintainer can be found in the MAINTAINERS file:

git send-email --to maintainer@some.org --cc dev@dpdk.org 000*.patch

Script get-maintainer.sh can be used to select maintainers automatically:

git send-email --to-cmd ./devtools/get-maintainer.sh --cc dev@dpdk.org 000*.patch

New additions can be sent without a maintainer:

git send-email --to dev@dpdk.org 000*.patch

You can test the emails by sending it to yourself or with the --dry-run option.

If the patch is in relation to a previous email thread you can add it to the same thread using the Message ID:

git send-email --to dev@dpdk.org --in-reply-to <1234-foo@bar.com> 000*.patch

The Message ID can be found in the raw text of emails or at the top of each Patchwork patch,
for example [https://patches.dpdk.org/patch/7646/].
Shallow threading (--thread --no-chain-reply-to) is preferred for a patch series.

Once submitted your patches will appear on the mailing list and in Patchwork.

Experienced committers may send patches directly with git send-email without the git format-patch step.
The options --annotate and confirm = always are recommended for checking patches before sending.

6.12.1. Backporting patches for Stable Releases

Sometimes a maintainer or contributor wishes, or can be asked, to send a patch
for a stable release rather than mainline.
In this case the patch(es) should be sent to stable@dpdk.org,
not to dev@dpdk.org.

Given that there are multiple stable releases being maintained at the same time,
please specify exactly which branch(es) the patch is for
using git send-email --subject-prefix='PATCH 16.11' ...
and also optionally in the cover letter or in the annotation.

6.13. The Review Process

Patches are reviewed by the community, relying on the experience and
collaboration of the members to double-check each other’s work. There are a
number of ways to indicate that you have checked a patch on the mailing list.

6.13.1. Tested, Acked and Reviewed by

To indicate that you have interacted with a patch on the mailing list you
should respond to the patch in an email with one of the following tags:

	Reviewed-by:

	Acked-by:

	Tested-by:

	Reported-by:

	Suggested-by:

The tag should be on a separate line as follows:

tag-here: Name Surname <email@address.com>

Each of these tags has a specific meaning. In general, the DPDK community
follows the kernel usage of the tags. A short summary of the meanings of each
tag is given here for reference:

Reviewed-by: is a strong statement [https://www.kernel.org/doc/html/latest/process/submitting-patches.html#reviewer-s-statement-of-oversight] that the patch is an appropriate state
for merging without any remaining serious technical issues. Reviews from
community members who are known to understand the subject area and to perform
thorough reviews will increase the likelihood of the patch getting merged.

Acked-by: is a record that the person named was not directly involved in
the preparation of the patch but wishes to signify and record their acceptance
and approval of it.

Tested-by: indicates that the patch has been successfully tested (in some
environment) by the person named.

Reported-by: is used to acknowledge person who found or reported the bug.

Suggested-by: indicates that the patch idea was suggested by the named
person.

6.13.2. Steps to getting your patch merged

The more work you put into the previous steps the easier it will be to get a
patch accepted. The general cycle for patch review and acceptance is:

	Submit the patch.

	Check the automatic test reports in the coming hours.

	Wait for review comments. While you are waiting review some other patches.

	Fix the review comments and submit a v n+1 patchset:

git format-patch -3 -v 2

	Update Patchwork to mark your previous patches as “Superseded”.

	If the patch is deemed suitable for merging by the relevant maintainer(s) or other developers they will ack
the patch with an email that includes something like:

Acked-by: Alex Smith <alex.smith@example.com>

Note: When acking patches please remove as much of the text of the patch email as possible.
It is generally best to delete everything after the Signed-off-by: line.

	Having the patch Reviewed-by: and/or Tested-by: will also help the patch to be accepted.

	If the patch isn’t deemed suitable based on being out of scope or conflicting with existing functionality
it may receive a nack.
In this case you will need to make a more convincing technical argument in favor of your patches.

	In addition a patch will not be accepted if it doesn’t address comments from a previous version with fixes or
valid arguments.

	It is the responsibility of a maintainer to ensure that patches are reviewed and to provide an ack or
nack of those patches as appropriate.

	Once a patch has been acked by the relevant maintainer, reviewers may still comment on it for a further
two weeks. After that time, the patch should be merged into the relevant git tree for the next release.
Additional notes and restrictions:

	Patches should be acked by a maintainer at least two days before the release merge
deadline, in order to make that release.

	For patches acked with less than two weeks to go to the merge deadline, all additional
comments should be made no later than two days before the merge deadline.

	After the appropriate time for additional feedback has passed, if the patch has not yet
been merged to the relevant tree by the committer, it should be treated as though it had,
in that any additional changes needed to it must be addressed by a follow-on patch, rather
than rework of the original.

	Trivial patches may be merged sooner than described above at the tree committer’s
discretion.

7. DPDK Vulnerability Management Process

7.1. Scope

Only the main repositories (dpdk and dpdk-stable) of the core project
are in the scope of this security process (including experimental APIs).
If a stable branch is declared unmaintained (end of life),
no fix will be applied.

All vulnerabilities are bugs, but not every bug is a vulnerability.
Vulnerabilities compromise one or more of:

	Confidentiality (personal or corporate confidential data).

	Integrity (trustworthiness and correctness).

	Availability (uptime and service).

If in doubt, please consider the vulnerability as security sensitive.
At worst, the response will be to report the bug through the usual channels.

7.2. Finding

There is no pro-active security engineering effort at the moment.

Please report any security issue you find in DPDK as described below.

7.3. Report

Do not use Bugzilla (unsecured).
Instead, send GPG-encrypted emails
to security@dpdk.org [https://core.dpdk.org/security#contact].
Anyone can post to this list.
In order to reduce the disclosure of a vulnerability in the early stages,
membership of this list is intentionally limited to a small number of people [https://mails.dpdk.org/roster/security].

It is additionally encouraged to GPG-sign one-on-one conversations
as part of the security process.

As it is with any bug, the more information provided,
the easier it will be to diagnose and fix.
If you already have a fix, please include it with your report,
as that can speed up the process considerably.

In the report, please note how you would like to be credited
for discovering the issue
and the details of any embargo you would like to impose.

If the vulnerability is not public yet,
no patch or information should be disclosed publicly.
If a fix is already published,
the reporting process must be followed anyway, as described below.

7.4. Confirmation

Upon reception of the report, a security team member should reply
to the reporter acknowledging that the report has been received.

The DPDK security team reviews the security vulnerability reported.
Area experts not members of the security team may be involved in the process.
In case the reported issue is not qualified as a security vulnerability,
the security team will request the submitter to report it
using the usual channel (Bugzilla).
If qualified, the security team will assess which DPDK version are affected.
A bugzilla ID (allocated in a reserved pool [https://bugs.dpdk.org/buglist.cgi?f1=bug_group&o1=equals&v1=security])
is assigned to the vulnerability, and kept empty until public disclosure.

The security team calculates the severity score with
CVSS calculator [https://www.first.org/cvss/calculator/3.0]
based on inputs from the reporter and its own assessment of the vulnerability,
and agrees on the score with the reporter.

An embargo may be put in place depending on the severity of the vulnerability.
If an embargo is decided, its duration should be suggested by the security team
and negotiated with the reporter.
Embargo duration between vulnerability confirmation and public disclosure
should be between one and ten weeks.
If an embargo is not required, the vulnerability may be fixed
using the standard patch process, once a CVE number has been assigned.

The confirmation mail should be sent within 3 business days.

Following information must be included in the mail:

	Confirmation

	CVSS severity and score

	Embargo duration

	Reporter credit

	Bug ID (empty and restricted for future reference)

7.5. CVE Request

The security team develops a security advisory document.
The security team may, at its discretion,
include the reporter (via “CC”) in developing the security advisory document,
but in any case should accept feedback
from the reporter before finalizing the document.
When the document is final, the security team needs to
request a CVE identifier from a CNA.

The CVE request should be sent
to secalert@redhat.com
using GPG encrypted email
(see contact details [https://access.redhat.com/security/team/contact]).

7.5.1. CVE Request Template with Embargo

A vulnerability was discovered in the DPDK project.
In order to ensure full traceability, we need a CVE number assigned
that we can attach to private and public notifications.
Please treat the following information as confidential during the embargo
until further public disclosure.

[PRODUCT]:
[VERSION]:
[PROBLEMTYPE]:
[SEVERITY]:
[REFERENCES]: { bug_url }
[DESCRIPTION]:

Thanks
{ DPDK_security_team_member }, on behalf of the DPDK security team

7.5.2. CVE Request Template without Embargo

A vulnerability was discovered in the DPDK project.
In order to ensure full traceability, we need a CVE number assigned
that we can attach to private and public notifications.

[PRODUCT]:
[VERSION]:
[PROBLEMTYPE]:
[SEVERITY]:
[REFERENCES]: { bug_url }
[DESCRIPTION]:

Thanks
{ DPDK_security_team_member }, on behalf of the DPDK security team

7.6. Fix Development and Review

If the fix is already published, this step is skipped,
and the pre-release disclosure is replaced with the private disclosure,
as described below. It must not be considered as the standard process.

This step may be started in parallel with CVE creation.
The patches fixing the vulnerability are developed and reviewed
by the security team and
by elected area experts that agree to maintain confidentiality.

The CVE id and the bug id must be referenced in the patch.

Backports to the identified affected versions are done once the fix is ready.

7.7. Pre-Release Disclosure

When the fix is ready, the security advisory and patches are sent
to downstream stakeholders
(security-prerelease@dpdk.org),
specifying the date and time of the end of the embargo.
The communicated public disclosure date should be less than one week

Downstream stakeholders are expected not to deploy or disclose patches
until the embargo is passed, otherwise they will be removed from the list.

Downstream stakeholders (in security-prerelease list [https://mails.dpdk.org/roster/security-prerelease]), are:

	Operating system vendors known to package DPDK

	Major DPDK users, considered trustworthy by the technical board, who
have made the request to techboard@dpdk.org

The OSS security private mailing list mailto:distros@vs.openwall.org> will
also be contacted one week before the end of the embargo, as indicated by the
OSS-security process <https://oss-security.openwall.org/wiki/mailing-lists/distros>
and using the PGP key listed on the same page, describing the details of the
vulnerability and sharing the patch[es]. Distributions and major vendors follow
this private mailing list, and it functions as a single point of contact for
embargoed advance notices for open source projects.

The security advisory will be based on below template,
and will be sent signed with a security team’s member GPG key.

7.7.1. Pre-Release Mail Template

This is an advance warning of a vulnerability discovered in DPDK,
to give you, as downstream stakeholders, a chance to coordinate
the release of fixes and reduce the vulnerability window.
Please treat the following information as confidential until
the proposed public disclosure date.

{ impact_description }

Proposed patches are attached.
Unless a flaw is discovered in them, these patches will be merged
to { branches } on the public disclosure date.

CVE: { cve_id }
Severity: { severity }
CVSS scores: { cvss_scores }

Proposed public disclosure date/time: { disclosure_date } at 15:00 UTC.
Please do not make the issue public (or release public patches)
before this coordinated embargo date.

If the issue is leaked during the embargo, the same procedure is followed
with only a few days delay between the pre-release and the public disclosure.

7.8. Private Disclosure

If a vulnerability is unintentionally already fixed in the public repository,
a security advisory is sent to downstream stakeholders
(security-prerelease@dpdk.org),
giving few days to prepare for updating before the public disclosure.

7.8.1. Private Disclosure Mail Template

This is a warning of a vulnerability discovered in DPDK,
to give you, as downstream stakeholders, a chance to coordinate
the deployment of fixes before a CVE is public.

Please treat the following information as confidential until
the proposed public disclosure date.

{ impact_description }

Commits: { commit_ids with branch number }

CVE: { cve_id }
Severity: { severity }
CVSS scores: { cvss_scores }

Proposed public disclosure date/time: { disclosure_date }.
Please do not make the vulnerability information public
before this coordinated embargo date.

7.9. Public Disclosure

On embargo expiration, following tasks will be done simultaneously:

	The assigned bug is filled by a member of the security team,
with all relevant information, and it is made public.

	The patches are pushed to the appropriate branches.

	For long and short term stable branches fixed,
new versions should be released.

Releases on Monday to Wednesday are preferred, so that system administrators
do not have to deal with security updates over the weekend.

The security advisory is posted
to announce@dpdk.org and to the public OSS-security
mailing list <mailto:oss-security@lists.openwall.com> as soon as the patches
are pushed to the appropriate branches.

Patches are then sent to dev@dpdk.org
and stable@dpdk.org accordingly.

7.9.1. Release Mail Template

A vulnerability was fixed in DPDK.
Some downstream stakeholders were warned in advance
in order to coordinate the release of fixes
and reduce the vulnerability window.

{ impact_description }

Commits: { commit_ids with branch number }

CVE: { cve_id }
Bugzilla: { bug_url }
Severity: { severity }
CVSS scores: { cvss_scores }

7.10. References

	A minimal security response process [https://access.redhat.com/blogs/766093/posts/1975833]

	fd.io Vulnerability Management [https://wiki.fd.io/view/TSC:Vulnerability_Management]

	Open Daylight Vulnerability Management [https://wiki.opendaylight.org/view/Security:Vulnerability_Management]

	CVE Assignment Information Format [https://cve.mitre.org/cve/list_rules_and_guidance/cve_assignment_information_format.html]

8. DPDK Stable Releases and Long Term Support

This section sets out the guidelines for the DPDK Stable Releases and the DPDK
Long Term Support releases (LTS).

8.1. Introduction

The purpose of the DPDK Stable Releases is to maintain releases of DPDK with
backported fixes over an extended period of time. This provides downstream
consumers of DPDK with a stable target on which to base applications or
packages.

The Long Term Support release (LTS) is a designation applied to a Stable
Release to indicate longer term support.

8.2. Stable Releases

Any release of DPDK can be designated as a Stable Release if a
maintainer volunteers to maintain it and there is a commitment from major
contributors to validate it before releases. If a release is to be designated
as a Stable Release, it should be done by 1 month after the master release.

A Stable Release is used to backport fixes from an N release back to an
N-1 release, for example, from 16.11 to 16.07.

The duration of a stable is one complete release cycle (3 months). It can be
longer, up to 1 year, if a maintainer continues to support the stable branch,
or if users supply backported fixes, however the explicit commitment should be
for one release cycle.

The release cadence is determined by the maintainer based on the number of
bugfixes and the criticality of the bugs. Releases should be coordinated with
the validation engineers to ensure that a tagged release has been tested.

8.3. LTS Release

A stable release can be designated as an LTS release based on community
agreement and a commitment from a maintainer. The current policy is that each
year’s November (X.11) release will be maintained as an LTS for 2 years.

After the X.11 release, an LTS branch will be created for it at
https://git.dpdk.org/dpdk-stable where bugfixes will be backported to.

A LTS release may align with the declaration of a new major ABI version,
please read the ABI Policy for more information.

It is anticipated that there will be at least 4 releases per year of the LTS
or approximately 1 every 3 months. However, the cadence can be shorter or
longer depending on the number and criticality of the backported
fixes. Releases should be coordinated with the validation engineers to ensure
that a tagged release has been tested.

For a list of the currently maintained stable/LTS branches please see
the latest stable roadmap [https://core.dpdk.org/roadmap/#stable].

At the end of the 2 years, a final X.11.N release will be made and at that
point the LTS branch will no longer be maintained with no further releases.

8.4. What changes should be backported

Backporting should be limited to bug fixes. All patches accepted on the master
branch with a Fixes: tag should be backported to the relevant stable/LTS
branches, unless the submitter indicates otherwise. If there are exceptions,
they will be discussed on the mailing lists.

Fixes suitable for backport should have a Cc: stable@dpdk.org tag in the
commit message body as follows:

doc: fix some parameter description

Update the docs, fixing description of some parameter.

Fixes: abcdefgh1234 ("doc: add some parameter")
Cc: stable@dpdk.org

Signed-off-by: Alex Smith <alex.smith@example.com>

Fixes not suitable for backport should not include the Cc: stable@dpdk.org tag.

Features should not be backported to stable releases. It may be acceptable, in
limited cases, to back port features for the LTS release where:

	There is a justifiable use case (for example a new PMD).

	The change is non-invasive.

	The work of preparing the backport is done by the proposer.

	There is support within the community.

8.5. The Stable Mailing List

The Stable and LTS release are coordinated on the stable@dpdk.org mailing
list.

All fix patches to the master branch that are candidates for backporting
should also be CCed to the stable@dpdk.org [https://mails.dpdk.org/listinfo/stable]
mailing list.

8.6. Releasing

A Stable Release will be released by:

	Tagging the release with YY.MM.n (year, month, number).

	Uploading a tarball of the release to dpdk.org.

	Sending an announcement to the announce@dpdk.org [https://mails.dpdk.org/listinfo/announce]
list.

Stable releases are available on the dpdk.org download page [https://core.dpdk.org/download/].

9. Patch Cheatsheet

[image: ../_images/patch_cheatsheet.svg]
Fig. 9.5 Cheat sheet for submitting patches to dev@dpdk.org

Release Notes

	1. DPDK Release 20.05

	2. DPDK Release 20.02

	3. DPDK Release 19.11

	4. DPDK Release 19.08

	5. DPDK Release 19.05

	6. DPDK Release 19.02

	7. DPDK Release 18.11

	8. DPDK Release 18.08

	9. DPDK Release 18.05

	10. DPDK Release 18.02

	11. DPDK Release 17.11

	12. DPDK Release 17.08

	13. DPDK Release 17.05

	14. DPDK Release 17.02

	15. DPDK Release 16.11

	16. DPDK Release 16.07

	17. DPDK Release 16.04

	18. DPDK Release 2.2

	19. DPDK Release 2.1

	20. DPDK Release 2.0

	21. DPDK Release 1.8

	22. Known Issues and Limitations in Legacy Releases

	23. ABI and API Deprecation

1. DPDK Release 20.05

1.1. New Features

	Added Trace Library and Tracepoints.

Added a native implementation of the “common trace format” (CTF) based trace
library. This allows the user add tracepoints in an application/library to
get runtime trace/debug information for control, and fast APIs with minimum
impact on fast path performance. Typical trace overhead is ~20 cycles and
instrumentation overhead is 1 cycle. Added tracepoints in EAL,
ethdev, cryptodev, eventdev and mempool libraries for
important functions.

	Added APIs for RCU defer queues.

Added APIs to create and delete defer queues. Additional APIs are provided
to enqueue a deleted resource and reclaim the resource in the future.
These APIs help an application use lock-free data structures with
less effort.

	Added new API for rte_ring.

	Introduced new synchronization modes for rte_ring.

Introduced new optional MT synchronization modes for rte_ring:
Relaxed Tail Sync (RTS) mode and Head/Tail Sync (HTS) mode.
With these modes selected, rte_ring shows significant improvements for
average enqueue/dequeue times on overcommitted systems.

	Added peek style API for rte_ring.

For rings with producer/consumer in RTE_RING_SYNC_ST, RTE_RING_SYNC_MT_HTS
mode, provide the ability to split enqueue/dequeue operation into two phases
(enqueue/dequeue start and enqueue/dequeue finish). This allows the user to inspect
objects in the ring without removing them (aka MT safe peek).

	Added flow aging support.

Added flow aging support to detect and report aged-out flows, including:

	Added new action: RTE_FLOW_ACTION_TYPE_AGE to set the timeout
and the application flow context for each flow.

	Added new event: RTE_ETH_EVENT_FLOW_AGED for the driver to report
that there are new aged-out flows.

	Added new query: rte_flow_get_aged_flows to get the aged-out flows
contexts from the port.

	ethdev: Added a new value to link speed for 200Gbps.

Added a new ethdev value to for link speeds of 200Gbps.

	Updated the Amazon ena driver.

Updated the ena PMD with new features and improvements, including:

	Added support for large LLQ (Low-latency queue) headers.

	Added Tx drops as a new extended driver statistic.

	Added support for accelerated LLQ mode.

	Handling of the 0 length descriptors on the Rx path.

	Updated Broadcom bnxt driver.

Updated the Broadcom bnxt driver with new features and improvements, including:

	Added support for host based flow table management.

	Added flow counters to extended stats.

	Added PCI function stats to extended stats.

	Updated Hisilicon hns3 driver.

Updated Hisilicon hns3 driver with new features and improvements, including:

	Added support for TSO.

	Added support for configuring promiscuous and allmulticast mode for VF.

	Added a new driver for Intel Foxville I225 devices.

Added the new igc net driver for Intel Foxville I225 devices. See the
IGC Poll Mode Driver NIC guide for more details on this new driver.

	Updated Intel i40e driver.

Updated i40e PMD with new features and improvements, including:

	Enabled MAC address as FDIR input set for ipv4-other, ipv4-udp and ipv4-tcp.

	Added support for RSS using L3/L4 source/destination only.

	Added support for setting hash function in rte flow.

	Updated the Intel iavf driver.

Update the Intel iavf driver with new features and improvements, including:

	Added generic filter support.

	Added advanced iavf with FDIR capability.

	Added advanced RSS configuration for VFs.

	Updated the Intel ice driver.

Updated the Intel ice driver with new features and improvements, including:

	Added support for DCF (Device Config Function) feature.

	Added switch filter support for Intel DCF.

	Updated Marvell OCTEON TX2 ethdev driver.

Updated Marvell OCTEON TX2 ethdev driver with traffic manager support,
including:

	Hierarchical Scheduling with DWRR and SP.

	Single rate - Two color, Two rate - Three color shaping.

	Updated Mellanox mlx5 driver.

Updated Mellanox mlx5 driver with new features and improvements, including:

	Added support for matching on IPv4 Time To Live and IPv6 Hop Limit.

	Added support for creating Relaxed Ordering Memory Regions.

	Added support for configuring Hairpin queue data buffer size.

	Added support for jumbo frame size (9K MTU) in Multi-Packet RQ mode.

	Removed flow rules caching for memory saving and compliance with ethdev API.

	Optimized the memory consumption of flows.

	Added support for flow aging based on hardware counters.

	Added support for flow patterns with wildcard VLAN items (without VID value).

	Updated support for matching on GTP headers, added match on GTP flags.

	Added Chacha20-Poly1305 algorithm to Cryptodev API.

Added support for Chacha20-Poly1305 AEAD algorithm in Cryptodev.

	Updated the AESNI MB crypto PMD.

	Added support for intel-ipsec-mb version 0.54.

	Updated the AESNI MB PMD with AES-256 DOCSIS algorithm.

	Added support for synchronous Crypto burst API.

	Updated the AESNI GCM crypto PMD.

Added support for intel-ipsec-mb version 0.54.

	Updated the ZUC crypto PMD.

	Added support for intel-ipsec-mb version 0.54.

	Updated the PMD to support Multi-buffer ZUC-EIA3,
improving performance significantly, when using
intel-ipsec-mb version 0.54

	Updated the SNOW3G crypto PMD.

Added support for intel-ipsec-mb version 0.54.

	Updated the KASUMI crypto PMD.

Added support for intel-ipsec-mb version 0.54.

	Updated the QuickAssist Technology (QAT) Crypto PMD.

	Added handling of mixed crypto algorithms in QAT PMD for GEN2.

Enabled handling of mixed algorithms in encrypted digest hash-cipher
(generation) and cipher-hash (verification) requests in QAT PMD when
running on GEN2 QAT hardware with particular firmware versions (GEN3
support was added in DPDK 20.02).

	Added plain SHA-1, 224, 256, 384, 512 support to QAT PMD.

Added support for plain SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512
hashes to QAT PMD.

	Added AES-GCM/GMAC J0 support to QAT PMD.

Added support for AES-GCM/GMAC J0 to Intel QuickAssist Technology PMD. The
user can use this feature by passing a zero length IV in the appropriate
xform. For more information refer to the doxygen comments in
rte_crypto_sym.h for J0.

	Updated the QAT PMD for AES-256 DOCSIS.

Added AES-256 DOCSIS algorithm support to the QAT PMD.

	Updated the QuickAssist Technology (QAT) Compression PMD.

Added special buffer handling when the internal QAT intermediate buffer is
too small for the Huffman dynamic compression operation. Instead of falling
back to fixed compression, the operation is now split into multiple smaller
dynamic compression requests (which are possible to execute on QAT) and
their results are then combined and copied into the output buffer. This is
not possible if any checksum calculation was requested - in such cases the
code falls back to fixed compression as before.

	Updated the turbo_sw bbdev PMD.

Added support for large size code blocks which do not fit in one mbuf
segment.

	Added Intel FPGA_5GNR_FEC bbdev PMD.

Added a new fpga_5gnr_fec bbdev driver for the Intel® FPGA PAC
(Programmable Acceleration Card) N3000. See the
Intel(R) FPGA 5GNR FEC Poll Mode Driver BBDEV guide for more details on this new driver.

	Updated the DSW event device.

Updated the DSW PMD with new features and improvements, including:

	Improved flow migration mechanism, allowing faster and more
accurate load balancing.

	Improved behavior on high-core count systems.

	Reduced latency in low-load situations.

	Extended DSW xstats with migration and load-related statistics.

	Updated ipsec-secgw sample application.

Updated the ipsec-secgw sample application with the following features:

	Updated the application to add event based packet processing. The worker
thread(s) would receive events and submit them back to the event device
after the processing. This way, multicore scaling and HW assisted
scheduling is achieved by making use of the event device capabilities. The
event mode currently only supports inline IPsec protocol offload.

	Updated the application to support key sizes for AES-192-CBC, AES-192-GCM,
AES-256-GCM algorithms.

	Added IPsec inbound load-distribution support for the application using
NIC load distribution feature (Flow Director).

	Updated Telemetry Library.

The updated Telemetry library has been significantly improved in relation to
the original version to make it more accessible and scalable:

	It now enables DPDK libraries and applications to provide their own
specific telemetry information, rather than being limited to what could be
reported through the metrics library.

	It is no longer dependent on the external Jansson library, which allows
Telemetry be enabled by default.

	The socket handling has been simplified making it easier for clients to
connect and retrieve information.

	Added the rte_graph library.

The Graph architecture abstracts the data processing functions as nodes
and links them together to create a complex graph to enable
reusable/modular data processing functions. The graph library provides APIs
to enable graph framework operations such as create, lookup, dump and
destroy on graph and node operations such as clone, edge update, and edge
shrink, etc. The API also allows the creation of a stats cluster to monitor
per graph and per node statistics.

	Added the rte_node library.

Added the rte_node library that consists of nodes used by the
rte_graph library. Each node performs a specific packet processing
function based on the application configuration.

The following nodes are added:

	Null node: A skeleton node that defines the general structure of a node.

	Ethernet device node: Consists of Ethernet Rx/Tx nodes as well as Ethernet
control APIs.

	IPv4 lookup node: Consists of IPv4 extract and LPM lookup node. Routes can
be configured by the application through the rte_node_ip4_route_add
function.

	IPv4 rewrite node: Consists of IPv4 and Ethernet header rewrite
functionality that can be configured through the
rte_node_ip4_rewrite_add function.

	Packet drop node: Frees the packets received to their respective mempool.

	Added new l3fwd-graph sample application.

Added an example application l3fwd-graph. This demonstrates the usage of
the graph library and node library for packet processing. In addition to the
library usage demonstration, this application can be used for performance
comparison of the existing l3fwd (static code without any nodes) with
the modular l3fwd-graph approach.

	Updated the testpmd application.

Added a new cmdline option --rx-mq-mode which can be used to test PMD’s
behaviour on handling Rx mq mode.

	Added support for GCC 10.

Added support for building with GCC 10.1.

1.2. API Changes

	mempool: The API of rte_mempool_populate_iova() and
rte_mempool_populate_virt() changed to return 0 instead of -EINVAL
when there is not enough room to store one object.

1.3. ABI Changes

	No ABI change that would break compatibility with DPDK 20.02 and 19.11.

1.4. Tested Platforms

	Intel® platforms with Broadcom® NICs combinations

	CPU:

	Intel® Xeon® Gold 6154 CPU @ 3.00GHz

	Intel® Xeon® CPU E5-2650 v2 @ 2.60GHz

	Intel® Xeon® CPU E5-2667 v3 @ 3.20GHz

	Intel® Xeon® Gold 6142 CPU @ 2.60GHz

	Intel® Xeon® Silver 4110 CPU @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 8.1

	Red Hat Enterprise Linux Server release 7.6

	Red Hat Enterprise Linux Server release 7.5

	Ubuntu 16.04

	Centos 8.1

	Centos 7.7

	upstream kernel:

	Linux 5.3

	NICs:

	Broadcom® NetXtreme-E® Series P225p (2x25G)

	Host interface: PCI Express 3.0 x8

	Firmware version: 214.4.81.0 and above

	Broadcom® NetXtreme-E® Series P425p (4x25G)

	Host interface: PCI Express 3.0 x16

	Firmware version: 216.4.259.0 and above

	Broadcom® NetXtreme-E® Series P2100G (2x100G)

	Host interface: PCI Express 3.0 x16

	Firmware version: 216.1.259.0 and above

	Broadcom® NetXtreme-E® Series P425p (4x25G)

	Host interface: PCI Express 4.0 x16

	Firmware version: 216.1.259.0 and above

	Broadcom® NetXtreme-E® Series P2100G (2x100G)

	Host interface: PCI Express 4.0 x16

	Firmware version: 216.1.259.0 and above

	Intel® platforms with Intel® NICs combinations

	CPU

	Intel® Atom™ CPU C3758 @ 2.20GHz

	Intel® Atom™ CPU C3858 @ 2.00GHz

	Intel® Atom™ CPU C3958 @ 2.00GHz

	Intel® Xeon® CPU D-1541 @ 2.10GHz

	Intel® Xeon® CPU D-1553N @ 2.30GHz

	Intel® Xeon® CPU E5-2680 0 @ 2.70GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2699 v3 @ 2.30GHz

	Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz

	Intel® Xeon® Gold 5218N CPU @ 2.30GHz

	Intel® Xeon® Gold 6139 CPU @ 2.30GHz

	Intel® Xeon® Gold 6252N CPU @ 2.30GHz

	Intel® Xeon® Platinum 8180 CPU @ 2.50GHz

	Intel® Xeon® Platinum 8280M CPU @ 2.70GHz

	OS:

	CentOS 7.7

	CentOS 8.0

	Fedora 32

	FreeBSD 12.1

	OpenWRT 19.07

	Red Hat Enterprise Linux Server release 8.0

	Red Hat Enterprise Linux Server release 7.7

	Suse15 SP1

	Ubuntu 16.04

	Ubuntu 18.04

	Ubuntu 20.04

	NICs:

	Intel® 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.6.5 (ixgbe)

	Intel® Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 5.1.0-k (ixgbe)

	Intel® Corporation Ethernet Controller 10G X550T

	Firmware version: 0x80000482

	Device id (pf): 8086:1563

	Driver version: 5.6.5 (ixgbe)

	Intel® Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 7.20 0x800079e8 1.2585.0

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.11.29 (i40e)

	Intel® Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 4.11 0x80001def 1.1999.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.11.29 (i40e)

	Intel® Corporation Ethernet Connection X722 for 10GBASE-T (2x10G)

	Firmware version: 4.10 0x80001a7a

	Device id (pf/vf): 8086:37d2 / 8086:37cd

	Driver version: 2.11.29 (i40e)

	Intel® Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 7.30 0x800080a2 1.2658.0

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.11.27_rc13 (i40e)

	Intel® Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 7.30 0x800080ab 1.2658.0

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.11.27_rc13 (i40e)

	Intel® Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000cbc

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel® Corporation I210 Gigabit Network Connection

	Firmware version: 3.25, 0x800006eb

	Device id (pf): 8086:1533

	Driver version: 5.6.5(igb)

	Intel® Ethernet Controller 10-Gigabit X540-AT2

	Firmware version: 0x800005f9

	Device id (pf): 8086:1528

	Driver version: 5.1.0-k(ixgbe)

	Intel® Ethernet Converged Network Adapter X710-T2L

	Firmware version: 7.30 0x80008061 1.2585.0

	Device id (pf): 8086:15ff

	Driver version: 2.11.27_rc13(i40e)

	Intel® platforms with Mellanox® NICs combinations

	CPU:

	Intel® Xeon® Gold 6154 CPU @ 3.00GHz

	Intel® Xeon® CPU E5-2697A v4 @ 2.60GHz

	Intel® Xeon® CPU E5-2697 v3 @ 2.60GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2650 v4 @ 2.20GHz

	Intel® Xeon® CPU E5-2640 @ 2.50GHz

	Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 18.04

	Ubuntu 16.04

	OFED:

	MLNX_OFED 4.7-3.2.9.0

	MLNX_OFED 5.0-2.1.8.0 and above

	upstream kernel:

	Linux 5.7.0-rc5 and above

	rdma-core:

	rdma-core-29.0-1 and above

	NICs:

	Mellanox® ConnectX®-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox® ConnectX®-3 Pro 40G MCX354A-FCCT (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox® ConnectX®-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.27.2008 and above

	Mellanox® ConnectX®-4 Lx 50G MCX4131A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.27.2008 and above

	Mellanox® ConnectX®-5 100G MCX516A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.2008 and above

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.2008 and above

	Mellanox® ConnectX®-5 100G MCX556A-EDAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.2008 and above

	Mellanox® ConnectX®-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.27.2008 and above

	Mellanox® ConnectX®-6 Dx EN 100G MCX623106AN-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:101d

	Firmware version: 22.27.2008 and above

	IBM Power 9 platforms with Mellanox® NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Red Hat Enterprise Linux Server release 7.6

	NICs:

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.2008

	Mellanox® ConnectX®-6 Dx 100G MCX623106AN-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:101d

	Firmware version: 22.27.2008

	OFED:

	MLNX_OFED 5.0-2.1.8.0

	ARMv8 SoC combinations from Marvell (with integrated NICs)

	SoC:

	CN83xx, CN96xx, CN93xx

	OS (Based on Marvell OCTEON TX SDK-10.3.2.0-PR12):

	Arch Linux

	Buildroot 2018.11

	Ubuntu 16.04.1 LTS

	Ubuntu 16.10

	Ubuntu 18.04.1

	Ubuntu 19.04

2. DPDK Release 20.02

2.1. New Features

	Added Wait Until Equal API.

A new API has been added to wait for a memory location to be updated with a
16-bit, 32-bit, 64-bit value.

	Added rte_ring_xxx_elem APIs.

New APIs have been added to support rings with custom element size.

	Added mbuf pool with pinned external memory.

Added support of mbuf with data buffer allocated in an external device memory.

	Updated rte_flow api to support L2TPv3 over IP flows.

Added support for new flow item to handle L2TPv3 over IP rte_flow patterns.

	Added DSCP rewrite action.

New actions RTE_FLOW_ACTION_TYPE_SET_IPV[4/6]_DSCP have been added
to support rewrite the DSCP field in the IP header.

	Added IONIC net PMD.

Added the new ionic net driver for Pensando Ethernet Network Adapters.
See the IONIC Driver NIC guide for more details on this new driver.

	Updated Broadcom bnxt driver.

Updated Broadcom bnxt driver with new features and improvements, including:

	Added support for MARK action.

	Updated Hisilicon hns3 driver.

Updated Hisilicon hns3 driver with new features and improvements, including:

	Added support for Rx interrupt.

	Added support setting VF MAC address by PF driver.

	Updated the Intel ice driver.

Updated the Intel ice driver with new features and improvements, including:

	Added support for MAC rules on a specific port.

	Added support for MAC/VLAN with TCP/UDP in switch rule.

	Added support for 1/10G device.

	Added support for API rte_eth_tx_done_cleanup.

	Updated Intel iavf driver.

Updated iavf PMD with new features and improvements, including:

	Added more supported device IDs.

	Updated virtual channel to latest AVF spec.

	Updated the Intel ixgbe driver.

Updated ixgbe PMD with new features and improvements, including:

	Added support for API rte_eth_tx_done_cleanup().

	Added support setting VF MAC address by PF driver.

	Added support for setting the link to specific speed.

	Updated Intel i40e driver.

Updated i40e PMD with new features and improvements, including:

	Added support for L2TPv3 over IP profiles which can be programmed by the
dynamic device personalization (DDP) process.

	Added support for ESP-AH profiles which can be programmed by the
dynamic device personalization (DDP) process.

	Added PF support Malicious Device Drive event catch and notify.

	Added LLDP support.

	Extended PHY access AQ cmd.

	Added support for reading LPI counters.

	Added support for Energy Efficient Ethernet.

	Added support for API rte_eth_tx_done_cleanup().

	Added support for VF multiple queues interrupt.

	Added support for setting the link to specific speed.

	Updated Mellanox mlx5 driver.

Updated Mellanox mlx5 driver with new features and improvements, including:

	Added support for the mbufs with external pinned buffers.

	Added support for RSS using L3/L4 source/destination only.

	Added support for matching on GTP tunnel header item.

	Removed limitation of matching on tagged/untagged packets (when using DV flow engine).

	Added support for IPv4/IPv6 DSCP rewrite action.

	Added BlueField-2 integrated ConnectX-6 Dx device support.

	Add new vDPA PMD based on Mellanox devices.

Added a new Mellanox vDPA (mlx5_vdpa) PMD.
See the MLX5 vDPA driver guide for more details on this driver.

	Added support for virtio-PMD notification data.

Added support for virtio-PMD notification data so that the driver
passes extra data (besides identifying the virtqueue) in its device
notifications, expanding the notifications to include the avail index and
avail wrap counter (When split ring is used, the avail wrap counter is not
included in the notification data).

	Updated testpmd application.

Added support for ESP and L2TPv3 over IP rte_flow patterns to the testpmd
application.

	Added algorithms to cryptodev API.

Added new algorithms to the cryptodev API:

	ECDSA (Elliptic Curve Digital Signature Algorithm) is added to
asymmetric crypto library specifications.

	ECPM (Elliptic Curve Point Multiplication) is added to
asymmetric crypto library specifications.

	Added synchronous Crypto burst API.

A new API has been introduced in the crypto library to handle synchronous cryptographic
operations allowing it to achieve performance gains for cryptodevs which use
CPU based acceleration, such as Intel AES-NI. An implementation for aesni_gcm
cryptodev is provided. The IPsec example application and ipsec library itself
were changed to allow utilization of this new feature.

	Added handling of mixed algorithms in encrypted digest requests in QAT PMD.

Added handling of mixed algorithms in encrypted digest hash-cipher
(generation) and cipher-hash (verification) requests (e.g. SNOW3G + ZUC or
ZUC + AES CTR) in QAT PMD possible when running on GEN3 QAT hardware.
Such algorithm combinations are not supported on GEN1/GEN2 hardware
and executing the request returns RTE_CRYPTO_OP_STATUS_INVALID_SESSION.

	Queue-pairs are now thread-safe on Intel QuickAssist Technology (QAT) PMD.

Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within
a single queue-pair all enqueues to the TX queue must be done from one thread
and all dequeues from the RX queue must be done from one thread, but enqueues
and dequeues may be done in different threads.).

	Updated the ZUC PMD.

	Transitioned underlying library from libSSO ZUC to intel-ipsec-mb
library (minimum version required 0.53).

	Removed dynamic library limitation, so PMD can be built as a shared
object now.

	Updated the KASUMI PMD.

	Transitioned underlying library from libSSO KASUMI to intel-ipsec-mb
library (minimum version required 0.53).

	Updated the SNOW3G PMD.

	Transitioned underlying library from libSSO SNOW3G to intel-ipsec-mb
library (minimum version required 0.53).

	Changed armv8 crypto PMD external dependency.

Changed armv8 crypto PMD external dependency. The
armv8 crypto PMD now depends on the Arm crypto library, and Marvell’s
armv8 crypto library is not used anymore. The library name has been changed
from armv8_crypto to AArch64crypto.

	Added inline IPsec support to Marvell OCTEON TX2 PMD.

Added inline IPsec support to Marvell OCTEON TX2 PMD. With this feature,
applications will be able to offload entire IPsec offload to the hardware.
For the configured sessions, hardware will do the lookup and perform
decryption and IPsec transformation. For the outbound path, applications
can submit a plain packet to the PMD, and it will be sent out on the wire
after doing encryption and IPsec transformation of the packet.

	Added Marvell OCTEON TX2 End Point rawdev PMD.

Added a new OCTEON TX2 rawdev PMD for End Point mode of operation.
See the Marvell OCTEON TX2 End Point Rawdev Driver for more details on this new PMD.

	Added event mode to l3fwd sample application.

Added event device support for the l3fwd sample application. It demonstrates
usage of poll and event mode IO mechanism under a single application.

	Added cycle-count mode to the compression performance tool.

Enhanced the compression performance tool by adding a cycle-count mode
which can be used to help measure and tune hardware and software PMDs.

	Added OpenWrt howto guide.

Added document which describes how to enable DPDK on OpenWrt in both virtual and
physical machines.

2.2. Removed Items

	Disabled building all the Linux kernel modules by default.

In order to remove the build time dependency on the Linux kernel,
the Technical Board decided to disable all the kernel modules
by default from 20.02 version.

	Removed coalescing feature from Intel QuickAssist Technology (QAT) PMD.

The internal tail write coalescing feature was removed as not compatible with
dual-thread feature. It was replaced with a threshold feature. At busy times
if only a small number of packets can be enqueued, each enqueue causes
an expensive MMIO write. These MMIO write occurrences can be optimized by using
the new threshold parameter on process start. Please see QAT documentation for
more details.

2.3. API Changes

	No change in this release.

2.4. ABI Changes

	No change, kept ABI v20. DPDK 20.02 is compatible with DPDK 19.11.

	The soname for each stable ABI version should be just the ABI version major
number without the minor number. Unfortunately both major and minor were used
in the v19.11 release, causing version v20.x releases to be incompatible with
ABI v20.0.

The commit f26c2b39b271 [https://git.dpdk.org/dpdk/commit/?id=f26c2b39b271]
fixed the issue by switching from 2-part to 3-part ABI version numbers so that
we can keep v20.0 as soname and using the final digits to identify the DPDK
20.x releases which are ABI compatible.

2.5. Tested Platforms

	Intel® platforms with Intel® NICs combinations

	CPU

	Intel® Atom™ CPU C3758 @ 2.20GHz

	Intel® Atom™ CPU C3858 @ 2.00GHz

	Intel® Atom™ CPU C3958 @ 2.00GHz

	Intel® Xeon® CPU D-1541 @ 2.10GHz

	Intel® Xeon® CPU D-1553N @ 2.30GHz

	Intel® Xeon® CPU E5-2680 0 @ 2.70GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2699 v3 @ 2.30GHz

	Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz

	Intel® Xeon® Gold 6139 CPU @ 2.30GHz

	Intel® Xeon® Gold 6252N CPU @ 2.30GHz

	Intel® Xeon® Platinum 8180 CPU @ 2.50GHz

	Intel® Xeon® Platinum 8280M CPU @ 2.70GHz

	OS:

	CentOS 7.7

	CentOS 8.0

	Fedora 31

	FreeBSD 12.1

	Red Hat Enterprise Linux Server release 8.0

	Red Hat Enterprise Linux Server release 7.7

	Suse15SP1

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 18.04

	Ubuntu 19.04

	NICs:

	Intel® Corporation Ethernet Controller E810-C for SFP (4x25G)

	Firmware version: 1.02 0x80002b69

	Device id (pf): 8086:1593

	Driver version: 0.12.34 (ice)

	Intel® Corporation Ethernet Controller E810-C for SFP (2x100G)

	Firmware version: 1.02 0x80002b68

	Device id (pf): 8086:1592

	Driver version: 0.12.34 (ice)

	Intel® 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.6.1 (ixgbe)

	Intel® Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 5.1.0 (ixgbe)

	Intel® Corporation Ethernet Controller 10G X550T

	Firmware version: 0x80000482

	Device id (pf): 8086:1563

	Driver version: 5.6.1 (ixgbe)

	Intel® Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 7.20 0x800079e8

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.10.19.30 (i40e)

	Intel® Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 4.11 0x80001def

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.10.19.30 (i40e)

	Intel® Corporation Ethernet Connection X722 for 10GBASE-T (2x10G)

	Firmware version: 4.10 0x80001a7a

	Device id (pf/vf): 8086:37d2 / 8086:37cd

	Driver version: 2.10.19.30 (i40e)

	Intel® Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 7.20 0x80007947

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.10.19.30 (i40e)

	Intel® Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 7.20 0x80007948

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.10.19.30 (i40e)

	Intel® Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000cbc

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel® Corporation I210 Gigabit Network Connection

	Firmware version: 3.25, 0x800006eb

	Device id (pf): 8086:1533

	Driver version: 5.4.0-k(igb)

	Intel® platforms with Mellanox® NICs combinations

	CPU:

	Intel® Xeon® Gold 6154 CPU @ 3.00GHz

	Intel® Xeon® CPU E5-2697A v4 @ 2.60GHz

	Intel® Xeon® CPU E5-2697 v3 @ 2.60GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2650 v4 @ 2.20GHz

	Intel® Xeon® CPU E5-2640 @ 2.50GHz

	Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz

	OS:
* Red Hat Enterprise Linux Server release 7.5 (Maipo)
* Red Hat Enterprise Linux Server release 7.4 (Maipo)
* Red Hat Enterprise Linux Server release 7.3 (Maipo)
* Red Hat Enterprise Linux Server release 7.2 (Maipo)
* Ubuntu 18.04
* Ubuntu 16.04

	OFED:

	MLNX_OFED 4.7-3.2.9.0

	MLNX_OFED 5.0-0.4.1.0 and above

	upstream kernel:

	Linux 5.5 and above

	rdma-core:

	rdma-core-28.0-1 and above

	NICs:

	Mellanox® ConnectX®-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox® ConnectX®-3 Pro 40G MCX354A-FCCT (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox® ConnectX®-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.27.1000 and above

	Mellanox® ConnectX®-4 Lx 50G MCX4131A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.27.1000 and above

	Mellanox® ConnectX®-5 100G MCX516A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.1000 and above

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.1000 and above

	Mellanox® ConnectX®-5 100G MCX556A-EDAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.1000 and above

	Mellanox® ConnectX®-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.27.1000 and above

	Mellanox® BlueField SmartNIC

	Mellanox® BlueField SmartNIC MT416842 (2x25G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.27.1000

	SoC Arm cores running OS:

	CentOS Linux release 7.5.1804 (AltArch)

	MLNX_OFED 5.0-0.4.0.0

	DPDK application running on Arm cores inside SmartNIC

	IBM Power 9 platforms with Mellanox® NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Ubuntu 18.04.1 LTS (Bionic Beaver)

	NICs:

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.27.1000

	OFED:

	MLNX_OFED 5.0-0.4.1.0

	ARMv8 SoC combinations from Marvell (with integrated NICs)

	SoC:

	CN83xx, CN96xx, CN93xx

	OS (Based on Marvell OCTEON TX SDK-10.3.2.x):

	Arch Linux

	Buildroot 2018.11

	Ubuntu 16.04.1 LTS

	Ubuntu 16.10

	Ubuntu 18.04.1

	Ubuntu 19.04

3. DPDK Release 19.11

3.1. New Features

	Added support for –base-virtaddr EAL option to FreeBSD.

The FreeBSD version of DPDK now also supports setting base virtual address
for mapping pages and resources into its address space.

	Added Lock-free Stack for aarch64.

Enabled the lock-free stack implementation for aarch64 platforms.

	Extended pktmbuf mempool private structure.

rte_pktmbuf_pool_private structure was extended to include flags field
for future compatibility.
As per 19.11 release this field is reserved and should be set to 0
by the user.

+* Changed mempool allocation behavior.

Changed the mempool allocation behaviour so that objects no longer cross
pages by default. Note, this may consume more memory when using small memory
pages.

	Added support for dynamic fields and flags in mbuf.

This new feature adds the ability to dynamically register some room
for a field or a flag in the mbuf structure. This is typically used
for specific offload features, where adding a static field or flag
in the mbuf is not justified.

	Added support for hairpin queues.

On supported NICs, we can now setup hairpin queues which will offload packets
from the wire, back to the wire.

	Added flow tag in rte_flow.

The SET_TAG action and TAG item have been added to support transient
flow tag.

	Extended metadata support in rte_flow.

Flow metadata has been extended to both Rx and Tx.

	Tx metadata can also be set by SET_META action of rte_flow.

	Rx metadata is delivered to the host via a dynamic field of rte_mbuf
with PKT_RX_DYNF_METADATA.

	Added ethdev API to set supported packet types.

	Added new API rte_eth_dev_set_ptypes which allows an application to
inform a PMD about a reduced range of packet types to handle.

	This scheme will allow PMDs to avoid lookup of internal ptype table on Rx
and thereby improve Rx performance if the application wishes to do so.

	Added Rx offload flag to enable or disable RSS update.

	Added new Rx offload flag DEV_RX_OFFLOAD_RSS_HASH which can be used to
enable/disable PMDs write to rte_mbuf::hash::rss.

	PMDs notify the validity of rte_mbuf::hash:rss to the application
by enabling PKT_RX_RSS_HASH flag in rte_mbuf::ol_flags.

	Added Rx/Tx packet burst mode “get” API.

Added two new functions rte_eth_rx_burst_mode_get and
rte_eth_tx_burst_mode_get that allow an application
to retrieve the mode information about Rx/Tx packet burst
such as Scalar or Vector, and Vector technology like AVX2.

	Added Hisilicon hns3 PMD.

Added the new hns3 net driver for the inbuilt Hisilicon Network
Subsystem 3 (HNS3) network engine found in the Hisilicon Kunpeng 920 SoC.
See the HNS3 Poll Mode Driver guide for more details on this new driver.

	Added NXP PFE PMD.

Added the new PFE driver for the NXP LS1012A platform. See the
PFE Poll Mode Driver NIC driver guide for more details on this new driver.

	Updated Broadcom bnxt driver.

Updated Broadcom bnxt driver with new features and improvements, including:

	Added support for hot firmware upgrade.

	Added support for error recovery.

	Added support for querying and using COS classification in hardware.

	Added LRO support Thor devices.

	Update HWRM API to version 1.10.1.6

	Updated the enic driver.

	Added support for Geneve with options offload.

	Added flow API implementation based on VIC Flow Manager API.

	Updated iavf PMD.

Enable AVX2 data path for iavf PMD.

	Updated the Intel e1000 driver.

Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Updated the Intel ixgbe driver.

Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Updated the Intel i40e driver.

Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Updated the Intel fm10k driver.

Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Updated the Intel ice driver.

Updated the Intel ice driver with new features and improvements, including:

	Added support for device-specific DDP package loading.

	Added support for handling Receive Flex Descriptor.

	Added support for protocol extraction on per Rx queue.

	Added support for Flow Director filter based on generic filter framework.

	Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Generic filter enhancement
- Supported pipeline mode.
- Supported new packet type like PPPoE for switch filter.

	Supported input set change and symmetric hash by rte_flow RSS action.

	Added support for GTP Tx checksum offload.

	Added new device IDs to support E810_XXV devices.

	Updated the Huawei hinic driver.

Updated the Huawei hinic driver with new features and improvements, including:

	Enabled SR-IOV - Partially supported at this point, VFIO only.

	Supported VLAN filter and VLAN offload.

	Supported Unicast MAC filter and Multicast MAC filter.

	Supported Flow API for LACP, VRRP, BGP and so on.

	Supported FW version get.

	Updated Mellanox mlx5 driver.

Updated Mellanox mlx5 driver with new features and improvements, including:

	Added support for VLAN pop flow offload command.

	Added support for VLAN push flow offload command.

	Added support for VLAN set PCP offload command.

	Added support for VLAN set VID offload command.

	Added support for matching on packets withe Geneve tunnel header.

	Added hairpin support.

	Added ConnectX-6 Dx support.

	Flow engine selected based on RDMA Core library version.
DV flow engine selected if version is rdma-core-24.0 or higher.
Verbs flow engine selected otherwise.

	Updated the AF_XDP PMD.

Updated the AF_XDP PMD. The new features include:

	Enabled zero copy between application mempools and UMEM by enabling the
XDP_UMEM_UNALIGNED_CHUNKS UMEM flag.

	Added cryptodev asymmetric session-less operation.

Added a session-less option to the cryptodev asymmetric structure. It works
the same way as symmetric crypto, and the corresponding transform is used
directly by the crypto operation.

	Added Marvell NITROX symmetric crypto PMD.

Added a symmetric crypto PMD for Marvell NITROX V security processor.
See the Marvell NITROX Crypto Poll Mode Driver guide for more details on this new PMD.

	Added asymmetric support to Marvell OCTEON TX crypto PMD.

Added support for asymmetric operations to Marvell OCTEON TX crypto PMD.
Supports RSA and modexp operations.

	Added Marvell OCTEON TX2 crypto PMD.

Added a new PMD driver for hardware crypto offload block on OCTEON TX2
SoC.

See Marvell OCTEON TX2 Crypto Poll Mode Driver for more details

	Updated NXP crypto PMDs for PDCP support.

Added PDCP support to the DPAA_SEC and DPAA2_SEC PMDs using rte_security
APIs. Support has been added for all sequence number sizes for control and
user plane. Test and test-crypto-perf applications have been updated for
unit testing.

	Updated the AESNI-MB PMD.

	Added support for intel-ipsec-mb version 0.53.

	Updated the AESNI-GCM PMD.

	Added support for intel-ipsec-mb version 0.53.

	Added support for in-place chained mbufs with AES-GCM algorithm.

	Enabled Single Pass GCM acceleration on QAT GEN3.

Added support for Single Pass GCM, available on QAT GEN3 only (Intel
QuickAssist Technology P5xxx). It is automatically chosen instead of the
classic 2-pass mode when running on QAT GEN3, significantly improving
the performance of AES GCM operations.

	Updated the Intel QuickAssist Technology (QAT) asymmetric crypto PMD.

	Added support for asymmetric session-less operations.

	Added support for RSA algorithm with pair (n, d) private key
representation.

	Added support for RSA algorithm with quintuple private key representation.

	Updated the Intel QuickAssist Technology (QAT) compression PMD.

Added stateful decompression support in the Intel QuickAssist Technology PMD.
Please note that stateful compression is not supported.

	Added external buffers support for dpdk-test-compress-perf tool.

Added a command line option to the dpdk-test-compress-perf tool to
allocate and use memory zones as external buffers instead of keeping the
data directly in mbuf areas.

	Updated the IPSec library.

	Added Security Associations (SA) Database API to librte_ipsec. A new
test-sad application has also been introduced to evaluate and perform
custom functional and performance tests for an IPsec SAD implementation.

	Support fragmented packets in inline crypto processing mode with fallback
lookaside-none session. Corresponding changes are also added in the
IPsec Security Gateway application.

	Introduced FIFO for NTB PMD.

Introduced FIFO for NTB (Non-transparent Bridge) PMD to support
packet based processing.

	Added eBPF JIT support for arm64.

Added eBPF JIT support for arm64 architecture to improve the eBPF program
performance.

	Added RIB and FIB (Routing/Forwarding Information Base) libraries.

Added Routing and Forwarding Information Base (RIB/FIB) libraries. RIB and
FIB can replace the LPM (Longest Prefix Match) library with better control
plane (RIB) performance. The data plane (FIB) can be extended with new
algorithms.

	Updated testpmd with a command for ptypes.

	Added a console command to testpmd app, show port (port_id) ptypes which
gives ability to print port supported ptypes in different protocol layers.

	Packet type detection disabled by default for the supported PMDs.

	Added new l2fwd-event sample application.

Added an example application l2fwd-event that adds event device support to
the traditional l2fwd example. It demonstrates usage of poll and event mode IO
mechanism under a single application.

	Added build support for Link Time Optimization.

LTO is an optimization technique used by the compiler to perform whole
program analysis and optimization at link time. In order to do that
compilers store their internal representation of the source code that
the linker uses at the final stage of the compilation process.

See Link Time Optimization for more information:

	Added IOVA as VA support for KNI.

	Added IOVA = VA support for KNI. KNI can operate in IOVA = VA mode when
iova-mode=va EAL option is passed to the application or when bus IOVA
scheme is selected as RTE_IOVA_VA. This mode only works on Linux Kernel
versions 4.10.0 and above.

	Due to IOVA to KVA address translations, based on the KNI use case there
can be a performance impact. For mitigation, forcing IOVA to PA via EAL
--iova-mode=pa option can be used, IOVA_DC bus iommu scheme can also
result in IOVA as PA.

3.2. Removed Items

	Removed library-level ABI versions. These have been replaced with a single
project-level ABI version for non-experimental libraries and an ABI version of
0 for experimental libraries. Review the ABI Policy
and ABI Versioning guides for more information.

	Removed duplicated set of commands for Rx offload configuration from testpmd:

port config all crc-strip|scatter|rx-cksum|rx-timestamp|
 hw-vlan|hw-vlan-filter|hw-vlan-strip|hw-vlan-extend on|off

The testpmd command set that can be used instead in order to enable or
disable Rx offloading on all Rx queues of a port is:

port config <port_id> rx_offload crc_strip|scatter|
 ipv4_cksum|udp_cksum|tcp_cksum|timestamp|
 vlan_strip|vlan_filter|vlan_extend on|off

	Removed AF_XDP pmd_zero copy vdev argument. Support is now auto-detected.

	The following sample applications have been removed in this release:

	Exception Path

	L3 Forwarding in a Virtualization Environment

	Load Balancer

	Netmap Compatibility

	Quota and Watermark

	vhost-scsi

	Removed arm64-dpaa2-* build config. arm64-dpaa-* can now build for both
dpaa and dpaa2 platforms.

3.3. API Changes

	eal: made the lcore_config struct and global symbol private.

	eal: removed the rte_cpu_check_supported function, replaced by
rte_cpu_is_supported since dpdk v17.08.

	eal: removed the rte_malloc_virt2phy function, replaced by
rte_malloc_virt2iova since v17.11.

	eal: made the rte_config struct and rte_eal_get_configuration
function private.

	mem: hid the internal malloc_heap structure and the
rte_malloc_heap.h header.

	vfio: removed rte_vfio_dma_map and rte_vfio_dma_unmap that have
been marked as deprecated in release 19.05.
rte_vfio_container_dma_map and rte_vfio_container_dma_unmap can
be used as substitutes.

	pci: removed the following functions deprecated since dpdk v17.11:

	eal_parse_pci_BDF replaced by rte_pci_addr_parse

	eal_parse_pci_DomBDF replaced by rte_pci_addr_parse

	rte_eal_compare_pci_addr replaced by rte_pci_addr_cmp

	The network structure esp_tail has been prefixed by rte_.

	The network definitions of PPPoE ethertypes have been prefixed by RTE_.

	The network structure for MPLS has been prefixed by rte_.

	ethdev: changed rte_eth_dev_infos_get return value from void to
int to provide a way to report various error conditions.

	ethdev: changed rte_eth_promiscuous_enable and
rte_eth_promiscuous_disable return value from void to int to
provide a way to report various error conditions.

	ethdev: changed rte_eth_allmulticast_enable and
rte_eth_allmulticast_disable return value from void to int to
provide a way to report various error conditions.

	ethdev: changed rte_eth_dev_xstats_reset return value from void to
int to provide a way to report various error conditions.

	ethdev: changed rte_eth_link_get and rte_eth_link_get_nowait
return value from void to int to provide a way to report various
error conditions.

	ethdev: changed rte_eth_macaddr_get return value from void to
int to provide a way to report various error conditions.

	ethdev: changed rte_eth_dev_owner_delete return value from void to
int to provide a way to report various error conditions.

	ethdev: The deprecated function rte_eth_dev_count was removed.
The function rte_eth_dev_count_avail is a drop-in replacement.
If the intent is to iterate over ports, RTE_ETH_FOREACH_* macros
are better port iterators.

	ethdev: RTE_FLOW_ITEM_TYPE_META data endianness altered to host one.
Due to the new dynamic metadata field in mbuf is host-endian either, there
is a minor compatibility issue for applications in case of 32-bit values
supported.

	ethdev: the tx_metadata mbuf field is moved to dynamic one.
PKT_TX_METADATA flag is replaced with PKT_TX_DYNF_METADATA.
DEV_TX_OFFLOAD_MATCH_METADATA offload flag is removed, now metadata
support in PMD is engaged on dynamic field registration.

	event: The function rte_event_eth_tx_adapter_enqueue takes an additional
input as flags. Flag RTE_EVENT_ETH_TX_ADAPTER_ENQUEUE_SAME_DEST which
has been introduced in this release is used when all the packets enqueued in
the Tx adapter are destined for the same Ethernet port and Tx queue.

	sched: The pipe nodes configuration parameters such as number of pipes,
pipe queue sizes, pipe profiles, etc., are moved from port level structure
to subport level. This allows different subports of the same port to
have different configuration for the pipe nodes.

3.4. ABI Changes

	policy: Please note the revisions to the ABI Policy
introducing major ABI versions, with DPDK 19.11 becoming the first major
version v20. ABI changes to add new features continue to be permitted in
subsequent releases, with the condition that ABI compatibility with the major
ABI version is maintained.

	net: The Ethernet address and other header definitions have changed
attributes. They have been modified to be aligned on 2-byte boundaries.
These changes should not impact normal usage because drivers naturally
align the Ethernet header on receive and all known encapsulations
preserve the alignment of the header.

	security: The field replay_win_sz has been moved from the ipsec library
based rte_ipsec_sa_prm structure to security library based structure
rte_security_ipsec_xform, which specify the anti-replay window size
to enable sequence replay attack handling.

	ipsec: The field replay_win_sz has been removed from the structure
rte_ipsec_sa_prm as it has been added to the security library.

	ethdev: Added 32-bit fields for maximum LRO aggregated packet size, in
struct rte_eth_dev_info for the port capability and in struct
rte_eth_rxmode for the port configuration.
Application should use the new field in struct rte_eth_rxmode to configure
the requested size.
PMD should use the new field in struct rte_eth_dev_info to report the
supported port capability.

3.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
 librte_bus_dpaa.so.2
 librte_bus_fslmc.so.2
 librte_bus_ifpga.so.2
 librte_bus_pci.so.2
 librte_bus_vdev.so.2
 librte_bus_vmbus.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_compressdev.so.1
 librte_cryptodev.so.8
 librte_distributor.so.1
+ librte_eal.so.12
 librte_efd.so.1
+ librte_ethdev.so.13
+ librte_eventdev.so.8
+ librte_fib.so.1
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
+ librte_ipsec.so.2
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.5
 librte_member.so.1
 librte_mempool.so.5
 librte_meter.so.3
 librte_metrics.so.1
 librte_net.so.1
+ librte_pci.so.2
 librte_pdump.so.3
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
+ librte_rib.so.1
 librte_rcu.so.1
 librte_reorder.so.1
 librte_ring.so.2
+ librte_sched.so.4
+ librte_security.so.3
 librte_stack.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.4

3.6. Known Issues

3.7. Tested Platforms

	Intel® platforms with Intel® NICs combinations

	CPU

	Intel® Atom™ CPU C3758 @ 2.20GHz

	Intel® Atom™ CPU C3858 @ 2.00GHz

	Intel® Atom™ CPU C3958 @ 2.00GHz

	Intel® Xeon® CPU D-1541 @ 2.10GHz

	Intel® Xeon® CPU D-1553N @ 2.30GHz

	Intel® Xeon® CPU E5-2680 0 @ 2.70GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2699 v3 @ 2.30GHz

	Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz

	Intel® Xeon® Gold 6139 CPU @ 2.30GHz

	Intel® Xeon® Gold 6252N CPU @ 2.30GHz

	Intel® Xeon® Platinum 8180 CPU @ 2.50GHz

	Intel® Xeon® Platinum 8280M CPU @ 2.70GHz

	OS:

	CentOS 7.6

	Fedora 30

	FreeBSD 12.0

	Red Hat Enterprise Linux Server release 8.0

	Red Hat Enterprise Linux Server release 7.6

	Suse12SP3

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 18.04

	Ubuntu 19.04

	NICs:

	Intel® Corporation Ethernet Controller E810-C for SFP (2x25G)

	Firmware version: 1.02 0x80002084 1.2538.0/1.02 0x80002082 1.2538.0

	Device id (pf): 8086:1593

	Driver version: 0.12.25 (ice)

	Intel® Corporation Ethernet Controller E810-C for SFP (2x100G)

	Firmware version: 1.02 0x80002081 1.2538.0

	Device id (pf): 8086:1592

	Driver version: 0.12.25 (ice)

	Intel® 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.6.1 (ixgbe)

	Intel® Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 5.1.0 (ixgbe)

	Intel® Corporation Ethernet Controller 10G X550T

	Firmware version: 0x80000482

	Device id (pf): 8086:1563

	Driver version: 5.6.1 (ixgbe)

	Intel® Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 7.00 0x80004cdb

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel® Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 4.10 0x80001a3c

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.9.21 (i40e)

	Intel® Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 7.00 0x80004cf8

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel® Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 7.00 0x80004c97

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel® Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000cbc

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel® Corporation I210 Gigabit Network Connection

	Firmware version: 3.25, 0x800006eb

	Device id (pf): 8086:1533

	Driver version: 5.4.0-k(igb)

	ARMv8 SoC combinations from Marvell (with integrated NICs)

	SoC:

	CN83xx, CN96xx, CN93xx

	OS (Based on Marvell OCTEON TX SDK-10.1.2.0):

	Arch Linux

	Buildroot 2018.11

	Ubuntu 16.04.1 LTS

	Ubuntu 16.10

	Ubuntu 18.04.1

	Ubuntu 19.04

	Intel® platforms with Mellanox® NICs combinations

	CPU:

	Intel® Xeon® Gold 6154 CPU @ 3.00GHz

	Intel® Xeon® CPU E5-2697A v4 @ 2.60GHz

	Intel® Xeon® CPU E5-2697 v3 @ 2.60GHz

	Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz

	Intel® Xeon® CPU E5-2650 v4 @ 2.20GHz

	Intel® Xeon® CPU E5-2640 @ 2.50GHz

	Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 8.0 (Maipo)

	Red Hat Enterprise Linux Server release 7.7 (Maipo)

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 19.04

	Ubuntu 18.10

	Ubuntu 18.04

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	OFED:

	MLNX_OFED 4.6-1.0.1.1

	MLNX_OFED 4.7-1.0.0.1

	MLNX_OFED 4.7-3.1.9.0 and above

	upstream kernel:

	Linux 5.3 and above

	rdma-core:

	rdma-core-24.1-1 and above

	NICs:

	Mellanox® ConnectX®-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox® ConnectX®-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.26.2032 and above

	Mellanox® ConnectX®-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.26.2032 and above

	Mellanox® ConnectX®-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.26.2032 and above

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.26.2032 and above

	Mellanox® ConnectX®-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.26.2032 and above

	IBM Power 9 platforms with Mellanox® NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Ubuntu 18.04.1 LTS (Bionic Beaver)

	NICs:

	Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.26.1040

	OFED:

	MLNX_OFED 4.7-1.0.0.2

4. DPDK Release 19.08

4.1. New Features

	EAL will now pick IOVA as VA mode as the default in most cases.

Previously, the preferred default IOVA mode was selected to be IOVA as PA. The
behavior has now been changed to handle IOVA mode detection in a more complex
manner, and will default to IOVA as VA in most cases.

	Added MCS lock.

MCS lock provides scalability by spinning on a CPU/thread local variable
which avoids expensive cache bouncing.
It provides fairness by maintaining a list of acquirers and passing
the lock to each CPU/thread in the order they acquired the lock.

	Updated the EAL Pseudo-random Number Generator.

The lrand48() based rte_rand() function is replaced with a
DPDK-native combined Linear Feedback Shift Register (LFSR)
pseudo-random number generator (PRNG).

This new PRNG implementation is multi-thread safe, provides
higher-quality pseudo-random numbers (including full 64 bit
support) and improved performance.

In addition, <rte_random.h> is extended with a new function
rte_rand_max() which supplies unbiased, bounded pseudo-random
numbers.

	Updated the Broadcom bnxt PMD.

Updated the Broadcom bnxt PMD. The major enhancements include:

	Performance optimizations in non-vector Tx path.

	Added support for SSE vector mode.

	Updated HWRM API to version 1.10.0.91.

	Added support for Broadcom NetXtreme-E BCM57500 Ethernet controllers.

Added support to the Broadcom bnxt PMD for the BCM57500 (a.k.a. “Thor”) family
of Ethernet controllers. These controllers support link speeds up to
200Gbps, 50G PAM-4, and PCIe 4.0.

	Added Huawei hinic PMD.

Added the new hinic net driver for Huawei Intelligent PCIE Network
Adapters based on the Huawei Ethernet Controller Hi1822.
See the HINIC Poll Mode Driver guide for more details on this new driver.

	Updated the Intel ice driver.

Updated the Intel ice driver with new features and improvements, including:

	Enabled Tx outer/inner L3/L4 checksum offload.

	Enabled generic filter framework and supported switch filter.

	Supported UDP tunnel port add.

	Updated the Intel i40e driver.

Updated tje Intel i40e driver with new features and improvements, including:

	Added support for MARK + RSS action in rte_flow (non-vector RX path only)

	Updated Mellanox mlx5 driver.

Updated Mellanox mlx5 driver with new features and improvements, including:

	Updated the packet header modification feature. Added support of TCP header
sequence number and acknowledgment number modification.

	Added support for match on ICMP/ICMP6 code and type.

	Added support for matching on GRE’s key and C,K,S present bits.

	Added support for IP-in-IP tunnel.

	Accelerated flows with count action creation and destroy.

	Accelerated flows counter query.

	Improved Tx datapath performance with enabled HW offloads.

	Added support for LRO.

	Updated Solarflare network PMD.

Updated the Solarflare sfc_efx driver with changes including:

	Added support for Rx interrupts.

	Added memif PMD.

Added a new Shared Memory Packet Interface (memif) PMD.
See the Memif Poll Mode Driver guide for more details on this new driver.

	Updated the AF_XDP PMD.

Updated the AF_XDP PMD. The new features include:

	Enabled zero copy through mbuf’s external memory mechanism to achieve
higher performance.

	Added multi-queue support to allow one af_xdp vdev with multiple netdev
queues.

	Enabled “need_wakeup” feature which can provide efficient support for the
usecase where the application and driver executing on the same core.

	Enabled infinite Rx in the PCAP PMD.

Added an infinite Rx feature to the PCAP PMD which allows packets in the Rx
PCAP to be received repeatedly at a high rate. This can be useful for quick
performance testing of DPDK apps.

	Enabled receiving no packet in the PCAP PMD.

Added function to allow users to run the PCAP PMD without receiving any
packets on PCAP Rx. When the function is called, a dummy queue is created
for each Tx queue argument passed.

	Added a FPGA_LTE_FEC bbdev PMD.

Added a new fpga_lte_fec bbdev driver for the Intel® FPGA PAC
(Programmable Acceleration Card) N3000. See the
Intel(R) FPGA LTE FEC Poll Mode Driver BBDEV guide for more details on this new driver.

	Updated the TURBO_SW bbdev PMD.

Updated the turbo_sw bbdev driver with changes including:

	Added option to build the driver with or without dependency of external
SDK libraries.

	Added support for 5GNR encode/decode operations.

	Updated the Intel QuickAssist Technology (QAT) symmetric crypto PMD.

Added support for digest-encrypted cases where digest is appended
to the data.

	Added the Intel QuickData Technology PMD.

Added a PMD for the Intel® QuickData Technology, part of
Intel® I/O Acceleration Technology (Intel I/OAT) [https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html],
which allows data copies to be done by hardware instead
of via software, reducing cycles spent copying large blocks of data in
applications.

	Added Marvell OCTEON TX2 drivers.

Added the new ethdev, eventdev, mempool, eventdev Rx adapter,
eventdev Tx adapter, eventdev Timer adapter and rawdev DMA
drivers for various HW co-processors available in OCTEON TX2 SoC.

See Marvell OCTEON TX2 Platform Guide and driver information:

	OCTEON TX2 Poll Mode driver

	OCTEON TX2 NPA Mempool Driver

	OCTEON TX2 SSO Eventdev Driver

	OCTEON TX2 DMA Driver

	Introduced the Intel NTB PMD.

Added a PMD for Intel NTB (Non-transparent Bridge). This PMD implements
a handshake between two separate hosts and can share local memory for peer
host to directly access.

	Updated the IPSec library and IPsec Security Gateway application.

Added the following features to librte_ipsec. Corresponding changes are
also added in the ipsec-secgw sample application.

	ECN and DSCP field header reconstruction as per RFC4301.

	Transport mode with IPv6 extension headers.

	Support packets with multiple segments.

	Updated telemetry library for global metrics support.

Updated librte_telemetry to fetch the global metrics from the
librte_metrics library.

	Added new telemetry mode for l3fwd-power application.

Added a telemetry mode to the l3fwd-power application to report
application level busyness, empty and full polls of rte_eth_rx_burst().

	Updated the pdump application.

Add support for pdump to exit with primary process.

	Updated test-compress-perf tool application.

Added a multiple cores feature to the compression perf tool application.

4.2. Removed Items

	Removed KNI ethtool, CONFIG_RTE_KNI_KMOD_ETHTOOL, support.

	build: armv8 crypto extension is disabled.

4.3. API Changes

	The rte_mem_config structure has been made private. New accessor
rte_mcfg_* functions were introduced to provide replacement for direct
access to the shared mem config.

	The network structures, definitions and functions have
been prefixed by rte_ to resolve conflicts with libc headers.

	malloc: The function rte_malloc_set_limit() was never implemented.
It is deprecated and will be removed in a future release.

	cryptodev: the uint8_t *data member of the key structure in the xforms
structure (rte_crypto_cipher_xform, rte_crypto_auth_xform, and
rte_crypto_aead_xform) have been changed to const uint8_t *data.

	eventdev: No longer marked as experimental.

The eventdev functions are no longer marked as experimental, and have
become part of the normal DPDK API and ABI. Any future ABI changes will be
announced at least one release before the ABI change is made. There are no
ABI breaking changes planned.

	ip_frag: The IP fragmentation library converts input mbuf into fragments
using input MTU size via the rte_ipv4_fragment_packet() interface.
Once fragmentation is done, each mbuf->ol_flags are set to enable IP
checksum H/W offload irrespective of the platform capability.
Cleared IP checksum H/W offload flag from the library. The application must
set this flag if it is supported by the platform and application wishes to
use it.

	ip_frag: IP reassembly library converts the list of fragments into a
reassembled packet via rte_ipv4_frag_reassemble_packet() interface.
Once reassembly is done, mbuf->ol_flags are set to enable IP checksum H/W
offload irrespective of the platform capability. Cleared IP checksum H/W
offload flag from the library. The application must set this flag if it is
supported by the platform and application wishes to use it.

	sched: Macros RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS and
RTE_SCHED_PIPE_PROFILES_PER_PORT are removed for flexible configuration
of pipe traffic classes and their queues size, and for runtime configuration
of the maximum number of pipe profiles, respectively. In addition, the
wrr_weights field of struct rte_sched_pipe_params is modified to be
used only for best-effort tc, and the qsize field of struct
rte_sched_port_params is changed to allow different sizes for each
queue.

4.4. ABI Changes

	eventdev: Event based Rx adapter callback

The mbuf pointer array in the event eth Rx adapter callback
has been replaced with an event array. Using
an event array allows the application to change attributes
of the events enqueued by the SW adapter.

The callback can drop packets and populate
a callback argument with the number of dropped packets.
Add a Rx adapter stats field to keep track of the total
number of dropped packets.

	cryptodev: New member in rte_cryptodev_config to allow applications to
disable features supported by the crypto device. Only the following features
would be allowed to be disabled this way,

	RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO.

	RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO.

	RTE_CRYPTODEV_FF_SECURITY.

Disabling unused features would facilitate efficient usage of HW/SW offload.

	bbdev: New operations and parameters have been added to support new 5GNR
operations. The bbdev ABI is still kept experimental.

	rawdev: The driver names have been changed to librte_rawdev_*.
Now they all have the same prefix, and same name with make and meson builds.

4.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
 librte_bus_dpaa.so.2
 librte_bus_fslmc.so.2
 librte_bus_ifpga.so.2
 librte_bus_pci.so.2
 librte_bus_vdev.so.2
 librte_bus_vmbus.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_compressdev.so.1
+ librte_cryptodev.so.8
 librte_distributor.so.1
+ librte_eal.so.11
 librte_efd.so.1
 librte_ethdev.so.12
+ librte_eventdev.so.7
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_ipsec.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.5
 librte_member.so.1
 librte_mempool.so.5
 librte_meter.so.3
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.3
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
 librte_rcu.so.1
 librte_reorder.so.1
 librte_ring.so.2
+ librte_sched.so.3
 librte_security.so.2
 librte_stack.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.4

4.6. Known Issues

	Unsuitable IOVA mode may be picked as the default.

Not all kernel drivers and not all devices support all IOVA modes. EAL will
attempt to pick a reasonable default based on a number of factors, but
there may be cases where the default is unsuitable.

It is recommended to use the –iova-mode command-line parameter if the
default is not suitable.

4.7. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C3758 @ 2.20GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU D-1553N @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) Gold 6139 CPU @ 2.30GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	Intel(R) Xeon(R) Platinum 8280M CPU @ 2.70GHz

	OS:

	CentOS 7.6

	Fedora 30

	FreeBSD 12.0

	Red Hat Enterprise Linux Server release 8.0

	Red Hat Enterprise Linux Server release 7.6

	Suse12SP3

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 18.04

	Ubuntu 19.04

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.6.1 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 5.1.0 (ixgbe)

	Intel Corporation Ethernet Controller 10G X550T

	Firmware version: 0x80000482

	Device id (pf): 8086:1563

	Driver version: 5.6.1 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 7.00 0x80004cdb

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel(R) Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 4.10 0x80001a3c

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.9.21 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 7.00 0x80004cf8

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 7.00 0x80004c97

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.9.21 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000cbc

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel Corporation I210 Gigabit Network Connection

	Firmware version: 3.25, 0x800006eb

	Device id (pf): 8086:1533

	Driver version: 5.4.0-k(igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 19.04

	Ubuntu 18.10

	Ubuntu 18.04

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	OFED:

	MLNX_OFED 4.6-1.0.1.1

	MLNX_OFED 4.6-4.1.2.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.6406 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.25.6406 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.25.6406 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.25.6406 and above

	Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.25.6406 and above

	Mellanox(R) BlueField SmartNIC

	Mellanox(R) BlueField SmartNIC MT416842 (2x25G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.25.6600

	SoC Arm cores running OS:

	CentOS Linux release 7.5.1804 (AltArch)

	MLNX_OFED 4.6-3.5.8.0

	DPDK application running on Arm cores inside SmartNIC

	IBM Power 9 platforms with Mellanox(R) NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Ubuntu 18.04.1 LTS (Bionic Beaver)

	NICs:

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.25.6406

	OFED:

	MLNX_OFED 4.6-4.1.2.0

	ARMv8 SoC combinations from Marvell (with integrated NICs)

	SoC:

	CN83xx, CN96xx, CNF95xx, CN93xx

	OS (Based on Marvell OCTEON TX SDK 10.0):

	Arch Linux

	Buildroot 2018.11

	Ubuntu 16.04.1 LTS

	Ubuntu 16.10

	Ubuntu 18.04.1

	Ubuntu 19.04

5. DPDK Release 19.05

5.1. New Features

	Added new armv8 machine targets.

Added new armv8 machine targets:

	BlueField (Mellanox)

	OcteonTX2 (Marvell)

	ThunderX2 (Marvell)

	Added Windows Support.

Added Windows support to build Hello World sample application.

	Added Stack Library.

Added a new stack library and APIs for configuration and use of a bounded
stack of pointers. The API provides multi-thread safe push and pop
operations that can operate on one or more pointers per operation.

The library supports two stack implementations: standard (lock-based) and
lock-free. The lock-free implementation is currently limited to x86-64
platforms.

	Added Lock-Free Stack Mempool Handler.

Added a new lock-free stack handler, which uses the newly added stack
library.

	Added RCU library.

Added RCU library supporting a quiescent state based memory reclamation method.
This library helps identify the quiescent state of the reader threads so
that the writers can free the memory associated with the lock free data
structures.

	Updated KNI module and PMD.

Updated the KNI kernel module to set the max_mtu according to the given
initial MTU size. Without it, the maximum MTU was 1500.

Updated the KNI PMD driver to set the mbuf_size and MTU based on
the given mb-pool. This provide the ability to pass jumbo frames
if the mb-pool contains a suitable buffer size.

	Added the AF_XDP PMD.

Added a Linux-specific PMD driver for AF_XDP. This PMD can create an AF_XDP socket
and bind it to a specific netdev queue. It allows a DPDK application to send
and receive raw packets through the socket which would bypass the kernel
network stack to achieve high performance packet processing.

	Added a net PMD NFB.

Added the new nfb net driver for Netcope NFB cards. See
the NFB poll mode driver library NIC guide for more details on this new driver.

	Added IPN3KE net PMD.

Added the new ipn3ke net driver for the Intel® FPGA PAC (Programmable
Acceleration Card) N3000. See the IPN3KE Poll Mode Driver NIC guide for more
details on this new driver.

In addition ifpga_rawdev was also updated to support Intel® FPGA PAC
N3000 with SPI interface access, I2C Read/Write, and Ethernet PHY configuration.

	Updated Solarflare network PMD.

Updated the Solarflare sfc_efx driver with changes including:

	Added support for Rx descriptor status and related API in a secondary
process.

	Added support for Tx descriptor status API in a secondary process.

	Added support for RSS RETA and hash configuration reading API in a
secondary process.

	Added support for Rx packet types list in a secondary process.

	Added Tx prepare to do Tx offloads checks.

	Added support for VXLAN and GENEVE encapsulated TSO.

	Updated Mellanox mlx4 driver.

Updated Mellanox mlx4 driver with new features and improvements, including:

	Added firmware version reading.

	Added support for secondary processes.

	Added support of per-process device registers. Reserving identical VA space
is not needed anymore.

	Added support for multicast address list interfaces.

	Updated Mellanox mlx5 driver.

Updated Mellanox mlx5 driver with new features and improvements, including:

	Added firmware version reading.

	Added support for new naming scheme of representor.

	Added support for new PCI device DMA map/unmap API.

	Added support for multiport InfiniBand device.

	Added control of excessive memory pinning by kernel.

	Added support of DMA memory registration by secondary process.

	Added support of per-process device registers. Reserving identical VA space
is not required anymore.

	Added support for jump action for both E-Switch and NIC.

	Added Support for multiple rte_flow groups in NIC steering.

	
	Flow engine re-designed to support large scale deployments. this includes:
	
	Support millions of offloaded flow rules.

	Fast flow insertion and deletion up to 1M flow update per second.

	Renamed avf to iavf.

Renamed Intel Ethernet Adaptive Virtual Function driver avf to iavf,
which includes the directory name, lib name, filenames, makefile, docs,
macros, functions, structs and any other strings in the code.

	Updated the enic driver.

Updated enic driver with new features and improvements, including:

	Fixed several flow (director) bugs related to MARK, SCTP, VLAN, VXLAN, and
inner packet matching.

	Added limited support for RAW.

	Added limited support for RSS.

	Added limited support for PASSTHRU.

	Updated the ixgbe driver.

Updated the ixgbe driver to add promiscuous mode support for the VF.

	Updated the ice driver.

Updated ice driver with new features and improvements, including:

	Added support of SSE and AVX2 instructions in Rx and Tx paths.

	Added package download support.

	Added Safe Mode support.

	Supported RSS for UPD/TCP/SCTP+IPV4/IPV6 packets.

	Updated the i40e driver.

New features for PF in the i40e driver:

	Added support for VXLAN-GPE packet.

	Added support for VXLAN-GPE classification.

	Updated the ENETC driver.

Updated ENETC driver with new features and improvements, including:

	Added physical addressing mode support.

	Added SXGMII interface support.

	Added basic statistics support.

	Added promiscuous and allmulticast mode support.

	Added MTU update support.

	Added jumbo frame support.

	Added queue start/stop.

	Added CRC offload support.

	Added Rx checksum offload validation support.

	Updated the atlantic PMD.

Added MACSEC hardware offload experimental API.

	Updated the Intel QuickAssist Technology (QAT) compression PMD.

Updated the Intel QuickAssist Technology (QAT) compression PMD to simplify,
and make more robust, the handling of Scatter Gather Lists (SGLs) with more
than 16 segments.

	Updated the QuickAssist Technology (QAT) symmetric crypto PMD.

Added support for AES-XTS with 128 and 256 bit AES keys.

	Added Intel QuickAssist Technology PMD for asymmetric crypto.

Added a new QAT Crypto PMD which provides asymmetric cryptography
algorithms. Modular exponentiation and modular multiplicative
inverse algorithms were added in this release.

	Updated AESNI-MB PMD.

Added support for out-of-place operations.

	Updated the IPsec library.

The IPsec library has been updated with AES-CTR and 3DES-CBC cipher algorithms
support. The related ipsec-secgw test scripts have been added.

	Updated the testpmd application.

Improved the testpmd application performance on ARM platform. For macswap
forwarding mode, NEON intrinsics are now used to do swap to save CPU cycles.

	Updated power management library.

Added support for Intel Speed Select Technology - Base Frequency (SST-BF).
The rte_power_get_capabilities struct now has a bit in it’s returned mask
indicating if it is a high frequency core.

	Updated distributor sample application.

Added support for the Intel SST-BF feature so that the distributor core is
pinned to a high frequency core if available.

5.2. API Changes

	eal: the type of the attr_value parameter of the function
rte_service_attr_get() has been changed
from uint32_t * to uint64_t *.

	meter: replace enum rte_meter_color in the meter library with new
rte_color definition added in 19.02. Replacements with rte_color
values has been performed in many places such as rte_mtr.h and
rte_tm.h to consolidate multiple color definitions.

	vfio: Functions rte_vfio_container_dma_map and
rte_vfio_container_dma_unmap have been extended with an option to
request mapping or un-mapping to the default vfio container fd.

	power: rte_power_set_env and rte_power_unset_env functions
have been modified to be thread safe.

	timer: Functions have been introduced that allow multiple instances of the
timer lists to be created. In addition they are now allocated in shared
memory. New functions allow particular timer lists to be selected when
timers are being started, stopped, and managed.

5.3. ABI Changes

	ethdev: Additional fields in rte_eth_dev_info.

The rte_eth_dev_info structure has had two extra fields
added: min_mtu and max_mtu. Each of these are of type uint16_t.
The values of these fields can be set specifically by the PMD drivers as
supported values can vary from device to device.

	cryptodev: in 18.08 a new structure rte_crypto_asym_op was introduced and
included into rte_crypto_op. As the rte_crypto_asym_op structure was
defined as cache-line aligned that caused unintended changes in
rte_crypto_op structure layout and alignment. Remove cache-line
alignment for rte_crypto_asym_op to restore expected rte_crypto_op
layout and alignment.

	timer: rte_timer_subsystem_init now returns success or failure to reflect
whether it was able to allocate memory.

5.4. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
 librte_bus_dpaa.so.2
 librte_bus_fslmc.so.2
 librte_bus_ifpga.so.2
 librte_bus_pci.so.2
 librte_bus_vdev.so.2
 librte_bus_vmbus.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_compressdev.so.1
+ librte_cryptodev.so.7
 librte_distributor.so.1
+ librte_eal.so.10
 librte_efd.so.1
+ librte_ethdev.so.12
 librte_eventdev.so.6
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_ipsec.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.5
 librte_member.so.1
 librte_mempool.so.5
 librte_meter.so.3
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.3
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
+ librte_rcu.so.1
 librte_reorder.so.1
 librte_ring.so.2
 librte_sched.so.2
 librte_security.so.2
+ librte_stack.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.4

5.5. Known Issues

	On x86 platforms, AVX512 support is disabled with binutils 2.31.

Due to a defect in binutils 2.31 AVX512 support is disabled.
DPDK defect: https://bugs.dpdk.org/show_bug.cgi?id=249
GCC defect: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90028

	No software AES-XTS implementation.

There are currently no cryptodev software PMDs available which implement
support for the AES-XTS algorithm, so this feature can only be used
if compatible hardware and an associated PMD is available.

5.6. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C3758 @ 2.20GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	Intel(R) Xeon(R) Gold 6139 CPU @ 2.30GHz

	OS:

	CentOS 7.4

	CentOS 7.5

	Fedora 25

	Fedora 28

	Fedora 29

	FreeBSD 12.0

	Red Hat Enterprise Linux Server release 7.4

	Red Hat Enterprise Linux Server release 7.5

	Red Hat Enterprise Linux Server release 7.6

	SUSE12SP3

	Open SUSE 15

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 18.04

	Ubuntu 18.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel Corporation Ethernet Controller 10G X550T

	Firmware version: 0x80000482

	Device id (pf): 8086:1563

	Driver version: 5.1.0-k(ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.80 0x80003cc1

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.7.29 (i40e)

	Intel(R) Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 3.33 0x80000fd5 0.0.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.7.29 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.80 0x80003d05

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.7.29 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.80 0x80003cfb

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.7.29 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel Corporation I210 Gigabit Network Connection

	Firmware version: 3.25, 0x800006eb, 1.1824.0

	Device id (pf): 8086:1533

	Driver version: 5.4.0-k(igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 19.04

	Ubuntu 18.10

	Ubuntu 18.04

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	MLNX_OFED: 4.5-1.0.1.0

	MLNX_OFED: 4.6-1.0.1.1

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.25.1020 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.25.1020 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.25.1020 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.25.1020 and above

	Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.25.1020 and above

	Arm platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm Arm 1.1 2500MHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.24.0220

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.24.0220

	Mellanox(R) BlueField SmartNIC

	Mellanox(R) BlueField SmartNIC MT416842 (2x25G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.25.1010

	SoC Arm cores running OS:

	CentOS Linux release 7.4.1708 (AltArch)

	MLNX_OFED 4.6-1.0.0.0

	DPDK application running on Arm cores inside SmartNIC

	IBM Power 9 platforms with Mellanox(R) NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Ubuntu 18.04.1 LTS (Bionic Beaver)

	NICs:

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.24.1000

	OFED:

	MLNX_OFED_LINUX-4.6-1.0.1.0

6. DPDK Release 19.02

6.1. New Features

	Added support for freeing hugepages exactly as originally allocated.

Some applications using memory event callbacks (especially for managing
RDMA memory regions) require that memory be freed back to the system
exactly as it was originally allocated. These applications typically
also require that a malloc allocation not span across two separate
hugepage allocations. A new --match-allocations EAL init flag has
been added to fulfill both of these requirements.

	Added API to register external memory in DPDK.

A new rte_extmem_register/rte_extmem_unregister API was added to allow
chunks of external memory to be registered with DPDK without adding them to
the malloc heap.

	Added support for using virtio-user without hugepages.

The --no-huge mode was augmented to use memfd-backed memory (on systems
that support memfd), to allow using virtio-user-based NICs without
hugepages.

	Release of the ENA PMD v2.0.0.

Version 2.0.0 of the ENA PMD was added with the following additions:

	Added Low Latency Queue v2 (LLQv2). This feature reduces the latency
of the packets by pushing the header directly through the PCI to the
device. This allows the NIC to start handle packets right after the doorbell
without waiting for DMA.

	Added independent configuration of HW Tx and Rx ring depths.

	Added support for up to 8k Rx descriptors per ring.

	Added additional doorbell check on Tx, to handle Tx more efficiently for big
bursts of packets.

	Added per queue statistics.

	Added extended statistics using xstats DPDK API.

	The reset routine was aligned with the DPDK API, so now it can be
handled as in other PMDs.

	Fixed out of order (OOO) completion.

	Fixed memory leaks due to port stops and starts in the middle of
traffic.

	Updated documentation and features list of the PMD.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Fixed imissed counter to be reported through rte_eth_stats instead
of rte_eth_xstats.

	Added packet header modification through Direct Verbs flow driver.

	Added ConnectX-6 PCI device ID to be proved by mlx5 driver.

	Added flow counter support to Direct Verbs flow driver though DevX.

	Renamed build options for the glue layer to
CONFIG_RTE_IBVERBS_LINK_DLOPEN for make and ibverbs_link for meson.

	Added static linkage of mlx dependency.

	Improved stability of E-Switch flow driver.

	Added new make build configuration to set the cacheline size for BlueField
correctly - arm64-bluefield-linux-gcc.

	Updated the enic driver.

	Added support for the RTE_ETH_DEV_CLOSE_REMOVE flag.

	Added a handler to get the firmware version string.

	Added support for multicast filtering.

	Added dynamic queues allocation support for i40e VF.

Previously, the available VF queues were reserved by PF at initialization
stage. Now both DPDK PF and Kernel PF (>=2.1.14) will support dynamic queue
allocation. At runtime, when VF requests for more queue exceed the initial
reserved amount, the PF can allocate up to 16 queues as the request after a
VF reset.

	Added ICE net PMD.

Added the new ice net driver for Intel(R) Ethernet Network Adapters E810.
See the ICE Poll Mode Driver NIC guide for more details on this new driver.

	Added support for SW-assisted VDPA live migration.

This SW-assisted VDPA live migration facility helps VDPA devices without
logging capability to perform live migration, a mediated SW relay can help
devices to track dirty pages caused by DMA. the IFC driver has enabled this
SW-assisted live migration mode.

	Added security checks to the cryptodev symmetric session operations.

Added a set of security checks to the access cryptodev symmetric session.
The checks include the session’s user data read/write check and the
session private data referencing status check while freeing a session.

	Updated the AESNI-MB PMD.

	Added support for intel-ipsec-mb version 0.52.

	Added AES-GMAC algorithm support.

	Added Plain SHA1, SHA224, SHA256, SHA384, and SHA512 algorithms support.

	Added IPsec Library.

Added an experimental library librte_ipsec to provide ESP tunnel and
transport support for IPv4 and IPv6 packets.

The library provides support for AES-CBC ciphering and AES-CBC with HMAC-SHA1
algorithm-chaining, and AES-GCM and NULL algorithms only at present. It is
planned to add more algorithms in future releases.

See IPsec Packet Processing Library for more information.

	Updated the ipsec-secgw sample application.

The ipsec-secgw sample application has been updated to use the new
librte_ipsec library, which has also been added in this release.
The original functionality of ipsec-secgw is retained, a new command line
parameter -l has been added to ipsec-secgw to use the IPsec library,
instead of the existing IPsec code in the application.

The IPsec library does not support all the functionality of the existing
ipsec-secgw application. It is planned to add the outstanding functionality
in future releases.

See IPsec Security Gateway Sample Application for more information.

	Enabled checksum support in the ISA-L compressdev driver.

Added support for both adler and crc32 checksums in the ISA-L PMD.
This aids data integrity across both compression and decompression.

	Added a compression performance test tool.

Added a new performance test tool to test the compressdev PMD. The tool tests
compression ratio and compression throughput.

	Added intel_pstate support to Power Management library.

Previously, using the power management library required the
disabling of the intel_pstate kernel driver, and the enabling of the
acpi_cpufreq kernel driver. This is no longer the case, as the use of
the intel_pstate kernel driver is now supported, and automatically
detected by the library.

6.2. API Changes

	eal: Function rte_bsf64 in rte_bitmap.h has been renamed to
rte_bsf64_safe and moved to rte_common.h. A new rte_bsf64
function has been added in rte_common.h that follows the convention set
by the existing rte_bsf32 function.

	eal: Segment fd API on Linux now sets error code to ENOTSUP in more cases
where segment the fd API is not expected to be supported:

	On attempt to get a segment fd for an externally allocated memory segment

	In cases where memfd support would have been required to provide segment
fds (such as in-memory or no-huge mode)

	eal: Functions rte_malloc_dump_stats(), rte_malloc_dump_heaps() and
rte_malloc_get_socket_stats() are no longer safe to call concurrently with
rte_malloc_heap_create() or rte_malloc_heap_destroy() function calls.

	mbuf: RTE_MBUF_INDIRECT(), which was deprecated in 18.05, was replaced
with RTE_MBUF_CLONED() and removed in 19.02.

	sched: As result of the new format of the mbuf sched field, the
functions rte_sched_port_pkt_write() and
rte_sched_port_pkt_read_tree_path() got an additional parameter of
type struct rte_sched_port.

	pdump: The rte_pdump_set_socket_dir(), the parameter path of
rte_pdump_init() and enum rte_pdump_socktype were deprecated
since 18.05 and are removed in this release.

	cryptodev: The parameter session_pool in the function
rte_cryptodev_queue_pair_setup() is removed.

	cryptodev: a new function rte_cryptodev_sym_session_pool_create() has been
introduced. This function is now mandatory when creating symmetric session
header mempool. Please note all crypto applications are required to use this
function from now on. Failed to do so will cause a
rte_cryptodev_sym_session_create() function call return error.

6.3. ABI Changes

	mbuf: The format of the sched field of rte_mbuf has been changed
to include the following fields: queue ID, traffic class, color.

	cryptodev: as shown in the 18.11 deprecation notice, the structure
rte_cryptodev_qp_conf has added two parameters for symmetric session
mempool and symmetric session private data mempool.

	cryptodev: as shown in the 18.11 deprecation notice, the structure
rte_cryptodev_sym_session has been updated to contain more information
to ensure safely accessing the session and session private data.

	security: A new field uint64_t opaque_data has been added to
rte_security_session structure. That would allow upper layer to easily
associate/de-associate some user defined data with the security session.

6.4. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
 librte_bus_dpaa.so.2
 librte_bus_fslmc.so.2
 librte_bus_ifpga.so.2
 librte_bus_pci.so.2
 librte_bus_vdev.so.2
 librte_bus_vmbus.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_compressdev.so.1
+ librte_cryptodev.so.6
 librte_distributor.so.1
 librte_eal.so.9
 librte_efd.so.1
 librte_ethdev.so.11
 librte_eventdev.so.6
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
+ librte_mbuf.so.5
 librte_member.so.1
 librte_mempool.so.5
 librte_meter.so.2
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
+ librte_pdump.so.3
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
 librte_reorder.so.1
 librte_ring.so.2
+ librte_sched.so.2
+ librte_security.so.2
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.4

6.5. Known Issues

	AVX-512 support has been disabled for GCC builds when binutils 2.30
is detected [1] because of a crash [2]. This can affect native machine type
build targets on the platforms that support AVX512F like Intel Skylake
processors, and can cause a possible performance drop. The immediate workaround
is to use clang compiler on these platforms.
Initial workaround in DPDK v18.11 was to disable AVX-512 support for GCC
completely, but based on information on defect submitted to GCC community [3],
issue has been identified as binutils 2.30 issue. Since currently only GCC
generates AVX-512 instructions, the scope is limited to GCC and
binutils 2.30

	[1]: Commit (“mk: fix scope of disabling AVX512F support”)

	[2]: https://bugs.dpdk.org/show_bug.cgi?id=97

	[3]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88096

6.6. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C3758 @ 2.20GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	Intel(R) Xeon(R) Gold 6139 CPU @ 2.30GHz

	OS:

	CentOS 7.4

	CentOS 7.5

	Fedora 25

	Fedora 28

	FreeBSD 11.2

	FreeBSD 12.0

	Red Hat Enterprise Linux Server release 7.4

	Red Hat Enterprise Linux Server release 7.5

	Open SUSE 15

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 18.04

	Ubuntu 18.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.80 0x80003cc1

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.7.26 (i40e)

	Intel(R) Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 3.33 0x80000fd5 0.0.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.7.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.80 0x80003d05

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.7.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.80 0x80003cfb

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.7.26 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 18.10

	Ubuntu 18.04

	Ubuntu 17.10

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	MLNX_OFED: 4.4-2.0.1.0

	MLNX_OFED: 4.5-1.0.1.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.24.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.24.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.24.1000 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.24.1000 and above

	Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.24.1000 and above

	ARM platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.24.0220

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.24.0220

	Mellanox(R) BlueField SmartNIC

	Mellanox(R) BlueField SmartNIC MT416842 (2x25G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.24.0328

	SoC ARM cores running OS:

	CentOS Linux release 7.4.1708 (AltArch)

	MLNX_OFED 4.4-2.5.9.0

	DPDK application running on ARM cores inside SmartNIC

	Power 9 platforms with Mellanox(R) NICs combinations

	CPU:

	POWER9 2.2 (pvr 004e 1202) 2300MHz

	OS:

	Ubuntu 18.04.1 LTS (Bionic Beaver)

	NICs:

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.23.1020

	OFED:

	MLNX_OFED_LINUX-4.5-1.0.1.0

7. DPDK Release 18.11

7.1. New Features

	Added support for using externally allocated memory in DPDK.

DPDK has added support for creating new rte_malloc heaps referencing
memory that was created outside of DPDK’s own page allocator, and using that
memory natively with any other DPDK library or data structure.

	Added check for ensuring allocated memory is addressable by devices.

Some devices can have addressing limitations so a new function,
rte_mem_check_dma_mask(), has been added for checking that allocated
memory is not out of the device range. Since memory can now be allocated
dynamically after initialization, a DMA mask is stored and any new allocated
memory will be checked against it and rejected if it is out of range. If
more than one device has addressing limitations, the DMA mask is the more
restrictive one.

	Updated the C11 memory model version of the ring library.

Added changes to decrease latency for architectures using the C11 memory
model version of the ring library.

On Cavium ThunderX2 platform, the changes decreased latency by 27-29%
and 3-15% for MPMC and SPSC cases respectively (with 2 lcores). The
real improvements may vary with the number of contending lcores and
the size of the ring.

	Added hot-unplug handle mechanism.

Added rte_dev_hotplug_handle_enable() and
rte_dev_hotplug_handle_disable() for enabling or disabling the hotplug
handle mechanism.

	Added support for device multi-process hotplug.

Added support for hotplug and hot-unplug in a multiprocessing scenario. Any
ethdev devices created in the primary process will be regarded as shared and
will be available for all DPDK processes. Synchronization between processes
will be done using DPDK IPC.

	Added new Flow API actions to rewrite fields in packet headers.

Added new Flow API actions to:

	Modify source and destination IP addresses in the outermost IPv4/IPv6
headers.

	Modify source and destination port numbers in the outermost TCP/UDP
headers.

	Added new Flow API action to swap MAC addresses in Ethernet header.

Added new Flow API action to swap the source and destination MAC
addresses in the outermost Ethernet header.

	Add support to offload more flow match and actions for CXGBE PMD.

The Flow API support has been enhanced for the CXGBE Poll Mode Driver to
offload:

	Match items: destination MAC address.

	Action items: push/pop/rewrite vlan header,
rewrite IP addresses in outermost IPv4/IPv6 header,
rewrite port numbers in outermost TCP/UDP header,
swap MAC addresses in outermost Ethernet header.

	Added a devarg to use the latest supported vector path in i40e.

A new devarg use-latest-supported-vec was introduced to allow users to
choose the latest vector path that the platform supported. For example, users
can use AVX2 vector path on BDW/HSW to get better performance.

	Added support for SR-IOV in netvsc PMD.

The netvsc poll mode driver now supports the Accelerated Networking
SR-IOV option in Hyper-V and Azure. This is an alternative to the previous
vdev_netvsc, tap, and failsafe drivers combination.

	Added a new net driver for Marvell Armada 3k device.

Added the new mvneta net driver for Marvell Armada 3k device. See the
MVNETA Poll Mode Driver NIC guide for more details on this new driver.

	Added NXP ENETC PMD.

Added the new enetc driver for the NXP enetc platform. See the
ENETC Poll Mode Driver NIC driver guide for more details on this new driver.

	Added Ethernet poll mode driver for Aquantia aQtion family of 10G devices.

Added the new atlantic ethernet poll mode driver for Aquantia XGBE devices.
See the Aquantia Atlantic DPDK Driver NIC driver guide for more details on this
driver.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Improved security of PMD to prevent the NIC from getting stuck when
the application misbehaves.

	Reworked flow engine to supported e-switch flow rules (transfer attribute).

	Added support for header re-write(L2-L4), VXLAN encap/decap, count, match
on TCP flags and multiple flow groups with e-switch flow rules.

	Added support for match on metadata, VXLAN and MPLS encap/decap with flow
rules.

	Added support for RTE_ETH_DEV_CLOSE_REMOVE flag to provide better
support for representors.

	Added support for meson build.

	Fixed build issue with PPC.

	Added support for BlueField VF.

	Added support for externally allocated static memory for DMA.

	Updated Solarflare network PMD.

Updated the sfc_efx driver including the following changes:

	Added support for Rx scatter in EF10 datapath implementation.

	Added support for Rx descriptor status API in EF10 datapath implementation.

	Added support for TSO in EF10 datapath implementation.

	Added support for Tx descriptor status API in EF10 (ef10 and ef10_simple)
datapaths implementation.

	Updated the enic driver.

	Added AVX2-based vectorized Rx handler.

	Added VLAN and checksum offloads to the simple Tx handler.

	Added the “count” flow action.

	Enabled the virtual address IOVA mode.

	Updated the failsafe driver.

Updated the failsafe driver including the following changes:

	Added support for Rx and Tx queues start and stop.

	Added support for Rx and Tx queues deferred start.

	Added support for runtime Rx and Tx queues setup.

	Added support multicast MAC address set.

	Added a devarg to use a PCAP interface physical MAC address.

A new devarg phy_mac was introduced to allow users to use the physical
MAC address of the selected PCAP interface.

	Added TAP Rx/Tx queues sharing with a secondary process.

Added support to allow a secondary process to attach a TAP device created
in the primary process, probe the queues, and process Rx/Tx in a secondary
process.

	Added classification and metering support to SoftNIC PMD.

Added support for flow classification (rte_flow API), and metering and
policing (rte_mtr API) to the SoftNIC PMD.

	Added Crypto support to the Softnic PMD.

The Softnic is now capable of processing symmetric crypto workloads such
as cipher, cipher-authentication chaining, and AEAD encryption and
decryption. This is achieved by calling DPDK Cryptodev APIs.

	Added cryptodev port to port library.

Cryptodev port is a shim layer in the port library that interacts with DPDK
Cryptodev PMDs including burst enqueuing and dequeuing crypto operations.

	Added symmetric cryptographic actions to the pipeline library.

In the pipeline library support was added for symmetric crypto action
parsing and an action handler was implemented. The action allows automatic
preparation of the crypto operation with the rules specified such as
algorithm, key, and IV, etc. for the cryptodev port to process.

	Updated the AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for the AES-GCM
algorithm.

	Added NXP CAAM JR PMD.

Added the new caam job ring driver for NXP platforms. See the
NXP CAAM JOB RING (caam_jr) guide for more details on this new driver.

	Added support for GEN3 devices to Intel QAT driver.

Added support for the third generation of Intel QuickAssist devices.

	Updated the QAT PMD.

The QAT PMD was updated with additional support for:

	The AES-CMAC algorithm.

	Added support for Dynamic Huffman Encoding to Intel QAT comp PMD.

The Intel QuickAssist (QAT) compression PMD has been updated with support
for Dynamic Huffman Encoding for the Deflate algorithm.

	Added Event Ethernet Tx Adapter.

Added event ethernet Tx adapter library that provides configuration and
data path APIs for the ethernet transmit stage of an event driven packet
processing application. These APIs abstract the implementation of the
transmit stage and allow the application to use eventdev PMD support or
a common implementation.

	Added Distributed Software Eventdev PMD.

Added the new Distributed Software Event Device (DSW), which is a
pure-software eventdev driver distributing the work of scheduling
among all eventdev ports and the lcores using them. DSW, compared to
the SW eventdev PMD, sacrifices load balancing performance to
gain better event scheduling throughput and scalability.

	Added extendable bucket feature to hash library (rte_hash).

This new “extendable bucket” feature provides 100% insertion guarantee to
the capacity specified by the user by extending hash table with extra
buckets when needed to accommodate the unlikely event of intensive hash
collisions. In addition, the internal hashing algorithm was changed to use
partial-key hashing to improve memory efficiency and lookup performance.

	Added lock free reader/writer concurrency to hash library (rte_hash).

Lock free reader/writer concurrency prevents the readers from getting
blocked due to a preempted writer thread. This allows the hash library
to be used in scenarios where the writer thread runs on the control plane.

	Added Traffic Pattern Aware Power Control Library.

Added an experimental library that extends the Power Library and provides
empty_poll APIs. This feature measures how many times empty_polls are
executed per core and uses the number of empty polls as a hint for system
power management.

See the Power Management section of the DPDK Programmers
Guide document for more information.

	Added JSON power policy interface for containers.

Extended the Power Library and vm_power_manager sample app to allow power
policies to be submitted via a FIFO using JSON formatted strings. Previously
limited to Virtual Machines, this feature extends power policy functionality
to containers and host applications that need to have their cores frequency
controlled based on the rules contained in the policy.

	Added Telemetry API.

Added a new telemetry API which allows applications to transparently expose
their telemetry in JSON via a UNIX socket. The JSON can be consumed by any
Service Assurance agent, such as CollectD.

	Updated KNI kernel module, rte_kni library, and KNI sample application.

Updated the KNI kernel module with a new kernel module parameter,
carrier=[on|off] to allow the user to control the default carrier
state of the KNI kernel network interfaces. The default carrier state
is now set to off, so the interfaces cannot be used until the
carrier state is set to on via rte_kni_update_link or
by writing 1 to /sys/devices/virtual/net/<iface>/carrier.
In previous versions the default carrier state was left undefined.
See Kernel NIC Interface for more information.

Also added the new API function rte_kni_update_link() to allow the user
to set the carrier state of the KNI kernel network interface.

Also added a new command line flag -m to the KNI sample application to
monitor and automatically reflect the physical NIC carrier state to the
KNI kernel network interface with the new rte_kni_update_link() API.
See Kernel NIC Interface Sample Application for more information.

	Added ability to switch queue deferred start flag on testpmd app.

Added a console command to testpmd app, giving ability to switch
rx_deferred_start or tx_deferred_start flag of the specified queue of
the specified port. The port must be stopped before the command call in order
to reconfigure queues.

	Add a new sample application for vDPA.

The vdpa sample application creates vhost-user sockets by using the
vDPA backend. vDPA stands for vhost Data Path Acceleration which utilizes
virtio ring compatible devices to serve virtio driver directly to enable
datapath acceleration. As vDPA driver can help to set up vhost datapath,
this application doesn’t need to launch dedicated worker threads for vhost
enqueue/dequeue operations.

	Added cryptodev FIPS validation example application.

Added an example application to parse and perform symmetric cryptography
computation to the NIST Cryptographic Algorithm Validation Program (CAVP)
test vectors.

	Allow unit test binary to take parameters from the environment.

The unit test “test”, or “dpdk-test”, binary is often called from scripts,
which can make passing additional parameters, such as a coremask,
difficult. Support has been added to the application to allow it to take
additional command-line parameter values from the DPDK_TEST_PARAMS
environment variable to make this application easier to use.

7.2. API Changes

	eal: rte_memseg_list structure now has an additional flag indicating
whether the memseg list is externally allocated. This will have implications
for any users of memseg-walk-related functions, as they will now have to skip
externally allocated segments in most cases if the intent is to only iterate
over internal DPDK memory.

In addition the socket_id parameter across the entire DPDK has gained
additional meaning, as some socket ID’s will now be representing externally
allocated memory. No changes will be required for existing code as backwards
compatibility will be kept, and those who do not use this feature will not
see these extra socket ID’s. Any new API’s must not check socket ID
parameters themselves, and must instead leave it to the memory subsystem to
decide whether socket ID is a valid one.

	eal: The following devargs functions, which were deprecated in 18.05,
were removed in 18.11:
rte_eal_parse_devargs_str(), rte_eal_devargs_add(),
rte_eal_devargs_type_count(), and rte_eal_devargs_dump().

	eal: The parameters of the function rte_devargs_remove() have changed
from bus and device names to struct rte_devargs.

	eal: The deprecated functions attach/detach were removed in 18.11.
rte_eal_dev_attach can be replaced by
rte_dev_probe or rte_eal_hotplug_add.
rte_eal_dev_detach can be replaced by
rte_dev_remove or rte_eal_hotplug_remove.

	eal: The scope of rte_eal_hotplug_add()/rte_dev_probe()
and rte_eal_hotplug_remove()/rte_dev_remove() has been extended.
In the multi-process model, they will guarantee that the device is
attached or detached on all processes.

	mbuf: The __rte_mbuf_raw_free() and __rte_pktmbuf_prefree_seg()
functions were deprecated since 17.05 and are replaced by
rte_mbuf_raw_free() and rte_pktmbuf_prefree_seg().

	ethdev: The deprecated functions attach/detach were removed in 18.11.
rte_eth_dev_attach() can be replaced by RTE_ETH_FOREACH_MATCHING_DEV
and rte_dev_probe() or rte_eal_hotplug_add().
rte_eth_dev_detach() can be replaced by
rte_dev_remove() or rte_eal_hotplug_remove().

	ethdev: A call to rte_eth_dev_release_port() has been added in
rte_eth_dev_close(). As a consequence, a closed port is freed
and seen as invalid because of its state RTE_ETH_DEV_UNUSED.
This new behavior is enabled per driver for a migration period.

	A new device flag, RTE_ETH_DEV_NOLIVE_MAC_ADDR, changes the order of
actions inside rte_eth_dev_start() regarding MAC set. Some NICs do not
support MAC changes once the port has started and with this new device
flag the MAC can be properly configured in any case. This is particularly
important for bonding.

	The default behavior of CRC strip offload has changed in this
release. Without any specific Rx offload flag, default behavior by a PMD is
now to strip CRC. DEV_RX_OFFLOAD_CRC_STRIP offload flag has been removed.
To request keeping CRC, application should set DEV_RX_OFFLOAD_KEEP_CRC
Rx offload.

	eventdev: The type of the second parameter to
rte_event_eth_rx_adapter_caps_get() has been changed from uint8_t to
uint16_t.

	kni: By default, interface carrier status is off which means there won’t
be any traffic. It can be set to on via rte_kni_update_link() API or
via sysfs interface: echo 1 > /sys/class/net/vEth0/carrier.

Note interface should be up to be able to read/write sysfs interface.
When KNI sample application is used, -m parameter can be used to
automatically update the carrier status for the interface.

	kni: When ethtool support is enabled (CONFIG_RTE_KNI_KMOD_ETHTOOL=y)
ethtool commands ETHTOOL_GSET & ETHTOOL_SSET are no longer supported for
kernels that have ETHTOOL_GLINKSETTINGS & ETHTOOL_SLINKSETTINGS support.
This means ethtool "-a|--show-pause", "-s|--change" won’t work, and
ethtool <iface> output will have less information.

7.3. ABI Changes

	eal: added legacy_mem and single_file_segments values to
rte_config structure on account of improving DPDK usability when
using either --legacy-mem or --single-file-segments flags.

	eal: EAL library ABI version was changed due to previously announced work on
supporting external memory in DPDK:

	Structure rte_memseg_list now has a new field indicating length
of memory addressed by the segment list

	Structure rte_memseg_list now has a new flag indicating whether
the memseg list refers to external memory

	Structure rte_malloc_heap now has a new field indicating socket
ID the malloc heap belongs to

	Structure rte_mem_config has had its malloc_heaps array
resized from RTE_MAX_NUMA_NODES to RTE_MAX_HEAPS value

	Structure rte_malloc_heap now has a heap_name member

	Structure rte_eal_memconfig has been extended to contain next
socket ID for externally allocated segments

	eal: Added dma_maskbits to rte_mem_config for keeping the most
restrictive DMA mask based on the devices addressing limitations.

	eal: The structure rte_device has a new field to reference a
rte_bus. It thus changes the size of the struct rte_device and the
inherited device structures of all buses.

7.4. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
+ librte_bus_dpaa.so.2
+ librte_bus_fslmc.so.2
+ librte_bus_ifpga.so.2
+ librte_bus_pci.so.2
+ librte_bus_vdev.so.2
+ librte_bus_vmbus.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_compressdev.so.1
 librte_cryptodev.so.5
 librte_distributor.so.1
+ librte_eal.so.9
 librte_efd.so.1
+ librte_ethdev.so.11
+ librte_eventdev.so.6
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.4
 librte_member.so.1
 librte_mempool.so.5
 librte_meter.so.2
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.2
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
 librte_reorder.so.1
 librte_ring.so.2
 librte_sched.so.1
 librte_security.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.4

7.5. Known Issues

	When using SR-IOV (VF) support with netvsc PMD and the Mellanox mlx5
bifurcated driver the Linux netvsc device must be brought up before the
netvsc device is unbound and passed to the DPDK.

	IBM Power8 is not supported in this release of DPDK. IBM Power9 is
supported.

	AVX-512 support has been disabled for GCC builds [1] because of a
crash [2]. This can affect native machine type build targets on the
platforms that support AVX512F like Intel Skylake processors, and
can cause a possible performance drop. The immediate workaround is to use
clang compiler on these platforms. The issue has been identified as a
GCC defect and reported to the GCC community [3]. Further actions will be
taken based on the GCC defect result.

	[1]: Commit 8d07c82b239f (“mk: disable gcc AVX512F support”)

	[2]: https://bugs.dpdk.org/show_bug.cgi?id=97

	[3]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88096

7.6. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C3758 @ 2.20GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	OS:

	CentOS 7.5

	Fedora 25

	Fedora 28

	FreeBSD 11.2

	Red Hat Enterprise Linux Server release 7.5

	Open SUSE 15

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 17.10

	Ubuntu 18.04

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 3.33 0x80000fd5 0.0.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.4.6 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.6 (Maipo)

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 18.10

	Ubuntu 18.04

	Ubuntu 17.10

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	MLNX_OFED: 4.4-2.0.1.0

	MLNX_OFED: 4.5-0.3.1.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.23.8022 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.23.8022 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.23.8022 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.23.8022 and above

	Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.23.8022 and above

	ARM platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.24.0220

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.24.0220

	Mellanox(R) BlueField SmartNIC

	Mellanox(R) BlueField SmartNIC MT416842 (2x25G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.24.0246

	SoC ARM cores running OS:

	CentOS Linux release 7.4.1708 (AltArch)

	MLNX_OFED 4.4-2.5.3.0

	DPDK application running on ARM cores inside SmartNIC

	ARM SoC combinations from NXP (with integrated NICs)

	SoC:

	NXP/Freescale QorIQ LS1046A with ARM Cortex A72

	NXP/Freescale QorIQ LS2088A with ARM Cortex A72

	OS:

	Ubuntu 18.04.1 LTS with NXP QorIQ LSDK 1809 support packages

	Ubuntu 16.04.3 LTS with NXP QorIQ LSDK 1803 support packages

8. DPDK Release 18.08

8.1. New Features

	Added support for Hyper-V netvsc PMD.

The new netvsc poll mode driver provides native support for
networking on Hyper-V. See the Netvsc poll mode driver NIC driver guide
for more details on this new driver.

	Added Flow API support for CXGBE PMD.

Flow API support has been added to CXGBE Poll Mode Driver to offload
flows to Chelsio T5/T6 NICs. Support added for:

	Wildcard (LE-TCAM) and Exact (HASH) match filters.

	Match items: physical ingress port, IPv4, IPv6, TCP and UDP.

	Action items: queue, drop, count, and physical egress port redirect.

	Added ixgbe preferred Rx/Tx parameters.

Rather than applications providing explicit Rx and Tx parameters such as
queue and burst sizes, they can request that the EAL instead uses preferred
values provided by the PMD, falling back to defaults within the EAL if the
PMD does not provide any. The provision of such tuned values now includes
the ixgbe PMD.

	Added descriptor status check support for fm10k.

The rte_eth_rx_descriptor_status and rte_eth_tx_descriptor_status
APIs are now supported by fm10K.

	Updated the enic driver.

	Add low cycle count Tx handler for no-offload Tx.

	Add low cycle count Rx handler for non-scattered Rx.

	Minor performance improvements to scattered Rx handler.

	Add handlers to add/delete VxLAN port number.

	Add devarg to specify ingress VLAN rewrite mode.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Added port representors support.

	Added Flow API support for e-switch rules.
Added support for ACTION_PORT_ID, ACTION_DROP, ACTION_OF_POP_VLAN,
ACTION_OF_PUSH_VLAN, ACTION_OF_SET_VLAN_VID, ACTION_OF_SET_VLAN_PCP
and ITEM_PORT_ID.

	Added support for 32-bit compilation.

	Added TSO support for the mlx4 driver.

Added TSO support for the mlx4 drivers from MLNX_OFED_4.4 and above.

	SoftNIC PMD rework.

The SoftNIC PMD infrastructure has been restructured to use the Packet
Framework, which makes it more flexible, modular and easier to add new
functionality in the future.

	Updated the AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for:

	3DES for 8, 16 and 24 byte keys.

	Added a new compression PMD using Intel’s QuickAssist (QAT) device family.

Added the new QAT compression driver, for compression and decompression
operations in software. See the Intel(R) QuickAssist (QAT) Compression Poll Mode Driver compression
driver guide for details on this new driver.

	Updated the ISA-L PMD.

Added support for chained mbufs (input and output).

8.2. API Changes

	The path to the runtime config file has changed. The new path is determined
as follows:

	If DPDK is running as root, /var/run/dpdk/<prefix>/config

	If DPDK is not running as root:

	If $XDG_RUNTIME_DIR is set, ${XDG_RUNTIME_DIR}/dpdk/<prefix>/config

	Otherwise, /tmp/dpdk/<prefix>/config

	eal: The function rte_eal_mbuf_default_mempool_ops was deprecated
and is removed in 18.08. It shall be replaced by
rte_mbuf_best_mempool_ops.

	mempool: Following functions were deprecated and are removed in 18.08:

	rte_mempool_populate_iova_tab

	rte_mempool_populate_phys_tab

	rte_mempool_populate_phys (rte_mempool_populate_iova should be used)

	rte_mempool_virt2phy (rte_mempool_virt2iova should be used)

	rte_mempool_xmem_create

	rte_mempool_xmem_size

	rte_mempool_xmem_usage

	ethdev: The old offload API is removed:

	Rx per-port rte_eth_conf.rxmode.[bit-fields]

	Tx per-queue rte_eth_txconf.txq_flags

	ETH_TXQ_FLAGS_NO*

The transition bits are removed:

	rte_eth_conf.rxmode.ignore_offload_bitfield

	ETH_TXQ_FLAGS_IGNORE

	cryptodev: The following API changes have been made in 18.08:

	In struct struct rte_cryptodev_info, field rte_pci_device *pci_dev
has been replaced with field struct rte_device *device.

	Value 0 is accepted in sym.max_nb_sessions, meaning that a device
supports an unlimited number of sessions.

	Two new fields of type uint16_t have been added:
min_mbuf_headroom_req and min_mbuf_tailroom_req. These parameters
specify the recommended headroom and tailroom for mbufs to be processed by
the PMD.

	cryptodev: The following functions were deprecated and are removed in 18.08:

	rte_cryptodev_queue_pair_start

	rte_cryptodev_queue_pair_stop

	rte_cryptodev_queue_pair_attach_sym_session

	rte_cryptodev_queue_pair_detach_sym_session

	cryptodev: The following functions were deprecated and are replaced by other
functions in 18.08:

	rte_cryptodev_get_header_session_size is replaced with
rte_cryptodev_sym_get_header_session_size

	rte_cryptodev_get_private_session_size is replaced with
rte_cryptodev_sym_get_private_session_size

	cryptodev: Feature flag RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER is
replaced with the following more explicit flags:

	RTE_CRYPTODEV_FF_IN_PLACE_SGL

	RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT

	RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT

	RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT

	RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT

	cryptodev: Renamed cryptodev experimental APIs:

Used user_data instead of private_data in following APIs to avoid confusion
with the existing session parameter sess_private_data[] and related APIs.

	rte_cryptodev_sym_session_set_private_data() changed to
rte_cryptodev_sym_session_set_user_data()

	rte_cryptodev_sym_session_get_private_data() changed to
rte_cryptodev_sym_session_get_user_data()

	compressdev: Feature flag RTE_COMP_FF_MBUF_SCATTER_GATHER is
replaced with the following more explicit flags:

	RTE_COMP_FF_OOP_SGL_IN_SGL_OUT

	RTE_COMP_FF_OOP_SGL_IN_LB_OUT

	RTE_COMP_FF_OOP_LB_IN_SGL_OUT

8.3. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bpf.so.1
 librte_bus_dpaa.so.1
 librte_bus_fslmc.so.1
 librte_bus_pci.so.1
 librte_bus_vdev.so.1
+ librte_bus_vmbus.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_common_octeontx.so.1
 librte_compressdev.so.1
+ librte_cryptodev.so.5
 librte_distributor.so.1
+ librte_eal.so.8
+ librte_ethdev.so.10
+ librte_eventdev.so.5
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.4
+ librte_mempool.so.5
 librte_meter.so.2
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.2
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_dpaa2_cmdif.so.1
 librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
 librte_reorder.so.1
 librte_ring.so.2
 librte_sched.so.1
 librte_security.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.3

8.4. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C3858 @ 2.00GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	OS:

	CentOS 7.4

	Fedora 25

	Fedora 27

	Fedora 28

	FreeBSD 11.1

	Red Hat Enterprise Linux Server release 7.5

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 17.10

	Ubuntu 18.04

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 3.33 0x80000fd5 0.0.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.4.3 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 18.04

	Ubuntu 17.10

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	MLNX_OFED: 4.3-2.0.2.0

	MLNX_OFED: 4.4-2.0.1.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000 and above

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.21.1000 and above

	ARM platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.23.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.23.1000

	Mellanox BlueField SmartNIC

	
	Mellanox(R) BlueField SmartNIC MT416842 (2x25G)
	
	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:a2d2

	Firmware version: 18.99.3950

	SoC ARM cores running OS:
* CentOS Linux release 7.4.1708 (AltArch)
* Mellanox MLNX_OFED 4.2-1.4.21.0

	DPDK application running on ARM cores inside SmartNIC

	BlueField representors support planned for next release.

9. DPDK Release 18.05

9.1. New Features

	Reworked memory subsystem.

Memory subsystem has been reworked to support new functionality.

On Linux, support for reserving/unreserving hugepage memory at runtime has been
added, so applications no longer need to pre-reserve memory at startup. Due to
reorganized internal workings of memory subsystem, any memory allocated
through rte_malloc() or rte_memzone_reserve() is no longer guaranteed
to be IOVA-contiguous.

This functionality has introduced the following changes:

	rte_eal_get_physmem_layout() was removed.

	A new flag for memzone reservation (RTE_MEMZONE_IOVA_CONTIG) was added
to ensure reserved memory will be IOVA-contiguous, for use with device
drivers and other cases requiring such memory.

	New callbacks for memory allocation/deallocation events, allowing users (or
drivers) to be notified of new memory being allocated or deallocated

	New callbacks for validating memory allocations above a specified limit,
allowing user to permit or deny memory allocations.

	A new command-line switch --legacy-mem to enable EAL behavior similar to
how older versions of DPDK worked (memory segments that are IOVA-contiguous,
but hugepages are reserved at startup only, and can never be released).

	A new command-line switch --single-file-segments to put all memory
segments within a segment list in a single file.

	A set of convenience function calls to look up and iterate over allocated
memory segments.

	-m and --socket-mem command-line arguments now carry an additional
meaning and mark pre-reserved hugepages as “unfree-able”, thereby acting as
a mechanism guaranteeing minimum availability of hugepage memory to the
application.

Reserving/unreserving memory at runtime is not currently supported on FreeBSD.

	Added bucket mempool driver.

Added a bucket mempool driver which provides a way to allocate contiguous
block of objects.
The number of objects in the block depends on how many objects fit in the
RTE_DRIVER_MEMPOOL_BUCKET_SIZE_KB memory chunk which is a build time option.
The number may be obtained using rte_mempool_ops_get_info() API.
Contiguous blocks may be allocated using rte_mempool_get_contig_blocks() API.

	Added support for port representors.

Added DPDK port representors (also known as “VF representors” in the specific
context of VFs), which are to DPDK what the Ethernet switch device driver
model (switchdev) is to Linux, and which can be thought as a software
“patch panel” front-end for applications. DPDK port representors are
implemented as additional virtual Ethernet device (ethdev) instances,
spawned on an as-needed basis through configuration parameters passed to the
driver of the underlying device using devargs.

	Added support for VXLAN and NVGRE tunnel endpoint.

New actions types have been added to support encapsulation and decapsulation
operations for a tunnel endpoint. The new action types are
RTE_FLOW_ACTION_TYPE_[VXLAN/NVGRE]_ENCAP, RTE_FLOW_ACTION_TYPE_[VXLAN/NVGRE]_DECAP,
RTE_FLOW_ACTION_TYPE_JUMP. A new item type RTE_FLOW_ACTION_TYPE_MARK has been
added to match a flow against a previously marked flow. A shared counter has also been
introduced to the flow API to count a group of flows.

	Added PMD-recommended Tx and Rx parameters.

Applications can now query drivers for device-tuned values of
ring sizes, burst sizes, and number of queues.

	Added RSS hash and key update to CXGBE PMD.

Added support for updating the RSS hash and key to the CXGBE PMD.

	Added CXGBE VF PMD.

CXGBE VF Poll Mode Driver has been added to run DPDK over Chelsio
T5/T6 NIC VF instances.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Introduced Multi-packet Rx to enable 100Gb/sec with 64B frames.

	Support for being run by non-root users given a reduced set of capabilities
CAP_NET_ADMIN, CAP_NET_RAW and CAP_IPC_LOCK.

	Support for TSO and checksum for generic UDP and IP tunnels.

	Support for inner checksum and RSS for GRE, VXLAN-GPE, MPLSoGRE
and MPLSoUDP tunnels.

	Accommodate the new memory hotplug model.

	Support for non virtually contiguous mempools.

	Support for MAC adding along with allmulti and promiscuous modes from VF.

	Support for Mellanox BlueField SoC device.

	Support for PMD defaults for queue number and depth to improve the out
of the box performance.

	Updated mlx4 driver.

Updated the mlx4 driver including the following changes:

	Support for to being run by non-root users given a reduced set of capabilities
CAP_NET_ADMIN, CAP_NET_RAW and CAP_IPC_LOCK.

	Supported CRC strip toggling.

	Accommodate the new memory hotplug model.

	Support non virtually contiguous mempools.

	Dropped support for Mellanox OFED 4.2.

	Updated Solarflare network PMD.

Updated the sfc_efx driver including the following changes:

	Added support for Solarflare XtremeScale X2xxx family adapters.

	Added support for NVGRE, VXLAN and GENEVE filters in flow API.

	Added support for DROP action in flow API.

	Added support for equal stride super-buffer Rx mode (X2xxx only).

	Added support for MARK and FLAG actions in flow API (X2xxx only).

	Added Ethernet poll mode driver for AMD XGBE devices.

Added the new axgbe ethernet poll mode driver for AMD XGBE devices.
See the AXGBE Poll Mode Driver nic driver guide for more details on this
new driver.

	Updated szedata2 PMD.

Added support for new NFB-200G2QL card.
A new API was introduced in the libsze2 library which the szedata2 PMD depends
on, thus the new version of the library was needed.
New versions of the packages are available and the minimum required version
is 4.4.1.

	Added support for Broadcom NetXtreme-S (BCM58800) family of controllers (aka Stingray).

Added support for the Broadcom NetXtreme-S (BCM58800) family of controllers
(aka Stingray). The BCM58800 devices feature a NetXtreme E-Series advanced
network controller, a high-performance ARM CPU block, PCI Express (PCIe)
Gen3 interfaces, key accelerators for compute offload and a high-speed
memory subsystem including L3 cache and DDR4 interfaces, all interconnected
by a coherent Network-on-chip (NOC) fabric.

The ARM CPU subsystem features eight ARMv8 Cortex-A72 CPUs at 3.0 GHz,
arranged in a multi-cluster configuration.

	Added vDPA in vhost-user lib.

Added support for selective datapath in the vhost-user lib. vDPA stands for vhost
Data Path Acceleration. It supports virtio ring compatible devices to serve
the virtio driver directly to enable datapath acceleration.

	Added IFCVF vDPA driver.

Added IFCVF vDPA driver to support Intel FPGA 100G VF devices. IFCVF works
as a HW vhost data path accelerator, it supports live migration and is
compatible with virtio 0.95 and 1.0. This driver registers the ifcvf vDPA driver
to vhost lib, when virtio connects. With the help of the registered vDPA
driver the assigned VF gets configured to Rx/Tx directly to VM’s virtio
vrings.

	Added support for vhost dequeue interrupt mode.

Added support for vhost dequeue interrupt mode to release CPUs to others
when there is no data to transmit. Applications can register an epoll event
file descriptor to associate Rx queues with interrupt vectors.

	Added support for virtio-user server mode.

In a container environment if the vhost-user backend restarts, there’s no way
for it to reconnect to virtio-user. To address this, support for server mode
has been added. In this mode the socket file is created by virtio-user, which the
backend connects to. This means that if the backend restarts, it can reconnect
to virtio-user and continue communications.

	Added crypto workload support to vhost library.

New APIs have been introduced in the vhost library to enable virtio crypto support
including session creation/deletion handling and translating virtio-crypto
requests into DPDK crypto operations. A sample application has also been introduced.

	Added virtio crypto PMD.

Added a new Poll Mode Driver for virtio crypto devices, which provides
AES-CBC ciphering and AES-CBC with HMAC-SHA1 algorithm-chaining. See the
Virtio Crypto Poll Mode Driver crypto driver guide for more details on
this new driver.

	Added AMD CCP Crypto PMD.

Added the new ccp crypto driver for AMD CCP devices. See the
AMD CCP Poll Mode Driver crypto driver guide for more details on
this new driver.

	Updated AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for:

	AES-CMAC (128-bit key).

	Added the Compressdev Library, a generic compression service library.

Added the Compressdev library which provides an API for offload of compression and
decompression operations to hardware or software accelerator devices.

	Added a new compression poll mode driver using Intels ISA-L.

Added the new ISA-L compression driver, for compression and decompression
operations in software. See the ISA-L Compression Poll Mode Driver compression driver
guide for details on this new driver.

	Added the Event Timer Adapter Library.

The Event Timer Adapter Library extends the event-based model by introducing
APIs that allow applications to arm/cancel event timers that generate
timer expiry events. This new type of event is scheduled by an event device
along with existing types of events.

	Added OcteonTx TIM Driver (Event timer adapter).

The OcteonTx Timer block enables software to schedule events for a future
time, it is exposed to an application via the Event timer adapter library.

See the OCTEON TX SSOVF Eventdev Driver guide for more details

	Added Event Crypto Adapter Library.

Added the Event Crypto Adapter Library. This library extends the
event-based model by introducing APIs that allow applications to
enqueue/dequeue crypto operations to/from cryptodev as events scheduled
by an event device.

	Added Ifpga Bus, a generic Intel FPGA Bus library.

Added the Ifpga Bus library which provides support for integrating any Intel
FPGA device with the DPDK framework. It provides Intel FPGA Partial Bit
Stream AFU (Accelerated Function Unit) scan and drivers probe.

	Added IFPGA (Intel FPGA) Rawdev Driver.

Added a new Rawdev driver called IFPGA (Intel FPGA) Rawdev Driver, which cooperates
with OPAE (Open Programmable Acceleration Engine) shared code to provide common FPGA
management ops for FPGA operation.

See the IFPGA Rawdev Driver programmer’s guide for more details.

	Added DPAA2 QDMA Driver (in rawdev).

The DPAA2 QDMA is an implementation of the rawdev API, that provide a means
of initiating a DMA transaction from CPU. The initiated DMA is performed
without the CPU being involved in the actual DMA transaction.

See the NXP DPAA2 QDMA Driver guide for more details.

	Added DPAA2 Command Interface Driver (in rawdev).

The DPAA2 CMDIF is an implementation of the rawdev API, that provides
communication between the GPP and NXP’s QorIQ based AIOP Block (Firmware).
Advanced IO Processor i.e. AIOP are clusters of programmable RISC engines
optimized for flexible networking and I/O operations. The communication
between GPP and AIOP is achieved via using DPCI devices exposed by MC for
GPP <–> AIOP interaction.

See the NXP DPAA2 CMDIF Driver guide for more details.

	Added device event monitor framework.

Added a general device event monitor framework to EAL, for device dynamic
management to facilitate device hotplug awareness and associated
actions. The list of new APIs is:

	rte_dev_event_monitor_start and rte_dev_event_monitor_stop for
the event monitor enabling and disabling.

	rte_dev_event_callback_register and rte_dev_event_callback_unregister
for registering and un-registering user callbacks.

Linux uevent is supported as a backend of this device event notification framework.

	Added support for procinfo and pdump on eth vdev.

For ethernet virtual devices (like TAP, PCAP, etc.), with this feature, we can get
stats/xstats on shared memory from a secondary process, and also pdump packets on
those virtual devices.

	Enhancements to the Packet Framework Library.

Design and development of new API functions for Packet Framework library that
implement a common set of actions such as traffic metering, packet
encapsulation, network address translation, TTL update, etc., for pipeline
table and input ports to speed up application development. The API functions
includes creating action profiles, registering actions to the profiles,
instantiating action profiles for pipeline table and input ports, etc.

	Added the BPF Library.

The BPF Library provides the ability to load and execute
Enhanced Berkeley Packet Filters (eBPF) within user-space DPDK applications.
It also introduces a basic framework to load/unload BPF-based filters
on Eth devices (right now only via SW RX/TX callbacks).
It also adds a dependency on libelf.

9.2. API Changes

	service cores: No longer marked as experimental.

The service cores functions are no longer marked as experimental, and have
become part of the normal DPDK API and ABI. Any future ABI changes will be
announced at least one release before the ABI change is made. There are no
ABI breaking changes planned.

	eal: The rte_lcore_has_role() return value changed.

This function now returns true or false, respectively,
rather than 0 or < 0 for success or failure.
It makes use of the function more intuitive.

	mempool: The capability flags and related functions have been removed.

Flags MEMPOOL_F_CAPA_PHYS_CONTIG and
MEMPOOL_F_CAPA_BLK_ALIGNED_OBJECTS were used by octeontx mempool
driver to customize generic mempool library behavior.
Now the new driver callbacks calc_mem_size and populate may be
used to achieve it without specific knowledge in the generic code.

	mempool: The following xmem functions have been deprecated:

	rte_mempool_xmem_create

	rte_mempool_xmem_size

	rte_mempool_xmem_usage

	rte_mempool_populate_iova_tab

	mbuf: The control mbuf API has been removed in v18.05. The impacted
functions and macros are:

	rte_ctrlmbuf_init()

	rte_ctrlmbuf_alloc()

	rte_ctrlmbuf_free()

	rte_ctrlmbuf_data()

	rte_ctrlmbuf_len()

	rte_is_ctrlmbuf()

	CTRL_MBUF_FLAG

The packet mbuf API should be used as a replacement.

	meter: API updated to accommodate configuration profiles.

The meter API has been changed to support meter configuration profiles. The
configuration profile represents the set of configuration parameters
for a given meter object, such as the rates and sizes for the token
buckets. These configuration parameters were previously part of the meter
object internal data structure. The separation of the configuration
parameters from the meter object data structure results in reducing its
memory footprint which helps in better cache utilization when a large number
of meter objects are used.

	ethdev: The function rte_eth_dev_count(), often mis-used to iterate
over ports, is deprecated and replaced by rte_eth_dev_count_avail().
There is also a new function rte_eth_dev_count_total() to get the
total number of allocated ports, available or not.
The hotplug-proof applications should use RTE_ETH_FOREACH_DEV or
RTE_ETH_FOREACH_DEV_OWNED_BY as port iterators.

	ethdev: In struct struct rte_eth_dev_info, field rte_pci_device *pci_dev
has been replaced with field struct rte_device *device.

	ethdev: Changes to the semantics of rte_eth_dev_configure() parameters.

If both the nb_rx_q and nb_tx_q parameters are zero,
rte_eth_dev_configure() will now use PMD-recommended queue sizes, or if
recommendations are not provided by the PMD the function will use ethdev
fall-back values. Previously setting both of the parameters to zero would
have resulted in -EINVAL being returned.

	ethdev: Changes to the semantics of rte_eth_rx_queue_setup() parameters.

If the nb_rx_desc parameter is zero, rte_eth_rx_queue_setup will
now use the PMD-recommended Rx ring size, or in the case where the PMD
does not provide a recommendation, will use an ethdev-provided
fall-back value. Previously, setting nb_rx_desc to zero would have
resulted in an error.

	ethdev: Changes to the semantics of rte_eth_tx_queue_setup() parameters.

If the nb_tx_desc parameter is zero, rte_eth_tx_queue_setup will
now use the PMD-recommended Tx ring size, or in the case where the PMD
does not provide a recommendation, will use an ethdev-provided
fall-back value. Previously, setting nb_tx_desc to zero would have
resulted in an error.

	ethdev: Several changes were made to the flow API.

	The unused DUP action was removed.

	Actions semantics in flow rules: list order now matters (“first
to last” instead of “all simultaneously”), repeated actions are now
all performed, and they do not individually have (non-)terminating
properties anymore.

	Flow rules are now always terminating unless a PASSTHRU action is
present.

	C99-style flexible arrays were replaced with standard pointers in RSS
action and in RAW pattern item structures due to compatibility issues.

	The RSS action was modified to not rely on external
struct rte_eth_rss_conf anymore to instead expose its own and more
appropriately named configuration fields directly
(rss_conf->rss_key => key,
rss_conf->rss_key_len => key_len,
rss_conf->rss_hf => types,
num => queue_num), and the addition of missing RSS parameters
(func for RSS hash function to apply and level for the
encapsulation level).

	The VLAN pattern item (struct rte_flow_item_vlan) was modified to
include inner EtherType instead of outer TPID. Its default mask was also
modified to cover the VID part (lower 12 bits) of TCI only.

	A new transfer attribute was added to struct rte_flow_attr in order
to clarify the behavior of some pattern items.

	PF and VF pattern items are now only accepted by PMDs that implement
them (bnxt and i40e) when the transfer attribute is also present, for
consistency.

	Pattern item PORT was renamed PHY_PORT to avoid confusion with DPDK port
IDs.

	An action counterpart to the PHY_PORT pattern item was added in order to
redirect matching traffic to a specific physical port.

	PORT_ID pattern item and actions were added to match and target DPDK
port IDs at a higher level than PHY_PORT.

	RTE_FLOW_ACTION_TYPE_[VXLAN/NVGRE]_ENCAP action items were added to support
tunnel encapsulation operation for VXLAN and NVGRE type tunnel endpoint.

	RTE_FLOW_ACTION_TYPE_[VXLAN/NVGRE]_DECAP action items were added to support
tunnel decapsulation operation for VXLAN and NVGRE type tunnel endpoint.

	RTE_FLOW_ACTION_TYPE_JUMP action item was added to support a matched flow
to be redirected to the specific group.

	RTE_FLOW_ACTION_TYPE_MARK item type has been added to match a flow against
a previously marked flow.

	ethdev: Change flow APIs regarding count action:

	rte_flow_create() API count action now requires the struct rte_flow_action_count.

	rte_flow_query() API parameter changed from action type to action structure.

	ethdev: Changes to offload API

A pure per-port offloading isn’t requested to be repeated in [rt]x_conf->offloads to
rte_eth_[rt]x_queue_setup(). Now any offloading enabled in rte_eth_dev_configure()
can’t be disabled by rte_eth_[rt]x_queue_setup(). Any new added offloading which has
not been enabled in rte_eth_dev_configure() and is requested to be enabled in
rte_eth_[rt]x_queue_setup() must be per-queue type, or otherwise trigger an error log.

	ethdev: Runtime queue setup

rte_eth_rx_queue_setup and rte_eth_tx_queue_setup can be called after
rte_eth_dev_start if the device supports runtime queue setup. The device driver can
expose this capability through rte_eth_dev_info_get. A Rx or Tx queue
set up at runtime need to be started explicitly by rte_eth_dev_rx_queue_start
or rte_eth_dev_tx_queue_start.

9.3. ABI Changes

	ring: The alignment constraints on the ring structure has been relaxed
to one cache line instead of two, and an empty cache line padding is
added between the producer and consumer structures. The size of the
structure and the offset of the fields remains the same on platforms
with 64B cache line, but changes on other platforms.

	mempool: Some ops have changed.

A new callback calc_mem_size has been added to rte_mempool_ops
to allow customization of the required memory size calculation.
A new callback populate has been added to rte_mempool_ops
to allow customized object population.
Callback get_capabilities has been removed from rte_mempool_ops
since its features are covered by calc_mem_size and populate
callbacks.
Callback register_memory_area has been removed from rte_mempool_ops
since the new callback populate may be used instead of it.

	ethdev: Additional fields in rte_eth_dev_info.

The rte_eth_dev_info structure has had two extra entries appended to the
end of it: default_rxportconf and default_txportconf. Each of these
in turn are rte_eth_dev_portconf structures containing three fields of
type uint16_t: burst_size, ring_size, and nb_queues. These
are parameter values recommended for use by the PMD.

	ethdev: ABI for all flow API functions was updated.

This includes functions rte_flow_copy, rte_flow_create,
rte_flow_destroy, rte_flow_error_set, rte_flow_flush,
rte_flow_isolate, rte_flow_query and rte_flow_validate, due to
changes in error type definitions (enum rte_flow_error_type), removal
of the unused DUP action (enum rte_flow_action_type), modified
behavior for flow rule actions (see API changes), removal of C99 flexible
array from RAW pattern item (struct rte_flow_item_raw), complete
rework of the RSS action definition (struct rte_flow_action_rss),
sanity fix in the VLAN pattern item (struct rte_flow_item_vlan) and
new transfer attribute (struct rte_flow_attr).

	bbdev: New parameter added to rte_bbdev_op_cap_turbo_dec.

A new parameter max_llr_modulus has been added to
rte_bbdev_op_cap_turbo_dec structure to specify maximal LLR (likelihood
ratio) absolute value.

	bbdev: Queue Groups split into UL/DL Groups.

Queue Groups have been split into UL/DL Groups in the Turbo Software Driver.
They are independent for Decode/Encode. rte_bbdev_driver_info reflects
introduced changes.

9.4. Known Issues

	Secondary process launch is not reliable.

Recent memory hotplug patches have made multiprocess startup less reliable
than it was in past releases. A number of workarounds are known to work depending
on the circumstances. As such it isn’t recommended to use the secondary
process mechanism for critical systems. The underlying issues will be
addressed in upcoming releases.

The issue is explained in more detail, including potential workarounds,
in the Bugzilla entry referenced below.

Bugzilla entry: https://bugs.dpdk.org/show_bug.cgi?id=50

	pdump is not compatible with old applications.

As we changed to use generic multi-process communication for pdump
negotiation instead of previous dedicated unix socket way, pdump
applications, including the dpdk-pdump example and any other applications
using librte_pdump, will not work with older version DPDK primary
applications.

	rte_abort takes a long time on FreeBSD.

DPDK processes now allocates a large area of virtual memory address space.
As a result rte_abort on FreeBSD now dumps the contents of the
whole reserved memory range, not just the used portion, to a core dump file.
Writing this large core file can take a significant amount of time, causing
processes to appear to hang on the system.

The work around for the issue is to set the system resource limits for core
dumps before running any tests, e.g. limit coredumpsize 0. This will
effectively disable core dumps on FreeBSD. If they are not to be completely
disabled, a suitable limit, e.g. 1G might be specified instead of 0. This
needs to be run per-shell session, or before every test run. This change
can also be made persistent by adding kern.coredump=0 to /etc/sysctl.conf.

Bugzilla entry: https://bugs.dpdk.org/show_bug.cgi?id=53

	ixgbe PMD crash on hotplug detach when no VF created.

ixgbe PMD uninit path cause null pointer dereference because of port representor
cleanup when number of VF is zero.

Bugzilla entry: https://bugs.dpdk.org/show_bug.cgi?id=57

	Bonding PMD may fail to accept new slave ports in certain conditions.

In certain conditions when using testpmd,
bonding may fail to register new slave ports.

Bugzilla entry: https://bugs.dpdk.org/show_bug.cgi?id=52.

	Unexpected performance regression in Vhost library.

Patches fixing CVE-2018-1059 were expected to introduce a small performance
drop. However, in some setups, bigger performance drops have been measured
when running micro-benchmarks.

Bugzilla entry: https://bugs.dpdk.org/show_bug.cgi?id=48

9.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bbdev.so.1
 librte_bitratestats.so.2
+ librte_bpf.so.1
 librte_bus_dpaa.so.1
 librte_bus_fslmc.so.1
 librte_bus_pci.so.1
 librte_bus_vdev.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
+ librte_common_octeontx.so.1
+ librte_compressdev.so.1
 librte_cryptodev.so.4
 librte_distributor.so.1
+ librte_eal.so.7
+ librte_ethdev.so.9
+ librte_eventdev.so.4
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
+ librte_mbuf.so.4
+ librte_mempool.so.4
+ librte_meter.so.2
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.2
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
+ librte_pmd_dpaa2_cmdif.so.1
+ librte_pmd_dpaa2_qdma.so.1
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_rawdev.so.1
 librte_reorder.so.1
+ librte_ring.so.2
 librte_sched.so.1
 librte_security.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.3

9.6. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	OS:

	CentOS 7.4

	Fedora 25

	Fedora 27

	Fedora 28

	FreeBSD 11.1

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 17.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel Corporation Ethernet Connection X722 for 10GbE SFP+ (4x10G)

	Firmware version: 3.33 0x80000fd5 0.0.0

	Device id (pf/vf): 8086:37d0 / 8086:37cd

	Driver version: 2.4.3 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.4.6 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.4.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 18.04

	Ubuntu 17.10

	Ubuntu 16.10

	Ubuntu 16.04

	SUSE Linux Enterprise Server 15

	MLNX_OFED: 4.2-1.0.0.0

	MLNX_OFED: 4.3-2.0.2.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000 and above

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.21.1000 and above

	ARM platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 (Maipo)

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.22.0428

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.22.0428

	ARM SoC combinations from Cavium (with integrated NICs)

	SoC:

	Cavium CN81xx

	Cavium CN83xx

	OS:

	Ubuntu 16.04.2 LTS with Cavium SDK-6.2.0-Patch2 release support package.

	ARM SoC combinations from NXP (with integrated NICs)

	SoC:

	NXP/Freescale QorIQ LS1046A with ARM Cortex A72

	NXP/Freescale QorIQ LS2088A with ARM Cortex A72

	OS:

	Ubuntu 16.04.3 LTS with NXP QorIQ LSDK 1803 support packages

10. DPDK Release 18.02

10.1. New Features

	Added function to allow releasing internal EAL resources on exit.

During rte_eal_init() EAL allocates memory from hugepages to enable its
core libraries to perform their tasks. The rte_eal_cleanup() function
releases these resources, ensuring that no hugepage memory is leaked. It is
expected that all DPDK applications call rte_eal_cleanup() before
exiting. Not calling this function could result in leaking hugepages, leading
to failure during initialization of secondary processes.

	Added igb, ixgbe and i40e ethernet driver to support RSS with flow API.

Added support for igb, ixgbe and i40e NICs with existing RSS configuration
using the rte_flow API.

Also enabled queue region configuration using the rte_flow API for i40e.

	Updated i40e driver to support PPPoE/PPPoL2TP.

Updated i40e PMD to support PPPoE/PPPoL2TP with PPPoE/PPPoL2TP supporting
profiles which can be programmed by dynamic device personalization (DDP)
process.

	Added MAC loopback support for i40e.

Added MAC loopback support for i40e in order to support test tasks requested
by users. It will setup Tx -> Rx loopback link according to the device
configuration.

	Added support of run time determination of number of queues per i40e VF.

The number of queue per VF is determined by its host PF. If the PCI address
of an i40e PF is aaaa:bb.cc, the number of queues per VF can be
configured with EAL parameter like -w aaaa:bb.cc,queue-num-per-vf=n. The
value n can be 1, 2, 4, 8 or 16. If no such parameter is configured, the
number of queues per VF is 4 by default.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Enabled compilation as a plugin, thus removed the mandatory dependency with rdma-core.
With the special compilation, the rdma-core libraries will be loaded only in case
Mellanox device is being used. For binaries creation the PMD can be enabled, still not
requiring from every end user to install rdma-core.

	Improved multi-segment packet performance.

	Changed driver name to use the PCI address to be compatible with OVS-DPDK APIs.

	Extended statistics for physical port packet/byte counters.

	Converted to the new offloads API.

	Supported device removal check operation.

	Updated mlx4 driver.

Updated the mlx4 driver including the following changes:

	Enabled compilation as a plugin, thus removed the mandatory dependency with rdma-core.
With the special compilation, the rdma-core libraries will be loaded only in case
Mellanox device is being used. For binaries creation the PMD can be enabled, still not
requiring from every end user to install rdma-core.

	Improved data path performance.

	Converted to the new offloads API.

	Supported device removal check operation.

	Added NVGRE and UDP tunnels support in Solarflare network PMD.

Added support for NVGRE, VXLAN and GENEVE tunnels.

	Added support for UDP tunnel ports configuration.

	Added tunneled packets classification.

	Added inner checksum offload.

	Added AVF (Adaptive Virtual Function) net PMD.

Added a new net PMD called AVF (Adaptive Virtual Function), which supports
Intel® Ethernet Adaptive Virtual Function (AVF) with features such as:

	Basic Rx/Tx burst

	SSE vectorized Rx/Tx burst

	Promiscuous mode

	MAC/VLAN offload

	Checksum offload

	TSO offload

	Jumbo frame and MTU setting

	RSS configuration

	stats

	Rx/Tx descriptor status

	Link status update/event

	Added feature supports for live migration from vhost-net to vhost-user.

Added feature supports for vhost-user to make live migration from vhost-net
to vhost-user possible. The features include:

	VIRTIO_F_ANY_LAYOUT

	VIRTIO_F_EVENT_IDX

	VIRTIO_NET_F_GUEST_ECN, VIRTIO_NET_F_HOST_ECN

	VIRTIO_NET_F_GUEST_UFO, VIRTIO_NET_F_HOST_UFO

	VIRTIO_NET_F_GSO

Also added VIRTIO_NET_F_GUEST_ANNOUNCE feature support in virtio pmd.
In a scenario where the vhost backend doesn’t have the ability to generate
RARP packets, the VM running virtio pmd can still be live migrated if
VIRTIO_NET_F_GUEST_ANNOUNCE feature is negotiated.

	Updated the AESNI-MB PMD.

The AESNI-MB PMD has been updated with additional support for:

	AES-CCM algorithm.

	Updated the DPAA_SEC crypto driver to support rte_security.

Updated the dpaa_sec crypto PMD to support rte_security lookaside
protocol offload for IPsec.

	Added Wireless Base Band Device (bbdev) abstraction.

The Wireless Baseband Device library is an acceleration abstraction
framework for 3gpp Layer 1 processing functions that provides a common
programming interface for seamless operation on integrated or discrete
hardware accelerators or using optimized software libraries for signal
processing.

The current release only supports 3GPP CRC, Turbo Coding and Rate
Matching operations, as specified in 3GPP TS 36.212.

See the Wireless Baseband Device Library programmer’s guide for more details.

	Added New eventdev Ordered Packet Distribution Library (OPDL) PMD.

The OPDL (Ordered Packet Distribution Library) eventdev is a specific
implementation of the eventdev API. It is particularly suited to packet
processing workloads that have high throughput and low latency requirements.
All packets follow the same path through the device. The order in which
packets follow is determined by the order in which queues are set up.
Events are left on the ring until they are transmitted. As a result packets
do not go out of order.

With this change, applications can use the OPDL PMD via the eventdev api.

	Added new pipeline use case for dpdk-test-eventdev application.

Added a new “pipeline” use case for the dpdk-test-eventdev application.
The pipeline case can be used to simulate various stages in a real world
application from packet receive to transmit while maintaining the packet
ordering. It can also be used to measure the performance of the event device
across the stages of the pipeline.

The pipeline use case has been made generic to work with all the event
devices based on the capabilities.

	Updated Eventdev sample application to support event devices based on capability.

Updated the Eventdev pipeline sample application to support various types of
pipelines based on the capabilities of the attached event and ethernet
devices. Also, renamed the application from software PMD specific
eventdev_pipeline_sw_pmd to the more generic eventdev_pipeline.

	Added Rawdev, a generic device support library.

The Rawdev library provides support for integrating any generic device type with
the DPDK framework. Generic devices are those which do not have a pre-defined
type within DPDK, for example, ethernet, crypto, event etc.

A set of northbound APIs have been defined which encompass a generic set of
operations by allowing applications to interact with device using opaque
structures/buffers. Also, southbound APIs provide a means of integrating devices
either as part of a physical bus (PCI, FSLMC etc) or through vdev.

See the Rawdevice Library programmer’s guide for more details.

	Added new multi-process communication channel.

Added a generic channel in EAL for multi-process (primary/secondary) communication.
Consumers of this channel need to register an action with an action name to response
a message received; the actions will be identified by the action name and executed
in the context of a new dedicated thread for this channel. The list of new APIs:

	rte_mp_register and rte_mp_unregister are for action (un)registration.

	rte_mp_sendmsg is for sending a message without blocking for a response.

	rte_mp_request is for sending a request message and will block until
it gets a reply message which is sent from the peer by rte_mp_reply.

	Added GRO support for VxLAN-tunneled packets.

Added GRO support for VxLAN-tunneled packets. Supported VxLAN packets
must contain an outer IPv4 header and inner TCP/IPv4 headers. VxLAN
GRO doesn’t check if input packets have correct checksums and doesn’t
update checksums for output packets. Additionally, it assumes the
packets are complete (i.e., MF==0 && frag_off==0), when IP
fragmentation is possible (i.e., DF==0).

	Increased default Rx and Tx ring size in sample applications.

Increased the default RX_RING_SIZE and TX_RING_SIZE to 1024 entries
in testpmd and the sample applications to give better performance in the
general case. The user should experiment with various Rx and Tx ring sizes
for their specific application to get best performance.

	Added new DPDK build system using the tools “meson” and “ninja” [EXPERIMENTAL].

Added support for building DPDK using meson and ninja, which gives
additional features, such as automatic build-time configuration, over the
current build system using make. For instructions on how to do a DPDK build
using the new system, see the instructions in doc/build-sdk-meson.txt.

Note

This new build system support is incomplete at this point and is added
as experimental in this release. The existing build system using make
is unaffected by these changes, and can continue to be used for this
and subsequent releases until such time as it’s deprecation is announced.

10.2. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
+ librte_bbdev.so.1
 librte_bitratestats.so.2
 librte_bus_dpaa.so.1
 librte_bus_fslmc.so.1
 librte_bus_pci.so.1
 librte_bus_vdev.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_cryptodev.so.4
 librte_distributor.so.1
 librte_eal.so.6
 librte_ethdev.so.8
 librte_eventdev.so.3
 librte_flow_classify.so.1
 librte_gro.so.1
 librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.3
 librte_mempool.so.3
 librte_meter.so.1
 librte_metrics.so.1
 librte_net.so.1
 librte_pci.so.1
 librte_pdump.so.2
 librte_pipeline.so.3
 librte_pmd_bnxt.so.2
 librte_pmd_bond.so.2
 librte_pmd_i40e.so.2
 librte_pmd_ixgbe.so.2
 librte_pmd_ring.so.2
 librte_pmd_softnic.so.1
 librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
+ librte_rawdev.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_security.so.1
 librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.3

10.3. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

	OS:

	CentOS 7.2

	Fedora 25

	Fedora 26

	Fedora 27

	FreeBSD 11

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10

	Ubuntu 17.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.4.3 (i40e)

	Intel Corporation Ethernet Connection X722 for 10GBASE-T

	firmware-version: 6.01 0x80003221

	Device id: 8086:37d2 / 8086:154c

	Driver version: 2.4.3 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b / 8086:154c

	Driver version: 2.4.3 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.4.3 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.3.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	CPU:

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.5 Beta (Maipo)

	Red Hat Enterprise Linux Server release 7.4 (Maipo)

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 17.10

	Ubuntu 16.10

	Ubuntu 16.04

	MLNX_OFED: 4.2-1.0.0.0

	MLNX_OFED: 4.3-0.1.6.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000 and above

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000 and above

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.21.1000 and above

	ARM platforms with Mellanox(R) NICs combinations

	CPU:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Ubuntu 16.04

	MLNX_OFED: 4.2-1.0.0.0

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000

11. DPDK Release 17.11

11.1. New Features

	Extended port_id range from uint8_t to uint16_t.

Increased the port_id range from 8 bits to 16 bits in order to support
more than 256 ports in DPDK. All ethdev APIs which have port_id as
parameter have been changed.

	Modified the return type of rte_eth_stats_reset.

Changed return type of rte_eth_stats_reset from void to int so
that the caller can determine whether a device supports the operation or not
and if the operation was carried out.

	Added a new driver for Marvell Armada 7k/8k devices.

Added the new mrvl net driver for Marvell Armada 7k/8k devices. See the
MVPP2 Poll Mode Driver NIC guide for more details on this new driver.

	Updated mlx4 driver.

Updated the mlx4 driver including the following changes:

	Isolated mode (rte_flow) can now be enabled anytime, not only during
initial device configuration.

	Flow rules now support up to 4096 priority levels usable at will by
applications.

	Enhanced error message to help debugging invalid/unsupported flow rules.

	Flow rules matching all multicast and promiscuous traffic are now allowed.

	No more software restrictions on flow rules with the RSS action, their
configuration is much more flexible.

	Significantly reduced memory footprint for Rx and Tx queue objects.

	While supported, UDP RSS is temporarily disabled due to a remaining issue
with its support in the Linux kernel.

	The new RSS implementation does not automatically spread traffic according
to the inner packet of VXLAN frames anymore, only the outer one (like
other PMDs).

	Partial (Tx only) support for secondary processes was broken and had to be
removed.

	Refactored driver to get rid of dependency on the components provided by
Mellanox OFED and instead rely on the current and public rdma-core
package and Linux version from now on.

	Removed compile-time limitation on number of device instances the PMD
can support.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Enabled the PMD to run on top of upstream Linux kernel and rdma-core
libs, removing the dependency on specific Mellanox OFED libraries.

	Improved PMD latency performance.

	Improved PMD memory footprint.

	Added support for vectorized Rx/Tx burst for ARMv8.

	Added support for secondary process.

	Added support for flow counters.

	Added support for Rx hardware timestamp offload.

	Added support for device removal event.

	Added SoftNIC PMD.

Added a new SoftNIC PMD. This virtual device provides applications with
software fallback support for traffic management.

	Added support for NXP DPAA Devices.

Added support for NXP’s DPAA devices - LS104x series. This includes:

	DPAA Bus driver

	DPAA Mempool driver for supporting offloaded packet memory pool

	DPAA PMD for DPAA devices

See the DPAA Poll Mode Driver document for more details of this new driver.

	Updated support for Cavium OCTEONTX Device.

Updated support for Cavium’s OCTEONTX device (CN83xx). This includes:

	OCTEONTX Mempool driver for supporting offloaded packet memory pool

	OCTEONTX Ethdev PMD

	OCTEONTX Eventdev-Ethdev Rx adapter

See the OCTEON TX Poll Mode driver document for more details of this new driver.

	Added PF support to the Netronome NFP PMD.

Added PF support to the Netronome NFP PMD. Previously the NFP PMD only
supported VFs. PF support is just as a basic DPDK port and has no VF
management yet.

PF support comes with firmware upload support which allows the PMD to
independently work from kernel netdev NFP drivers.

NFP 4000 devices are also now supported along with previous 6000 devices.

	Updated bnxt PMD.

Major enhancements include:

	Support for Flow API

	Support for Tx and Rx descriptor status functions

	Added bus agnostic functions to cryptodev for PMD initialization

Added new PMD assist, bus independent, functions
rte_cryptodev_pmd_parse_input_args(), rte_cryptodev_pmd_create() and
rte_cryptodev_pmd_destroy() for drivers to manage creation and
destruction of new device instances.

	Updated QAT crypto PMD.

Added several performance enhancements:

	Removed atomics from the internal queue pair structure.

	Added coalesce writes to HEAD CSR on response processing.

	Added coalesce writes to TAIL CSR on request processing.

In addition support was added for the AES CCM algorithm.

	Updated the AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for:

	The DES CBC algorithm.

	The DES DOCSIS BPI algorithm.

This change requires version 0.47 of the IPsec Multi-buffer library. For
more details see the AESN-NI Multi Buffer Crypto Poll Mode Driver documentation.

	Updated the OpenSSL PMD.

The OpenSSL PMD has been updated with additional support for:

	The DES CBC algorithm.

	The AES CCM algorithm.

	Added NXP DPAA SEC crypto PMD.

A new dpaa_sec hardware based crypto PMD for NXP DPAA devices has been
added. See the NXP DPAA CAAM (DPAA_SEC) document for more details.

	Added MRVL crypto PMD.

A new crypto PMD has been added, which provides several ciphering and hashing
algorithms. All cryptography operations use the MUSDK library crypto API.
See the MVSAM Crypto Poll Mode Driver document for more details.

	Add new benchmarking mode to dpdk-test-crypto-perf application.

Added a new “PMD cyclecount” benchmark mode to the dpdk-test-crypto-perf
application to display a detailed breakdown of CPU cycles used by hardware
acceleration.

	Added the Security Offload Library.

Added an experimental library - rte_security. This provide security APIs
for protocols like IPsec using inline ipsec offload to ethernet devices or
full protocol offload with lookaside crypto devices.

See the Security Library section of the DPDK Programmers
Guide document for more information.

	Updated the DPAA2_SEC crypto driver to support rte_security.

Updated the dpaa2_sec crypto PMD to support rte_security lookaside
protocol offload for IPsec.

	Updated the IXGBE ethernet driver to support rte_security.

Updated ixgbe ethernet PMD to support rte_security inline IPsec offload.

	Updated i40e driver to support GTP-C/GTP-U.

Updated i40e PMD to support GTP-C/GTP-U with GTP-C/GTP-U supporting
profiles which can be programmed by dynamic device personalization (DDP)
process.

	Added the i40e ethernet driver to support queue region feature.

This feature enable queue regions configuration for RSS in PF,
so that different traffic classes or different packet
classification types can be separated into different queues in
different queue regions.

	Updated ipsec-secgw application to support rte_security.

Updated the ipsec-secgw sample application to support rte_security
actions for ipsec inline and full protocol offload using lookaside crypto
offload.

	Added IOMMU support to libvhost-user

Implemented device IOTLB in the Vhost-user backend, and enabled Virtio’s
IOMMU feature. The feature is disabled by default, and can be enabled by
setting RTE_VHOST_USER_IOMMU_SUPPORT flag at vhost device registration
time.

	Added the Event Ethernet Adapter Library.

Added the Event Ethernet Adapter library. This library provides APIs for
eventdev applications to configure the ethdev for eventdev packet flow.

	Updated DPAA2 Event PMD for the Event Ethernet Adapter.

Added support for the eventdev ethernet adapter for DPAA2.

	Added Membership library (rte_member).

Added a new data structure library called the Membership Library.

The Membership Library is an extension and generalization of a traditional
filter (for example Bloom Filter) structure that has multiple usages in a
wide variety of workloads and applications. In general, the Membership
Library is a data structure that provides a “set-summary” and responds to
set-membership queries whether a certain member belongs to a set(s).

The library provides APIs for DPDK applications to insert a new member,
delete an existing member, and query the existence of a member in a given
set, or a group of sets. For the case of a group of sets the library will
return not only whether the element has been inserted in one of the sets but
also which set it belongs to.

See the Membership Library documentation in the Programmers
Guide, for more information.

	Added the Generic Segmentation Offload Library.

Added the Generic Segmentation Offload (GSO) library to enable
applications to split large packets (e.g. MTU is 64KB) into small
ones (e.g. MTU is 1500B). Supported packet types are:

	TCP/IPv4 packets.

	VxLAN packets, which must have an outer IPv4 header, and contain
an inner TCP/IPv4 packet.

	GRE packets, which must contain an outer IPv4 header, and inner
TCP/IPv4 headers.

The GSO library doesn’t check if the input packets have correct
checksums, and doesn’t update checksums for output packets.
Additionally, the GSO library doesn’t process IP fragmented packets.

	Added the Flow Classification Library.

Added an experimental Flow Classification library to provide APIs for DPDK
applications to classify an input packet by matching it against a set of
flow rules. It uses the librte_table API to manage the flow rules.

11.2. Resolved Issues

	Service core fails to call service callback due to atomic lock

In a specific configuration of multi-thread unsafe services and service
cores, a service core previously did not correctly release the atomic lock
on the service. This would result in the cores polling the service, but it
looked like another thread was executing the service callback. The logic for
atomic locking of the services has been fixed and refactored for readability.

11.3. API Changes

	Ethdev device name length increased.

The size of internal device name has been increased to 64 characters
to allow for storing longer bus specific names.

	Removed the Ethdev RTE_ETH_DEV_DETACHABLE flag.

Removed the Ethdev RTE_ETH_DEV_DETACHABLE flag. This flag is not
required anymore, with the new hotplug implementation. It has been removed
from the ether library. Its semantics are now expressed at the bus and PMD
level.

	Service cores API updated for usability

The service cores API has been changed, removing pointers from the API where
possible, and instead using integer IDs to identify each service. This
simplifies application code, aids debugging, and provides better
encapsulation. A summary of the main changes made is as follows:

	Services identified by ID not by rte_service_spec pointer

	Reduced API surface by using set functions instead of enable/disable

	Reworked rte_service_register to provide the service ID to registrar

	Reworked start and stop APIs into rte_service_runstate_set

	Added API to set runstate of service implementation to indicate readiness

	The following changes have been made in the mempool library

	Moved flags datatype from int to unsigned int for
rte_mempool.

	Removed __rte_unused int flag param from rte_mempool_generic_put
and rte_mempool_generic_get API.

	Added flags param in rte_mempool_xmem_size and
rte_mempool_xmem_usage.

	rte_mem_phy2mch was used in Xen dom0 to obtain the physical address;
remove this API as Xen dom0 support was removed.

	Added IOVA aliases related to physical address handling.

Some data types, structure members and functions related to physical address
handling are deprecated and have new aliases with IOVA wording. For example:

	phys_addr_t can be often replaced by rte_iova_t of same size.

	RTE_BAD_PHYS_ADDR is often replaced by RTE_BAD_IOVA of same value.

	rte_memseg.phys_addr is aliased with rte_memseg.iova_addr.

	rte_mem_virt2phy() can often be replaced by rte_mem_virt2iova.

	rte_malloc_virt2phy is aliased with rte_malloc_virt2iova.

	rte_memzone.phys_addr is aliased with rte_memzone.iova.

	rte_mempool_objhdr.physaddr is aliased with
rte_mempool_objhdr.iova.

	rte_mempool_memhdr.phys_addr is aliased with
rte_mempool_memhdr.iova.

	rte_mempool_virt2phy() can be replaced by rte_mempool_virt2iova().

	rte_mempool_populate_phys*() are aliased with
rte_mempool_populate_iova*()

	rte_mbuf.buf_physaddr is aliased with rte_mbuf.buf_iova.

	rte_mbuf_data_dma_addr*() are aliased with rte_mbuf_data_iova*().

	rte_pktmbuf_mtophys* are aliased with rte_pktmbuf_iova*().

	PCI bus API moved outside of the EAL

The PCI bus previously implemented within the EAL has been moved.
A first part has been added as an RTE library providing PCI helpers to
parse device locations or other such utilities.
A second part consisting of the actual bus driver has been moved to its
proper subdirectory, without changing its functionalities.

As such, several PCI-related functions are not exposed by the EAL anymore:

	rte_pci_detach

	rte_pci_dump

	rte_pci_ioport_map

	rte_pci_ioport_read

	rte_pci_ioport_unmap

	rte_pci_ioport_write

	rte_pci_map_device

	rte_pci_probe

	rte_pci_probe_one

	rte_pci_read_config

	rte_pci_register

	rte_pci_scan

	rte_pci_unmap_device

	rte_pci_unregister

	rte_pci_write_config

These functions are made available either as part of librte_pci or
librte_bus_pci.

	Moved vdev bus APIs outside of the EAL

Moved the following APIs from librte_eal to librte_bus_vdev:

	rte_vdev_init

	rte_vdev_register

	rte_vdev_uninit

	rte_vdev_unregister

	Add return value to stats_get dev op API

The stats_get dev op API return value has been changed to be int.
In this way PMDs can return an error value in case of failure at stats
getting process time.

	Modified the rte_cryptodev_allocate_driver function.

Modified the rte_cryptodev_allocate_driver() function in the cryptodev
library. An extra parameter struct cryptodev_driver *crypto_drv has been
added.

	Removed virtual device bus specific functions from librte_cryptodev.

The functions rte_cryptodev_vdev_parse_init_params() and
rte_cryptodev_vdev_pmd_init() have been removed from librte_cryptodev
and have been replaced by non bus specific functions
rte_cryptodev_pmd_parse_input_args() and rte_cryptodev_pmd_create().

The rte_cryptodev_create_vdev() function was removed to avoid the
dependency on vdev in librte_cryptodev; instead, users can call
rte_vdev_init() directly.

	Removed PCI device bus specific functions from librte_cryptodev.

The functions rte_cryptodev_pci_generic_probe() and
rte_cryptodev_pci_generic_remove() have been removed from librte_cryptodev
and have been replaced by non bus specific functions
rte_cryptodev_pmd_create() and rte_cryptodev_pmd_destroy().

	Removed deprecated functions to manage log level or type.

The functions rte_set_log_level(), rte_get_log_level(),
rte_set_log_type() and rte_get_log_type() have been removed.

They are respectively replaced by rte_log_set_global_level(),
rte_log_get_global_level(), rte_log_set_level() and
rte_log_get_level().

	Removed mbuf flags PKT_RX_VLAN_PKT and PKT_RX_QINQ_PKT.

The mbuf flags PKT_RX_VLAN_PKT and PKT_RX_QINQ_PKT have
been removed since their behavior was not properly described.

	Added mbuf flags PKT_RX_VLAN and PKT_RX_QINQ.

Two mbuf flags have been added to indicate that the VLAN
identifier has been saved in the mbuf structure. For instance:

	If VLAN is not stripped and TCI is saved: PKT_RX_VLAN

	If VLAN is stripped and TCI is saved: PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED

	Modified the vlan_offload_set_t function prototype in the ethdev library.

Modified the vlan_offload_set_t function prototype in the ethdev
library. The return value has been changed from void to int so the
caller can determine whether the backing device supports the operation or if
the operation was successfully performed.

11.4. ABI Changes

	Extended port_id range.

The size of the field port_id in the rte_eth_dev_data structure
has changed, as described in the New Features section above.

	New parameter added to rte_eth_dev.

A new parameter security_ctx has been added to rte_eth_dev to
support security operations like IPsec inline.

	New parameter added to rte_cryptodev.

A new parameter security_ctx has been added to rte_cryptodev to
support security operations like lookaside crypto.

11.5. Removed Items

	Xen dom0 in EAL has been removed, as well as the xenvirt PMD and vhost_xen.

	The crypto performance unit tests have been removed,
replaced by the dpdk-test-crypto-perf application.

11.6. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
+ librte_bitratestats.so.2
+ librte_bus_dpaa.so.1
+ librte_bus_fslmc.so.1
+ librte_bus_pci.so.1
+ librte_bus_vdev.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
+ librte_cryptodev.so.4
 librte_distributor.so.1
+ librte_eal.so.6
+ librte_ethdev.so.8
+ librte_eventdev.so.3
+ librte_flow_classify.so.1
 librte_gro.so.1
+ librte_gso.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.3
+ librte_mempool.so.3
 librte_meter.so.1
 librte_metrics.so.1
 librte_net.so.1
+ librte_pci.so.1
+ librte_pdump.so.2
 librte_pipeline.so.3
+ librte_pmd_bnxt.so.2
+ librte_pmd_bond.so.2
+ librte_pmd_i40e.so.2
+ librte_pmd_ixgbe.so.2
 librte_pmd_ring.so.2
+ librte_pmd_softnic.so.1
+ librte_pmd_vhost.so.2
 librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
+ librte_security.so.1
+ librte_table.so.3
 librte_timer.so.1
 librte_vhost.so.3

11.7. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	OS:

	CentOS 7.2

	Fedora 25

	Fedora 26

	FreeBSD 11

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 16.04

	Ubuntu 16.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 5.2.3 (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800003e7

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.4.6 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003205

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.1.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 6.01 0x80003204

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.1.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b

	Driver version: 2.1.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.1.26 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.63, 0x80000dda

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.3.0-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	Platform details:

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

	OS:

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 16.10

	Ubuntu 16.04

	Ubuntu 14.04

	MLNX_OFED: 4.2-1.0.0.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.42.5000

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT
(2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.21.1000

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.21.1000

	ARM platforms with Mellanox(R) NICs combinations

	Platform details:

	Qualcomm ARM 1.1 2500MHz

	OS:

	Ubuntu 16.04

	MLNX_OFED: 4.2-1.0.0.0

	NICs:

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.21.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.21.1000

12. DPDK Release 17.08

12.1. New Features

	Increase minimum x86 ISA version to SSE4.2.

Starting with version 17.08, DPDK requires SSE4.2 to run on x86.
Previous versions required SSE3.

	Added Service Core functionality.

The service core functionality added to EAL allows DPDK to run services such
as software PMDs on lcores without the application manually running them. The
service core infrastructure allows flexibility of running multiple services
on the same service lcore, and provides the application with powerful APIs to
configure the mapping from service lcores to services.

	Added Generic Receive Offload API.

Added Generic Receive Offload (GRO) API support to reassemble TCP/IPv4
packets. The GRO API assumes all input packets have the correct
checksums. GRO API doesn’t update checksums for merged packets. If
input packets are IP fragmented, the GRO API assumes they are complete
packets (i.e. with L4 headers).

	Added Fail-Safe PMD

Added the new Fail-Safe PMD. This virtual device allows applications to
support seamless hotplug of devices.
See the Fail-safe poll mode driver library guide for more details about this driver.

	Added support for generic flow API (rte_flow) on igb NICs.

This API provides a generic means of configuring hardware to match specific
ingress or egress traffic, altering its behavior and querying related counters
according to any number of user-defined rules.

Added generic flow API support for Ethernet, IPv4, UDP, TCP and RAW pattern
items with QUEUE actions. There are four types of filter support for this
feature on igb.

	Added support for generic flow API (rte_flow) on enic.

Added flow API support for outer Ethernet, VLAN, IPv4, IPv6, UDP, TCP, SCTP,
VxLAN and inner Ethernet, VLAN, IPv4, IPv6, UDP and TCP pattern items with
QUEUE, MARK, FLAG and VOID actions for ingress traffic.

	Added support for Chelsio T6 family of adapters

The CXGBE PMD was updated to run Chelsio T6 family of adapters.

	Added latency and performance improvements for cxgbe

the Tx and Rx path in cxgbe were reworked to improve performance. In
addition the latency was reduced for slow traffic.

	Updated the bnxt PMD.

Updated the bnxt PMD. The major enhancements include:

	Support MTU modification.

	Add support for LRO.

	Add support for VLAN filter and strip functionality.

	Additional enhancements to add support for more dev_ops.

	Added PMD specific APIs mainly to control VF from PF.

	Update HWRM version to 1.7.7

	Added support for Rx interrupts on mlx4 driver.

Rx queues can be now be armed with an interrupt which will trigger on the
next packet arrival.

	Updated mlx5 driver.

Updated the mlx5 driver including the following changes:

	Added vectorized Rx/Tx burst for x86.

	Added support for isolated mode from flow API.

	Reworked the flow drop action to implement in hardware classifier.

	Improved Rx interrupts management.

	Updated szedata2 PMD.

Added support for firmware with multiple Ethernet ports per physical port.

	Updated dpaa2 PMD.

Updated dpaa2 PMD. Major enhancements include:

	Added support for MAC Filter configuration.

	Added support for Segmented Buffers.

	Added support for VLAN filter and strip functionality.

	Additional enhancements to add support for more dev_ops.

	Optimized the packet receive path

	Reorganized the symmetric crypto operation structure.

The crypto operation (rte_crypto_sym_op) has been reorganized as follows:

	Removed the rte_crypto_sym_op_sess_type field.

	Replaced the pointer and physical address of IV with offset from the start
of the crypto operation.

	Moved length and offset of cipher IV to rte_crypto_cipher_xform.

	Removed “Additional Authentication Data” (AAD) length.

	Removed digest length.

	Removed AAD pointer and physical address from auth structure.

	Added aead structure, containing parameters for AEAD algorithms.

	Reorganized the crypto operation structure.

The crypto operation (rte_crypto_op) has been reorganized as follows:

	Added the rte_crypto_op_sess_type field.

	The enumerations rte_crypto_op_status and rte_crypto_op_type
have been modified to be uint8_t values.

	Removed the field opaque_data.

	Pointer to rte_crypto_sym_op has been replaced with a zero length array.

	Reorganized the crypto symmetric session structure.

The crypto symmetric session structure (rte_cryptodev_sym_session) has
been reorganized as follows:

	The dev_id field has been removed.

	The driver_id field has been removed.

	The mempool pointer mp has been removed.

	Replaced private marker with array of pointers to private data sessions
sess_private_data.

	Updated cryptodev library.

	Added AEAD algorithm specific functions and structures, so it is not
necessary to use a combination of cipher and authentication
structures anymore.

	Added helper functions for crypto device driver identification.

	Added support for multi-device sessions, so a single session can be
used in multiple drivers.

	Added functions to initialize and free individual driver private data
with the same session.

	Updated dpaa2_sec crypto PMD.

Added support for AES-GCM and AES-CTR.

	Updated the AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for:

	12-byte IV on AES Counter Mode, apart from the previous 16-byte IV.

	Updated the AES-NI GCM PMD.

The AES-NI GCM PMD was migrated from the ISA-L library to the Multi Buffer
library, as the latter library has Scatter Gather List support
now. The migration entailed adding additional support for 192-bit keys.

	Updated the Cryptodev Scheduler PMD.

Added a multicore based distribution mode, which distributes the enqueued
crypto operations among several slaves, running on different logical cores.

	Added NXP DPAA2 Eventdev PMD.

Added the new dpaa2 eventdev driver for NXP DPAA2 devices. See the
“Event Device Drivers” document for more details on this new driver.

	Added dpdk-test-eventdev test application.

The dpdk-test-eventdev tool is a Data Plane Development Kit (DPDK) application
that allows exercising various eventdev use cases.
This application has a generic framework to add new eventdev based test cases
to verify functionality and measure the performance parameters of DPDK
eventdev devices.

12.2. Known Issues

	Starting with version 17.08, libnuma is required to build DPDK.

12.3. API Changes

	Modified the _rte_eth_dev_callback_process function in the ethdev library.

The function _rte_eth_dev_callback_process() has been modified. The
return value has been changed from void to int and an extra parameter void
*ret_param has been added.

	Moved bypass functions from the rte_ethdev library to ixgbe PMD

	The following rte_ethdev library functions were removed:

	rte_eth_dev_bypass_event_show()

	rte_eth_dev_bypass_event_store()

	rte_eth_dev_bypass_init()

	rte_eth_dev_bypass_state_set()

	rte_eth_dev_bypass_state_show()

	rte_eth_dev_bypass_ver_show()

	rte_eth_dev_bypass_wd_reset()

	rte_eth_dev_bypass_wd_timeout_show()

	rte_eth_dev_wd_timeout_store()

	The following ixgbe PMD functions were added:

	rte_pmd_ixgbe_bypass_event_show()

	rte_pmd_ixgbe_bypass_event_store()

	rte_pmd_ixgbe_bypass_init()

	rte_pmd_ixgbe_bypass_state_set()

	rte_pmd_ixgbe_bypass_state_show()

	rte_pmd_ixgbe_bypass_ver_show()

	rte_pmd_ixgbe_bypass_wd_reset()

	rte_pmd_ixgbe_bypass_wd_timeout_show()

	rte_pmd_ixgbe_bypass_wd_timeout_store()

	Reworked rte_cryptodev library.

The rte_cryptodev library has been reworked and updated. The following changes
have been made to it:

	The crypto device type enumeration has been removed from cryptodev library.

	The function rte_crypto_count_devtype() has been removed, and replaced
by the new function rte_crypto_count_by_driver().

	Moved crypto device driver names definitions to the particular PMDs.
These names are not public anymore.

	The rte_cryptodev_configure() function does not create the session
mempool for the device anymore.

	The rte_cryptodev_queue_pair_attach_sym_session() and
rte_cryptodev_queue_pair_dettach_sym_session() functions require
the new parameter device id.

	Parameters of rte_cryptodev_sym_session_create() were modified to
accept mempool, instead of device id and rte_crypto_sym_xform.

	Removed device id parameter from rte_cryptodev_sym_session_free().

	Added a new field session_pool to rte_cryptodev_queue_pair_setup().

	Removed aad_size parameter from
rte_cryptodev_sym_capability_check_auth().

	Added iv_size parameter to
rte_cryptodev_sym_capability_check_auth().

	Removed RTE_CRYPTO_OP_STATUS_ENQUEUED from enum
rte_crypto_op_status.

12.4. ABI Changes

	Changed type of domain field in rte_pci_addr to uint32_t
to follow the PCI standard.

	Added new rte_bus experimental APIs available as operators within the
rte_bus structure.

	Made rte_devargs structure internal device representation generic to
prepare for a bus-agnostic EAL.

	Reorganized the crypto operation structures.

Some fields have been modified in the rte_crypto_op and
rte_crypto_sym_op structures, as described in the New Features
section.

	Reorganized the crypto symmetric session structure.

Some fields have been modified in the rte_cryptodev_sym_session
structure, as described in the New Features section.

	Reorganized the rte_crypto_sym_cipher_xform structure.

	Added cipher IV length and offset parameters.

	Changed field size of key length from size_t to uint16_t.

	Reorganized the rte_crypto_sym_auth_xform structure.

	Added authentication IV length and offset parameters.

	Changed field size of AAD length from uint32_t to uint16_t.

	Changed field size of digest length from uint32_t to uint16_t.

	Removed AAD length.

	Changed field size of key length from size_t to uint16_t.

	Replaced dev_type enumeration with uint8_t driver_id in
rte_cryptodev_info and rte_cryptodev structures.

	Removed session_mp from rte_cryptodev_config.

12.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_bitratestats.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
+ librte_cryptodev.so.3
 librte_distributor.so.1
+ librte_eal.so.5
+ librte_ethdev.so.7
+ librte_eventdev.so.2
+ librte_gro.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_latencystats.so.1
 librte_lpm.so.2
 librte_mbuf.so.3
 librte_mempool.so.2
 librte_meter.so.1
 librte_metrics.so.1
 librte_net.so.1
 librte_pdump.so.1
 librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
 librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
 librte_vhost.so.3

12.6. Tested Platforms

	Intel(R) platforms with Mellanox(R) NICs combinations

	Platform details:

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	OS:

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 16.10

	Ubuntu 16.04

	Ubuntu 14.04

	MLNX_OFED: 4.1-1.0.2.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.40.5030

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT
(2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.2000

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.2000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.19.1200

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.19.1200

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	OS:

	CentOS 7.2

	Fedora 25

	FreeBSD 11

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 16.04

	Ubuntu 16.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 6.01 0x80003205

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.0.19 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 6.01 0x80003204

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 2.0.19 (i40e)

	Intel(R) Ethernet Converged Network Adapter XXV710-DA2 (2x25G)

	Firmware version: 6.01 0x80003221

	Device id (pf/vf): 8086:158b

	Driver version: 2.0.19 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 6.01 0x8000321c

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 2.0.19 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

13. DPDK Release 17.05

13.1. New Features

	Reorganized mbuf structure.

The mbuf structure has been reorganized as follows:

	Align fields to facilitate the writing of data_off, refcnt, and
nb_segs in one operation.

	Use 2 bytes for port and number of segments.

	Move the sequence number to the second cache line.

	Add a timestamp field.

	Set default value for refcnt, next and nb_segs at mbuf free.

	Added mbuf raw free API.

Moved rte_mbuf_raw_free() and rte_pktmbuf_prefree_seg() functions to
the public API.

	Added free Tx mbuf on demand API.

Added a new function rte_eth_tx_done_cleanup() which allows an
application to request the driver to release mbufs that are no longer in use
from a Tx ring, independent of whether or not the tx_rs_thresh has been
crossed.

	Added device removal interrupt.

Added a new ethdev event RTE_ETH_DEV_INTR_RMV to signify
the sudden removal of a device.
This event can be advertised by PCI drivers and enabled accordingly.

	Added EAL dynamic log framework.

Added new APIs to dynamically register named log types, and control
the level of each type independently.

	Added descriptor status ethdev API.

Added a new API to get the status of a descriptor.

For Rx, it is almost similar to the rx_descriptor_done API, except
it differentiates descriptors which are held by the driver and not
returned to the hardware. For Tx, it is a new API.

	Increased number of next hops for LPM IPv6 to 2^21.

The next_hop field has been extended from 8 bits to 21 bits for IPv6.

	Added VFIO hotplug support.

Added hotplug support for VFIO in addition to the existing UIO support.

	Added PowerPC support to pci probing for vfio-pci devices.

Enabled sPAPR IOMMU based pci probing for vfio-pci devices.

	Kept consistent PMD batching behavior.

Removed the limit of fm10k/i40e/ixgbe Tx burst size and vhost Rx/Tx burst size
in order to support the same policy of “make an best effort to Rx/Tx pkts”
for PMDs.

	Updated the ixgbe base driver.

Updated the ixgbe base driver, including the following changes:

	Add link block check for KR.

	Complete HW initialization even if SFP is not present.

	Add VF xcast promiscuous mode.

	Added PowerPC support for i40e and its vector PMD.

Enabled i40e PMD and its vector PMD by default in PowerPC.

	Added VF max bandwidth setting in i40e.

Enabled capability to set the max bandwidth for a VF in i40e.

	Added VF TC min and max bandwidth setting in i40e.

Enabled capability to set the min and max allocated bandwidth for a TC on a
VF in i40.

	Added TC strict priority mode setting on i40e.

There are 2 Tx scheduling modes supported for TCs by i40e HW: round robin
mode and strict priority mode. By default the round robin mode is used. It
is now possible to change the Tx scheduling mode for a TC. This is a global
setting on a physical port.

	Added i40e dynamic device personalization support.

	Added dynamic device personalization processing to i40e firmware.

	Updated i40e driver to support MPLSoUDP/MPLSoGRE.

Updated i40e PMD to support MPLSoUDP/MPLSoGRE with MPLSoUDP/MPLSoGRE
supporting profiles which can be programmed by dynamic device personalization
(DDP) process.

	Added Cloud Filter for QinQ steering to i40e.

	Added a QinQ cloud filter on the i40e PMD, for steering traffic to a VM
using both VLAN tags. Note, this feature is not supported in Vector Mode.

	Updated mlx5 PMD.

Updated the mlx5 driver, including the following changes:

	Added Generic flow API support for classification according to ether type.

	Extended Generic flow API support for classification of IPv6 flow
according to Vtc flow, Protocol and Hop limit.

	Added Generic flow API support for FLAG action.

	Added Generic flow API support for RSS action.

	Added support for TSO for non-tunneled and VXLAN packets.

	Added support for hardware Tx checksum offloads for VXLAN packets.

	Added support for user space Rx interrupt mode.

	Improved ConnectX-5 single core and maximum performance.

	Updated mlx4 PMD.

Updated the mlx4 driver, including the following changes:

	Added support for Generic flow API basic flow items and actions.

	Added support for device removal event.

	Updated the sfc_efx driver.

	Added Generic Flow API support for Ethernet, VLAN, IPv4, IPv6, UDP and TCP
pattern items with QUEUE action for ingress traffic.

	Added support for virtual functions (VFs).

	Added LiquidIO network PMD.

Added poll mode driver support for Cavium LiquidIO II server adapter VFs.

	Added Atomic Rules Arkville PMD.

Added a new poll mode driver for the Arkville family of
devices from Atomic Rules. The net/ark PMD supports line-rate
agnostic, multi-queue data movement on Arkville core FPGA instances.

	Added support for NXP DPAA2 - FSLMC bus.

Added the new bus “fslmc” driver for NXP DPAA2 devices. See the
“Network Interface Controller Drivers” document for more details of this new
driver.

	Added support for NXP DPAA2 Network PMD.

Added the new “dpaa2” net driver for NXP DPAA2 devices. See the
“Network Interface Controller Drivers” document for more details of this new
driver.

	Added support for the Wind River Systems AVP PMD.

Added a new networking driver for the AVP device type. Theses devices are
specific to the Wind River Systems virtualization platforms.

	Added vmxnet3 version 3 support.

Added support for vmxnet3 version 3 which includes several
performance enhancements such as configurable Tx data ring, Receive
Data Ring, and the ability to register memory regions.

	Updated the TAP driver.

Updated the TAP PMD to:

	Support MTU modification.

	Support packet type for Rx.

	Support segmented packets on Rx and Tx.

	Speed up Rx on TAP when no packets are available.

	Support capturing traffic from another netdevice.

	Dynamically change link status when the underlying interface state changes.

	Added Generic Flow API support for Ethernet, VLAN, IPv4, IPv6, UDP and
TCP pattern items with DROP, QUEUE and PASSTHRU actions for ingress
traffic.

	Added MTU feature support to Virtio and Vhost.

Implemented new Virtio MTU feature in Vhost and Virtio:

	Add rte_vhost_mtu_get() API to Vhost library.

	Enable Vhost PMD’s MTU get feature.

	Get max MTU value from host in Virtio PMD

	Added interrupt mode support for virtio-user.

Implemented Rxq interrupt mode and LSC support for virtio-user as a virtual
device. Supported cases:

	Rxq interrupt for virtio-user + vhost-user as the backend.

	Rxq interrupt for virtio-user + vhost-kernel as the backend.

	LSC interrupt for virtio-user + vhost-user as the backend.

	Added event driven programming model library (rte_eventdev).

This API introduces an event driven programming model.

In a polling model, lcores poll ethdev ports and associated
Rx queues directly to look for a packet. By contrast in an event
driven model, lcores call the scheduler that selects packets for
them based on programmer-specified criteria. The Eventdev library
adds support for an event driven programming model, which offers
applications automatic multicore scaling, dynamic load balancing,
pipelining, packet ingress order maintenance and
synchronization services to simplify application packet processing.

By introducing an event driven programming model, DPDK can support
both polling and event driven programming models for packet processing,
and applications are free to choose whatever model
(or combination of the two) best suits their needs.

	Added Software Eventdev PMD.

Added support for the software eventdev PMD. The software eventdev is a
software based scheduler device that implements the eventdev API. This
PMD allows an application to configure a pipeline using the eventdev
library, and run the scheduling workload on a CPU core.

	Added Cavium OCTEONTX Eventdev PMD.

Added the new octeontx ssovf eventdev driver for OCTEONTX devices. See the
“Event Device Drivers” document for more details on this new driver.

	Added information metrics library.

Added a library that allows information metrics to be added and updated
by producers, typically other libraries, for later retrieval by
consumers such as applications. It is intended to provide a
reporting mechanism that is independent of other libraries such
as ethdev.

	Added bit-rate calculation library.

Added a library that can be used to calculate device bit-rates. Calculated
bitrates are reported using the metrics library.

	Added latency stats library.

Added a library that measures packet latency. The collected statistics are
jitter and latency. For latency the minimum, average, and maximum is
measured.

	Added NXP DPAA2 SEC crypto PMD.

A new “dpaa2_sec” hardware based crypto PMD for NXP DPAA2 devices has been
added. See the “Crypto Device Drivers” document for more details on this
driver.

	Updated the Cryptodev Scheduler PMD.

	Added a packet-size based distribution mode, which distributes the enqueued
crypto operations among two slaves, based on their data lengths.

	Added fail-over scheduling mode, which enqueues crypto operations to a
primary slave first. Then, any operation that cannot be enqueued is
enqueued to a secondary slave.

	Added mode specific option support, so each scheduling mode can
now be configured individually by the new API.

	Updated the QAT PMD.

The QAT PMD has been updated with additional support for:

	AES DOCSIS BPI algorithm.

	DES DOCSIS BPI algorithm.

	ZUC EEA3/EIA3 algorithms.

	Updated the AESNI MB PMD.

The AESNI MB PMD has been updated with additional support for:

	AES DOCSIS BPI algorithm.

	Updated the OpenSSL PMD.

The OpenSSL PMD has been updated with additional support for:

	DES DOCSIS BPI algorithm.

13.2. Resolved Issues

	l2fwd-keepalive: Fixed unclean shutdowns.

Added clean shutdown to l2fwd-keepalive so that it can free up
stale resources used for inter-process communication.

13.3. Known Issues

	LSC interrupt doesn’t work for virtio-user + vhost-kernel.

LSC interrupt cannot be detected when setting the backend, tap device,
up/down as we fail to find a way to monitor such event.

13.4. API Changes

	The LPM next_hop field is extended from 8 bits to 21 bits for IPv6
while keeping ABI compatibility.

	Reworked rte_ring library.

The rte_ring library has been reworked and updated. The following changes
have been made to it:

	Removed the build-time setting CONFIG_RTE_RING_SPLIT_PROD_CONS.

	Removed the build-time setting CONFIG_RTE_LIBRTE_RING_DEBUG.

	Removed the build-time setting CONFIG_RTE_RING_PAUSE_REP_COUNT.

	Removed the function rte_ring_set_water_mark as part of a general
removal of watermarks support in the library.

	Added an extra parameter to the burst/bulk enqueue functions to
return the number of free spaces in the ring after enqueue. This can
be used by an application to implement its own watermark functionality.

	Added an extra parameter to the burst/bulk dequeue functions to return
the number elements remaining in the ring after dequeue.

	Changed the return value of the enqueue and dequeue bulk functions to
match that of the burst equivalents. In all cases, ring functions which
operate on multiple packets now return the number of elements enqueued
or dequeued, as appropriate. The updated functions are:

	rte_ring_mp_enqueue_bulk

	rte_ring_sp_enqueue_bulk

	rte_ring_enqueue_bulk

	rte_ring_mc_dequeue_bulk

	rte_ring_sc_dequeue_bulk

	rte_ring_dequeue_bulk

NOTE: the above functions all have different parameters as well as
different return values, due to the other listed changes above. This
means that all instances of the functions in existing code will be
flagged by the compiler. The return value usage should be checked
while fixing the compiler error due to the extra parameter.

	Reworked rte_vhost library.

The rte_vhost library has been reworked to make it generic enough so that
the user could build other vhost-user drivers on top of it. To achieve this
the following changes have been made:

	The following vhost-pmd APIs are removed:

	rte_eth_vhost_feature_disable

	rte_eth_vhost_feature_enable

	rte_eth_vhost_feature_get

	The vhost API rte_vhost_driver_callback_register(ops) is reworked to
be per vhost-user socket file. Thus, it takes one more argument:
rte_vhost_driver_callback_register(path, ops).

	The vhost API rte_vhost_get_queue_num is deprecated, instead,
rte_vhost_get_vring_num should be used.

	The following macros are removed in rte_virtio_net.h

	VIRTIO_RXQ

	VIRTIO_TXQ

	VIRTIO_QNUM

	The following net specific header files are removed in rte_virtio_net.h

	linux/virtio_net.h

	sys/socket.h

	linux/if.h

	rte_ether.h

	The vhost struct virtio_net_device_ops is renamed to
vhost_device_ops

	The vhost API rte_vhost_driver_session_start is removed. Instead,
rte_vhost_driver_start should be used, and there is no need to create
a thread to call it.

	The vhost public header file rte_virtio_net.h is renamed to
rte_vhost.h

13.5. ABI Changes

	Reorganized the mbuf structure.

The order and size of the fields in the mbuf structure changed,
as described in the New Features section.

	The rte_cryptodev_info.sym structure has a new field max_nb_sessions_per_qp
to support drivers which may support a limited number of sessions per queue_pair.

13.6. Removed Items

	KNI vhost support has been removed.

	The dpdk_qat sample application has been removed.

13.7. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
+ librte_bitratestats.so.1
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_cryptodev.so.2
 librte_distributor.so.1
+ librte_eal.so.4
 librte_ethdev.so.6
+ librte_eventdev.so.1
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
+ librte_latencystats.so.1
 librte_lpm.so.2
+ librte_mbuf.so.3
 librte_mempool.so.2
 librte_meter.so.1
+ librte_metrics.so.1
 librte_net.so.1
 librte_pdump.so.1
 librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
 librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
 librte_vhost.so.3

13.8. Tested Platforms

	Intel(R) platforms with Intel(R) NICs combinations

	CPU

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz

	OS:

	CentOS 7.2

	Fedora 25

	FreeBSD 11

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 16.04

	Ubuntu 16.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1584 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

	Intel(R) platforms with Mellanox(R) NICs combinations

	Platform details:

	Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz

	OS:

	Red Hat Enterprise Linux Server release 7.3 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	Ubuntu 16.10

	Ubuntu 16.04

	Ubuntu 14.04

	MLNX_OFED: 4.0-2.0.0.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.40.5030

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.2000

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.2000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.19.1200

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.19.1200

	IBM(R) Power8(R) with Mellanox(R) NICs combinations

	Platform details:

	Processor: POWER8E (raw), AltiVec supported

	type-model: 8247-22L

	Firmware FW810.21 (SV810_108)

	OS: Ubuntu 16.04 LTS PPC le

	MLNX_OFED: 4.0-2.0.0.0

	NICs:

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.2000

14. DPDK Release 17.02

14.1. New Features

	Added support for representing buses in EAL

The rte_bus structure was introduced into the EAL. This allows for
devices to be represented by buses they are connected to. A new bus can be
added to DPDK by extending the rte_bus structure and implementing the
scan and probe functions. Once a new bus is registered using the provided
APIs, new devices can be detected and initialized using bus scan and probe
callbacks.

With this change, devices other than PCI or VDEV type can be represented
in the DPDK framework.

	Added generic EAL API for I/O device memory read/write operations.

This API introduces 8 bit, 16 bit, 32 bit and 64 bit I/O device
memory read/write operations along with “relaxed” versions.

Weakly-ordered architectures like ARM need an additional I/O barrier for
device memory read/write access over PCI bus. By introducing the EAL
abstraction for I/O device memory read/write access, the drivers can access
I/O device memory in an architecture-agnostic manner. The relaxed version
does not have an additional I/O memory barrier, which is useful in accessing
the device registers of integrated controllers which is implicitly strongly
ordered with respect to memory access.

	Added generic flow API (rte_flow).

This API provides a generic means to configure hardware to match specific
ingress or egress traffic, alter its behavior and query related counters
according to any number of user-defined rules.

In order to expose a single interface with an unambiguous behavior that is
common to all poll-mode drivers (PMDs) the rte_flow API is slightly
higher-level than the legacy filtering framework, which it encompasses and
supersedes (including all functions and filter types) .

See the Generic flow API (rte_flow) documentation for more information.

	Added firmware version get API.

Added a new function rte_eth_dev_fw_version_get() to fetch the firmware
version for a given device.

	Added APIs for MACsec offload support to the ixgbe PMD.

Six new APIs have been added to the ixgbe PMD for MACsec offload support.
The declarations for the APIs can be found in rte_pmd_ixgbe.h.

	Added I219 NICs support.

Added support for I219 Intel 1GbE NICs.

	Added VF Daemon (VFD) for i40e. - EXPERIMENTAL

This is an EXPERIMENTAL feature to enhance the capability of the DPDK PF as
many VF management features are not currently supported by the kernel PF
driver. Some new private APIs are implemented directly in the PMD without an
abstraction layer. They can be used directly by some users who have the
need.

The new APIs to control VFs directly from PF include:

	Set VF MAC anti-spoofing.

	Set VF VLAN anti-spoofing.

	Set TX loopback.

	Set VF unicast promiscuous mode.

	Set VF multicast promiscuous mode.

	Set VF MTU.

	Get/reset VF stats.

	Set VF MAC address.

	Set VF VLAN stripping.

	Vf VLAN insertion.

	Set VF broadcast mode.

	Set VF VLAN tag.

	Set VF VLAN filter.

VFD also includes VF to PF mailbox message management from an application.
When the PF receives mailbox messages from the VF the PF should call the
callback provided by the application to know if they’re permitted to be
processed.

As an EXPERIMENTAL feature, please be aware it can be changed or even
removed without prior notice.

	Updated the i40e base driver.

Updated the i40e base driver, including the following changes:

	Replace existing legacy memcpy() calls with i40e_memcpy() calls.

	Use BIT() macro instead of bit fields.

	Add clear all WoL filters implementation.

	Add broadcast promiscuous control per VLAN.

	Remove unused X722_SUPPORT and I40E_NDIS_SUPPORT macros.

	Updated the enic driver.

	Set new Rx checksum flags in mbufs to indicate unknown, good or bad checksums.

	Fix set/remove of MAC addresses. Allow up to 64 addresses per device.

	Enable TSO on outer headers.

	Added Solarflare libefx-based network PMD.

Added a new network PMD which supports Solarflare SFN7xxx and SFN8xxx family
of 10/40 Gbps adapters.

	Updated the mlx4 driver.

	Addressed a few bugs.

	Added support for Mellanox ConnectX-5 adapters (mlx5).

Added support for Mellanox ConnectX-5 family of 10/25/40/50/100 Gbps
adapters to the existing mlx5 PMD.

	Updated the mlx5 driver.

	Improve Tx performance by using vector logic.

	Improve RSS balancing when number of queues is not a power of two.

	Generic flow API support for Ethernet, IPv4, IPv4, UDP, TCP, VLAN and
VXLAN pattern items with DROP and QUEUE actions.

	Support for extended statistics.

	Addressed several data path bugs.

	As of MLNX_OFED 4.0-1.0.1.0, the Toeplitz RSS hash function is not
symmetric anymore for consistency with other PMDs.

	virtio-user with vhost-kernel as another exceptional path.

Previously, we upstreamed a virtual device, virtio-user with vhost-user as
the backend as a way of enabling IPC (Inter-Process Communication) and user
space container networking.

Virtio-user with vhost-kernel as the backend is a solution for the exception
path, such as KNI, which exchanges packets with the kernel networking stack.
This solution is very promising in:

	Maintenance: vhost and vhost-net (kernel) is an upstreamed and extensively
used kernel module.

	Features: vhost-net is designed to be a networking solution, which has
lots of networking related features, like multi-queue, TSO, multi-seg
mbuf, etc.

	Performance: similar to KNI, this solution would use one or more
kthreads to send/receive packets from user space DPDK applications,
which has little impact on user space polling thread (except that
it might enter into kernel space to wake up those kthreads if
necessary).

	Added virtio Rx interrupt support.

Added a feature to enable Rx interrupt mode for virtio pci net devices as
bound to VFIO (noiommu mode) and driven by virtio PMD.

With this feature, the virtio PMD can switch between polling mode and
interrupt mode, to achieve best performance, and at the same time save
power. It can work on both legacy and modern virtio devices. In this mode,
each rxq is mapped with an excluded MSIx interrupt.

See the Virtio Interrupt Mode documentation
for more information.

	Added ARMv8 crypto PMD.

A new crypto PMD has been added, which provides combined mode cryptographic
operations optimized for ARMv8 processors. The driver can be used to enhance
performance in processing chained operations such as cipher + HMAC.

	Updated the QAT PMD.

The QAT PMD has been updated with additional support for:

	DES algorithm.

	Scatter-gather list (SGL) support.

	Updated the AESNI MB PMD.

	The Intel(R) Multi Buffer Crypto for IPsec library used in
AESNI MB PMD has been moved to a new repository, in GitHub.

	Support has been added for single operations (cipher only and
authentication only).

	Updated the AES-NI GCM PMD.

The AES-NI GCM PMD was migrated from the Multi Buffer library to the ISA-L
library. The migration entailed adding additional support for:

	GMAC algorithm.

	256-bit cipher key.

	Session-less mode.

	Out-of place processing

	Scatter-gather support for chained mbufs (only out-of place and destination
mbuf must be contiguous)

	Added crypto performance test application.

Added a new performance test application for measuring performance
parameters of PMDs available in the crypto tree.

	Added Elastic Flow Distributor library (rte_efd).

Added a new library which uses perfect hashing to determine a target/value
for a given incoming flow key.

The library does not store the key itself for lookup operations, and
therefore, lookup performance is not dependent on the key size. Also, the
target/value can be any arbitrary value (8 bits by default). Finally, the
storage requirement is much smaller than a hash-based flow table and
therefore, it can better fit in CPU cache and scale to millions of flow
keys.

See the Elastic Flow Distributor Library documentation in
the Programmers Guide document, for more information.

14.2. Resolved Issues

14.2.1. Drivers

	net/virtio: Fixed multiple process support.

Fixed a few regressions introduced in recent releases that break the virtio
multiple process support.

14.2.2. Examples

	examples/ethtool: Fixed crash with non-PCI devices.

Fixed issue where querying a non-PCI device was dereferencing non-existent
PCI data resulting in a segmentation fault.

14.3. API Changes

	Moved five APIs for VF management from the ethdev to the ixgbe PMD.

The following five APIs for VF management from the PF have been removed from
the ethdev, renamed, and added to the ixgbe PMD:

rte_eth_dev_set_vf_rate_limit()
rte_eth_dev_set_vf_rx()
rte_eth_dev_set_vf_rxmode()
rte_eth_dev_set_vf_tx()
rte_eth_dev_set_vf_vlan_filter()

The API’s have been renamed to the following:

rte_pmd_ixgbe_set_vf_rate_limit()
rte_pmd_ixgbe_set_vf_rx()
rte_pmd_ixgbe_set_vf_rxmode()
rte_pmd_ixgbe_set_vf_tx()
rte_pmd_ixgbe_set_vf_vlan_filter()

The declarations for the API’s can be found in rte_pmd_ixgbe.h.

14.4. ABI Changes

14.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_cryptodev.so.2
 librte_distributor.so.1
 librte_eal.so.3
+ librte_ethdev.so.6
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_lpm.so.2
 librte_mbuf.so.2
 librte_mempool.so.2
 librte_meter.so.1
 librte_net.so.1
 librte_pdump.so.1
 librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
 librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
 librte_vhost.so.3

14.6. Tested Platforms

This release has been tested with the below list of CPU/device/firmware/OS.
Each section describes a different set of combinations.

	Intel(R) platforms with Mellanox(R) NICs combinations

	Platform details

	Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	OS:

	CentOS 7.0

	Fedora 23

	Fedora 24

	FreeBSD 10.3

	Red Hat Enterprise Linux 7.2

	SUSE Enterprise Linux 12

	Ubuntu 14.04 LTS

	Ubuntu 15.10

	Ubuntu 16.04 LTS

	Wind River Linux 8

	MLNX_OFED: 4.0-1.0.1.0

	NICs:

	Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1007

	Firmware version: 2.40.5030

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.1000

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.18.1000

	Mellanox(R) ConnectX-5 Ex EN 100G MCX516A-CDAT (2x100G)

	Host interface: PCI Express 4.0 x16

	Device ID: 15b3:1019

	Firmware version: 16.18.1000

	IBM(R) Power8(R) with Mellanox(R) NICs combinations

	Machine:

	Processor: POWER8E (raw), AltiVec supported

	type-model: 8247-22L

	Firmware FW810.21 (SV810_108)

	OS: Ubuntu 16.04 LTS PPC le

	MLNX_OFED: 4.0-1.0.1.0

	NICs:

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	Firmware version: 12.18.1000

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.1000

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	Firmware version: 14.18.1000

	Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1017

	Firmware version: 16.18.1000

	Intel(R) platforms with Intel(R) NICs combinations

	Platform details

	Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz

	OS:

	CentOS 7.2

	Fedora 25

	FreeBSD 11

	Red Hat Enterprise Linux Server release 7.3

	SUSE Enterprise Linux 12

	Wind River Linux 8

	Ubuntu 16.04

	Ubuntu 16.10

	NICs:

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1584 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

15. DPDK Release 16.11

15.1. New Features

	Added software parser for packet type.

	Added a new function rte_pktmbuf_read() to read the packet data from an
mbuf chain, linearizing if required.

	Added a new function rte_net_get_ptype() to parse an Ethernet packet
in an mbuf chain and retrieve its packet type from software.

	Added new functions rte_get_ptype_*() to dump a packet type as a string.

	Improved offloads support in mbuf.

	Added a new function rte_raw_cksum_mbuf() to process the checksum of
data embedded in an mbuf chain.

	Added new Rx checksum flags in mbufs to describe more states: unknown,
good, bad, or not present (useful for virtual drivers). This modification
was done for IP and L4.

	Added a new Rx LRO mbuf flag, used when packets are coalesced. This
flag indicates that the segment size of original packets is known.

	Added vhost-user dequeue zero copy support.

The copy in the dequeue path is avoided in order to improve the performance.
In the VM2VM case, the boost is quite impressive. The bigger the packet size,
the bigger performance boost you may get. However, for the VM2NIC case, there
are some limitations, so the boost is not as impressive as the VM2VM case.
It may even drop quite a bit for small packets.

For that reason, this feature is disabled by default. It can be enabled when
the RTE_VHOST_USER_DEQUEUE_ZERO_COPY flag is set. Check the VHost section
of the Programming Guide for more information.

	Added vhost-user indirect descriptors support.

If the indirect descriptor feature is enabled, each packet sent by the guest
will take exactly one slot in the enqueue virtqueue. Without this feature, as in
the current version, even 64 bytes packets take two slots with Virtio PMD on guest
side.

The main impact is better performance for 0% packet loss use-cases, as it
behaves as if the virtqueue size was enlarged, so more packets can be buffered
in the case of system perturbations. On the downside, small performance degradations
were measured when running micro-benchmarks.

	Added vhost PMD xstats.

Added extended statistics to vhost PMD from a per port perspective.

	Supported offloads with virtio.

Added support for the following offloads in virtio:

	Rx/Tx checksums.

	LRO.

	TSO.

	Added virtio NEON support for ARM.

Added NEON support for ARM based virtio.

	Updated the ixgbe base driver.

Updated the ixgbe base driver, including the following changes:

	Added X550em_a 10G PHY support.

	Added support for flow control auto negotiation for X550em_a 1G PHY.

	Added X550em_a FW ALEF support.

	Increased mailbox version to ixgbe_mbox_api_13.

	Added two MAC operations for Hyper-V support.

	Added APIs for VF management to the ixgbe PMD.

Eight new APIs have been added to the ixgbe PMD for VF management from the PF.
The declarations for the API’s can be found in rte_pmd_ixgbe.h.

	Updated the enic driver.

	Added update to use interrupt for link status checking instead of polling.

	Added more flow director modes on UCS Blade with firmware version >= 2.0(13e).

	Added full support for MTU update.

	Added support for the rte_eth_rx_queue_count function.

	Updated the mlx5 driver.

	Added support for RSS hash results.

	Added several performance improvements.

	Added several bug fixes.

	Updated the QAT PMD.

The QAT PMD was updated with additional support for:

	MD5_HMAC algorithm.

	SHA224-HMAC algorithm.

	SHA384-HMAC algorithm.

	GMAC algorithm.

	KASUMI (F8 and F9) algorithm.

	3DES algorithm.

	NULL algorithm.

	C3XXX device.

	C62XX device.

	Added openssl PMD.

A new crypto PMD has been added, which provides several ciphering and hashing algorithms.
All cryptography operations use the Openssl library crypto API.

	Updated the IPsec example.

Updated the IPsec example with the following support:

	Configuration file support.

	AES CBC IV generation with cipher forward function.

	AES GCM/CTR mode.

	Added support for new gcc -march option.

The GCC 4.9 -march option supports the Intel processor code names.
The config option RTE_MACHINE can be used to pass code names to the compiler via the -march flag.

15.2. Resolved Issues

15.2.1. Drivers

	enic: Fixed several flow director issues.

	enic: Fixed inadvertent setting of L4 checksum ptype on ICMP packets.

	enic: Fixed high driver overhead when servicing Rx queues beyond the first.

15.3. Known Issues

	L3fwd-power app does not work properly when Rx vector is enabled.

The L3fwd-power app doesn’t work properly with some drivers in vector mode
since the queue monitoring works differently between scalar and vector modes
leading to incorrect frequency scaling. In addition, L3fwd-power application
requires the mbuf to have correct packet type set but in some drivers the
vector mode must be disabled for this.

Therefore, in order to use L3fwd-power, vector mode should be disabled
via the config file.

	Digest address must be supplied for crypto auth operation on QAT PMD.

The cryptodev API specifies that if the rte_crypto_sym_op.digest.data field,
and by inference the digest.phys_addr field which points to the same location,
is not set for an auth operation the driver is to understand that the digest
result is located immediately following the region over which the digest is
computed. The QAT PMD doesn’t correctly handle this case and reads and writes
to an incorrect location.

Callers can workaround this by always supplying the digest virtual and
physical address fields in the rte_crypto_sym_op for an auth operation.

15.4. API Changes

	The driver naming convention has been changed to make them more
consistent. It especially impacts --vdev arguments. For example
eth_pcap becomes net_pcap and cryptodev_aesni_mb_pmd becomes
crypto_aesni_mb.

For backward compatibility an alias feature has been enabled to support the
original names.

	The log history has been removed.

	The rte_ivshmem feature (including library and EAL code) has been removed
in 16.11 because it had some design issues which were not planned to be fixed.

	The file_name data type of struct rte_port_source_params and
struct rte_port_sink_params is changed from char * to const char *.

	Improved device/driver hierarchy and generalized hotplugging.

The device and driver relationship has been restructured by introducing generic
classes. This paves the way for having PCI, VDEV and other device types as
instantiated objects rather than classes in themselves. Hotplugging has also
been generalized into EAL so that Ethernet or crypto devices can use the
common infrastructure.

	Removed pmd_type as a way of segregation of devices.

	Moved numa_node and devargs into rte_driver from
rte_pci_driver. These can now be used by any instantiated object of
rte_driver.

	Added rte_device class and all PCI and VDEV devices inherit from it

	Renamed devinit/devuninit handlers to probe/remove to make it more
semantically correct with respect to the device <=> driver relationship.

	Moved hotplugging support to EAL. Hereafter, PCI and vdev can use the
APIs rte_eal_dev_attach and rte_eal_dev_detach.

	Renamed helpers and support macros to make them more synonymous
with their device types
(e.g. PMD_REGISTER_DRIVER => RTE_PMD_REGISTER_PCI).

	Device naming functions have been generalized from ethdev and cryptodev
to EAL. rte_eal_pci_device_name has been introduced for obtaining
unique device name from PCI Domain-BDF description.

	Virtual device registration APIs have been added: rte_eal_vdrv_register
and rte_eal_vdrv_unregister.

15.5. ABI Changes

15.6. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

 librte_acl.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
+ librte_cryptodev.so.2
 librte_distributor.so.1
+ librte_eal.so.3
+ librte_ethdev.so.5
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_lpm.so.2
 librte_mbuf.so.2
 librte_mempool.so.2
 librte_meter.so.1
 librte_net.so.1
 librte_pdump.so.1
 librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
 librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
 librte_vhost.so.3

15.7. Tested Platforms

	SuperMicro 1U

	BIOS: 1.0c

	Processor: Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	SuperMicro 1U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Onboard NIC: Intel(R) X552/X557-AT (2x10G)

	Firmware-version: 0x800001cf

	Device ID (PF/VF): 8086:15ad /8086:15a8

	kernel driver version: 4.2.5 (ixgbe)

	SuperMicro 2U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Server board S2600GZ

	BIOS: SE5C600.86B.02.02.0002.122320131210

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board W2600CR

	BIOS: SE5C600.86B.02.01.0002.082220131453

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board S2600CWT

	BIOS: SE5C610.86B.01.01.0009.060120151350

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.01.01.0005.101720141054

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.11.01.0044.090120151156

	Processor: Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

	Intel(R) Server board S2600WTT

	Processor: Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

	Intel(R) Server

	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

	IBM(R) Power8(R)

	Machine type-model: 8247-22L

	Firmware FW810.21 (SV810_108)

	Processor: POWER8E (raw), AltiVec supported

15.8. Tested NICs

	Intel(R) Ethernet Controller X540-AT2

	Firmware version: 0x80000389

	Device id (pf): 8086:1528

	Driver version: 3.23.2 (ixgbe)

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1584 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 5.05

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 1.5.23 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

	Intel(R) Ethernet Multi-host Controller FM10000

	Firmware version: N/A

	Device id (pf/vf): 8086:15d0

	Driver version: 0.17.0.9 (fm10k)

	Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT/MCX413A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT/MCX413A-GCAT (1x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT/MCX416A-BCAT/MCX416A-GCAT (2x50G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

	Host interface: PCI Express 3.0 x16

	Device ID: 15b3:1013

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 12.17.1010

	Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 14.17.1010

	Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

	Host interface: PCI Express 3.0 x8

	Device ID: 15b3:1015

	MLNX_OFED: 3.4-1.0.0.0

	Firmware version: 14.17.1010

15.9. Tested OSes

	CentOS 7.2

	Fedora 23

	Fedora 24

	FreeBSD 10.3

	FreeBSD 11

	Red Hat Enterprise Linux Server release 6.7 (Santiago)

	Red Hat Enterprise Linux Server release 7.0 (Maipo)

	Red Hat Enterprise Linux Server release 7.2 (Maipo)

	SUSE Enterprise Linux 12

	Wind River Linux 6.0.0.26

	Wind River Linux 8

	Ubuntu 14.04

	Ubuntu 15.04

	Ubuntu 16.04

16. DPDK Release 16.07

16.1. New Features

	Removed the mempool cache memory if caching is not being used.

The size of the mempool structure is reduced if the per-lcore cache is disabled.

	Added mempool external cache for non-EAL thread.

Added new functions to create, free or flush a user-owned mempool
cache for non-EAL threads. Previously the caching was always disabled
on these threads.

	Changed the memory allocation scheme in the mempool library.

	Added the ability to allocate a large mempool in fragmented virtual memory.

	Added new APIs to populate a mempool with memory.

	Added an API to free a mempool.

	Modified the API of the rte_mempool_obj_iter() function.

	Dropped the specific Xen Dom0 code.

	Dropped the specific anonymous mempool code in testpmd.

	Added a new driver for Broadcom NetXtreme-C devices.

Added the new bnxt driver for Broadcom NetXtreme-C devices. See the
“Network Interface Controller Drivers” document for more details on this
new driver.

	Added a new driver for ThunderX nicvf devices.

Added the new thunderx net driver for ThunderX nicvf devices. See the
“Network Interface Controller Drivers” document for more details on this new
driver.

	Added mailbox interrupt support for ixgbe and igb VFs.

When the physical NIC link comes up or down, the PF driver will send a
mailbox message to notify each VF. To handle this link up/down event,
support have been added for a mailbox interrupt to receive the message and
allow the application to register a callback for it.

	Updated the ixgbe base driver.

The ixgbe base driver was updated with changes including the
following:

	Added sgmii link for X550.

	Added MAC link setup for X550a SFP and SFP+.

	Added KR support for X550em_a.

	Added new PHY definitions for M88E1500.

	Added support for the VLVF to be bypassed when adding/removing a VFTA entry.

	Added X550a flow control auto negotiation support.

	Updated the i40e base driver.

Updated the i40e base driver including support for new devices IDs.

	Updated the enic driver.

The enic driver was updated with changes including the following:

	Optimized the Tx function.

	Added Scattered Rx capability.

	Improved packet type identification.

	Added MTU update in non Scattered Rx mode and enabled MTU of up to 9208
with UCS Software release 2.2 on 1300 series VICs.

	Updated the mlx5 driver.

The mlx5 driver was updated with changes including the following:

	Data path was refactored to bypass Verbs to improve RX and TX performance.

	Removed compilation parameters for inline send, MLX5_MAX_INLINE, and
added command line parameter instead, txq_inline.

	Improved TX scatter gather support:
Removed compilation parameter MLX5_PMD_SGE_WR_N.
Scatter-gather elements is set to the maximum value the NIC supports.
Removed linearization logic, this decreases the memory consumption of the PMD.

	Improved jumbo frames support, by dynamically setting RX scatter gather elements
according to the MTU and mbuf size,
no need for compilation parameter MLX5_PMD_SGE_WR_N

	Added support for virtio on IBM POWER8.

The ioports are mapped in memory when using Linux UIO.

	Added support for Virtio in containers.

Add a new virtual device, named virtio_user, to support virtio for containers.

Known limitations:

	Control queue and multi-queue are not supported yet.

	Doesn’t work with --huge-unlink.

	Doesn’t work with --no-huge.

	Doesn’t work when there are more than VHOST_MEMORY_MAX_NREGIONS(8) hugepages.

	Root privilege is required for sorting hugepages by physical address.

	Can only be used with the vhost user backend.

	Added vhost-user client mode.

DPDK vhost-user now supports client mode as well as server mode. Client mode
is enabled when the RTE_VHOST_USER_CLIENT flag is set while calling
rte_vhost_driver_register.

When DPDK vhost-user restarts from an normal or abnormal exit (such as a
crash), the client mode allows DPDK to establish the connection again. Note
that QEMU version v2.7 or above is required for this feature.

DPDK vhost-user will also try to reconnect by default when:

	The first connect fails (for example when QEMU is not started yet).

	The connection is broken (for example when QEMU restarts).

It can be turned off by setting the RTE_VHOST_USER_NO_RECONNECT flag.

	Added NSH packet recognition in i40e.

	Added AES-CTR support to AESNI MB PMD.

Now AESNI MB PMD supports 128/192/256-bit counter mode AES encryption and
decryption.

	Added AES counter mode support for Intel QuickAssist devices.

Enabled support for the AES CTR algorithm for Intel QuickAssist devices.
Provided support for algorithm-chaining operations.

	Added KASUMI SW PMD.

A new Crypto PMD has been added, which provides KASUMI F8 (UEA1) ciphering
and KASUMI F9 (UIA1) hashing.

	Added multi-writer support for RTE Hash with Intel TSX.

The following features/modifications have been added to rte_hash library:

	Enabled application developers to use an extra flag for rte_hash
creation to specify default behavior (multi-thread safe/unsafe) with the
rte_hash_add_key function.

	Changed the Cuckoo Hash Search algorithm to breadth first search for
multi-writer routines and split Cuckoo Hash Search and Move operations in
order to reduce transactional code region and improve TSX performance.

	Added a hash multi-writer test case to the test app.

	Improved IP Pipeline Application.

The following features have been added to the ip_pipeline application:

	Configure the MAC address in the routing pipeline and automatic route
updates with change in link state.

	Enable RSS per network interface through the configuration file.

	Streamline the CLI code.

	Added keepalive enhancements.

Added support for reporting of core states other than “dead” to
monitoring applications, enabling the support of broader liveness
reporting to external processes.

	Added packet capture framework.

	A new library librte_pdump is added to provide a packet capture API.

	A new app/pdump tool is added to demonstrate capture packets in DPDK.

	Added floating VEB support for i40e PF driver.

A “floating VEB” is a special Virtual Ethernet Bridge (VEB) which does not
have an upload port, but instead is used for switching traffic between
virtual functions (VFs) on a port.

For information on this feature, please see the “I40E Poll Mode Driver”
section of the “Network Interface Controller Drivers” document.

	Added support for live migration of a VM with SRIOV VF.

Live migration of a VM with Virtio and VF PMD’s using the bonding PMD.

16.2. Resolved Issues

16.2.1. EAL

	igb_uio: Fixed possible mmap failure for Linux >= 4.5.

The mmaping of the iomem range of the PCI device fails for kernels that
enabled the CONFIG_IO_STRICT_DEVMEM option. The error seen by the
user is as similar to the following:

EAL: pci_map_resource():

 cannot mmap(39, 0x7f1c51800000, 0x100000, 0x0):
 Invalid argument (0xffffffffffffffff)

The CONFIG_IO_STRICT_DEVMEM kernel option was introduced in Linux v4.5.

The issues was resolve by updating igb_uio to stop reserving PCI memory
resources. From the kernel point of view the iomem region looks like idle
and mmap works again. This matches the uio_pci_generic usage.

16.2.2. Drivers

	i40e: Fixed vlan stripping from inner header.

Previously, for tunnel packets, such as VXLAN/NVGRE, the vlan
tags of the inner header will be stripped without putting vlan
info to descriptor.
Now this issue is fixed by disabling vlan stripping from inner header.

	i40e: Fixed the type issue of a single VLAN type.

Currently, if a single VLAN header is added in a packet, it’s treated
as inner VLAN. But generally, a single VLAN header is treated as the
outer VLAN header.
This issue is fixed by changing corresponding register for single VLAN.

	enic: Fixed several issues when stopping then restarting ports and queues.

Fixed several crashes related to stopping then restarting ports and queues.
Fixed possible crash when re-configuring the number of Rx queue descriptors.

	enic: Fixed Rx data mis-alignment if mbuf data offset modified.

Fixed possible Rx corruption when mbufs were returned to a pool with data
offset other than RTE_PKTMBUF_HEADROOM.

	enic: Fixed Tx IP/UDP/TCP checksum offload and VLAN insertion.

	enic: Fixed Rx error and missed counters.

16.2.3. Libraries

	mbuf: Fixed refcnt update when detaching.

Fix the rte_pktmbuf_detach() function to decrement the direct mbuf’s
reference counter. The previous behavior was not to affect the reference
counter. This lead to a memory leak of the direct mbuf.

16.2.4. Examples

16.2.5. Other

16.3. Known Issues

16.4. API Changes

	The following counters are removed from the rte_eth_stats structure:

	ibadcrc

	ibadlen

	imcasts

	fdirmatch

	fdirmiss

	tx_pause_xon

	rx_pause_xon

	tx_pause_xoff

	rx_pause_xoff

	The extended statistics are fetched by ids with rte_eth_xstats_get
after a lookup by name rte_eth_xstats_get_names.

	The function rte_eth_dev_info_get fill the new fields nb_rx_queues
and nb_tx_queues in the structure rte_eth_dev_info.

	The vhost function rte_vring_available_entries is renamed to
rte_vhost_avail_entries.

	All existing vhost APIs and callbacks with virtio_net struct pointer
as the parameter have been changed due to the ABI refactoring described
below. It is replaced by int vid.

	The function rte_vhost_enqueue_burst no longer supports concurrent enqueuing
packets to the same queue.

	The function rte_eth_dev_set_mtu adds a new return value -EBUSY, which
indicates the operation is forbidden because the port is running.

	The script dpdk_nic_bind.py is renamed to dpdk-devbind.py.
And the script setup.sh is renamed to dpdk-setup.sh.

16.5. ABI Changes

	The rte_port_source_params structure has new fields to support PCAP files.
It was already in release 16.04 with RTE_NEXT_ABI flag.

	The rte_eth_dev_info structure has new fields nb_rx_queues and nb_tx_queues
to support the number of queues configured by software.

	A Vhost ABI refactoring has been made: the virtio_net structure is no
longer exported directly to the application. Instead, a handle, vid, has
been used to represent this structure internally.

16.6. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

+ libethdev.so.4
 librte_acl.so.2
 librte_cfgfile.so.2
 librte_cmdline.so.2
 librte_cryptodev.so.1
 librte_distributor.so.1
 librte_eal.so.2
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_ivshmem.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_lpm.so.2
 librte_mbuf.so.2
+ librte_mempool.so.2
 librte_meter.so.1
 librte_pdump.so.1
 librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
+ librte_port.so.3
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
+ librte_vhost.so.3

16.7. Tested Platforms

	SuperMicro 1U

	BIOS: 1.0c

	Processor: Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	SuperMicro 1U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Onboard NIC: Intel(R) X552/X557-AT (2x10G)

	Firmware-version: 0x800001cf

	Device ID (PF/VF): 8086:15ad /8086:15a8

	kernel driver version: 4.2.5 (ixgbe)

	SuperMicro 2U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Server board S2600GZ

	BIOS: SE5C600.86B.02.02.0002.122320131210

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board W2600CR

	BIOS: SE5C600.86B.02.01.0002.082220131453

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board S2600CWT

	BIOS: SE5C610.86B.01.01.0009.060120151350

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.01.01.0005.101720141054

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.11.01.0044.090120151156

	Processor: Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

16.8. Tested NICs

	Intel(R) Ethernet Controller X540-AT2

	Firmware version: 0x80000389

	Device id (pf): 8086:1528

	Driver version: 3.23.2 (ixgbe)

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 5.04

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.4.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 5.04

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

	Firmware version: 5.04

	Device id (pf/vf): 8086:1584 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 5.04

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

	Intel(R) Ethernet Multi-host Controller FM10000

	Firmware version: N/A

	Device id (pf/vf): 8086:15d0

	Driver version: 0.17.0.9 (fm10k)

16.9. Tested OSes

	CentOS 7.0

	Fedora 23

	Fedora 24

	FreeBSD 10.3

	Red Hat Enterprise Linux 7.2

	SUSE Enterprise Linux 12

	Ubuntu 15.10

	Ubuntu 16.04 LTS

	Wind River Linux 8

17. DPDK Release 16.04

17.1. New Features

	Added function to check primary process state.

A new function rte_eal_primary_proc_alive() has been added
to allow the user to detect if a primary process is running.
Use cases for this feature include fault detection, and monitoring
using secondary processes.

	Enabled bulk allocation of mbufs.

A new function rte_pktmbuf_alloc_bulk() has been added to allow the user
to bulk allocate mbufs.

	Added device link speed capabilities.

The structure rte_eth_dev_info now has a speed_capa bitmap, which
allows the application to determine the supported speeds of each device.

	Added bitmap of link speeds to advertise.

Added a feature to allow the definition of a set of advertised speeds for auto-negotiation,
explicitly disabling link auto-negotiation (single speed)
and full auto-negotiation.

	Added new poll-mode driver for Amazon Elastic Network Adapters (ENA).

The driver operates for a variety of ENA adapters through feature negotiation
with the adapter and upgradable commands set.
The ENA driver handles PCI Physical and Virtual ENA functions.

	Restored vmxnet3 TX data ring.

TX data ring has been shown to improve small packet forwarding performance
on the vSphere environment.

	Added vmxnet3 TX L4 checksum offload.

Added support for TCP/UDP checksum offload to vmxnet3.

	Added vmxnet3 TSO support.

Added support for TSO to vmxnet3.

	Added vmxnet3 support for jumbo frames.

Added support for linking multi-segment buffers together to
handle Jumbo packets.

	Enabled Virtio 1.0 support.

Enabled Virtio 1.0 support for Virtio pmd driver.

	Supported Virtio for ARM.

Enabled Virtio support for ARMv7/v8. Tested for ARM64.
Virtio for ARM supports VFIO-noiommu mode only.
Virtio can work with other non-x86 architectures as well, like PowerPC.

	Supported Virtio offload in vhost-user.

Added the offload and negotiation of checksum and TSO between vhost-user and
vanilla Linux Virtio guest.

	Added vhost-user live migration support.

	Added vhost driver.

Added a virtual PMD that wraps librte_vhost.

	Added multicast promiscuous mode support on VF for ixgbe.

Added multicast promiscuous mode support for the ixgbe VF driver so all VFs
can receive the multicast packets.

Please note if you want to use this promiscuous mode, you need both PF and VF
driver to support it. The reason is that this VF feature is configured in the PF.
If you use kernel PF driver and the dpdk VF driver, make sure the kernel PF driver supports
VF multicast promiscuous mode. If you use dpdk PF and dpdk VF ensure the PF
driver is the same version as the VF.

	Added support for E-tag on X550.

E-tag is defined in 802.1BR - Bridge Port Extension [http://www.ieee802.org/1/pages/802.1br.html].

This feature is for the VF, but the settings are on the PF. It means
the CLIs should be used on the PF, but some of their effects will be shown on the VF.
The forwarding of E-tag packets based on GRP and E-CID_base will have an effect
on the PF. Theoretically, the E-tag packets can be forwarded to any pool/queue
but normally we’d like to forward the packets to the pools/queues belonging
to the VFs. And E-tag insertion and stripping will have an effect on VFs. When
a VF receives E-tag packets it should strip the E-tag. When the VF transmits
packets, it should insert the E-tag. Both actions can be offloaded.

When we want to use this E-tag support feature, the forwarding should be
enabled to forward the packets received by the PF to the indicated VFs. And insertion
and stripping should be enabled for VFs to offload the effort to hardware.

Features added:

	Support E-tag offloading of insertion and stripping.

	Support Forwarding E-tag packets to pools based on
GRP and E-CID_base.

	Added support for VxLAN and NVGRE checksum off-load on X550.

	Added support for VxLAN and NVGRE RX/TX checksum off-load on
X550. RX/TX checksum off-load is provided on both inner and
outer IP header and TCP header.

	Added functions to support VxLAN port configuration. The
default VxLAN port number is 4789 but this can be updated
programmatically.

	Added support for new X550EM_a devices.

Added support for new X550EM_a devices and their MAC types, X550EM_a and X550EM_a_vf.
Updated the relevant PMD to use the new devices and MAC types.

	Added x550em_x V2 device support.

Added support for x550em_x V2 device. Only x550em_x V1 was supported before.
A mask for V1 and V2 is defined and used to support both.

	Supported link speed auto-negotiation on X550EM_X

Normally the auto-negotiation is supported by firmware and software doesn’t care about
it. But on x550em_x, firmware doesn’t support auto-negotiation. As the ports of x550em_x
are 10GbE, if we connect the port with a peer which is 1GbE, the link will always
be down.
We added the support for auto-negotiation by software to avoid this link down issue.

	Added software-firmware sync on X550EM_a.

Added support for software-firmware sync for resource sharing.
Use the PHY token, shared between software-firmware for PHY access on X550EM_a.

	Updated the i40e base driver.

The i40e base driver was updated with changes including the
following:

	Use RX control AQ commands to read/write RX control registers.

	Add new X722 device IDs, and removed X710 one was never used.

	Expose registers for HASH/FD input set configuring.

	Enabled PCI extended tag for i40e.

Enabled extended tag for i40e by checking and writing corresponding PCI config
space bytes, to boost the performance.
The legacy method of reading/writing sysfile supported by kernel module igb_uio
is now deprecated.

	Added i40e support for setting mac addresses.

	Added dump of i40e registers and EEPROM.

	Supported ether type setting of single and double VLAN for i40e

	Added VMDQ DCB mode in i40e.

Added support for DCB in VMDQ mode to i40e driver.

	Added i40e VEB switching support.

	Added Flow director enhancements in i40e.

	Added PF reset event reporting in i40e VF driver.

	Added fm10k RX interrupt support.

	Optimized fm10k TX.

Optimized fm10k TX by freeing multiple mbufs at a time.

	Handled error flags in fm10k vector RX.

Parse error flags in RX descriptor and set error bits in mbuf with vector instructions.

	Added fm10k FTAG based forwarding support.

	Added mlx5 flow director support.

Added flow director support (RTE_FDIR_MODE_PERFECT and
RTE_FDIR_MODE_PERFECT_MAC_VLAN).

Only available with Mellanox OFED >= 3.2.

	Added mlx5 RX VLAN stripping support.

Added support for RX VLAN stripping.

Only available with Mellanox OFED >= 3.2.

	Added mlx5 link up/down callbacks.

Implemented callbacks to bring link up and down.

	Added mlx5 support for operation in secondary processes.

Implemented TX support in secondary processes (like mlx4).

	Added mlx5 RX CRC stripping configuration.

Until now, CRC was always stripped. It can now be configured.

Only available with Mellanox OFED >= 3.2.

	Added mlx5 optional packet padding by HW.

Added an option to make PCI bus transactions rounded to a multiple of a
cache line size for better alignment.

Only available with Mellanox OFED >= 3.2.

	Added mlx5 TX VLAN insertion support.

Added support for TX VLAN insertion.

Only available with Mellanox OFED >= 3.2.

	Changed szedata2 driver type from vdev to pdev.

Previously szedata2 device had to be added by --vdev option.
Now szedata2 PMD recognizes the device automatically during EAL
initialization.

	Added szedata2 functions for setting link up/down.

	Added szedata2 promiscuous and allmulticast modes.

	Added af_packet dynamic removal function.

An af_packet device can now be detached using the API, like other PMD devices.

	Increased number of next hops for LPM IPv4 to 2^24.

The next_hop field has been extended from 8 bits to 24 bits for IPv4.

	Added support of SNOW 3G (UEA2 and UIA2) for Intel Quick Assist devices.

Enabled support for the SNOW 3G wireless algorithm for Intel Quick Assist devices.
Support for cipher-only and hash-only is also provided
along with algorithm-chaining operations.

	Added SNOW3G SW PMD.

A new Crypto PMD has been added, which provides SNOW 3G UEA2 ciphering
and SNOW3G UIA2 hashing.

	Added AES GCM PMD.

Added new Crypto PMD to support AES-GCM authenticated encryption and
authenticated decryption in software.

	Added NULL Crypto PMD

Added new Crypto PMD to support null crypto operations in software.

	Improved IP Pipeline Application.

The following features have been added to ip_pipeline application;

	Added CPU utilization measurement and idle cycle rate computation.

	Added link identification support through existing port-mask option or by
specifying PCI device in every LINK section in the configuration file.

	Added load balancing support in passthrough pipeline.

	Added IPsec security gateway example.

Added a new application implementing an IPsec Security Gateway.

17.2. Resolved Issues

17.2.1. Drivers

	ethdev: Fixed overflow for 100Gbps.

100Gbps in Mbps (100000) was exceeding the 16-bit max value of link_speed
in rte_eth_link.

	ethdev: Fixed byte order consistency between fdir flow and mask.

Fixed issue in ethdev library where the structure for setting
fdir’s mask and flow entry was not consistent in byte ordering.

	cxgbe: Fixed crash due to incorrect size allocated for RSS table.

Fixed a segfault that occurs when accessing part of port 0’s RSS
table that gets overwritten by subsequent port 1’s part of the RSS
table due to incorrect size allocated for each entry in the table.

	cxgbe: Fixed setting wrong device MTU.

Fixed an incorrect device MTU being set due to the Ethernet header and
CRC lengths being added twice.

	ixgbe: Fixed zeroed VF mac address.

Resolved an issue where the VF MAC address is zeroed out in cases where the VF
driver is loaded while the PF interface is down.
The solution is to only set it when we get an ACK from the PF.

	ixgbe: Fixed setting flow director flag twice.

Resolved an issue where packets were being dropped when switching to perfect
filters mode.

	ixgbe: Set MDIO speed after MAC reset.

The MDIO clock speed must be reconfigured after the MAC reset. The MDIO clock
speed becomes invalid, therefore the driver reads invalid PHY register values.
The driver now set the MDIO clock speed prior to initializing PHY ops and
again after the MAC reset.

	ixgbe: Fixed maximum number of available TX queues.

In IXGBE, the maximum number of TX queues varies depending on the NIC operating
mode. This was not being updated in the device information, providing
an incorrect number in some cases.

	i40e: Generated MAC address for each VFs.

It generates a MAC address for each VFs during PF host initialization,
and keeps the VF MAC address the same among different VF launch.

	i40e: Fixed failure of reading/writing RX control registers.

Fixed i40e issue of failing to read/write rx control registers when
under stress with traffic, which might result in application launch
failure.

	i40e: Enabled vector driver by default.

Previously, vector driver was disabled by default as it couldn’t fill packet type
info for l3fwd to work well. Now there is an option for l3fwd to analyze
the packet type so the vector driver is enabled by default.

	i40e: Fixed link info of VF.

Previously, the VF’s link speed stayed at 10GbE and status always was up.
It did not change even when the physical link’s status changed.
Now this issue is fixed to make VF’s link info consistent with physical link.

	mlx5: Fixed possible crash during initialization.

A crash could occur when failing to allocate private device context.

	mlx5: Added port type check.

Added port type check to prevent port initialization on non-Ethernet link layers and
to report an error.

	mlx5: Applied VLAN filtering to broadcast and IPv6 multicast flows.

Prevented reception of multicast frames outside of configured VLANs.

	mlx5: Fixed RX checksum offload in non L3/L4 packets.

Fixed report of bad checksum for packets of unknown type.

	aesni_mb: Fixed wrong return value when creating a device.

The cryptodev_aesni_mb_init() function was returning the device id of the device created,
instead of 0 (on success) that rte_eal_vdev_init() expects.
This made it impossible to create more than one aesni_mb device
from the command line.

	qat: Fixed AES GCM decryption.

Allowed AES GCM on the cryptodev API, but in some cases gave invalid results
due to incorrect IV setting.

17.2.2. Libraries

	hash: Fixed CRC32c hash computation for non multiple of 4 bytes sizes.

Fix crc32c hash functions to return a valid crc32c value for data lengths
not a multiple of 4 bytes.

	hash: Fixed hash library to support multi-process mode.

Fix hash library to support multi-process mode, using a jump table,
instead of storing a function pointer to the key compare function.
Multi-process mode only works with the built-in compare functions,
however a custom compare function (not in the jump table) can only
be used in single-process mode.

	hash: Fixed return value when allocating an existing hash table.

Changed the rte_hash*_create() functions to return NULL and set
rte_errno to EEXIST when the object name already exists. This is
the behavior described in the API documentation in the header file.
The previous behavior was to return a pointer to the existing object in
that case, preventing the caller from knowing if the object had to be freed
or not.

	lpm: Fixed return value when allocating an existing object.

Changed the rte_lpm*_create() functions to return NULL and set
rte_errno to EEXIST when the object name already exists. This is
the behavior described in the API documentation in the header file.
The previous behavior was to return a pointer to the existing object in
that case, preventing the caller from knowing if the object had to be freed
or not.

	librte_port: Fixed segmentation fault for ring and ethdev writer nodrop.

Fixed core dump issue on txq and swq when dropless is set to yes.

17.2.3. Examples

	l3fwd-power: Fixed memory leak for non-IP packet.

Fixed issue in l3fwd-power where, on receiving packets of types
other than IPv4 or IPv6, the mbuf was not released, and caused
a memory leak.

	l3fwd: Fixed using packet type blindly.

l3fwd makes use of packet type information without querying if devices or PMDs
really set it. For those devices that don’t set ptypes, add an option to parse it.

	examples/vhost: Fixed frequent mbuf allocation failure.

The vhost-switch often fails to allocate mbuf when dequeue from vring because it
wrongly calculates the number of mbufs needed.

17.3. API Changes

	The ethdev statistics counter imissed is considered to be independent of ierrors.
All drivers are now counting the missed packets only once, i.e. drivers will
not increment ierrors anymore for missed packets.

	The ethdev structure rte_eth_dev_info was changed to support device
speed capabilities.

	The ethdev structures rte_eth_link and rte_eth_conf were changed to
support the new link API.

	The functions rte_eth_dev_udp_tunnel_add and rte_eth_dev_udp_tunnel_delete
have been renamed into rte_eth_dev_udp_tunnel_port_add and
rte_eth_dev_udp_tunnel_port_delete.

	The outer_mac and inner_mac fields in structure
rte_eth_tunnel_filter_conf are changed from pointer to struct in order
to keep code’s readability.

	The fields in ethdev structure rte_eth_fdir_masks were changed
to be in big endian.

	A parameter vlan_type has been added to the function
rte_eth_dev_set_vlan_ether_type.

	The af_packet device init function is no longer public. The device should be attached
via the API.

	The LPM next_hop field is extended from 8 bits to 24 bits for IPv4
while keeping ABI compatibility.

	A new rte_lpm_config structure is used so the LPM library will allocate
exactly the amount of memory which is necessary to hold application’s rules.
The previous ABI is kept for compatibility.

	The prototype for the pipeline input port, output port and table action
handlers are updated: the pipeline parameter is added,
the packets mask parameter has been either removed or made input-only.

17.4. ABI Changes

	The RETA entry size in rte_eth_rss_reta_entry64 has been increased
from 8-bit to 16-bit.

	The ethdev flow director structure rte_eth_fdir_flow structure was
changed. New fields were added to extend flow director’s input set.

	The cmdline buffer size has been increase from 256 to 512.

17.5. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

+ libethdev.so.3
 librte_acl.so.2
 librte_cfgfile.so.2
+ librte_cmdline.so.2
 librte_distributor.so.1
 librte_eal.so.2
 librte_hash.so.2
 librte_ip_frag.so.1
 librte_ivshmem.so.1
 librte_jobstats.so.1
 librte_kni.so.2
 librte_kvargs.so.1
 librte_lpm.so.2
 librte_mbuf.so.2
 librte_mempool.so.1
 librte_meter.so.1
+ librte_pipeline.so.3
 librte_pmd_bond.so.1
 librte_pmd_ring.so.2
 librte_port.so.2
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
 librte_table.so.2
 librte_timer.so.1
 librte_vhost.so.2

17.6. Tested Platforms

	SuperMicro 1U

	BIOS: 1.0c

	Processor: Intel(R) Atom(TM) CPU C2758 @ 2.40GHz

	SuperMicro 1U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU D-1540 @ 2.00GHz

	Onboard NIC: Intel(R) X552/X557-AT (2x10G)

	Firmware-version: 0x800001cf

	Device ID (PF/VF): 8086:15ad /8086:15a8

	kernel driver version: 4.2.5 (ixgbe)

	SuperMicro 1U

	BIOS: 1.0a

	Processor: Intel(R) Xeon(R) CPU E5-4667 v3 @ 2.00GHz

	Intel(R) Server board S2600GZ

	BIOS: SE5C600.86B.02.02.0002.122320131210

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board W2600CR

	BIOS: SE5C600.86B.02.01.0002.082220131453

	Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

	Intel(R) Server board S2600CWT

	BIOS: SE5C610.86B.01.01.0009.060120151350

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.01.01.0005.101720141054

	Processor: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

	Intel(R) Server board S2600WTT

	BIOS: SE5C610.86B.11.01.0044.090120151156

	Processor: Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

17.7. Tested NICs

	Intel(R) Ethernet Controller X540-AT2

	Firmware version: 0x80000389

	Device id (pf): 8086:1528

	Driver version: 3.23.2 (ixgbe)

	Intel(R) 82599ES 10 Gigabit Ethernet Controller

	Firmware version: 0x61bf0001

	Device id (pf/vf): 8086:10fb / 8086:10ed

	Driver version: 4.0.1-k (ixgbe)

	Intel(R) Corporation Ethernet Connection X552/X557-AT 10GBASE-T

	Firmware version: 0x800001cf

	Device id (pf/vf): 8086:15ad / 8086:15a8

	Driver version: 4.2.5 (ixgbe)

	Intel(R) Ethernet Converged Network Adapter X710-DA4 (4x10G)

	Firmware version: 5.02 0x80002284

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.4.26 (i40e)

	Intel(R) Ethernet Converged Network Adapter X710-DA2 (2x10G)

	Firmware version: 5.02 0x80002282

	Device id (pf/vf): 8086:1572 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA1 (1x40G)

	Firmware version: 5.02 0x80002281

	Device id (pf/vf): 8086:1584 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) Ethernet Converged Network Adapter XL710-QDA2 (2X40G)

	Firmware version: 5.02 0x80002285

	Device id (pf/vf): 8086:1583 / 8086:154c

	Driver version: 1.4.25 (i40e)

	Intel(R) 82576EB Gigabit Ethernet Controller

	Firmware version: 1.2.1

	Device id (pf): 8086:1526

	Driver version: 5.2.13-k (igb)

	Intel(R) Ethernet Controller I210

	Firmware version: 3.16, 0x80000500, 1.304.0

	Device id (pf): 8086:1533

	Driver version: 5.2.13-k (igb)

	Intel(R) Corporation I350 Gigabit Network Connection

	Firmware version: 1.48, 0x800006e7

	Device id (pf/vf): 8086:1521 / 8086:1520

	Driver version: 5.2.13-k (igb)

	Intel(R) Ethernet Multi-host Controller FM10000

	Firmware version: N/A

	Device id (pf/vf): 8086:15d0

	Driver version: 0.17.0.9 (fm10k)

18. DPDK Release 2.2

18.1. New Features

	Introduce ARMv7 and ARMv8 architectures.

	It is now possible to build DPDK for the ARMv7 and ARMv8 platforms.

	ARMv7 can be tested with virtual PMD drivers.

	ARMv8 can be tested with virtual and physical PMD drivers.

	Enabled freeing of ring.

A new function rte_ring_free() has been added to allow the user to free
a ring if it was created with rte_ring_create().

	Added keepalive support to EAL and example application.

	Added experimental cryptodev API

The cryptographic processing of packets is provided as a preview
with two drivers for:

	Intel QuickAssist devices

	Intel AES-NI multi-buffer library

Due to its experimental state, the API may change without prior notice.

	Added ethdev APIs for additional IEEE1588 support.

Added functions to read, write and adjust system time in the NIC.
Added client slave sample application to demonstrate the IEEE1588
functionality.

	Extended Statistics.

Defined an extended statistics naming scheme to store metadata in the name
string of each statistic. Refer to the Extended Statistics section of the
Programmers Guide for more details.

Implemented the extended statistics API for the following PMDs:

	igb

	igbvf

	i40e

	i40evf

	fm10k

	virtio

	Added API in ethdev to retrieve RX/TX queue information.

	Added the ability for the upper layer to query RX/TX queue information.

	Added new fields in rte_eth_dev_info to represent information about
RX/TX descriptors min/max/align numbers, per queue, for the device.

	Added RSS dynamic configuration to bonding.

	Updated the e1000 base driver.

The e1000 base driver was updated with several features including the
following:

	Added new i218 devices

	Allowed both ULP and EEE in Sx state

	Initialized 88E1543 (Marvell 1543) PHY

	Added flags to set EEE advertisement modes

	Supported inverted format ETrackId

	Added bit to disable packetbuffer read

	Added defaults for i210 RX/TX PBSIZE

	Check more errors for ESB2 init and reset

	Check more NVM read errors

	Return code after setting receive address register

	Removed all NAHUM6LP_HW tags

	Added e1000 RX interrupt support.

	Added igb TSO support for both PF and VF.

	Added RSS enhancements to Intel x550 NIC.

	Added support for 512 entry RSS redirection table.

	Added support for per VF RSS redirection table.

	Added Flow director enhancements on Intel x550 NIC.

	Added 2 new flow director modes on x550.
One is MAC VLAN mode, the other is tunnel mode.

	Updated the i40e base driver.

The i40e base driver was updated with several changes including the
following:

	Added promiscuous on VLAN support

	Added a workaround to drop all flow control frames

	Added VF capabilities to virtual channel interface

	Added TX Scheduling related AQ commands

	Added additional PCTYPES supported for FortPark RSS

	Added parsing for CEE DCBX TLVs

	Added FortPark specific registers

	Added AQ functions to handle RSS Key and LUT programming

	Increased PF reset max loop limit

	Added i40e vector RX/TX.

	Added i40e RX interrupt support.

	Added i40e flow control support.

	Added DCB support to i40e PF driver.

	Added RSS/FD input set granularity on Intel X710/XL710.

	Added different GRE key length for input set on Intel X710/XL710.

	Added flow director support in i40e VF.

	Added i40e support of early X722 series.

Added early X722 support, for evaluation only, as the hardware is alpha.

	Added fm10k vector RX/TX.

	Added fm10k TSO support for both PF and VF.

	Added fm10k VMDQ support.

	New NIC Boulder Rapid support.

Added support for the Boulder Rapid variant of Intel’s fm10k NIC family.

	Enhanced support for the Chelsio CXGBE driver.

	Added support for Jumbo Frames.

	Optimized forwarding performance for Chelsio T5 40GbE cards.

	Improved enic TX packet rate.

Reduced frequency of TX tail pointer updates to the NIC.

	Added support for link status interrupts in mlx4.

	Added partial support (TX only) for secondary processes in mlx4.

	Added support for Mellanox ConnectX-4 adapters (mlx5).

The mlx5 poll-mode driver implements support for Mellanox ConnectX-4 EN
and Mellanox ConnectX-4 Lx EN families of 10/25/40/50/100 Gb/s adapters.

Like mlx4, this PMD is only available for Linux and is disabled by default
due to external dependencies (libibverbs and libmlx5).

	Added driver for Netronome nfp-6xxx card.

Support for using Netronome nfp-6xxx with PCI VFs.

	Added virtual szedata2 driver for COMBO cards.

Added virtual PMD for COMBO-100G and COMBO-80G cards.
PMD is disabled in default configuration.

	Enhanced support for virtio driver.

	Virtio ring layout optimization (fixed avail ring)

	Vector RX

	Simple TX

	Added vhost-user multiple queue support.

	Added port hotplug support to vmxnet3.

	Added port hotplug support to xenvirt.

	Added ethtool shim and sample application.

	Added experimental performance thread example application.

The new sample application demonstrates L3 forwarding with different threading
models: pthreads, cgroups, or lightweight threads. The example includes
a simple cooperative scheduler.

Due to its experimental state this application may change without notice.
The application is supported only for Linux x86_64.

	Enhancements to the IP pipeline application.

The following features have been added to the ip_pipeline
application;

	Added Multiple Producers/Multiple Consumers (MPSC)
and fragmentation/reassembly support to software rings.

	Added a dynamic pipeline reconfiguration feature that
allows binding a pipeline to other threads at runtime
using CLI commands.

	Added enable/disable of promisc mode from ip_pipeline
configuration file.

	Added check on RX queues and TX queues of each link
whether they are used correctly in the ip_pipeline
configuration file.

	Added flow id parameters to the flow-classification
table entries.

	Added more functions to the routing pipeline:
ARP table enable/disable, Q-in-Q and MPLS encapsulation,
add color (traffic-class for QoS) to the MPLS tag.

	Added flow-actions pipeline for traffic metering/marking
(for e.g. Two Rate Three Color Marker (trTCM)), policer etc.

	Modified the pass-through pipeline’s actions-handler to
implement a generic approach to extract fields from the
packet’s header and copy them to packet metadata.

18.2. Resolved Issues

18.2.1. EAL

	eal/linux: Fixed epoll timeout.

Fixed issue where the rte_epoll_wait() function didn’t return when the
underlying call to epoll_wait() timed out.

18.2.2. Drivers

	e1000/base: Synchronize PHY interface on non-ME systems.

On power up, the MAC - PHY interface needs to be set to PCIe, even if the
cable is disconnected. In ME systems, the ME handles this on exit from the
Sx (Sticky mode) state. In non-ME, the driver handles it. Added a check for
non-ME system to the driver code that handles it.

	e1000/base: Increased timeout of reset check.

Previously, in check_reset_block RSPCIPHY was polled for 100 ms before
determining that the ME veto was set. This was not enough and it was
increased to 300 ms.

	e1000/base: Disabled IPv6 extension header parsing on 82575.

Disabled IPv6 options as per hardware limitation.

	e1000/base: Prevent ULP flow if cable connected.

Enabling ULP on link down when the cable is connected caused an infinite
loop of link up/down indications in the NDIS driver.
The driver now enables ULP only when the cable is disconnected.

	e1000/base: Support different EEARBC for i210.

EEARBC has changed on i210. It means EEARBC has a different address on
i210 than on other NICs. So, add a new entity named EEARBC_I210 to the
register list and make sure the right one is being used on i210.

	e1000/base: Fix K1 configuration.

Added fix for the following updates to the K1 configurations:
TX idle period for entering K1 should be 128 ns.
Minimum TX idle period in K1 should be 256 ns.

	e1000/base: Fix link detect flow.

Fix link detect flow in case where auto-negotiate is not enabled, by calling
e1000_setup_copper_link_generic instead of e1000_phy_setup_autoneg.

	e1000/base: Fix link check for i354 M88E1112 PHY.

The e1000_check_for_link_media_swap() function is supposed to check PHY
page 0 for copper and PHY page 1 for “other” (fiber) links. The driver
switched back from page 1 to page 0 too soon, before
e1000_check_for_link_82575() is executed and was never finding the link
on the fiber (other).

If the link is copper, as the M88E1112 page address is set to 1, it should be
set back to 0 before checking this link.

	e1000/base: Fix beacon duration for i217.

Fix for I217 Packet Loss issue - The Management Engine sets the FEXTNVM4
Beacon Duration incorrectly. This fix ensures that the correct value will
always be set. Correct value for this field is 8 usec.

	e1000/base: Fix TIPG for non 10 half duplex mode.

TIPG value is increased when setting speed to 10 half duplex to prevent
packet loss. However, it was never decreased again when speed
changed. This caused performance issues in the NDIS driver.
Fix this to restore TIPG to default value on non 10 half duplex.

	e1000/base: Fix reset of DH89XXCC SGMII.

For DH89XXCC_SGMII, a write flush leaves registers of this device trashed
(0xFFFFFFFF). Add check for this device.

Also, after both Port SW Reset and Device Reset case, the platform should
wait at least 3ms before reading any registers. Remove this condition since
waiting is conditionally executed only for Device Reset.

	e1000/base: Fix redundant PHY power down for i210.

Bit 11 of PHYREG 0 is used to power down PHY. The use of PHYREG 16 is
no longer necessary.

	e1000/base: fix jumbo frame CRC failures.

Change the value of register 776.20[11:2] for jumbo mode from 0x1A to 0x1F.
This is to enlarge the gap between read and write pointers in the TX FIFO.

	e1000/base: Fix link flap on 82579.

Several customers have reported a link flap issue on 82579. The symptoms
are random and intermittent link losses when 82579 is connected to specific
switches. the Issue was root caused as an inter-operability problem between
the NIC and at least some Broadcom PHYs in the Energy Efficient Ethernet
wake mechanism.

To fix the issue, we are disabling the Phase Locked Loop shutdown in 100M
Low Power Idle. This solution will cause an increase of power in 100M EEE
link. It may cost an additional 28mW in this specific mode.

	igb: Fixed IEEE1588 frame identification in I210.

Fixed issue where the flag PKT_RX_IEEE1588_PTP was not being set
in the Intel I210 NIC, as the EtherType in RX descriptor is in bits 8:10 of
Packet Type and not in the default bits 0:2.

	igb: Fixed VF start with PF stopped.

VF needs the PF interrupt support initialized even if not started.

	igb: Fixed VF MAC address when using with DPDK PF.

Assign a random MAC address in VF when not assigned by PF.

	igb: Removed CRC bytes from byte counter statistics.

	ixgbe: Fixed issue with X550 DCB.

Fixed a DCB issue with x550 where for 8 TCs (Traffic Classes), if a packet
with user priority 6 or 7 was injected to the NIC, then the NIC would only
put 3 packets into the queue. There was also a similar issue for 4 TCs.

	ixgbe: Removed burst size restriction of vector RX.

Fixed issue where a burst size less than 32 didn’t receive anything.

	ixgbe: Fixed VF start with PF stopped.

VF needs the PF interrupt support initialized even if not started.

	ixgbe: Fixed TX hang when RS distance exceeds HW limit.

Fixed an issue where the TX queue can hang when a lot of highly fragmented
packets have to be sent. As part of that fix, tx_rs_thresh for ixgbe PMD
is not allowed to be greater then to 32 to comply with HW restrictions.

	ixgbe: Fixed rx error statistic counter.

Fixed an issue that the rx error counter of ixgbe was not accurate. The
mac short packet discard count (mspdc) was added to the counter. Mac local
faults and mac remote faults are removed as they do not count packets but
errors, and jabber errors were removed as they are already accounted for
by the CRC error counter. Finally the XEC (l3 / l4 checksum error) counter
was removed due to errata, see commit 256ff05a9cae for details.

	ixgbe: Removed CRC bytes from byte counter statistics.

	i40e: Fixed base driver allocation when not using first numa node.

Fixed i40e issue that occurred when a DPDK application didn’t initialize
ports if memory wasn’t available on socket 0.

	i40e: Fixed maximum of 64 queues per port.

Fixed an issue in i40e where it would not support more than 64 queues per
port, even though the hardware actually supports it. The real number of
queues may vary, as long as the total number of queues used in PF, VFs, VMDq
and FD does not exceeds the hardware maximum.

	i40e: Fixed statistics of packets.

Added discarding packets on VSI to the stats and rectify the old statistics.

	i40e: Fixed issue of not freeing memzone.

Fixed an issue of not freeing a memzone in the call to free the memory for
adminq DMA.

	i40e: Removed CRC bytes from byte counter statistics.

	mlx: Fixed driver loading.

The mlx drivers were unable to load when built as a shared library,
due to a missing symbol in the mempool library.

	mlx4: Performance improvements.

Fixed bugs in TX and RX flows that improves mlx4 performance.

	mlx4: Fixed TX loss after initialization.

	mlx4: Fixed scattered TX with too many segments.

	mlx4: Fixed memory registration for indirect mbuf data.

	vhost: Fixed Qemu shutdown.

Fixed issue with libvirt virsh destroy not killing the VM.

	virtio: Fixed crash after changing link state.

Fixed IO permission in the interrupt handler.

	virtio: Fixed crash when releasing queue.

Fixed issue when releasing null control queue.

18.2.3. Libraries

	hash: Fixed memory allocation of Cuckoo Hash key table.

Fixed issue where an incorrect Cuckoo Hash key table size could be
calculated limiting the size to 4GB.

	hash: Fixed incorrect lookup if key is all zero.

Fixed issue in hash library that occurred if an all zero
key was not added to the table and the key was looked up,
resulting in an incorrect hit.

	hash: Fixed thread scaling by reducing contention.

Fixed issue in the hash library where, using multiple cores with
hardware transactional memory support, thread scaling did not work,
due to the global ring that is shared by all cores.

18.2.4. Examples

	l3fwd: Fixed crash with IPv6.

	vhost_xen: Fixed compile error.

18.2.5. Other

	This release drops compatibility with Linux kernel 2.6.33. The minimum
kernel requirement is now 2.6.34.

18.3. Known Issues

	Some drivers do not fill in the packet type when receiving.
As the l3fwd example application requires this info, the i40e vector
driver must be disabled to benefit of the packet type with i40e.

	Some (possibly all) VF drivers (e.g. i40evf) do not handle any PF reset
events/requests in the VF driver. This means that the VF driver may not work
after a PF reset in the host side. The workaround is to avoid triggering any
PF reset events/requests on the host side.

	100G link report support is missing.

	Mellanox PMDs (mlx4 & mlx5):

	PMDs do not support CONFIG_RTE_BUILD_COMBINE_LIBS and
CONFIG_RTE_BUILD_SHARED_LIB simultaneously.

	There is performance degradation for small packets when the PMD is
compiled with SGE_WR_N = 4 compared to the performance when SGE_WR_N
= 1. If scattered packets are not used it is recommended to compile the
PMD with SGE_WR_N = 1.

	When a Multicast or Broadcast packet is sent to the SR-IOV mlx4 VF,
it is returned back to the port.

	PMDs report “bad” L4 checksum when IP packet is received.

	mlx5 PMD reports “bad” checksum although the packet has “good” checksum.
Will be fixed in upcoming MLNX_OFED release.

18.4. API Changes

	The deprecated flow director API is removed.
It was replaced by rte_eth_dev_filter_ctrl().

	The dcb_queue is renamed to dcb_tc in following dcb configuration
structures: rte_eth_dcb_rx_conf, rte_eth_dcb_tx_conf,
rte_eth_vmdq_dcb_conf, rte_eth_vmdq_dcb_tx_conf.

	The rte_eth_rx_queue_count() function now returns “int” instead of
“uint32_t” to allow the use of negative values as error codes on return.

	The function rte_eal_pci_close_one() is removed.
It was replaced by rte_eal_pci_detach().

	The deprecated ACL API ipv4vlan is removed.

	The deprecated hash function rte_jhash2() is removed.
It was replaced by rte_jhash_32b().

	The deprecated KNI functions are removed:
rte_kni_create(), rte_kni_get_port_id() and rte_kni_info_get().

	The deprecated ring PMD functions are removed:
rte_eth_ring_pair_create() and rte_eth_ring_pair_attach().

	The devargs union field virtual is renamed to virt for C++
compatibility.

18.5. ABI Changes

	The EAL and ethdev structures rte_intr_handle and rte_eth_conf were
changed to support RX interrupt. This was already included in 2.1 under the
CONFIG_RTE_NEXT_ABI #define.

	The ethdev flow director entries for SCTP were changed.
This was already included in 2.1 under the CONFIG_RTE_NEXT_ABI #define.

	The ethdev flow director structure rte_eth_fdir_flow_ext structure was
changed. New fields were added to support flow director filtering in VF.

	The size of the ethdev structure rte_eth_hash_filter_info is changed
by adding a new element rte_eth_input_set_conf in a union.

	New fields rx_desc_lim and tx_desc_lim are added into
rte_eth_dev_info structure.

	For debug builds, the functions rte_eth_rx_burst(), rte_eth_tx_burst()
rte_eth_rx_descriptor_done() and rte_eth_rx_queue_count() will
no longer be separate functions in the DPDK libraries. Instead, they will
only be present in the rte_ethdev.h header file.

	The maximum number of queues per port CONFIG_RTE_MAX_QUEUES_PER_PORT is
increased to 1024.

	The mbuf structure was changed to support the unified packet type.
This was already included in 2.1 under the CONFIG_RTE_NEXT_ABI #define.

	The dummy malloc library is removed. The content was moved into EAL in 2.1.

	The LPM structure is changed. The deprecated field mem_location is
removed.

	librte_table LPM: A new parameter to hold the table name will be added to
the LPM table parameter structure.

	librte_table hash: The key mask parameter is added to the hash table
parameter structure for 8-byte key and 16-byte key extendable bucket
and LRU tables.

	librte_port: Macros to access the packet meta-data stored within the packet
buffer has been adjusted to cover the packet mbuf structure.

	librte_cfgfile: Allow longer names and values by increasing the constants
CFG_NAME_LEN and CFG_VALUE_LEN to 64 and 256 respectively.

	vhost: a new field enabled is added to the vhost_virtqueue structure.

	vhost: a new field virt_qp_nb is added to virtio_net structure, and
the virtqueue field is moved to the end of virtio_net structure.

	vhost: a new operation vring_state_changed is added to
virtio_net_device_ops structure.

	vhost: a few spaces are reserved both at vhost_virtqueue and
virtio_net structure for future extension.

18.6. Shared Library Versions

The libraries prepended with a plus sign were incremented in this version.

+ libethdev.so.2
+ librte_acl.so.2
+ librte_cfgfile.so.2
 librte_cmdline.so.1
 librte_distributor.so.1
+ librte_eal.so.2
+ librte_hash.so.2
 librte_ip_frag.so.1
 librte_ivshmem.so.1
 librte_jobstats.so.1
+ librte_kni.so.2
 librte_kvargs.so.1
+ librte_lpm.so.2
+ librte_mbuf.so.2
 librte_mempool.so.1
 librte_meter.so.1
+ librte_pipeline.so.2
 librte_pmd_bond.so.1
+ librte_pmd_ring.so.2
+ librte_port.so.2
 librte_power.so.1
 librte_reorder.so.1
 librte_ring.so.1
 librte_sched.so.1
+ librte_table.so.2
 librte_timer.so.1
+ librte_vhost.so.2

19. DPDK Release 2.1

19.1. New Features

	Enabled cloning of indirect mbufs.

This feature removes a limitation of rte_pktmbuf_attach() which
generated the warning: “mbuf we’re attaching to must be direct”.

Now, when attaching to an indirect mbuf it is possible to:

	Copy all relevant fields (address, length, offload, …) as before.

	Get the pointer to the mbuf that embeds the data buffer (direct mbuf),
and increase the reference counter.

When detaching the mbuf, we can now retrieve this direct mbuf as the
pointer is determined from the buffer address.

	Extended packet type support.

In previous releases mbuf packet types were indicated by 6 bits in the
ol_flags. This was not enough for some supported NICs. For example i40e
hardware can recognize more than 150 packet types. Not being able to
identify these additional packet types limits access to hardware offload
capabilities

So an extended “unified” packet type was added to support all possible
PMDs. The 16 bit packet_type in the mbuf structure was changed to 32 bits
and used for this purpose.

To avoid breaking ABI compatibility, the code changes for this feature are
enclosed in a RTE_NEXT_ABI ifdef. This is enabled by default but can be
turned off for ABI compatibility with DPDK R2.0.

	Reworked memzone to be allocated by malloc and also support freeing.

In the memory hierarchy, memsegs are groups of physically contiguous
hugepages, memzones are slices of memsegs, and malloc slices memzones
into smaller memory chunks.

This feature modifies malloc() so it partitions memsegs instead of
memzones. Now memzones allocate their memory from the malloc heap.

Backward compatibility with API and ABI are maintained.

This allow memzones, and any other structure based on memzones, for example
mempools, to be freed. Currently only the API from freeing memzones is
supported.

	Interrupt mode PMD.

This feature introduces a low-latency one-shot RX interrupt into DPDK. It
also adds a polling and interrupt mode switch control example.

DPDK userspace interrupt notification and handling mechanism is based on
UIO/VFIO with the following limitations:

	Per queue RX interrupt events are only allowed in VFIO which supports
multiple MSI-X vectors.

	In UIO, the RX interrupt shares the same vector with other
interrupts. When the RX interrupt and LSC interrupt are both enabled, only
the former is available.

	RX interrupt is only implemented for the linux target.

	The feature is only currently enabled for tow PMDs: ixgbe and igb.

	Packet Framework enhancements.

Several enhancements were made to the Packet Framework:

	A new configuration file syntax has been introduced for IP pipeline
applications. Parsing of the configuration file is changed.

	Implementation of the IP pipeline application is modified to make it more
structured and user friendly.

	Implementation of the command line interface (CLI) for each pipeline type
has been moved to the separate compilation unit. Syntax of pipeline CLI
commands has been changed.

	Initialization of IP pipeline is modified to match the new parameters
structure.

	New implementation of pass-through pipeline, firewall pipeline, routing
pipeline, and flow classification has been added.

	Master pipeline with CLI interface has been added.

	Added extended documentation of the IP Pipeline.

	Added API for IEEE1588 timestamping.

This feature adds an ethdev API to enable, disable and read IEEE1588/802.1AS
PTP timestamps from devices that support it. The following functions were
added:

	rte_eth_timesync_enable()

	rte_eth_timesync_disable()

	rte_eth_timesync_read_rx_timestamp()

	rte_eth_timesync_read_tx_timestamp()

The “ieee1588” forwarding mode in testpmd was also refactored to demonstrate
the new API.

	Added multicast address filtering.

Added multicast address filtering via a new ethdev function
set_mc_addr_list().

This overcomes a limitation in previous releases where the receipt of
multicast packets on a given port could only be enabled by invoking the
rte_eth_allmulticast_enable() function. This method did not work for VFs
in SR-IOV architectures when the host PF driver does not allow these
operation on VFs. In such cases, joined multicast addresses had to be added
individually to the set of multicast addresses that are filtered by the [VF]
port.

	Added Flow Director extensions.

Several Flow Director extensions were added such as:

	Support for RSS and Flow Director hashes in vector RX.

	Added Flow Director for L2 payload.

	Added RSS hash key size query per port.

This feature supports querying the RSS hash key size of each port. A new
field hash_key_size has been added in the rte_eth_dev_info struct
for storing hash key size in bytes.

	Added userspace ethtool support.

Added userspace ethtool support to provide a familiar interface for
applications that manage devices via kernel-space ethtool_op and
net_device_op.

The initial implementation focuses on operations that can be implemented
through existing netdev APIs. More operations will be supported in later
releases.

	Updated the ixgbe base driver.

The ixgbe base driver was updated with several changes including the
following:

	Added a new 82599 device id.

	Added new X550 PHY ids.

	Added SFP+ dual-speed support.

	Added wait helper for X550 IOSF accesses.

	Added X550em features.

	Added X557 PHY LEDs support.

	Commands for flow director.

	Issue firmware command when resetting X550em.

See the git log for full details of the ixgbe/base changes.

	Added additional hotplug support.

Port hotplug support was added to the following PMDs:

	e1000/igb.

	ixgbe.

	i40e.

	fm10k.

	ring.

	bonding.

	virtio.

Port hotplug support was added to BSD.

	Added ixgbe LRO support.

Added LRO support for x540 and 82599 devices.

	Added extended statistics for ixgbe.

Implemented xstats_get() and xstats_reset() in dev_ops for
ixgbe to expose detailed error statistics to DPDK applications.

These will be implemented for other PMDs in later releases.

	Added proc_info application.

Created a new proc_info application, by refactoring the existing
dump_cfg application, to demonstrate the usage of retrieving statistics,
and the new extended statistics (see above), for DPDK interfaces.

	Updated the i40e base driver.

The i40e base driver was updated with several changes including the
following:

	Support for building both PF and VF driver together.

	Support for CEE DCBX on recent firmware versions.

	Replacement of i40e_debug_read_register().

	Rework of i40e_hmc_get_object_va.

	Update of shadow RAM read/write functions.

	Enhancement of polling NVM semaphore.

	Enhancements on adminq init and sending asq command.

	Update of get/set LED functions.

	Addition of AOC phy types to case statement in get_media_type.

	Support for iSCSI capability.

	Setting of FLAG_RD when sending driver version to FW.

See the git log for full details of the i40e/base changes.

	Added support for port mirroring in i40e.

Enabled mirror functionality in the i40e driver.

	Added support for i40e double VLAN, QinQ, stripping and insertion.

Added support to the i40e driver for offloading double VLAN (QinQ) tags to
the mbuf header, and inserting double vlan tags by hardware to the packets
to be transmitted. Added a new field vlan_tci_outer in the rte_mbuf
struct, and new flags in ol_flags to support this feature.

	Added fm10k promiscuous mode support.

Added support for promiscuous/allmulticast enable and disable in the fm10k PF
function. VF is not supported yet.

	Added fm10k jumbo frame support.

Added support for jumbo frame less than 15K in both VF and PF functions in the
fm10k pmd.

	Added fm10k mac vlan filtering support.

Added support for the fm10k MAC filter, only available in PF. Updated the
VLAN filter to add/delete one static entry in the MAC table for each
combination of VLAN and MAC address.

	Added support for the Broadcom bnx2x driver.

Added support for the Broadcom NetXtreme II bnx2x driver.
It is supported only on Linux 64-bit and disabled by default.

	Added support for the Chelsio CXGBE driver.

Added support for the CXGBE Poll Mode Driver for the Chelsio Terminator 5
series of 10G/40G adapters.

	Enhanced support for Mellanox ConnectX-3 driver (mlx4).

	Support Mellanox OFED 3.0.

	Improved performance for both RX and TX operations.

	Better link status information.

	Outer L3/L4 checksum offload support.

	Inner L3/L4 checksum offload support for VXLAN.

	Enabled VMXNET3 vlan filtering.

Added support for the VLAN filter functionality of the VMXNET3 interface.

	Added support for vhost live migration.

Added support to allow live migration of vhost. Without this feature, qemu
will report the following error: “migrate: Migration disabled: vhost lacks
VHOST_F_LOG_ALL feature”.

	Added support for pcap jumbo frames.

Extended the PCAP PMD to support jumbo frames for RX and TX.

	Added support for the TILE-Gx architecture.

Added support for the EZchip TILE-Gx family of SoCs.

	Added hardware memory transactions/lock elision for x86.

Added the use of hardware memory transactions (HTM) on fast-path for rwlock
and spinlock (a.k.a. lock elision). The methods are implemented for x86
using Restricted Transactional Memory instructions (Intel(r) Transactional
Synchronization Extensions). The implementation fall-backs to the normal
rwlock if HTM is not available or memory transactions fail. This is not a
replacement for all rwlock usages since not all critical sections protected
by locks are friendly to HTM. For example, an attempt to perform a HW I/O
operation inside a hardware memory transaction always aborts the transaction
since the CPU is not able to roll-back should the transaction
fail. Therefore, hardware transactional locks are not advised to be used
around rte_eth_rx_burst() and rte_eth_tx_burst() calls.

	Updated Jenkins Hash function

Updated the version of the Jenkins Hash (jhash) function used in DPDK from
the 1996 version to the 2006 version. This gives up to 35% better
performance, compared to the original one.

Note, the hashes generated by the updated version differ from the hashes
generated by the previous version.

	Added software implementation of the Toeplitz RSS hash

Added a software implementation of the Toeplitz hash function used by RSS. It
can be used either for packet distribution on a single queue NIC or for
simulating RSS computation on a specific NIC (for example after GRE header
de-encapsulation).

	Replaced the existing hash library with a Cuckoo hash implementation.

Replaced the existing hash library with another approach, using the Cuckoo
Hash method to resolve collisions (open addressing). This method pushes
items from a full bucket when a new entry must be added to it, storing the
evicted entry in an alternative location, using a secondary hash function.

This gives the user the ability to store more entries when a bucket is full,
in comparison with the previous implementation.

The API has not been changed, although new fields have been added in the
rte_hash structure, which has been changed to internal use only.

The main change when creating a new table is that the number of entries per
bucket is now fixed, so its parameter is ignored now (it is still there to
maintain the same parameters structure).

Also, the maximum burst size in lookup_burst function hash been increased to
64, to improve performance.

	Optimized KNI RX burst size computation.

Optimized KNI RX burst size computation by avoiding checking how many
entries are in kni->rx_q prior to actually pulling them from the fifo.

	Added KNI multicast.

Enabled adding multicast addresses to KNI interfaces by adding an empty
callback for set_rx_mode (typically used for setting up hardware) so
that the ioctl succeeds. This is the same thing as the Linux tap interface
does.

	Added cmdline polling mode.

Added the ability to process console input in the same thread as packet
processing by using the poll() function.

	Added VXLAN Tunnel End point sample application.

Added a Tunnel End point (TEP) sample application that simulates a VXLAN
Tunnel Endpoint (VTEP) termination in DPDK. It is used to demonstrate the
offload and filtering capabilities of Intel XL710 10/40 GbE NICsfor VXLAN
packets.

	Enabled combining of the ``-m`` and ``–no-huge`` EAL options.

Added option to allow combining of the -m and --no-huge EAL command
line options.

This allows user application to run as non-root but with higher memory
allocations, and removes a constraint on --no-huge mode being limited to
64M.

19.2. Resolved Issues

	acl: Fix ambiguity between test rules.

Some test rules had equal priority for the same category. That could cause
an ambiguity in building the trie and test results.

	acl: Fix invalid rule wildness calculation for bitmask field type.

	acl: Fix matching rule.

	acl: Fix unneeded trie splitting for subset of rules.

When rebuilding a trie for limited rule-set, don’t try to split the rule-set
even further.

	app/testpmd: Fix crash when port id out of bound.

Fixed issues in testpmd where using a port greater than 32 would cause a seg
fault.

Fixes: edab33b1c01d (“app/testpmd: support port hotplug”)

	app/testpmd: Fix reply to a multicast ICMP request.

Set the IP source and destination addresses in the IP header of the ICMP
reply.

	app/testpmd: fix MAC address in ARP reply.

Fixed issue where in the icmpecho forwarding mode, ARP replies from
testpmd contain invalid zero-filled MAC addresses.

Fixes: 31db4d38de72 (“net: change arp header struct declaration”)

	app/testpmd: fix default flow control values.

Fixes: 422a20a4e62d (“app/testpmd: fix uninitialized flow control variables”)

	bonding: Fix crash when stopping inactive slave.

	bonding: Fix device initialization error handling.

	bonding: Fix initial link status of slave.

On Fortville NIC, link status change interrupt callback was not executed
when slave in bonding was (re-)started.

	bonding: Fix socket id for LACP slave.

Fixes: 46fb43683679 (“bond: add mode 4”)

	bonding: Fix device initialization error handling.

	cmdline: Fix small memory leak.

A function in cmdline.c had a return that did not free the buf properly.

	config: Enable same drivers options for Linux and BSD.

Enabled vector ixgbe and i40e bulk alloc for BSD as it is already done for
Linux.

Fixes: 304caba12643 (“config: fix bsd options”)
Fixes: 0ff3324da2eb (“ixgbe: rework vector pmd following mbuf changes”)

	devargs: Fix crash on failure.

This problem occurred when passing an invalid PCI id to the blacklist API in
devargs.

	e1000/i40e: Fix descriptor done flag with odd address.

	e1000/igb: fix ieee1588 timestamping initialization.

Fixed issue with e1000 ieee1588 timestamp initialization. On initialization
the IEEE1588 functions read the system time to set their timestamp. However,
on some 1G NICs, for example, i350, system time is disabled by default and
the IEEE1588 timestamp was always 0.

	eal/bsd: Fix inappropriate header guards.

	eal/bsd: Fix virtio on FreeBSD.

Closing the /dev/io fd caused a SIGBUS in inb/outb instructions as the
process lost the IOPL privileges once the fd is closed.

Fixes: 8a312224bcde (“eal/bsd: fix fd leak”)

	eal/linux: Fix comments on vfio MSI.

	eal/linux: Fix irq handling with igb_uio.

Fixed an issue where the introduction of uio_pci_generic broke
interrupt handling with igb_uio.

Fixes: c112df6875a5 (“eal/linux: toggle interrupt for uio_pci_generic”)

	eal/linux: Fix numa node detection.

	eal/linux: Fix socket value for undetermined numa node.

Sets zero as the default value of pci device numa_node if the socket could
not be determined. This provides the same default value as FreeBSD which has
no NUMA support, and makes the return value of rte_eth_dev_socket_id()
be consistent with the API description.

	eal/ppc: Fix cpu cycle count for little endian.

On IBM POWER8 PPC64 little endian architecture, the definition of tsc union
will be different. This fix enables the right output from rte_rdtsc().

	ethdev: Fix check of threshold for TX freeing.

Fixed issue where the parameter to tx_free_thresh was not consistent
between the drivers.

	ethdev: Fix crash if malloc of user callback fails.

If rte_zmalloc() failed in rte_eth_dev_callback_register then the
NULL pointer would be dereferenced.

	ethdev: Fix illegal port access.

To obtain a detachable flag, pci_drv is accessed in
rte_eth_dev_is_detachable(). However pci_drv is only valid if port
is enabled. Fixed by checking rte_eth_dev_is_valid_port() first.

	ethdev: Make tables const.

	ethdev: Rename and extend the mirror type.

	examples/distributor: Fix debug macro.

The macro to turn on additional debug output when the app was compiled with
-DDEBUG was broken.

Fixes: 07db4a975094 (“examples/distributor: new sample app”)

	examples/kni: Fix crash on exit.

	examples/vhost: Fix build with debug enabled.

Fixes: 72ec8d77ac68 (“examples/vhost: rework duplicated code”)

	fm10k: Fix RETA table initialization.

The fm10k driver has 128 RETA entries in 32 registers, but it only
initialized the first 32 when doing multiple RX queue configurations. This
fix initializes all 128 entries.

	fm10k: Fix RX buffer size.

	fm10k: Fix TX multi-segment frame.

	fm10k: Fix TX queue cleaning after start error.

	fm10k: Fix Tx queue cleaning after start error.

	fm10k: Fix default mac/vlan in switch.

	fm10k: Fix interrupt fault handling.

	fm10k: Fix jumbo frame issue.

	fm10k: Fix mac/vlan filtering.

	fm10k: Fix maximum VF number.

	fm10k: Fix maximum queue number for VF.

Both PF and VF shared code in function fm10k_stats_get(). The function
worked with PF, but had problems with VF since it has less queues than PF.

Fixes: a6061d9e7075 (“fm10k: register PF driver”)

	fm10k: Fix queue disabling.

	fm10k: Fix switch synchronization.

	i40e/base: Fix error handling of NVM state update.

	i40e/base: Fix hardware port number for pass-through.

	i40e/base: Rework virtual address retrieval for lan queue.

	i40e/base: Update LED blinking.

	i40e/base: Workaround for PHY type with firmware < 4.4.

	i40e: Disable setting of PHY configuration.

	i40e: Fix SCTP flow director.

	i40e: Fix check of descriptor done flag.

Fixes: 4861cde46116 (“i40e: new poll mode driver”)
Fixes: 05999aab4ca6 (“i40e: add or delete flow director”)

	i40e: Fix condition to get VMDQ info.

	i40e: Fix registers access from big endian CPU.

	i40evf: Clear command when error occurs.

	i40evf: Fix RSS with less RX queues than TX queues.

	i40evf: Fix crash when setup TX queues.

	i40evf: Fix jumbo frame support.

	i40evf: Fix offload capability flags.

Added checksum offload capability flags which have already been supported
for a long time.

	ivshmem: Fix crash in corner case.

Fixed issues where depending on the configured segments it was possible to
hit a segmentation fault as a result of decrementing an unsigned index with
value 0.

Fixes: 40b966a211ab (“ivshmem: library changes for mmaping using ivshmem”)

	ixgbe/base: Fix SFP probing.

	ixgbe/base: Fix TX pending clearing.

	ixgbe/base: Fix X550 CS4227 address.

	ixgbe/base: Fix X550 PCIe master disabling.

	ixgbe/base: Fix X550 check.

	ixgbe/base: Fix X550 init early return.

	ixgbe/base: Fix X550 link speed.

	ixgbe/base: Fix X550em CS4227 speed mode.

	ixgbe/base: Fix X550em SFP+ link stability.

	ixgbe/base: Fix X550em UniPHY link configuration.

	ixgbe/base: Fix X550em flow control for KR backplane.

	ixgbe/base: Fix X550em flow control to be KR only.

	ixgbe/base: Fix X550em link setup without SFP.

	ixgbe/base: Fix X550em mux after MAC reset.

Fixes: d2e72774e58c (“ixgbe/base: support X550”)

	ixgbe/base: Fix bus type overwrite.

	ixgbe/base: Fix init handling of X550em link down.

	ixgbe/base: Fix lan id before first i2c access.

	ixgbe/base: Fix mac type checks.

	ixgbe/base: Fix tunneled UDP and TCP frames in flow director.

	ixgbe: Check mbuf refcnt when clearing a ring.

The function to clear the TX ring when a port was being closed, e.g. on exit
in testpmd, was not checking the mbuf refcnt before freeing it. Since the
function in the vector driver to clear the ring after TX does not setting
the pointer to NULL post-free, this caused crashes if mbuf debugging was
turned on.

	ixgbe: Fix RX with buffer address not word aligned.

Niantic HW expects the Header Buffer Address in the RXD must be word
aligned.

	ixgbe: Fix RX with buffer address not word aligned.

	ixgbe: Fix Rx queue reset.

Fix to reset vector related RX queue fields to their initial values.

Fixes: c95584dc2b18 (“ixgbe: new vectorized functions for Rx/Tx”)

	ixgbe: Fix TSO in IPv6.

When TSO was used with IPv6, the generated frames were incorrect. The L4
frame was OK, but the length field of IPv6 header was not populated
correctly.

	ixgbe: Fix X550 flow director check.

	ixgbe: Fix check for split packets.

The check for split packets to be reassembled in the vector ixgbe PMD was
incorrectly only checking the first 16 elements of the array instead of
all 32.

Fixes: cf4b4708a88a (“ixgbe: improve slow-path perf with vector scattered Rx”)

	ixgbe: Fix data access on big endian cpu.

	ixgbe: Fix flow director flexbytes offset.

Fixes: d54a9888267c (“ixgbe: support flexpayload configuration of flow director”)

	ixgbe: Fix number of segments with vector scattered Rx.

Fixes: cf4b4708a88a (ixgbe: improve slow-path perf with vector scattered Rx)

	ixgbe: Fix offload config option name.

The RX_OLFLAGS option was renamed from DISABLE to ENABLE in the driver code
and Linux config. It is now renamed also in the BSD config and
documentation.

Fixes: 359f106a69a9 (“ixgbe: prefer enabling olflags rather than not disabling”)

	ixgbe: Fix release queue mbufs.

The calculations of what mbufs were valid in the RX and TX queues were
incorrect when freeing the mbufs for the vector PMD. This led to crashes due
to invalid reference counts when mbuf debugging was turned on, and possibly
other more subtle problems (such as mbufs being freed when in use) in other
cases.

Fixes: c95584dc2b18 (“ixgbe: new vectorized functions for Rx/Tx”)

	ixgbe: Move PMD specific fields out of base driver.

Move rx_bulk_alloc_allowed and rx_vec_allowed from ixgbe_hw to
ixgbe_adapter.

Fixes: 01fa1d6215fa (“ixgbe: unify Rx setup”)

	ixgbe: Rename TX queue release function.

	ixgbevf: Fix RX function selection.

The logic to select ixgbe the VF RX function is different than the PF.

	ixgbevf: Fix link status for PF up/down events.

	kni: Fix RX loop limit.

Loop processing packets dequeued from rx_q was using the number of packets
requested, not how many it actually received.

	kni: Fix ioctl in containers, like Docker.

	kni: Fix multicast ioctl handling.

	log: Fix crash after log_history dump.

	lpm: Fix big endian support.

	lpm: Fix depth small entry add.

	mbuf: Fix cloning with private mbuf data.

Added a new priv_size field in mbuf structure that should be initialized
at mbuf pool creation. This field contains the size of the application
private data in mbufs.

Introduced new static inline functions rte_mbuf_from_indirect() and
rte_mbuf_to_baddr() to replace the existing macros, which take the
private size into account when attaching and detaching mbufs.

	mbuf: Fix data room size calculation in pool init.

Deduct the mbuf data room size from mempool->elt_size and priv_size,
instead of using an hardcoded value that is not related to the real buffer
size.

To use rte_pktmbuf_pool_init(), the user can either:

	Give a NULL parameter to rte_pktmbuf_pool_init(): in this case, the
private size is assumed to be 0, and the room size is mp->elt_size -
sizeof(struct rte_mbuf).

	Give the rte_pktmbuf_pool_private filled with appropriate
data_room_size and priv_size values.

	mbuf: Fix init when private size is not zero.

Allow the user to use the default rte_pktmbuf_init() function even if
the mbuf private size is not 0.

	mempool: Add structure for object headers.

Each object stored in mempools are prefixed by a header, allowing for
instance to retrieve the mempool pointer from the object. When debug is
enabled, a cookie is also added in this header that helps to detect
corruptions and double-frees.

Introduced a structure that materializes the content of this header,
and will simplify future patches adding things in this header.

	mempool: Fix pages computation to determine number of objects.

	mempool: Fix returned value after counting objects.

Fixes: 148f963fb532 (“xen: core library changes”)

	mlx4: Avoid requesting TX completion events to improve performance.

Instead of requesting a completion event for each TX burst, request it on a
fixed schedule once every MLX4_PMD_TX_PER_COMP_REQ (currently 64) packets to
improve performance.

	mlx4: Fix compilation as a shared library and on 32 bit platforms.

	mlx4: Fix possible crash on scattered mbuf allocation failure.

Fixes issue where failing to allocate a segment, mlx4_rx_burst_sp()
could call rte_pktmbuf_free() on an incomplete scattered mbuf whose next
pointer in the last segment is not set.

	mlx4: Fix support for multiple vlan filters.

This fixes the “Multiple RX VLAN filters can be configured, but only the
first one works” bug.

	pcap: Fix storage of name and type in queues.

pcap_rx_queue/pcap_tx_queue should store it’s own copy of name/type values,
not the pointer to temporary allocated space.

	pci: Fix memory leaks and needless increment of map address.

	pci: Fix uio mapping differences between linux and bsd.

	port: Fix unaligned access to metadata.

Fix RTE_MBUF_METADATA macros to allow for unaligned accesses to meta-data
fields.

	ring: Fix return of new port id on creation.

	timer: Fix race condition.

Eliminate problematic race condition in rte_timer_manage() that can lead
to corruption of per-lcore pending-lists (implemented as skip-lists).

	vfio: Fix overflow of BAR region offset and size.

Fixes: 90a1633b2347 (“eal/Linux: allow to map BARs with MSI-X tables”)

	vhost: Fix enqueue/dequeue to handle chained vring descriptors.

	vhost: Fix race for connection fd.

	vhost: Fix virtio freeze due to missed interrupt.

	virtio: Fix crash if CQ is not negotiated.

Fix NULL dereference if virtio control queue is not negotiated.

	virtio: Fix ring size negotiation.

Negotiate the virtio ring size. The host may allow for very large rings but
application may only want a smaller ring. Conversely, if the number of
descriptors requested exceeds the virtio host queue size, then just silently
use the smaller host size.

This fixes issues with virtio in non-QEMU environments. For example Google
Compute Engine allows up to 16K elements in ring.

	vmxnet3: Fix link state handling.

19.3. Known Issues

	When running the vmdq sample or vhost sample applications with the
Intel(R) XL710 (i40e) NIC, the configuration option
CONFIG_RTE_MAX_QUEUES_PER_PORT should be increased from 256 to 1024.

	VM power manager may not work on systems with more than 64 cores.

19.4. API Changes

	The order that user supplied RX and TX callbacks are called in has been
changed to the order that they were added (fifo) in line with end-user
expectations. The previous calling order was the reverse of this (lifo) and
was counter intuitive for users. The actual API is unchanged.

19.5. ABI Changes

	The rte_hash structure has been changed to internal use only.

20. DPDK Release 2.0

20.1. New Features

	Poll-mode driver support for an early release of the PCIE host interface of the Intel(R) Ethernet Switch FM10000.

	Basic Rx/Tx functions for PF/VF

	Interrupt handling support for PF/VF

	Per queue start/stop functions for PF/VF

	Support Mailbox handling between PF/VF and PF/Switch Manager

	Receive Side Scaling (RSS) for PF/VF

	Scatter receive function for PF/VF

	Reta update/query for PF/VF

	VLAN filter set for PF

	Link status query for PF/VF

Note

The software is intended to run on pre-release hardware and may contain unknown or unresolved defects or
issues related to functionality and performance.
The poll mode driver is also pre-release and will be updated to a released version post hardware and base driver release.
Should the official hardware release be made between DPDK releases an updated poll-mode driver will be made available.

	Link Bonding

	Support for adaptive load balancing (mode 6) to the link bonding library.

	Support for registration of link status change callbacks with link bonding devices.

	Support for slaves devices which do not support link status change interrupts in the link bonding library via a link status polling mechanism.

	PCI Hotplug with NULL PMD sample application

	ABI versioning

	x32 ABI

	Non-EAL Thread Support

	Multi-pthread Support

	Re-order Library

	ACL for AVX2

	Architecture Independent CRC Hash

	uio_pci_generic Support

	KNI Optimizations

	Vhost-user support

	Virtio (link, vlan, mac, port IO, perf)

	IXGBE-VF RSS

	RX/TX Callbacks

	Unified Flow Types

	Indirect Attached MBUF Flag

	Use default port configuration in TestPMD

	Tunnel offloading in TestPMD

	Poll Mode Driver - 40 GbE Controllers (librte_pmd_i40e)

	Support for Flow Director

	Support for ethertype filter

	Support RSS in VF

	Support configuring redirection table with different size from 1GbE and 10 GbE

	128/512 entries of 40GbE PF

	64 entries of 40GbE VF

	Support configuring hash functions

	Support for VXLAN packet on Intel® 40GbE Controllers

	Poll Mode Driver for Mellanox ConnectX-3 EN adapters (mlx4)

Note

This PMD is only available for Linux and is disabled by default
due to external dependencies (libibverbs and libmlx4). Please
refer to the NIC drivers guide for more information.

	Packet Distributor Sample Application

	Job Stats library and Sample Application.

	Enhanced Jenkins hash (jhash) library

Note

The hash values returned by the new jhash library are different
from the ones returned by the previous library.

21. DPDK Release 1.8

21.1. New Features

	Link Bonding

	Support for 802.3ad link aggregation (mode 4) and transmit load balancing (mode 5) to the link bonding library.

	Support for registration of link status change callbacks with link bonding devices.

	Support for slaves devices which do not support link status change interrupts in the link bonding library via a link status polling mechanism.

	Poll Mode Driver - 40 GbE Controllers (librte_pmd_i40e)

	Support for Flow Director

	Support for ethertype filter

	Support RSS in VF

	Support configuring redirection table with different size from 1GbE and 10 GbE

	128/512 entries of 40GbE PF

	64 entries of 40GbE VF

	Support configuring hash functions

	Support for VXLAN packet on Intel 40GbE Controllers

	Packet Distributor Sample Application

22. Known Issues and Limitations in Legacy Releases

This section describes known issues with the DPDK software that aren’t covered in the version specific release
notes sections.

22.1. Unit Test for Link Bonding may fail at test_tlb_tx_burst()

	Description:
	Unit tests will fail in test_tlb_tx_burst() function with error for uneven distribution of packets.

	Implication:
	Unit test link_bonding_autotest will fail.

	Resolution/Workaround:
	There is no workaround available.

	Affected Environment/Platform:
	Fedora 20.

	Driver/Module:
	Link Bonding.

22.2. Pause Frame Forwarding does not work properly on igb

	Description:
	For igb devices rte_eth_flow_ctrl_set does not work as expected.
Pause frames are always forwarded on igb, regardless of the RFCE, MPMCF and DPF registers.

	Implication:
	Pause frames will never be rejected by the host on 1G NICs and they will always be forwarded.

	Resolution/Workaround:
	There is no workaround available.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.3. In packets provided by the PMD, some flags are missing

	Description:
	In packets provided by the PMD, some flags are missing.
The application does not have access to information provided by the hardware
(packet is broadcast, packet is multicast, packet is IPv4 and so on).

	Implication:
	The ol_flags field in the rte_mbuf structure is not correct and should not be used.

	Resolution/Workaround:
	The application has to parse the Ethernet header itself to get the information, which is slower.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.4. The rte_malloc library is not fully implemented

	Description:
	The rte_malloc library is not fully implemented.

	Implication:
	All debugging features of rte_malloc library described in architecture documentation are not yet implemented.

	Resolution/Workaround:
	No workaround available.

	Affected Environment/Platform:
	All.

	Driver/Module:
	rte_malloc.

22.5. HPET reading is slow

	Description:
	Reading the HPET chip is slow.

	Implication:
	An application that calls rte_get_hpet_cycles() or rte_timer_manage() runs slower.

	Resolution/Workaround:
	The application should not call these functions too often in the main loop.
An alternative is to use the TSC register through rte_rdtsc() which is faster,
but specific to an lcore and is a cycle reference, not a time reference.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Environment Abstraction Layer (EAL).

22.6. HPET timers do not work on the Osage customer reference platform

	Description:
	HPET timers do not work on the Osage customer reference platform which includes an Intel® Xeon® processor 5500
series processor) using the released BIOS from Intel.

	Implication:
	On Osage boards, the implementation of the rte_delay_us() function must be changed to not use the HPET timer.

	Resolution/Workaround:
	This can be addressed by building the system with the CONFIG_RTE_LIBEAL_USE_HPET=n
configuration option or by using the --no-hpet EAL option.

	Affected Environment/Platform:
	The Osage customer reference platform.
Other vendor platforms with Intel® Xeon® processor 5500 series processors should
work correctly, provided the BIOS supports HPET.

	Driver/Module:
	lib/librte_eal/include/rte_cycles.h

22.7. Not all variants of supported NIC types have been used in testing

	Description:
	The supported network interface cards can come in a number of variants with different device ID’s.
Not all of these variants have been tested with the DPDK.

The NIC device identifiers used during testing:

	Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1584]

	Intel® Ethernet Controller XL710 for 40GbE QSFP+ [8086:1583]

	Intel® Ethernet Controller X710 for 10GbE SFP+ [8086:1572]

	Intel® 82576 Gigabit Ethernet Controller [8086:10c9]

	Intel® 82576 Quad Copper Gigabit Ethernet Controller [8086:10e8]

	Intel® 82580 Dual Copper Gigabit Ethernet Controller [8086:150e]

	Intel® I350 Quad Copper Gigabit Ethernet Controller [8086:1521]

	Intel® 82599 Dual Fibre 10 Gigabit Ethernet Controller [8086:10fb]

	Intel® Ethernet Server Adapter X520-T2 [8086: 151c]

	Intel® Ethernet Controller X540-T2 [8086:1528]

	Intel® 82574L Gigabit Network Connection [8086:10d3]

	Emulated Intel® 82540EM Gigabit Ethernet Controller [8086:100e]

	Emulated Intel® 82545EM Gigabit Ethernet Controller [8086:100f]

	Intel® Ethernet Server Adapter X520-4 [8086:154a]

	Intel® Ethernet Controller I210 [8086:1533]

	Implication:
	Risk of issues with untested variants.

	Resolution/Workaround:
	Use tested NIC variants. For those supported Ethernet controllers, additional device
IDs may be added to the software if required.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll-mode drivers

22.8. Multi-process sample app requires exact memory mapping

	Description:
	The multi-process example application assumes that
it is possible to map the hugepage memory to the same virtual addresses in client and server applications.
Occasionally, very rarely with 64-bit, this does not occur and a client application will fail on startup.
The Linux “address-space layout randomization” security feature can sometimes cause this to occur.

	Implication:
	A multi-process client application fails to initialize.

	Resolution/Workaround:
	See the “Multi-process Limitations” section in the DPDK Programmer’s Guide for more information.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Multi-process example application

22.9. Packets are not sent by the 1 GbE/10 GbE SR-IOV driver when the source MAC is not the MAC assigned to the VF NIC

	Description:
	The 1 GbE/10 GbE SR-IOV driver can only send packets when the Ethernet header’s source MAC address is the same as
that of the VF NIC.
The reason for this is that the Linux ixgbe driver module in the host OS has its anti-spoofing feature enabled.

	Implication:
	Packets sent using the 1 GbE/10 GbE SR-IOV driver must have the source MAC address correctly set to that of the VF NIC.
Packets with other source address values are dropped by the NIC if the application attempts to transmit them.

	Resolution/Workaround:
	Configure the Ethernet source address in each packet to match that of the VF NIC.

	Affected Environment/Platform:
	All.

	Driver/Module:
	1 GbE/10 GbE VF Poll Mode Driver (PMD).

22.10. SR-IOV drivers do not fully implement the rte_ethdev API

	Description:
	The SR-IOV drivers only supports the following rte_ethdev API functions:

	rte_eth_dev_configure()

	rte_eth_tx_queue_setup()

	rte_eth_rx_queue_setup()

	rte_eth_dev_info_get()

	rte_eth_dev_start()

	rte_eth_tx_burst()

	rte_eth_rx_burst()

	rte_eth_dev_stop()

	rte_eth_stats_get()

	rte_eth_stats_reset()

	rte_eth_link_get()

	rte_eth_link_get_no_wait()

	Implication:
	Calling an unsupported function will result in an application error.

	Resolution/Workaround:
	Do not use other rte_ethdev API functions in applications that use the SR-IOV drivers.

	Affected Environment/Platform:
	All.

	Driver/Module:
	VF Poll Mode Driver (PMD).

22.11. PMD does not work with –no-huge EAL command line parameter

	Description:
	Currently, the DPDK does not store any information about memory allocated by malloc()` (for example, NUMA node,
physical address), hence PMD drivers do not work when the ``--no-huge command line parameter is supplied to EAL.

	Implication:
	Sending and receiving data with PMD will not work.

	Resolution/Workaround:
	Use huge page memory or use VFIO to map devices.

	Affected Environment/Platform:
	Systems running the DPDK on Linux

	Driver/Module:
	Poll Mode Driver (PMD).

22.12. Some hardware off-load functions are not supported by the VF Driver

	Description:
	Currently, configuration of the following items is not supported by the VF driver:

	IP/UDP/TCP checksum offload

	Jumbo Frame Receipt

	HW Strip CRC

	Implication:
	Any configuration for these items in the VF register will be ignored.
The behavior is dependent on the current PF setting.

	Resolution/Workaround:
	For the PF (Physical Function) status on which the VF driver depends, there is an option item under PMD in the
config file.
For others, the VF will keep the same behavior as PF setting.

	Affected Environment/Platform:
	All.

	Driver/Module:
	VF (SR-IOV) Poll Mode Driver (PMD).

22.13. Kernel crash on IGB port unbinding

	Description:
	Kernel crash may occur when unbinding 1G ports from the igb_uio driver, on 2.6.3x kernels such as shipped
with Fedora 14.

	Implication:
	Kernel crash occurs.

	Resolution/Workaround:
	Use newer kernels or do not unbind ports.

	Affected Environment/Platform:
	2.6.3x kernels such as shipped with Fedora 14

	Driver/Module:
	IGB Poll Mode Driver (PMD).

22.14. Twinpond and Ironpond NICs do not report link status correctly

	Description:
	Twin Pond/Iron Pond NICs do not bring the physical link down when shutting down the port.

	Implication:
	The link is reported as up even after issuing shutdown command unless the cable is physically disconnected.

	Resolution/Workaround:
	None.

	Affected Environment/Platform:
	Twin Pond and Iron Pond NICs

	Driver/Module:
	Poll Mode Driver (PMD).

22.15. Discrepancies between statistics reported by different NICs

	Description:
	Gigabit Ethernet devices from Intel include CRC bytes when calculating packet reception statistics regardless
of hardware CRC stripping state, while 10-Gigabit Ethernet devices from Intel do so only when hardware CRC
stripping is disabled.

	Implication:
	There may be a discrepancy in how different NICs display packet reception statistics.

	Resolution/Workaround:
	None

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.16. Error reported opening files on DPDK initialization

	Description:
	On DPDK application startup, errors may be reported when opening files as part of the initialization process.
This occurs if a large number, for example, 500 or more, or if hugepages are used, due to the per-process
limit on the number of open files.

	Implication:
	The DPDK application may fail to run.

	Resolution/Workaround:
	If using 2 MB hugepages, consider switching to a fewer number of 1 GB pages.
Alternatively, use the ulimit command to increase the number of files which can be opened by a process.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Environment Abstraction Layer (EAL).

22.17. Intel® QuickAssist Technology sample application does not work on a 32-bit OS on Shumway

	Description:
	The Intel® Communications Chipset 89xx Series device does not fully support NUMA on a 32-bit OS.
Consequently, the sample application cannot work properly on Shumway, since it requires NUMA on both nodes.

	Implication:
	The sample application cannot work in 32-bit mode with emulated NUMA, on multi-socket boards.

	Resolution/Workaround:
	There is no workaround available.

	Affected Environment/Platform:
	Shumway

	Driver/Module:
	All.

22.18. Differences in how different Intel NICs handle maximum packet length for jumbo frame

	Description:
	10 Gigabit Ethernet devices from Intel do not take VLAN tags into account when calculating packet size
while Gigabit Ethernet devices do so for jumbo frames.

	Implication:
	When receiving packets with VLAN tags, the actual maximum size of useful payload that Intel Gigabit Ethernet
devices are able to receive is 4 bytes (or 8 bytes in the case of packets with extended VLAN tags) less than
that of Intel 10 Gigabit Ethernet devices.

	Resolution/Workaround:
	Increase the configured maximum packet size when using Intel Gigabit Ethernet devices.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.19. Binding PCI devices to igb_uio fails on Linux kernel 3.9 when more than one device is used

	Description:
	A known bug in the uio driver included in Linux kernel version 3.9 prevents more than one PCI device to be
bound to the igb_uio driver.

	Implication:
	The Poll Mode Driver (PMD) will crash on initialization.

	Resolution/Workaround:
	Use earlier or later kernel versions, or apply the following
patch [https://github.com/torvalds/linux/commit/5ed0505c713805f89473cdc0bbfb5110dfd840cb].

	Affected Environment/Platform:
	Linux systems with kernel version 3.9

	Driver/Module:
	igb_uio module

22.20. GCC might generate Intel® AVX instructions for processors without Intel® AVX support

	Description:
	When compiling DPDK (and any DPDK app), gcc may generate Intel® AVX instructions, even when the
processor does not support Intel® AVX.

	Implication:
	Any DPDK app might crash while starting up.

	Resolution/Workaround:
	Either compile using icc or set EXTRA_CFLAGS='-O3' prior to compilation.

	Affected Environment/Platform:
	Platforms which processor does not support Intel® AVX.

	Driver/Module:
	Environment Abstraction Layer (EAL).

22.21. Ethertype filter could receive other packets (non-assigned) in Niantic

	Description:
	On Intel® Ethernet Controller 82599EB When Ethertype filter (priority enable) was set, unmatched packets also
could be received on the assigned queue, such as ARP packets without 802.1q tags or with the user priority not
equal to set value.
Launch the testpmd by disabling RSS and with multiply queues, then add the ethertype filter like the following
and then start forwarding:

add_ethertype_filter 0 ethertype 0x0806 priority enable 3 queue 2 index 1

When sending ARP packets without 802.1q tag and with user priority as non-3 by tester, all the ARP packets can
be received on the assigned queue.

	Implication:
	The user priority comparing in Ethertype filter cannot work probably.
It is a NIC’s issue due to the following: “In fact, ETQF.UP is not functional, and the information will
be added in errata of 82599 and X540.”

	Resolution/Workaround:
	None

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.22. Cannot set link speed on Intel® 40G Ethernet controller

	Description:
	On Intel® 40G Ethernet Controller you cannot set the link to specific speed.

	Implication:
	The link speed cannot be changed forcibly, though it can be configured by application.

	Resolution/Workaround:
	None

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.23. Devices bound to igb_uio with VT-d enabled do not work on Linux kernel 3.15-3.17

	Description:
	When VT-d is enabled (iommu=pt intel_iommu=on), devices are 1:1 mapped.
In the Linux kernel unbinding devices from drivers removes that mapping which result in IOMMU errors.
Introduced in Linux kernel 3.15 commit [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/iommu/intel-iommu.c?id=816997d03bca9fabcee65f3481eb0297103eceb7],
solved in Linux kernel 3.18 commit [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/iommu/intel-iommu.c?id=1196c2fb0407683c2df92d3d09f9144d42830894].

	Implication:
	Devices will not be allowed to access memory, resulting in following kernel errors:

dmar: DRHD: handling fault status reg 2
dmar: DMAR:[DMA Read] Request device [02:00.0] fault addr a0c58000
DMAR:[fault reason 02] Present bit in context entry is clear

	Resolution/Workaround:
	Use earlier or later kernel versions, or avoid driver binding on boot by blacklisting the driver modules.
I.e., in the case of ixgbe, we can pass the kernel command line option: modprobe.blacklist=ixgbe.
This way we do not need to unbind the device to bind it to igb_uio.

	Affected Environment/Platform:
	Linux systems with kernel versions 3.15 to 3.17.

	Driver/Module:
	igb_uio module.

22.24. VM power manager may not work on systems with more than 64 cores

	Description:
	When using VM power manager on a system with more than 64 cores, VM(s) should not use cores 64 or higher.

	Implication:
	VM power manager should not be used with VM(s) that are using cores 64 or above.

	Resolution/Workaround:
	Do not use cores 64 or above.

	Affected Environment/Platform:
	Platforms with more than 64 cores.

	Driver/Module:
	VM power manager application.

22.25. DPDK may not build on some Intel CPUs using clang < 3.7.0

	Description:
	When compiling DPDK with an earlier version than 3.7.0 of clang, CPU flags are not detected on some Intel platforms
such as Intel Broadwell/Skylake (and possibly future CPUs), and therefore compilation fails due to missing intrinsics.

	Implication:
	DPDK will not build when using a clang version < 3.7.0.

	Resolution/Workaround:
	Use clang 3.7.0 or higher, or gcc.

	Affected Environment/Platform:
	Platforms with Intel Broadwell/Skylake using an old clang version.

	Driver/Module:
	Environment Abstraction Layer (EAL).

22.26. The last EAL argument is replaced by the program name in argv[]

	Description:
	The last EAL argument is replaced by program name in argv[] after eal_parse_args is called.
This is the intended behavior but it causes the pointer to the last EAL argument to be lost.

	Implication:
	If the last EAL argument in argv[] is generated by a malloc function, changing it will cause memory
issues when freeing the argument.

	Resolution/Workaround:
	An application should not consider the value in argv[] as unchanged.

	Affected Environment/Platform:
	ALL.

	Driver/Module:
	Environment Abstraction Layer (EAL).

22.27. I40e VF may not receive packets in the promiscuous mode

	Description:
	Promiscuous mode is not supported by the DPDK i40e VF driver when using the
i40e Linux kernel driver as host driver.

	Implication:
	The i40e VF does not receive packets when the destination MAC address is unknown.

	Resolution/Workaround:
	Use a explicit destination MAC address that matches the VF.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.28. uio pci generic module bind failed in X710/XL710/XXV710

	Description:
	The uio_pci_generic module is not supported by XL710, since the errata of XL710
states that the Interrupt Status bit is not implemented. The errata is the item #71
from the xl710 controller spec [http://www.intel.com/content/www/us/en/embedded/products/networking/xl710-10-40-controller-spec-update.html].
The hw limitation is the same as other X710/XXV710 NICs.

	Implication:
	When use --bind=uio_pci_generic, the uio_pci_generic module probes device and check the Interrupt
Status bit. Since it is not supported by X710/XL710/XXV710, it return a failed value. The statement
that these products don’t support INTx masking, is indicated in the related linux kernel commit [https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/drivers/pci/quirks.c?id=8bcf4525c5d43306c5fd07e132bc8650e3491aec].

	Resolution/Workaround:
	Do not bind the uio_pci_generic module in X710/XL710/XXV710 NICs.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.29. virtio tx_burst() function cannot do TSO on shared packets

	Description:
	The standard TX function of virtio driver does not manage shared
packets properly when doing TSO. These packets should be read-only
but the driver modifies them.

When doing TSO, the virtio standard expects that the L4 checksum is
set to the pseudo header checksum in the packet data, which is
different than the DPDK API. The driver patches the L4 checksum to
conform to the virtio standard, but this solution is invalid when
dealing with shared packets (clones), because the packet data should
not be modified.

	Implication:
	In this situation, the shared data will be modified by the driver,
potentially causing race conditions with the other users of the mbuf
data.

	Resolution/Workaround:
	The workaround in the application is to ensure that the network
headers in the packet data are not shared.

	Affected Environment/Platform:
	Virtual machines running a virtio driver.

	Driver/Module:
	Poll Mode Driver (PMD).

22.30. igb uio legacy mode can not be used in X710/XL710/XXV710

	Description:
	X710/XL710/XXV710 NICs lack support for indicating INTx is asserted via the interrupt
bit in the PCI status register. Linux deleted them from INTx support table. The related
commit [https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/drivers/pci/quirks.c?id=8bcf4525c5d43306c5fd07e132bc8650e3491aec].

	Implication:
	When insmod igb_uio with intr_mode=legacy and test link status interrupt. Since
INTx interrupt is not supported by X710/XL710/XXV710, it will cause Input/Output error
when reading file descriptor.

	Resolution/Workaround:
	Do not bind igb_uio with legacy mode in X710/XL710/XXV710 NICs, or do not use kernel
version >4.7 when you bind igb_uio with legacy mode.

	Affected Environment/Platform:
	ALL.

	Driver/Module:
	Poll Mode Driver (PMD).

22.31. igb_uio can not be used when running l3fwd-power

	Description:
	Link Status Change(LSC) interrupt and packet receiving interrupt are all enabled in l3fwd-power
APP. Because of UIO only support one interrupt, so these two kinds of interrupt need to share
one, and the receiving interrupt have the higher priority, so can’t get the right link status.

	Implication:
	When insmod igb_uio and running l3fwd-power APP, link status getting doesn’t work properly.

	Resolution/Workaround:
	Use vfio-pci when LSC and packet receiving interrupt enabled.

	Affected Environment/Platform:
	ALL.

	Driver/Module:
	igb_uio module.

22.32. Linux kernel 4.10.0 iommu attribute read error

	Description:
	When VT-d is enabled (iommu=pt intel_iommu=on), reading IOMMU attributes from
/sys/devices/virtual/iommu/dmarXXX/intel-iommu/cap on Linux kernel 4.10.0 error.
This bug is fixed in Linux commit a7fdb6e648fb [https://patchwork.kernel.org/patch/9595727/],
This bug is introduced in Linux commit 39ab9555c241 [https://patchwork.kernel.org/patch/9554403/],

	Implication:
	When binding devices to VFIO and attempting to run testpmd application,
testpmd (and other DPDK applications) will not initialize.

	Resolution/Workaround:
	Use other linux kernel version. It only happens in linux kernel 4.10.0.

	Affected Environment/Platform:
	ALL OS of linux kernel 4.10.0.

	Driver/Module:
	vfio-pci module.

22.33. Netvsc driver and application restart

	Description:
	The Linux kernel uio_hv_generic driver does not completely shutdown and clean up
resources properly if application using Netvsc PMD exits.

	Implication:
	When application using Netvsc PMD is restarted it can not complete initialization
handshake sequence with the host.

	Resolution/Workaround:
	Either reboot the guest or remove and reinsert the hv_uio_generic module.

	Affected Environment/Platform:
	Linux Hyper-V.

	Driver/Module:
	uio_hv_generic module.

22.34. PHY link up fails when rebinding i40e NICs to kernel driver

	Description:
	Some kernel drivers are not able to handle the link status correctly
after DPDK application sets the PHY to link down.

	Implication:
	The link status can’t be set to “up” after the NIC is rebound to the
kernel driver. Before a DPDK application quits it will invoke the
function i40e_dev_stop() which will sets the PHY to link down. Some
kernel drivers may not be able to handle the link status correctly after
it retakes control of the device. This is a known PHY link configuration
issue in the i40e kernel driver. The fix has been addressed in the 2.7.4 rc
version. So if the i40e kernel driver is < 2.7.4 and doesn’t have the
fix backported it will encounter this issue.

	Resolution/Workaround:
	First try to remove and reinsert the i40e kernel driver. If that fails
reboot the system.

	Affected Environment/Platform:
	All.

	Driver/Module:
	Poll Mode Driver (PMD).

22.35. Restricted vdev ethdev operations supported in secondary process

	Description
	In current virtual device sharing model, Ethernet device data structure will be
shared between primary and secondary process. Only those Ethernet device operations
which based on it are workable in secondary process.

	Implication
	Some Ethernet device operations like device start/stop will be failed on virtual
device in secondary process.

	Affected Environment/Platform:
	ALL.

	Driver/Module:
	Virtual Device Poll Mode Driver (PMD).

22.36. Kernel crash when hot-unplug igb_uio device while DPDK application is running

	Description:
	When device has been bound to igb_uio driver and application is running,
hot-unplugging the device may cause kernel crash.

	Reason:
	When device is hot-unplugged, igb_uio driver will be removed which will destroy UIO resources.
Later trying to access any uio resource will cause kernel crash.

	Resolution/Workaround:
	If using DPDK for PCI HW hot-unplug, prefer to bind device with VFIO instead of IGB_UIO.

	Affected Environment/Platform:
	ALL.

	Driver/Module:
	igb_uio module.

22.37. AVX-512 support disabled

	Description:
	AVX-512 support has been disabled on some conditions.
This shouldn’t be confused with CONFIG_RTE_ENABLE_AVX512 config option which is already
disabled by default. This config option defines if AVX-512 specific implementations of
some file to be used or not. What has been disabled is compiler feature to produce AVX-512
instructions from any source code.

On DPDK v18.11 AVX-512 is disabled for all GCC builds which reported to cause a performance
drop.

On DPDK v19.02 AVX-512 disable scope is reduced to GCC and binutils version 2.30 based
on information accrued from the GCC community defect.

	Reason:
	Generated AVX-512 code cause crash:
https://bugs.dpdk.org/show_bug.cgi?id=97
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88096

	Resolution/Workaround:
	
	Update binutils to newer version than 2.30.

OR

	Use different compiler, like clang for this case.

	Affected Environment/Platform:
	GCC and binutils version 2.30.

	Driver/Module:
	ALL.

22.38. Unsuitable IOVA mode may be picked as the default

	Description
	Not all kernel drivers and not all devices support all IOVA modes. EAL will
attempt to pick a reasonable default based on a number of factors, but there
may be cases where the default may be unsuitable (for example, hotplugging
devices using igb_uio driver while having picked IOVA as VA mode on EAL
initialization).

	Implication
	Some devices (hotplugged or otherwise) may not work due to incompatible IOVA
mode being automatically picked by EAL.

	Resolution/Workaround:
	It is possible to force EAL to pick a particular IOVA mode by using the
–iova-mode command-line parameter. If conflicting requirements are present
(such as one device requiring IOVA as PA and one requiring IOVA as VA mode),
there is no workaround.

	Affected Environment/Platform:
	Linux.

	Driver/Module:
	ALL.

23. ABI and API Deprecation

See the guidelines document for details of the ABI policy. API and ABI deprecation notices are to be posted
here.

23.1. Deprecation Notices

	meson: The minimum supported version of meson for configuring and building
DPDK will be increased to v0.47.1 (from 0.41) from DPDK 19.05 onwards. For
those users with a version earlier than 0.47.1, an updated copy of meson
can be got using the pip, or pip3, tool for downloading python
packages.

	kvargs: The function rte_kvargs_process will get a new parameter
for returning key match count. It will ease handling of no-match case.

	eal: The function rte_eal_remote_launch will return new error codes
after read or write error on the pipe, instead of calling rte_panic.

	eal: The rte_logs struct and global symbol will be made private to
remove it from the externally visible ABI and allow it to be updated in the
future.

	rte_atomicNN_xxx: These APIs do not take memory order parameter. This does
not allow for writing optimized code for all the CPU architectures supported
in DPDK. DPDK will adopt C11 atomic operations semantics and provide wrappers
using C11 atomic built-ins. These wrappers must be used for patches that
need to be merged in 20.08 onwards. This change will not introduce any
performance degradation.

	rte_smp_*mb: These APIs provide full barrier functionality. However, many
use cases do not require full barriers. To support such use cases, DPDK will
adopt C11 barrier semantics and provide wrappers using C11 atomic built-ins.
These wrappers must be used for patches that need to be merged in 20.08
onwards. This change will not introduce any performance degradation.

	igb_uio: In the view of reducing the kernel dependency from the main tree,
as a first step, the Technical Board decided to move igb_uio
kernel module to the dpdk-kmods repository in the /linux/igb_uio/ directory
in 20.11.
Minutes of Technical Board Meeting of 2019-11-06 [https://mails.dpdk.org/archives/dev/2019-November/151763.html].

	lib: will fix extending some enum/define breaking the ABI. There are multiple
samples in DPDK that enum/define terminated with a .*MAX.* value which is
used by iterators, and arrays holding these values are sized with this
.*MAX.* value. So extending this enum/define increases the .*MAX.*
value which increases the size of the array and depending on how/where the
array is used this may break the ABI.
RTE_ETH_FLOW_MAX is one sample of the mentioned case, adding a new flow
type will break the ABI because of flex_mask[RTE_ETH_FLOW_MAX] array
usage in following public struct hierarchy:
rte_eth_fdir_flex_conf -> rte_fdir_conf -> rte_eth_conf (in the middle).
Need to identify this kind of usages and fix in 20.11, otherwise this blocks
us extending existing enum/define.
One solution can be using a fixed size array instead of .*MAX.* value.

	ethdev: Split the struct eth_dev_ops struct to hide it as much as possible
will be done in 20.11.
Currently the struct eth_dev_ops struct is accessible by the application
because some inline functions, like rte_eth_tx_descriptor_status(),
access the struct directly.
The struct will be separate in two, the ops used by inline functions will be
moved next to Rx/Tx burst functions, rest of the struct eth_dev_ops struct
will be moved to header file for drivers to hide it from applications.

	ethdev: the legacy filter API, including
rte_eth_dev_filter_supported(), rte_eth_dev_filter_ctrl() as well
as filter types MACVLAN, ETHERTYPE, FLEXIBLE, SYN, NTUPLE, TUNNEL, FDIR,
HASH and L2_TUNNEL, is superseded by the generic flow API (rte_flow) in
PMDs that implement the latter.
Target release for removal of the legacy API will be defined once most
PMDs have switched to rte_flow.

	ethdev: Update API functions returning void to return int with
negative errno values to indicate various error conditions (e.g.
invalid port ID, unsupported operation, failed operation):

	rte_eth_dev_stop

	rte_eth_dev_close

	ethdev: New offload flags DEV_RX_OFFLOAD_FLOW_MARK will be added in 19.11.
This will allow application to enable or disable PMDs from updating
rte_mbuf::hash::fdir.
This scheme will allow PMDs to avoid writes to rte_mbuf fields on Rx and
thereby improve Rx performance if application wishes do so.
In 19.11 PMDs will still update the field even when the offload is not
enabled.

	ethdev: rx_descriptor_done dev_ops and rte_eth_rx_descriptor_done
will be deprecated in 20.11 and will be removed in 21.11.
Existing rte_eth_rx_descriptor_status and rte_eth_tx_descriptor_status
APIs can be used as replacement.

	traffic manager: All traffic manager API’s in rte_tm.h were mistakenly made
ABI stable in the v19.11 release. The TM maintainer and other contributors have
agreed to keep the TM APIs as experimental in expectation of additional spec
improvements. Therefore, all APIs in rte_tm.h will be marked back as
experimental in v20.11 DPDK release. For more details, please see the thread [https://mails.dpdk.org/archives/dev/2020-April/164970.html].

	cryptodev: support for using IV with all sizes is added, J0 still can
be used but only when IV length in following structs rte_crypto_auth_xform,
rte_crypto_aead_xform is set to zero. When IV length is greater or equal
to one it means it represents IV, when is set to zero it means J0 is used
directly, in this case 16 bytes of J0 need to be passed.

	sched: To allow more traffic classes, flexible mapping of pipe queues to
traffic classes, and subport level configuration of pipes and queues
changes will be made to macros, data structures and API functions defined
in “rte_sched.h”. These changes are aligned to improvements suggested in the
RFC https://mails.dpdk.org/archives/dev/2018-November/120035.html.

	metrics: The function rte_metrics_init will have a non-void return
in order to notify errors instead of calling rte_exit.

	power: rte_power_set_env function will no longer return 0 on attempt
to set new power environment if power environment was already initialized.
In this case the function will return -1 unless the environment is unset first
(using rte_power_unset_env). Other function usage scenarios will not change.

	python: Since the beginning of 2020, Python 2 has officially reached
end-of-support: https://www.python.org/doc/sunset-python-2/.
Python 2 support will be completely removed in 20.11.
In 20.08, explicit deprecation warnings will be displayed when running
scripts with Python 2.

	pci: Remove RTE_KDRV_NONE based device driver probing.
In order to optimize the DPDK PCI enumeration management, RTE_KDRV_NONE
based device driver probing will be removed in v20.08.
The legacy virtio is the only consumer of RTE_KDRV_NONE based device
driver probe scheme. The legacy virtio support will be available through
the existing VFIO/UIO based kernel driver scheme.
More details at https://patches.dpdk.org/patch/69351/

FAQ

This document contains some Frequently Asked Questions that arise when working with DPDK.

	1. What does “EAL: map_all_hugepages(): open failed: Permission denied Cannot init memory” mean?

	2. If I want to change the number of hugepages allocated, how do I remove the original pages allocated?

	3. If I execute “l2fwd -l 0-3 -m 64 -n 3 – -p 3”, I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?

	4. I am running a 32-bit DPDK application on a NUMA system, and sometimes the application initializes fine but cannot allocate memory. Why is that happening?

	5. On application startup, there is a lot of EAL information printed. Is there any way to reduce this?

	6. How can I tune my network application to achieve lower latency?

	7. Without NUMA enabled, my network throughput is low, why?

	8. I am getting errors about not being able to open files. Why?

	9. VF driver for IXGBE devices cannot be initialized

	10. Is it safe to add an entry to the hash table while running?

	11. What is the purpose of setting iommu=pt?

	12. When trying to send packets from an application to itself, meaning smac==dmac, using Intel(R) 82599 VF packets are lost.

	13. Can I split packet RX to use DPDK and have an application’s higher order functions continue using Linux pthread?

	14. Is it possible to exchange data between DPDK processes and regular userspace processes via some shared memory or IPC mechanism?

	15. Can the multiple queues in Intel(R) I350 be used with DPDK?

	16. How can hugepage-backed memory be shared among multiple processes?

	17. Why can’t my application receive packets on my system with UEFI Secure Boot enabled?

1. What does “EAL: map_all_hugepages(): open failed: Permission denied Cannot init memory” mean?

This is most likely due to the test application not being run with sudo to promote the user to a superuser.
Alternatively, applications can also be run as regular user.
For more information, please refer to DPDK Getting Started Guide.

2. If I want to change the number of hugepages allocated, how do I remove the original pages allocated?

The number of pages allocated can be seen by executing the following command:

grep Huge /proc/meminfo

Once all the pages are mmapped by an application, they stay that way.
If you start a test application with less than the maximum, then you have free pages.
When you stop and restart the test application, it looks to see if the pages are available in the /dev/huge directory and mmaps them.
If you look in the directory, you will see n number of 2M pages files. If you specified 1024, you will see 1024 page files.
These are then placed in memory segments to get contiguous memory.

If you need to change the number of pages, it is easier to first remove the pages. The usertools/dpdk-setup.sh script provides an option to do this.
See the “Quick Start Setup Script” section in the DPDK Getting Started Guide for more information.

3. If I execute “l2fwd -l 0-3 -m 64 -n 3 – -p 3”, I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?

I have set up a total of 1024 Hugepages (that is, allocated 512 2M pages to each NUMA node).

The -m command line parameter does not guarantee that huge pages will be reserved on specific sockets. Therefore, allocated huge pages may not be on socket 0.
To request memory to be reserved on a specific socket, please use the –socket-mem command-line parameter instead of -m.

4. I am running a 32-bit DPDK application on a NUMA system, and sometimes the application initializes fine but cannot allocate memory. Why is that happening?

32-bit applications have limitations in terms of how much virtual memory is available, hence the number of hugepages they are able to allocate is also limited (1 GB size).
If your system has a lot (>1 GB size) of hugepage memory, not all of it will be allocated.
Due to hugepages typically being allocated on a local NUMA node, the hugepages allocation the application gets during the initialization depends on which
NUMA node it is running on (the EAL does not affinitize cores until much later in the initialization process).
Sometimes, the Linux OS runs the DPDK application on a core that is located on a different NUMA node from DPDK master core and
therefore all the hugepages are allocated on the wrong socket.

To avoid this scenario, either lower the amount of hugepage memory available to 1 GB size (or less), or run the application with taskset
affinitizing the application to a would-be master core.

For example, if your EAL coremask is 0xff0, the master core will usually be the first core in the coremask (0x10); this is what you have to supply to taskset:

taskset 0x10 ./l2fwd -l 4-11 -n 2

In this way, the hugepages have a greater chance of being allocated to the correct socket.
Additionally, a --socket-mem option could be used to ensure the availability of memory for each socket, so that if hugepages were allocated on
the wrong socket, the application simply will not start.

5. On application startup, there is a lot of EAL information printed. Is there any way to reduce this?

Yes, the option --log-level= accepts either symbolic names (or numbers):

	emergency

	alert

	critical

	error

	warning

	notice

	info

	debug

6. How can I tune my network application to achieve lower latency?

Traditionally, there is a trade-off between throughput and latency. An application can be tuned to achieve a high throughput,
but the end-to-end latency of an average packet typically increases as a result.
Similarly, the application can be tuned to have, on average, a low end-to-end latency at the cost of lower throughput.

To achieve higher throughput, the DPDK attempts to aggregate the cost of processing each packet individually by processing packets in bursts.
Using the testpmd application as an example, the “burst” size can be set on the command line to a value of 32 (also the default value).
This allows the application to request 32 packets at a time from the PMD.
The testpmd application then immediately attempts to transmit all the packets that were received, in this case, all 32 packets.
The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the network port.
This behavior is desirable when tuning for high throughput because the cost of tail pointer updates to both the RX and TX queues
can be spread across 32 packets, effectively hiding the relatively slow MMIO cost of writing to the PCIe* device.

However, this is not very desirable when tuning for low latency, because the first packet that was received must also wait for the other 31 packets to be received.
It cannot be transmitted until the other 31 packets have also been processed because the NIC will not know to transmit the packets until the TX tail pointer has been updated,
which is not done until all 32 packets have been processed for transmission.

To consistently achieve low latency even under heavy system load, the application developer should avoid processing packets in bunches.
The testpmd application can be configured from the command line to use a burst value of 1.
This allows a single packet to be processed at a time, providing lower latency, but with the added cost of lower throughput.

7. Without NUMA enabled, my network throughput is low, why?

I have a dual Intel® Xeon® E5645 processors 2.40 GHz with four Intel® 82599 10 Gigabit Ethernet NICs.
Using eight logical cores on each processor with RSS set to distribute network load from two 10 GbE interfaces to the cores on each processor.

Without NUMA enabled, memory is allocated from both sockets, since memory is interleaved.
Therefore, each 64B chunk is interleaved across both memory domains.

The first 64B chunk is mapped to node 0, the second 64B chunk is mapped to node 1, the third to node 0, the fourth to node 1.
If you allocated 256B, you would get memory that looks like this:

256B buffer
Offset 0x00 - Node 0
Offset 0x40 - Node 1
Offset 0x80 - Node 0
Offset 0xc0 - Node 1

Therefore, packet buffers and descriptor rings are allocated from both memory domains, thus incurring QPI bandwidth accessing the other memory and much higher latency.
For best performance with NUMA disabled, only one socket should be populated.

8. I am getting errors about not being able to open files. Why?

As the DPDK operates, it opens a lot of files, which can result in reaching the open files limits, which is set using the ulimit command or in the limits.conf file.
This is especially true when using a large number (>512) of 2 MB huge pages. Please increase the open file limit if your application is not able to open files.
This can be done either by issuing a ulimit command or editing the limits.conf file. Please consult Linux manpages for usage information.

9. VF driver for IXGBE devices cannot be initialized

Some versions of Linux IXGBE driver do not assign a random MAC address to VF devices at initialization.
In this case, this has to be done manually on the VM host, using the following command:

ip link set <interface> vf <VF function> mac <MAC address>

where <interface> being the interface providing the virtual functions for example, eth0, <VF function> being the virtual function number, for example 0,
and <MAC address> being the desired MAC address.

10. Is it safe to add an entry to the hash table while running?

Currently the table implementation is not a thread safe implementation and assumes that locking between threads and processes is handled by the user’s application.
This is likely to be supported in future releases.

11. What is the purpose of setting iommu=pt?

DPDK uses a 1:1 mapping and does not support IOMMU. IOMMU allows for simpler VM physical address translation.
The second role of IOMMU is to allow protection from unwanted memory access by an unsafe device that has DMA privileges.
Unfortunately, the protection comes with an extremely high performance cost for high speed NICs.

Setting iommu=pt disables IOMMU support for the hypervisor.

12. When trying to send packets from an application to itself, meaning smac==dmac, using Intel(R) 82599 VF packets are lost.

Check on register LLE(PFVMTXSSW[n]), which allows an individual pool to send traffic and have it looped back to itself.

13. Can I split packet RX to use DPDK and have an application’s higher order functions continue using Linux pthread?

The DPDK’s lcore threads are Linux pthreads bound onto specific cores. Configure the DPDK to do work on the same
cores and run the application’s other work on other cores using the DPDK’s “coremask” setting to specify which
cores it should launch itself on.

14. Is it possible to exchange data between DPDK processes and regular userspace processes via some shared memory or IPC mechanism?

Yes - DPDK processes are regular Linux/BSD processes, and can use all OS provided IPC mechanisms.

15. Can the multiple queues in Intel(R) I350 be used with DPDK?

I350 has RSS support and 8 queue pairs can be used in RSS mode. It should work with multi-queue DPDK applications using RSS.

16. How can hugepage-backed memory be shared among multiple processes?

See the Primary and Secondary examples in the multi-process sample application.

17. Why can’t my application receive packets on my system with UEFI Secure Boot enabled?

If UEFI secure boot is enabled, the Linux kernel may disallow the use of UIO on the system.
Therefore, devices for use by DPDK should be bound to the vfio-pci kernel module rather than igb_uio or uio_pci_generic.

Index

Lcore-related options

	-c <core mask>

Set the hexadecimal bitmask of the cores to run on.

	-l <core list>

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...]
where c1, c2, etc are core indexes between 0 and 128.

	--lcores <core map>

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group.
The - character is used as a range separator and , is used as a
single number separator.
The grouping () can be omitted for single element group.
The @ can be omitted if cpus and lcores have the same value.

Note

At a given instance only one core option --lcores, -l or -c can
be used.

	--master-lcore <core ID>

Core ID that is used as master.

	-s <service core mask>

Hexadecimal bitmask of cores to be used as service cores.

Device-related options

	-b, --pci-blacklist <[domain:]bus:devid.func>

Blacklist a PCI device to prevent EAL from using it. Multiple -b options are
allowed.

Note

PCI blacklist cannot be used with -w option.

	-w, --pci-whitelist <[domain:]bus:devid.func>

Add a PCI device in white list.

Note

PCI whitelist cannot be used with -b option.

	--vdev <device arguments>

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'net_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

	-d <path to shared object or directory>

Load external drivers. An argument can be a single shared object file, or a
directory containing multiple driver shared objects. Multiple -d options are
allowed.

	--no-pci

Disable PCI bus.

Multiprocessing-related options

	--proc-type <primary|secondary|auto>

Set the type of the current process.

	--base-virtaddr <address>

Attempt to use a different starting address for all memory maps of the
primary DPDK process. This can be helpful if secondary processes cannot
start due to conflicts in address map.

Memory-related options

	-n <number of channels>

Set the number of memory channels to use.

	-r <number of ranks>

Set the number of memory ranks (auto-detected by default).

	-m <megabytes>

Amount of memory to preallocate at startup.

	--in-memory

Do not create any shared data structures and run entirely in memory. Implies
--no-shconf and (if applicable) --huge-unlink.

	--iova-mode <pa|va>

Force IOVA mode to a specific value.

Debugging options

	--no-shconf

No shared files created (implies no secondary process support).

	--no-huge

Use anonymous memory instead of hugepages (implies no secondary process
support).

	--log-level <type:val>

Specify log level for a specific component. For example:

--log-level lib.eal:debug

Can be specified multiple times.

	--trace=<regex-match>

Enable trace based on regular expression trace name. By default, the trace is
disabled. User must specify this option to enable trace.
For example:

Global trace configuration for EAL only:

--trace=eal

Global trace configuration for ALL the components:

--trace=.*

Can be specified multiple times up to 32 times.

	--trace-dir=<directory path>

Specify trace directory for trace output. For example:

Configuring /tmp/ as a trace output directory:

--trace-dir=/tmp

By default, trace output will created at home directory and parameter
must be specified once only.

	--trace-bufsz=<val>

Specify maximum size of allocated memory for trace output for each thread.
Valid unit can be either B or K or M for Bytes, KBytes
and MBytes respectively. For example:

Configuring 2MB as a maximum size for trace output file:

--trace-bufsz=2M

By default, size of trace output file is 1MB and parameter
must be specified once only.

	--trace-mode=<o[verwrite] | d[iscard] >

Specify the mode of update of trace output file. Either update on a file
can be wrapped or discarded when file size reaches its maximum limit.
For example:

To discard update on trace output file:

--trace-mode=d or --trace-mode=discard

Default mode is overwrite and parameter must be specified once only.

Other options

	-h, --help

Display help message listing all EAL parameters.

	-v

Display the version information on startup.

	mbuf-pool-ops-name:

Pool ops name for mbuf to use.

	--telemetry:

Enable telemetry (enabled by default).

	--no-telemetry:

Disable telemetry.

 _images/m_definition.png
= (fme=gtime)

_images/l2_fwd_virtenv_benchmark_setup.png
Il

Traffic NUT (RTE)
Generator m‘ne
Hostachnes
Fypenor
Legene
Note: Pt 03 iz fom PC1 vt Fncton 09 [] ey rncion

‘enabled in the Host Machine using "ixgbe max_vis=2,2"
0 Ve Functon

_images/example_rules.png
SourceAddress DestinationAddress ~ SourcePort DestPot Protocol Fwd

A

@1.2.3.0/24 192.168.0.36/32 0: 65535 0 : 65535 6/0xfe

R0.0.0.0/0 192.168.0.36/320:655350: 65535 6/0xfe

1
R0.0.0.0/0 0.0.0.0/0

0:655350:655350x0/0x0 O

_images/fast_pkt_proc.png
VMO0

Latency
Sensitive
Service

VM1

Latency
Sensitive
Service

VM2

Computation
-intensive
Service

VM3 Virtual Switch

computation
-intensive

Service

Cve)

CvEd)

[ves

| Niantic/ 82599

11

B

[

Intel Architecture

_images/ewma_filter_eq_2.png
avglil = avgli - 11 x (1 —w)"

_images/ex_data_flow_tru_dropper.png
qlil
avg[i-1]

Min Threshold

Max Threshold
Filter Weight Mark Probability
countfi]
R EE R .
EWMA avg[i] .l Drop decision[i]
f
Delay |« Random

_images/figure34.png
0 1 2 3

_images/figure35.png
Stage O: Stage 1: Stage 2: Stage 3:
Prefetch Prefetch Prefetch Prefetch
—»| pkt meta- table table key table

_images/figure32.png
Table 0

Output Port 0

Table 1

{11}

Output Port 1

x
Input Port 0
Input Port 1

|

>

Output Port 2

>

> [T}

> T}

>

_images/figure33.png
Signature Lookup hit/miss

Extract
key

_images/figure37.png
0 1 2 3

a 5 6 7

1 Data for keys 0, 1, 2, 3

_images/ewma_filter_eq_1.png
avglil = (1 - wg) x avgli— 1] +w, x qli]

_images/forward_stats.png
Forward statistics for port 0
231192368 RX-dropped: 0 RX-total: 231192368

231192384 TX-dropped: 0 TX-total: 231192384

R¥-packets
TX-packets

Forward statistics for port 1
RX-packets: 231192368 RX-dropped: 0 RX-total: 231192368
TX-packets: 23119238¢ TX-dropped: 0 TX-total: 231192384

_images/flow_tru_droppper.png
RED/WRED.

_images/hier_sched_blk.png
Queues

Dequeue

Enqueue

_images/figure38.png
Unused

Data for keys 0, 1, 2, 3

_images/figure39.png
Stage O: Stage 1: Stage 2:
Prefetch Prefetch Prefetch
—»| pkt meta- table table

_images/ipv4_acl_rule.png
SourceAddress DestinationAddress SourcePort DestPort Protocol

A
@192.168.0.34/32 192.168.0.36/32 0: 65535 20: 20 6/0xfe

_images/kernel_nic.png
KNI Sample Application

Traffic
Generator

Port0

Al

\

PortN

Ve oW

VN

Coret0
_{ Coret) /’
Coret
reAN

-

linux Kernel

_images/inter_vm_comms.png
VT-d
SRIOV

Intel Architecture

Taking advantage of HW ability
SW switch used when Inter-VM
traffic cross NIC
SW switch all in host DEVO (Niantic)
Normal VF driver compatible
No packet header modification
required

No anti-spoofing (if enabling
anti-spoofing, required Intel
DPDK modify source MAC as
specific PF)

_images/kernel_nic_intf.png
Net Stack ifconfig
1oCTLsockfd bee—
—1 ethtool
10CTL sockfd
|
S Non-Intel®
T to/rev ——{ DPDK net
hoctL App
Register net_device

Misc_device

_images/host_vm_comms_qemu.png
T

H

Linux Bridge

H

IXIA PACKET GENERATOR

_images/host_vm_comms.png
82599 PF

IXIA PACKET GENERATOR

Host2VM communication example

nav.xhtml

 Table of Contents

 		
 DPDK documentation

 		
 Getting Started Guide for Linux

 		
 Introduction

 		
 Documentation Roadmap

 		
 System Requirements

 		
 BIOS Setting Prerequisite on x86

 		
 Compilation of the DPDK

 		
 Running DPDK Applications

 		
 Compiling the DPDK Target from Source

 		
 Uncompress DPDK and Browse Sources

 		
 Compiling and Installing DPDK System-wide

 		
 Installation of DPDK Target Environment using Make

 		
 Browsing the Installed DPDK Environment Target

 		
 Cross compile DPDK for ARM64

 		
 Obtain the cross tool chain

 		
 Unzip and add into the PATH

 		
 Getting the prerequisite library

 		
 Augment the cross toolchain with NUMA support

 		
 Cross Compiling DPDK using Meson

 		
 Configure and Cross Compile DPDK using Make

 		
 Linux Drivers

 		
 UIO

 		
 VFIO

 		
 Bifurcated Driver

 		
 Binding and Unbinding Network Ports to/from the Kernel Modules

 		
 Compiling and Running Sample Applications

 		
 Compiling a Sample Application

 		
 Running a Sample Application

 		
 Additional Sample Applications

 		
 Additional Test Applications

 		
 EAL parameters

 		
 Common EAL parameters

 		
 Linux-specific EAL parameters

 		
 Enabling Additional Functionality

 		
 High Precision Event Timer (HPET) Functionality

 		
 Running DPDK Applications Without Root Privileges

 		
 Power Management and Power Saving Functionality

 		
 Using Linux Core Isolation to Reduce Context Switches

 		
 Loading the DPDK KNI Kernel Module

 		
 Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d

 		
 Quick Start Setup Script

 		
 Script Organization

 		
 Use Cases

 		
 Applications

 		
 How to get best performance with NICs on Intel platforms

 		
 Hardware and Memory Requirements

 		
 Configurations before running DPDK

 		
 Getting Started Guide for FreeBSD

 		
 Introduction

 		
 Documentation Roadmap

 		
 Installing DPDK from the Ports Collection

 		
 Installing the DPDK Package for FreeBSD

 		
 Installing the DPDK FreeBSD Port

 		
 Compiling and Running the Example Applications

 		
 Compiling the DPDK Target from Source

 		
 Prerequisites

 		
 Building DPDK

 		
 Loading the DPDK contigmem Module

 		
 Loading the DPDK nic_uio Module

 		
 Compiling and Running Sample Applications

 		
 Compiling a Sample Application

 		
 Running a Sample Application

 		
 Running DPDK Applications Without Root Privileges

 		
 EAL parameters

 		
 Common EAL parameters

 		
 FreeBSD-specific EAL parameters

 		
 Getting Started Guide for Windows

 		
 Introduction

 		
 Limitations

 		
 Compiling the DPDK Target from Source

 		
 System Requirements

 		
 Option 1. Clang-LLVM C Compiler and Microsoft MSVC Linker

 		
 Option 2. MinGW-w64 Toolchain

 		
 Install the Build System

 		
 Install the Backend

 		
 Build the code

 		
 Run the helloworld example

 		
 Sample Applications User Guides

 		
 Introduction to the DPDK Sample Applications

 		
 Running Sample Applications

 		
 The DPDK Sample Applications

 		
 Compiling the Sample Applications

 		
 To compile all the sample applications

 		
 To compile a single application

 		
 To cross compile the sample application(s)

 		
 Command Line Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Ethtool Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Using the application

 		
 Explanation

 		
 Ethtool interface

 		
 Hello World Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Basic Forwarding Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 RX/TX Callbacks Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Flow Classify Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Sample ipv4_rules_file.txt

 		
 Explanation

 		
 Basic RTE Flow Filtering Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 IP Fragmentation Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 IPv4 Multicast Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 IP Reassembly Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Kernel NIC Interface Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the kni Example Application

 		
 KNI Operations

 		
 Explanation

 		
 Keep Alive Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Packet copying using Intel® QuickData Technology

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L2 Forwarding with Crypto Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L2 Forwarding Sample Application (in Real and Virtualized Environments)

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L2 Forwarding Eventdev Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L2 Forwarding Sample Application with Cache Allocation Technology (CAT)

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L3 Forwarding Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L3 Forwarding Graph Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 L3 Forwarding with Power Management Sample Application

 		
 Introduction

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Empty Poll Mode

 		
 Telemetry Mode

 		
 L3 Forwarding with Access Control Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Link Status Interrupt Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Server-Node EFD Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Service Cores Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Multi-process Sample Application

 		
 Example Applications

 		
 QoS Metering Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 QoS Scheduler Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Timer Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Packet Ordering Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 VMDQ and DCB Forwarding Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 VMDq Forwarding Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Vhost Sample Application

 		
 Testing steps

 		
 Inject packets

 		
 Parameters

 		
 Common Issues

 		
 Vhost_blk Sample Application

 		
 Testing steps

 		
 Compiling the Application

 		
 Vhost_Crypto Sample Application

 		
 Testing steps

 		
 Compiling the Application

 		
 Vdpa Sample Application

 		
 Testing steps

 		
 Internet Protocol (IP) Pipeline Application

 		
 Application overview

 		
 Running the application

 		
 Application stages

 		
 Examples

 		
 Command Line Interface (CLI)

 		
 Test Pipeline Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Eventdev Pipeline Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Observing the Application

 		
 Distributor Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 Intel SST-BF Support

 		
 Debug Logging Support

 		
 Statistics

 		
 Application Initialization

 		
 Virtual Machine Power Management Application

 		
 Sample Application Architecture Overview

 		
 Configuration

 		
 Compiling and Running the Host Application

 		
 Compiling and Running the Guest Applications

 		
 JSON Interface for Power Management Requests and Policies

 		
 TEP termination Sample Application

 		
 Background

 		
 Sample Code Overview

 		
 Supported Distributions

 		
 Compiling the Sample Code

 		
 Running the Sample Code

 		
 Running the Virtual Machine (QEMU)

 		
 Running DPDK in the Virtual Machine

 		
 Passing Traffic to the Virtual Machine Device

 		
 PTP Client Sample Application

 		
 Limitations

 		
 How the Application Works

 		
 Compiling the Application

 		
 Running the Application

 		
 Code Explanation

 		
 Performance Thread Sample Application

 		
 Overview

 		
 Compiling the Application

 		
 Running the Application

 		
 Explanation

 		
 The L-thread subsystem

 		
 Federal Information Processing Standards (FIPS) CryptoDev Validation

 		
 Overview

 		
 Limitations

 		
 Application Information

 		
 Compiling the Application

 		
 Running the Application

 		
 IPsec Security Gateway Sample Application

 		
 Overview

 		
 Constraints

 		
 Compiling the Application

 		
 Running the Application

 		
 Configurations

 		
 Test directory

 		
 Loop-back Sample Application using Baseband Device (bbdev)

 		
 Overview

 		
 Limitations

 		
 Compiling the Application

 		
 Running the Application

 		
 Using Packet Generator with baseband device sample application

 		
 NTB Sample Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Command-line Options

 		
 Using the application

 		
 Programmer’s Guide

 		
 Introduction

 		
 Documentation Roadmap

 		
 Related Publications

 		
 Overview

 		
 Development Environment

 		
 Environment Abstraction Layer

 		
 Core Components

 		
 Ethernet* Poll Mode Driver Architecture

 		
 Packet Forwarding Algorithm Support

 		
 librte_net

 		
 Environment Abstraction Layer

 		
 EAL in a Linux-userland Execution Environment

 		
 Memory Segments and Memory Zones (memzone)

 		
 Multiple pthread

 		
 Malloc

 		
 Service Cores

 		
 Service Core Initialization

 		
 Enabling Services on Cores

 		
 Service Core Statistics

 		
 Trace Library

 		
 Overview

 		
 DPDK tracing library features

 		
 How to add a tracepoint?

 		
 Fast path tracepoint

 		
 Event record mode

 		
 Trace file location

 		
 View and analyze the recorded events

 		
 Quick start

 		
 Implementation details

 		
 RCU Library

 		
 What is Quiescent State

 		
 Factors affecting the RCU mechanism

 		
 RCU in DPDK

 		
 How to use this library

 		
 Resource reclamation framework for DPDK

 		
 Ring Library

 		
 References for Ring Implementation in FreeBSD*

 		
 Lockless Ring Buffer in Linux*

 		
 Additional Features

 		
 Use Cases

 		
 Anatomy of a Ring Buffer

 		
 Producer/consumer synchronization modes

 		
 Ring Peek API

 		
 References

 		
 Stack Library

 		
 Implementation

 		
 Mempool Library

 		
 Cookies

 		
 Stats

 		
 Memory Alignment Constraints on x86 architecture

 		
 Local Cache

 		
 Mempool Handlers

 		
 Use Cases

 		
 Mbuf Library

 		
 Design of Packet Buffers

 		
 Buffers Stored in Memory Pools

 		
 Constructors

 		
 Allocating and Freeing mbufs

 		
 Manipulating mbufs

 		
 Meta Information

 		
 Direct and Indirect Buffers

 		
 Debug

 		
 Use Cases

 		
 Poll Mode Driver

 		
 Requirements and Assumptions

 		
 Design Principles

 		
 Logical Cores, Memory and NIC Queues Relationships

 		
 Device Identification, Ownership and Configuration

 		
 Poll Mode Driver API

 		
 Generic flow API (rte_flow)

 		
 Overview

 		
 Flow rule

 		
 Rules management

 		
 Flow isolated mode

 		
 Verbose error reporting

 		
 Helpers

 		
 Caveats

 		
 PMD interface

 		
 Device compatibility

 		
 Future evolutions

 		
 Switch Representation within DPDK Applications

 		
 Introduction

 		
 Port Representors

 		
 Basic SR-IOV

 		
 Controlled SR-IOV

 		
 Flow API (rte_flow)

 		
 Switching Examples

 		
 Traffic Metering and Policing API

 		
 Overview

 		
 Configuration steps

 		
 Run-time processing

 		
 Traffic Management API

 		
 Overview

 		
 Capability API

 		
 Scheduling Algorithms

 		
 Traffic Shaping

 		
 Congestion Management

 		
 Packet Marking

 		
 Steps to Setup the Hierarchy

 		
 Wireless Baseband Device Library

 		
 Design Principles

 		
 Device Management

 		
 Device Operation Capabilities

 		
 Operation Processing

 		
 Sample code

 		
 Cryptography Device Library

 		
 Design Principles

 		
 Device Management

 		
 Device Features and Capabilities

 		
 Operation Processing

 		
 Symmetric Cryptography Support

 		
 Synchronous mode

 		
 Sample code

 		
 Asymmetric Cryptography

 		
 Asymmetric crypto Sample code

 		
 Compression Device Library

 		
 Device Management

 		
 Device Features and Capabilities

 		
 Compression Operation

 		
 Transforms

 		
 Compression API Hash support

 		
 Compression API Stateless operation

 		
 Compression API Stateful operation

 		
 Burst in compression API

 		
 Sample code

 		
 Security Library

 		
 Design Principles

 		
 Device Features and Capabilities

 		
 Rawdevice Library

 		
 Introduction

 		
 Design

 		
 Link Bonding Poll Mode Driver Library

 		
 Link Bonding Modes Overview

 		
 Implementation Details

 		
 Using Link Bonding Devices

 		
 Timer Library

 		
 Implementation Details

 		
 Use Cases

 		
 References

 		
 Hash Library

 		
 Hash API Overview

 		
 Multi-process support

 		
 Multi-thread support

 		
 Extendable Bucket Functionality support

 		
 Implementation Details (non Extendable Bucket Case)

 		
 Implementation Details (with Extendable Bucket)

 		
 Entry distribution in hash table

 		
 Use Case: Flow Classification

 		
 References

 		
 Elastic Flow Distributor Library

 		
 Introduction

 		
 Flow Based Distribution

 		
 Example of EFD Library Usage

 		
 Library API Overview

 		
 Library Internals

 		
 References

 		
 Membership Library

 		
 Introduction

 		
 Vector of Bloom Filters

 		
 Hash-Table based Set-Summaries

 		
 Library API Overview

 		
 References

 		
 LPM Library

 		
 LPM API Overview

 		
 Implementation Details

 		
 LPM6 Library

 		
 LPM6 API Overview

 		
 Use Case: IPv6 Forwarding

 		
 Flow Classification Library

 		
 Overview

 		
 Packet Distributor Library

 		
 Distributor Core Operation

 		
 Worker Operation

 		
 Reorder Library

 		
 Operation

 		
 Implementation Details

 		
 Use Case: Packet Distributor

 		
 IP Fragmentation and Reassembly Library

 		
 Packet fragmentation

 		
 Packet reassembly

 		
 Generic Receive Offload Library

 		
 Overview

 		
 Two Sets of API

 		
 Reassembly Algorithm

 		
 TCP/IPv4 GRO

 		
 VxLAN GRO

 		
 GRO Library Limitations

 		
 Generic Segmentation Offload Library

 		
 Overview

 		
 Limitations

 		
 Packet Segmentation

 		
 Supported GSO Packet Types

 		
 How to Segment a Packet

 		
 The librte_pdump Library

 		
 Operation

 		
 Implementation Details

 		
 Use Case: Packet Capturing

 		
 Multi-process Support

 		
 Memory Sharing

 		
 Deployment Models

 		
 Multi-process Limitations

 		
 Communication between multiple processes

 		
 Kernel NIC Interface

 		
 The DPDK KNI Kernel Module

 		
 KNI Creation and Deletion

 		
 DPDK mbuf Flow

 		
 Use Case: Ingress

 		
 Use Case: Egress

 		
 IOVA = VA: Support

 		
 Ethtool

 		
 Thread Safety of DPDK Functions

 		
 Fast-Path APIs

 		
 Performance Insensitive API

 		
 Library Initialization

 		
 Interrupt Thread

 		
 Event Device Library

 		
 Event struct

 		
 API Walk-through

 		
 Summary

 		
 Event Ethernet Rx Adapter Library

 		
 API Walk-through

 		
 Event Ethernet Tx Adapter Library

 		
 API Walk-through

 		
 Event Timer Adapter Library

 		
 Event Timer struct

 		
 API Overview

 		
 Processing Timer Expiry Events

 		
 Summary

 		
 Event Crypto Adapter Library

 		
 Adapter Mode

 		
 API Overview

 		
 Quality of Service (QoS) Framework

 		
 Packet Pipeline with QoS Support

 		
 Hierarchical Scheduler

 		
 Dropper

 		
 Traffic Metering

 		
 Power Management

 		
 CPU Frequency Scaling

 		
 Core-load Throttling through C-States

 		
 Per-core Turbo Boost

 		
 Use of Power Library in a Hyper-Threaded Environment

 		
 API Overview of the Power Library

 		
 User Cases

 		
 Empty Poll API

 		
 User Cases

 		
 References

 		
 Packet Classification and Access Control

 		
 Overview

 		
 Application Programming Interface (API) Usage

 		
 Packet Framework

 		
 Design Objectives

 		
 Overview

 		
 Port Library Design

 		
 Table Library Design

 		
 Pipeline Library Design

 		
 Multicore Scaling

 		
 Interfacing with Accelerators

 		
 Vhost Library

 		
 Vhost API Overview

 		
 Vhost-user Implementations

 		
 Guest memory requirement

 		
 Vhost supported vSwitch reference

 		
 Vhost data path acceleration (vDPA)

 		
 Metrics Library

 		
 Initializing the library

 		
 Registering metrics

 		
 Updating metric values

 		
 Querying metrics

 		
 Deinitialising the library

 		
 Bit-rate statistics library

 		
 Latency statistics library

 		
 Telemetry Library

 		
 Registering Commands

 		
 Formatting JSON response

 		
 Berkeley Packet Filter Library

 		
 Not currently supported eBPF features

 		
 IPsec Packet Processing Library

 		
 SA level API

 		
 SA database API

 		
 Supported features

 		
 Limitations

 		
 Graph Library and Inbuilt Nodes

 		
 Features

 		
 Advantages of Graph architecture

 		
 Performance tuning parameters

 		
 Programming model

 		
 Graph object memory layout

 		
 Inbuilt Nodes

 		
 Source Organization

 		
 Makefiles and Config

 		
 Libraries

 		
 Drivers

 		
 Applications

 		
 Development Kit Build System

 		
 Building the Development Kit Binary

 		
 Building External Applications

 		
 Makefile Description

 		
 Development Kit Root Makefile Help

 		
 Configuration Targets

 		
 Build Targets

 		
 Install Targets

 		
 Test Targets

 		
 Documentation Targets

 		
 Misc Targets

 		
 Other Useful Command-line Variables

 		
 Make in a Build Directory

 		
 Compiling for Debug

 		
 Installing DPDK Using the meson build system

 		
 Summary

 		
 Getting the Tools

 		
 Configuring the Build

 		
 Performing the Build

 		
 Installing the Compiled Files

 		
 Cross Compiling DPDK

 		
 Using the DPDK within an Application

 		
 Running DPDK Unit Tests with Meson

 		
 Grouping of test cases

 		
 Dealing with skipped test cases

 		
 Extending the DPDK

 		
 Example: Adding a New Library libfoo

 		
 Building Your Own Application

 		
 Compiling a Sample Application in the Development Kit Directory

 		
 Build Your Own Application Outside the Development Kit

 		
 Customizing Makefiles

 		
 External Application/Library Makefile help

 		
 Prerequisites

 		
 Build Targets

 		
 Help Targets

 		
 Other Useful Command-line Variables

 		
 Make from Another Directory

 		
 Performance Optimization Guidelines

 		
 Introduction

 		
 Writing Efficient Code

 		
 Memory

 		
 Communication Between lcores

 		
 PMD Driver

 		
 Locks and Atomic Operations

 		
 Coding Considerations

 		
 Setting the Target CPU Type

 		
 Link Time Optimization

 		
 Profile Your Application

 		
 Profiling on x86

 		
 Profiling on ARM64

 		
 Glossary

 		
 HowTo Guides

 		
 Live Migration of VM with SR-IOV VF

 		
 Overview

 		
 Test Setup

 		
 Live Migration steps

 		
 Sample host scripts

 		
 Sample VM scripts

 		
 Sample switch configuration

 		
 Live Migration of VM with Virtio on host running vhost_user

 		
 Overview

 		
 Test Setup

 		
 Live Migration steps

 		
 Sample host scripts

 		
 Sample VM scripts

 		
 Flow Bifurcation How-to Guide

 		
 Using Flow Bifurcation on Mellanox ConnectX

 		
 Generic flow API - examples

 		
 Simple IPv4 drop

 		
 Range IPv4 drop

 		
 Send vlan to queue

 		
 PVP reference benchmark setup using testpmd

 		
 Setup overview

 		
 Host setup

 		
 Guest setup

 		
 Results template

 		
 VF daemon (VFd)

 		
 Preparing

 		
 Common functions of IXGBE and I40E

 		
 The IXGBE specific VFd functions

 		
 The I40E specific VFd functions

 		
 Virtio_user for Container Networking

 		
 Overview

 		
 Sample Usage

 		
 Limitations

 		
 Virtio_user as Exceptional Path

 		
 Sample Usage

 		
 Limitations

 		
 DPDK pdump Library and pdump Tool

 		
 Introduction

 		
 Test Environment

 		
 Configuration

 		
 Running the Application

 		
 DPDK Telemetry User Guide

 		
 Telemetry Interface

 		
 Telemetry Initialization

 		
 Running Telemetry

 		
 Debug & Troubleshoot guide

 		
 Application Overview

 		
 Bottleneck Analysis

 		
 How to develop a custom code to debug?

 		
 Enable DPDK on OpenWrt

 		
 Introduction

 		
 Build OpenWrt

 		
 DPDK Cross Compilation for OpenWrt

 		
 Running DPDK application on OpenWrt

 		
 DPDK Tools User Guides

 		
 dpdk-procinfo Application

 		
 Running the Application

 		
 Limitations

 		
 dpdk-pdump Application

 		
 Running the Application

 		
 Example

 		
 dpdk-pmdinfo Application

 		
 Running the Application

 		
 dpdk-devbind Application

 		
 Running the Application

 		
 OPTIONS

 		
 Examples

 		
 dpdk-test-bbdev Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Running Tests

 		
 Test Vector files

 		
 dpdk-test-crypto-perf Application

 		
 Limitations

 		
 Compiling the Application

 		
 Running the Application

 		
 Examples

 		
 dpdk-test-compress-perf Tool

 		
 Limitations

 		
 EAL Options

 		
 Application Options

 		
 dpdk-test-eventdev Application

 		
 Compiling the Application

 		
 Running the Application

 		
 Eventdev Tests

 		
 Testpmd Application User Guide

 		
 Introduction

 		
 Compiling the Application

 		
 Running the Application

 		
 EAL Command-line Options

 		
 Testpmd Command-line Options

 		
 Testpmd Runtime Functions

 		
 Help Functions

 		
 Command File Functions

 		
 Control Functions

 		
 Display Functions

 		
 Configuration Functions

 		
 Port Functions

 		
 Device Functions

 		
 Link Bonding Functions

 		
 Register Functions

 		
 Traffic Metering and Policing

 		
 Traffic Management

 		
 Filter Functions

 		
 Flow rules management

 		
 BPF Functions

 		
 Network Interface Controller Drivers

 		
 Overview of Networking Drivers

 		
 Features Overview

 		
 Speed capabilities

 		
 Link status

 		
 Link status event

 		
 Removal event

 		
 Queue status event

 		
 Rx interrupt

 		
 Lock-free Tx queue

 		
 Fast mbuf free

 		
 Free Tx mbuf on demand

 		
 Queue start/stop

 		
 MTU update

 		
 Jumbo frame

 		
 Scattered Rx

 		
 LRO

 		
 TSO

 		
 Promiscuous mode

 		
 Allmulticast mode

 		
 Unicast MAC filter

 		
 Multicast MAC filter

 		
 RSS hash

 		
 Inner RSS

 		
 RSS key update

 		
 RSS reta update

 		
 VMDq

 		
 SR-IOV

 		
 DCB

 		
 VLAN filter

 		
 Flow control

 		
 Flow API

 		
 Rate limitation

 		
 Traffic mirroring

 		
 Inline crypto

 		
 Inline protocol

 		
 CRC offload

 		
 VLAN offload

 		
 QinQ offload

 		
 L3 checksum offload

 		
 L4 checksum offload

 		
 Timestamp offload

 		
 MACsec offload

 		
 Inner L3 checksum

 		
 Inner L4 checksum

 		
 Packet type parsing

 		
 Timesync

 		
 Rx descriptor status

 		
 Tx descriptor status

 		
 Basic stats

 		
 Extended stats

 		
 Stats per queue

 		
 FW version

 		
 EEPROM dump

 		
 Module EEPROM dump

 		
 Registers dump

 		
 LED

 		
 Multiprocess aware

 		
 BSD nic_uio

 		
 Linux UIO

 		
 Linux VFIO

 		
 Other kdrv

 		
 ARMv7

 		
 ARMv8

 		
 Power8

 		
 x86-32

 		
 x86-64

 		
 Usage doc

 		
 Design doc

 		
 Perf doc

 		
 Runtime Rx queue setup

 		
 Runtime Tx queue setup

 		
 Burst mode info

 		
 Other dev ops not represented by a Feature

 		
 Compiling and testing a PMD for a NIC

 		
 Driver Compilation

 		
 Running testpmd in Linux

 		
 AF_PACKET Poll Mode Driver

 		
 Options and inherent limitations

 		
 Prerequisites

 		
 Set up an af_packet interface

 		
 AF_XDP Poll Mode Driver

 		
 Options

 		
 Prerequisites

 		
 Set up an af_xdp interface

 		
 Limitations

 		
 ARK Poll Mode Driver

 		
 Overview

 		
 Device Parameters

 		
 Data Path Interface

 		
 Configuration Information

 		
 Building DPDK

 		
 Supported ARK RTL PCIe Instances

 		
 Supported Operating Systems

 		
 Supported Features

 		
 Unsupported Features

 		
 Pre-Requisites

 		
 Usage Example

 		
 Aquantia Atlantic DPDK Driver

 		
 Supported features

 		
 Experimental API features

 		
 Configuration Information

 		
 AVP Poll Mode Driver

 		
 Features and Limitations of the AVP PMD

 		
 Prerequisites

 		
 Launching a VM with an AVP type network attachment

 		
 AXGBE Poll Mode Driver

 		
 Supported Features

 		
 Configuration Information

 		
 Building DPDK

 		
 Prerequisites and Pre-conditions

 		
 Usage Example

 		
 BNX2X Poll Mode Driver

 		
 Supported Features

 		
 Non-supported Features

 		
 Co-existence considerations

 		
 Supported QLogic NICs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Jumbo: Limitation

 		
 SR-IOV: Prerequisites and sample Application Notes

 		
 BNXT Poll Mode Driver

 		
 CPU Support

 		
 Kernel Dependency

 		
 Compiling BNXT PMD

 		
 Running BNXT PMD

 		
 Features

 		
 Application Support

 		
 Vector Processing

 		
 Appendix

 		
 CXGBE Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Supported Chelsio T5 NICs

 		
 Supported Chelsio T6 NICs

 		
 Supported SR-IOV Chelsio NICs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Linux

 		
 FreeBSD

 		
 Sample Application Notes

 		
 DPAA Poll Mode Driver

 		
 NXP DPAA (Data Path Acceleration Architecture - Gen 1)

 		
 DPAA DPDK - Poll Mode Driver Overview

 		
 Whitelisting & Blacklisting

 		
 Supported DPAA SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Limitations

 		
 DPAA2 Poll Mode Driver

 		
 NXP DPAA2 (Data Path Acceleration Architecture Gen2)

 		
 DPAA2 DPDK - Poll Mode Driver Overview

 		
 Supported DPAA2 SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Enabling logs

 		
 Whitelisting & Blacklisting

 		
 Limitations

 		
 Driver for VM Emulated Devices

 		
 Validated Hypervisors

 		
 Recommended Guest Operating System in Virtual Machine

 		
 Setting Up a KVM Virtual Machine

 		
 Known Limitations of Emulated Devices

 		
 ENA Poll Mode Driver

 		
 Overview

 		
 Management Interface

 		
 Data Path Interface

 		
 Configuration information

 		
 Building DPDK

 		
 Supported ENA adapters

 		
 Supported Operating Systems

 		
 Supported features

 		
 Prerequisites

 		
 Usage example

 		
 ENETC Poll Mode Driver

 		
 ENETC

 		
 ENIC Poll Mode Driver

 		
 How to obtain ENIC PMD integrated DPDK

 		
 Configuration information

 		
 SR-IOV mode utilization

 		
 Generic Flow API support

 		
 Overlay Offload

 		
 Ingress VLAN Rewrite

 		
 Vectorized Rx Handler

 		
 Limitations

 		
 How to build the suite

 		
 Supported Cisco VIC adapters

 		
 Supported Operating Systems

 		
 Supported features

 		
 Known bugs and unsupported features in this release

 		
 Prerequisites

 		
 Additional Reference

 		
 Contact Information

 		
 FM10K Poll Mode Driver

 		
 FTAG Based Forwarding of FM10K

 		
 Vector PMD for FM10K

 		
 Limitations

 		
 HINIC Poll Mode Driver

 		
 Features

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Limitations or Known issues

 		
 HNS3 Poll Mode Driver

 		
 Features

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Limitations or Known issues

 		
 I40E Poll Mode Driver

 		
 Features

 		
 Prerequisites

 		
 Recommended Matching List

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 SR-IOV: Prerequisites and sample Application Notes

 		
 Sample Application Notes

 		
 Limitations or Known issues

 		
 High Performance of Small Packets on 40GbE NIC

 		
 Example of getting best performance with l3fwd example

 		
 ICE Poll Mode Driver

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Features

 		
 Sample Application Notes

 		
 Limitations or Known issues

 		
 IGB Poll Mode Driver

 		
 Features

 		
 Limitations or Known issues

 		
 Supported Chipsets and NICs

 		
 IGC Poll Mode Driver

 		
 Config File Options

 		
 Vlan filter

 		
 Flow Director

 		
 IONIC Driver

 		
 Identifying the Adapter

 		
 Pre-Installation Configuration

 		
 Building DPDK

 		
 IPN3KE Poll Mode Driver

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Sample Application Notes

 		
 Limitations or Known issues

 		
 IXGBE Driver

 		
 Vector PMD for IXGBE

 		
 Application Programming Interface

 		
 Sample Application Notes

 		
 Limitations or Known issues

 		
 Inline crypto processing support

 		
 Virtual Function Port Representors

 		
 Supported Chipsets and NICs

 		
 Intel Virtual Function Driver

 		
 SR-IOV Mode Utilization in a DPDK Environment

 		
 Setting Up a KVM Virtual Machine Monitor

 		
 DPDK SR-IOV PMD PF/VF Driver Usage Model

 		
 SR-IOV (PF/VF) Approach for Inter-VM Communication

 		
 KNI Poll Mode Driver

 		
 Usage

 		
 Default interface configuration

 		
 PMD arguments

 		
 PMD log messages

 		
 PMD testing

 		
 LiquidIO VF Poll Mode Driver

 		
 Supported LiquidIO Adapters

 		
 Pre-Installation Configuration

 		
 SR-IOV: Prerequisites and Sample Application Notes

 		
 Limitations

 		
 Memif Poll Mode Driver

 		
 Shared memory

 		
 Zero-copy slave

 		
 MLX4 poll mode driver library

 		
 Implementation details

 		
 Configuration

 		
 Limitations

 		
 Prerequisites

 		
 Quick Start Guide

 		
 Performance tuning

 		
 Usage example

 		
 MLX5 poll mode driver

 		
 Design

 		
 Features

 		
 Limitations

 		
 Statistics

 		
 Configuration

 		
 Prerequisites

 		
 Supported NICs

 		
 Quick Start Guide on OFED/EN

 		
 Enable switchdev mode

 		
 Performance tuning

 		
 Supported hardware offloads

 		
 Notes for metadata

 		
 Notes for rte_flow

 		
 Notes for testpmd

 		
 Usage example

 		
 How to dump flows

 		
 MVNETA Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Building DPDK

 		
 Usage Example

 		
 MVPP2 Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Prerequisites

 		
 Config File Options

 		
 Building DPDK

 		
 Usage Example

 		
 Extended stats

 		
 QoS Configuration

 		
 Flow API

 		
 Traffic metering and policing

 		
 Traffic Management API

 		
 Netvsc poll mode driver

 		
 Features and Limitations of Hyper-V PMD

 		
 Installation

 		
 Prerequisites

 		
 Netvsc PMD arguments

 		
 NFB poll mode driver library

 		
 Prerequisites

 		
 Configuration

 		
 Using the NFB PMD

 		
 NFB card architecture

 		
 Limitations

 		
 Example of usage

 		
 NFP poll mode driver library

 		
 Dependencies

 		
 Building the software

 		
 Driver compilation and testing

 		
 Using the PF

 		
 PF multiport support

 		
 PF multiprocess support

 		
 System configuration

 		
 NULL Poll Mode Driver

 		
 Usage

 		
 Runtime Config Options

 		
 OCTEON TX Poll Mode driver

 		
 Features

 		
 Supported OCTEON TX SoCs

 		
 Unsupported features

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Initialization

 		
 Limitations

 		
 OCTEON TX2 Poll Mode driver

 		
 Features

 		
 Prerequisites

 		
 Compile time Config Options

 		
 Driver compilation and testing

 		
 Runtime Config Options

 		
 Traffic Management API

 		
 Limitations

 		
 Debugging Options

 		
 RTE Flow Support

 		
 PFE Poll Mode Driver

 		
 PFE

 		
 QEDE Poll Mode Driver

 		
 Supported Features

 		
 Non-supported Features

 		
 Co-existence considerations

 		
 Supported QLogic Adapters

 		
 Prerequisites

 		
 Driver compilation and testing

 		
 RTE Flow Support

 		
 SR-IOV: Prerequisites and Sample Application Notes

 		
 Solarflare libefx-based Poll Mode Driver

 		
 Features

 		
 Non-supported Features

 		
 Limitations

 		
 Tunnels support

 		
 Flow API support

 		
 Supported NICs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Soft NIC Poll Mode Driver

 		
 Flow

 		
 Supported Operating Systems

 		
 Build options

 		
 Soft NIC PMD arguments

 		
 Soft NIC testing

 		
 Soft NIC Firmware

 		
 QoS API Support:

 		
 Flow API support:

 		
 SZEDATA2 poll mode driver library

 		
 Prerequisites

 		
 Configuration

 		
 Using the SZEDATA2 PMD

 		
 NFB card architecture

 		
 Limitations

 		
 Example of usage

 		
 Tun|Tap Poll Mode Driver

 		
 Flow API support

 		
 Multi-process sharing

 		
 Example

 		
 RSS specifics

 		
 Systems supporting flow API

 		
 ThunderX NICVF Poll Mode Driver

 		
 Features

 		
 Supported ThunderX SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Driver compilation and testing

 		
 Linux

 		
 Debugging Options

 		
 Module params

 		
 Limitations

 		
 VDEV_NETVSC driver

 		
 Implementation details

 		
 Build options

 		
 Run-time parameters

 		
 Poll Mode Driver for Emulated Virtio NIC

 		
 Virtio Implementation in DPDK

 		
 Features and Limitations of virtio PMD

 		
 Prerequisites

 		
 Virtio with kni vhost Back End

 		
 Virtio with qemu virtio Back End

 		
 Virtio PMD Rx/Tx Callbacks

 		
 Interrupt mode

 		
 Virtio PMD arguments

 		
 Virtio paths Selection and Usage

 		
 Poll Mode Driver that wraps vhost library

 		
 Vhost Implementation in DPDK

 		
 Features and Limitations of vhost PMD

 		
 Vhost PMD arguments

 		
 Vhost PMD event handling

 		
 Vhost PMD with testpmd application

 		
 Poll Mode Driver for Paravirtual VMXNET3 NIC

 		
 VMXNET3 Implementation in the DPDK

 		
 Features and Limitations of VMXNET3 PMD

 		
 Prerequisites

 		
 VMXNET3 with a Native NIC Connected to a vSwitch

 		
 VMXNET3 Chaining VMs Connected to a vSwitch

 		
 Libpcap and Ring Based Poll Mode Drivers

 		
 Using the Drivers from the EAL Command Line

 		
 Fail-safe poll mode driver library

 		
 Features

 		
 Compilation option

 		
 Using the Fail-safe PMD from the EAL command line

 		
 Using the Fail-safe PMD from an application

 		
 Plug-in feature

 		
 Plug-out feature

 		
 Fail-safe glossary

 		
 Baseband Device Drivers

 		
 Baseband Device Supported Functionality Matrices

 		
 Supported Feature Flags

 		
 BBDEV null Poll Mode Driver

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 SW Turbo Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Intel(R) FPGA LTE FEC Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Test Application

 		
 Intel(R) FPGA 5GNR FEC Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Test Application

 		
 Crypto Device Drivers

 		
 Crypto Device Supported Functionality Matrices

 		
 Supported Feature Flags

 		
 Supported Cipher Algorithms

 		
 Supported Authentication Algorithms

 		
 Supported AEAD Algorithms

 		
 Supported Asymmetric Algorithms

 		
 AESN-NI Multi Buffer Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Extra notes

 		
 AES-NI GCM Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 ARMv8 Crypto Poll Mode Driver

 		
 Features

 		
 Installation

 		
 Initialization

 		
 Limitations

 		
 NXP CAAM JOB RING (caam_jr)

 		
 Architecture

 		
 Implementation

 		
 Features

 		
 Supported DPAA SoCs

 		
 Limitations

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Installations

 		
 Enabling logs

 		
 AMD CCP Poll Mode Driver

 		
 Features

 		
 Installation

 		
 Initialization

 		
 Limitations

 		
 NXP DPAA2 CAAM (DPAA2_SEC)

 		
 Architecture

 		
 Implementation

 		
 Features

 		
 Supported DPAA2 SoCs

 		
 Whitelisting & Blacklisting

 		
 Limitations

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Installations

 		
 Enabling logs

 		
 NXP DPAA CAAM (DPAA_SEC)

 		
 Architecture

 		
 Implementation

 		
 Features

 		
 Supported DPAA SoCs

 		
 Whitelisting & Blacklisting

 		
 Limitations

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Installations

 		
 Enabling logs

 		
 KASUMI Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Extra notes on KASUMI F9

 		
 Cavium OCTEON TX Crypto Poll Mode Driver

 		
 Supported Symmetric Crypto Algorithms

 		
 Supported Asymmetric Crypto Algorithms

 		
 Config flags

 		
 Compilation

 		
 Execution

 		
 Testing

 		
 Marvell OCTEON TX2 Crypto Poll Mode Driver

 		
 Features

 		
 Installation

 		
 Initialization

 		
 Debugging Options

 		
 Testing

 		
 OpenSSL Crypto Poll Mode Driver

 		
 Features

 		
 Installation

 		
 Initialization

 		
 Limitations

 		
 MVSAM Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Marvell NITROX Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Null Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Cryptodev Scheduler Poll Mode Driver Library

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Cryptodev Scheduler Modes Overview

 		
 SNOW 3G Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver

 		
 Symmetric Crypto Service on QAT

 		
 Asymmetric Crypto Service on QAT

 		
 Building PMDs on QAT

 		
 Virtio Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Virtio crypto PMD Rx/Tx Callbacks

 		
 Installation

 		
 Tests

 		
 ZUC Crypto Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 Compression Device Drivers

 		
 Compression Device Supported Functionality Matrices

 		
 Supported Feature Flags

 		
 ISA-L Compression Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 OCTEON TX ZIP Compression Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Supported OCTEON TX SoCs

 		
 Steps To Setup Platform

 		
 Installation

 		
 Initialization

 		
 Intel(R) QuickAssist (QAT) Compression Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 ZLIB Compression Poll Mode Driver

 		
 Features

 		
 Limitations

 		
 Installation

 		
 Initialization

 		
 vDPA Device Drivers

 		
 Overview of vDPA Drivers Features

 		
 References

 		
 Features Table

 		
 IFCVF vDPA driver

 		
 Pre-Installation Configuration

 		
 IFCVF vDPA Implementation

 		
 Features

 		
 Prerequisites

 		
 Limitations

 		
 MLX5 vDPA driver

 		
 Design

 		
 Supported NICs

 		
 Prerequisites

 		
 Event Device Drivers

 		
 NXP DPAA Eventdev Driver

 		
 Features

 		
 Supported DPAA SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Initialization

 		
 Limitations

 		
 NXP DPAA2 Eventdev Driver

 		
 Features

 		
 Supported DPAA2 SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Initialization

 		
 Enabling logs

 		
 Limitations

 		
 Distributed Software Eventdev Poll Mode Driver

 		
 Features

 		
 Configuration and Options

 		
 Limitations

 		
 Software Eventdev Poll Mode Driver

 		
 Features

 		
 Configuration and Options

 		
 Limitations

 		
 OCTEON TX SSOVF Eventdev Driver

 		
 Features

 		
 Supported OCTEON TX SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Initialization

 		
 Selftest

 		
 Enable TIMvf stats

 		
 Limitations

 		
 OCTEON TX2 SSO Eventdev Driver

 		
 Features

 		
 Prerequisites and Compilation procedure

 		
 Pre-Installation Configuration

 		
 OPDL Eventdev Poll Mode Driver

 		
 Features

 		
 Configuration and Options

 		
 Limitations

 		
 Rawdev Drivers

 		
 NXP DPAA2 CMDIF Driver

 		
 Features

 		
 Supported DPAA2 SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Enabling logs

 		
 Initialization

 		
 NXP DPAA2 QDMA Driver

 		
 Features

 		
 Supported DPAA2 SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Enabling logs

 		
 Initialization

 		
 IFPGA Rawdev Driver

 		
 Implementation details

 		
 Build options

 		
 Run-time parameters

 		
 IOAT Rawdev Driver for Intel® QuickData Technology

 		
 Hardware Requirements

 		
 Compilation

 		
 Device Setup

 		
 Using IOAT Rawdev Devices

 		
 NTB Rawdev Driver

 		
 BIOS setting on Intel Skylake

 		
 Build Options

 		
 Device Setup

 		
 Prerequisites

 		
 Ring Layout

 		
 Limitation

 		
 OCTEON TX2 DMA Driver

 		
 Features

 		
 Prerequisites and Compilation procedure

 		
 Pre-Installation Configuration

 		
 Enabling logs

 		
 Initialization

 		
 Device Setup

 		
 Device Configuration

 		
 Performing Data Transfer

 		
 Self test

 		
 Marvell OCTEON TX2 End Point Rawdev Driver

 		
 Features

 		
 Initialization

 		
 Device Setup

 		
 Device Configuration

 		
 Performing Data Transfer

 		
 Self test

 		
 Mempool Device Driver

 		
 OCTEON TX FPAVF Mempool Driver

 		
 Features

 		
 Supported OCTEON TX SoCs

 		
 Prerequisites

 		
 Pre-Installation Configuration

 		
 Initialization

 		
 OCTEON TX2 NPA Mempool Driver

 		
 Features

 		
 Prerequisites and Compilation procedure

 		
 Pre-Installation Configuration

 		
 Platform Specific Guides

 		
 Mellanox BlueField Board Support Package

 		
 Supported BlueField family SoCs

 		
 Supported BlueField Platforms

 		
 Common Offload HW Drivers

 		
 Steps To Setup Platform

 		
 Compile DPDK

 		
 NXP QorIQ DPAA Board Support Package

 		
 Supported DPAA SoCs

 		
 Common Offload HW Block Drivers

 		
 Steps To Setup Platform

 		
 NXP QorIQ DPAA2 Board Support Package

 		
 Supported DPAA2 SoCs

 		
 Common Offload HW Block Drivers

 		
 Steps To Setup Platform

 		
 OCTEON TX Board Support Package

 		
 Common Offload HW Block Drivers

 		
 Steps To Setup Platform

 		
 Setup Platform Using OCTEON TX SDK

 		
 Marvell OCTEON TX2 Platform Guide

 		
 Supported OCTEON TX2 SoCs

 		
 OCTEON TX2 Resource Virtualization Unit architecture

 		
 LBK HW Access

 		
 SDP interface

 		
 OCTEON TX2 packet flow

 		
 HW Offload Drivers

 		
 Procedure to Setup Platform

 		
 Debugging Options

 		
 Compile DPDK

 		
 Contributor’s Guidelines

 		
 DPDK Coding Style

 		
 Description

 		
 General Guidelines

 		
 C Comment Style

 		
 C Preprocessor Directives

 		
 C Types

 		
 C Indentation

 		
 C Function Definition, Declaration and Use

 		
 C Statement Style and Conventions

 		
 Dynamic Logging

 		
 Python Code

 		
 Integrating with the Build System

 		
 Design

 		
 Environment or Architecture-specific Sources

 		
 Library Statistics

 		
 PF and VF Considerations

 		
 ABI Policy

 		
 Description

 		
 General Guidelines

 		
 The DPDK ABI policy

 		
 Experimental

 		
 ABI Versioning

 		
 What is a library’s soname?

 		
 Major ABI versions

 		
 Versioning Macros

 		
 Running the ABI Validator

 		
 DPDK Documentation Guidelines

 		
 Structure of the Documentation

 		
 Role of the Documentation

 		
 Building the Documentation

 		
 Document Guidelines

 		
 RST Guidelines

 		
 Doxygen Guidelines

 		
 Contributing Code to DPDK

 		
 The DPDK Development Process

 		
 Source License

 		
 Maintainers and Sub-trees

 		
 Getting the Source Code

 		
 Make your Changes

 		
 Commit Messages: Subject Line

 		
 Commit Messages: Body

 		
 Creating Patches

 		
 Checking the Patches

 		
 Checking Compilation

 		
 Checking ABI compatibility

 		
 Sending Patches

 		
 The Review Process

 		
 DPDK Vulnerability Management Process

 		
 Scope

 		
 Finding

 		
 Report

 		
 Confirmation

 		
 CVE Request

 		
 Fix Development and Review

 		
 Pre-Release Disclosure

 		
 Private Disclosure

 		
 Public Disclosure

 		
 References

 		
 DPDK Stable Releases and Long Term Support

 		
 Introduction

 		
 Stable Releases

 		
 LTS Release

 		
 What changes should be backported

 		
 The Stable Mailing List

 		
 Releasing

 		
 Patch Cheatsheet

 		
 Release Notes

 		
 DPDK Release 20.05

 		
 New Features

 		
 API Changes

 		
 ABI Changes

 		
 Tested Platforms

 		
 DPDK Release 20.02

 		
 New Features

 		
 Removed Items

 		
 API Changes

 		
 ABI Changes

 		
 Tested Platforms

 		
 DPDK Release 19.11

 		
 New Features

 		
 Removed Items

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Known Issues

 		
 Tested Platforms

 		
 DPDK Release 19.08

 		
 New Features

 		
 Removed Items

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Known Issues

 		
 Tested Platforms

 		
 DPDK Release 19.05

 		
 New Features

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Known Issues

 		
 Tested Platforms

 		
 DPDK Release 19.02

 		
 New Features

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Known Issues

 		
 Tested Platforms

 		
 DPDK Release 18.11

 		
 New Features

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Known Issues

 		
 Tested Platforms

 		
 DPDK Release 18.08

 		
 New Features

 		
 API Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 18.05

 		
 New Features

 		
 API Changes

 		
 ABI Changes

 		
 Known Issues

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 18.02

 		
 New Features

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 17.11

 		
 New Features

 		
 Resolved Issues

 		
 API Changes

 		
 ABI Changes

 		
 Removed Items

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 17.08

 		
 New Features

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 17.05

 		
 New Features

 		
 Resolved Issues

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 Removed Items

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 17.02

 		
 New Features

 		
 Resolved Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 DPDK Release 16.11

 		
 New Features

 		
 Resolved Issues

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 Tested NICs

 		
 Tested OSes

 		
 DPDK Release 16.07

 		
 New Features

 		
 Resolved Issues

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 Tested NICs

 		
 Tested OSes

 		
 DPDK Release 16.04

 		
 New Features

 		
 Resolved Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 Tested Platforms

 		
 Tested NICs

 		
 DPDK Release 2.2

 		
 New Features

 		
 Resolved Issues

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 Shared Library Versions

 		
 DPDK Release 2.1

 		
 New Features

 		
 Resolved Issues

 		
 Known Issues

 		
 API Changes

 		
 ABI Changes

 		
 DPDK Release 2.0

 		
 New Features

 		
 DPDK Release 1.8

 		
 New Features

 		
 Known Issues and Limitations in Legacy Releases

 		
 Unit Test for Link Bonding may fail at test_tlb_tx_burst()

 		
 Pause Frame Forwarding does not work properly on igb

 		
 In packets provided by the PMD, some flags are missing

 		
 The rte_malloc library is not fully implemented

 		
 HPET reading is slow

 		
 HPET timers do not work on the Osage customer reference platform

 		
 Not all variants of supported NIC types have been used in testing

 		
 Multi-process sample app requires exact memory mapping

 		
 Packets are not sent by the 1 GbE/10 GbE SR-IOV driver when the source MAC is not the MAC assigned to the VF NIC

 		
 SR-IOV drivers do not fully implement the rte_ethdev API

 		
 PMD does not work with –no-huge EAL command line parameter

 		
 Some hardware off-load functions are not supported by the VF Driver

 		
 Kernel crash on IGB port unbinding

 		
 Twinpond and Ironpond NICs do not report link status correctly

 		
 Discrepancies between statistics reported by different NICs

 		
 Error reported opening files on DPDK initialization

 		
 Intel® QuickAssist Technology sample application does not work on a 32-bit OS on Shumway

 		
 Differences in how different Intel NICs handle maximum packet length for jumbo frame

 		
 Binding PCI devices to igb_uio fails on Linux kernel 3.9 when more than one device is used

 		
 GCC might generate Intel® AVX instructions for processors without Intel® AVX support

 		
 Ethertype filter could receive other packets (non-assigned) in Niantic

 		
 Cannot set link speed on Intel® 40G Ethernet controller

 		
 Devices bound to igb_uio with VT-d enabled do not work on Linux kernel 3.15-3.17

 		
 VM power manager may not work on systems with more than 64 cores

 		
 DPDK may not build on some Intel CPUs using clang < 3.7.0

 		
 The last EAL argument is replaced by the program name in argv[]

 		
 I40e VF may not receive packets in the promiscuous mode

 		
 uio pci generic module bind failed in X710/XL710/XXV710

 		
 virtio tx_burst() function cannot do TSO on shared packets

 		
 igb uio legacy mode can not be used in X710/XL710/XXV710

 		
 igb_uio can not be used when running l3fwd-power

 		
 Linux kernel 4.10.0 iommu attribute read error

 		
 Netvsc driver and application restart

 		
 PHY link up fails when rebinding i40e NICs to kernel driver

 		
 Restricted vdev ethdev operations supported in secondary process

 		
 Kernel crash when hot-unplug igb_uio device while DPDK application is running

 		
 AVX-512 support disabled

 		
 Unsuitable IOVA mode may be picked as the default

 		
 ABI and API Deprecation

 		
 Deprecation Notices

 		
 FAQ

 		
 What does “EAL: map_all_hugepages(): open failed: Permission denied Cannot init memory” mean?

 		
 If I want to change the number of hugepages allocated, how do I remove the original pages allocated?

 		
 If I execute “l2fwd -l 0-3 -m 64 -n 3 – -p 3”, I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?

 		
 I am running a 32-bit DPDK application on a NUMA system, and sometimes the application initializes fine but cannot allocate memory. Why is that happening?

 		
 On application startup, there is a lot of EAL information printed. Is there any way to reduce this?

 		
 How can I tune my network application to achieve lower latency?

 		
 Without NUMA enabled, my network throughput is low, why?

 		
 I am getting errors about not being able to open files. Why?

 		
 VF driver for IXGBE devices cannot be initialized

 		
 Is it safe to add an entry to the hash table while running?

 		
 What is the purpose of setting iommu=pt?

 		
 When trying to send packets from an application to itself, meaning smac==dmac, using Intel(R) 82599 VF packets are lost.

 		
 Can I split packet RX to use DPDK and have an application’s higher order functions continue using Linux pthread?

 		
 Is it possible to exchange data between DPDK processes and regular userspace processes via some shared memory or IPC mechanism?

 		
 Can the multiple queues in Intel(R) I350 be used with DPDK?

 		
 How can hugepage-backed memory be shared among multiple processes?

 		
 Why can’t my application receive packets on my system with UEFI Secure Boot enabled?

_images/sym_multi_proc_app.png
jardware Queues

_images/tbl24_tbl8.png
s

8

IR

-

ATE_Low_TBls UM GROUPS
s

_images/tbl24_tbl8_tbl8.png
815" leve)

FIRw———

i

N

18015]

_images/test_pipeline_app.png

_images/single_port_nic.png
VF Driver

VM

rtual NIC

. § |
N .
- —

S

Intel® Ethernet with SR-IOV

|
|
|

R

- -
e

T

—

_static/DPDK_logo_vertical_rev_small.png
2

_static/file.png

_static/plus.png

_static/minus.png

_images/vm_vm_comms.png
VMXNET3-PMD VXA
12fwd app 12fwd app

vSwWiici

Vmware ESXi 5.1

Packet Generator

_images/vswitch_vm.png
Packet Generator

_images/vmxnet3_int.png

_images/blk_diag_dropper.png
Scheduler

Green

Run-Time Data Configuration

Current Drop/
RED/WRED
Queue Size No Drop

Packet Queue

_images/prefetch_pipeline.png
Pk 00
Stage 0 — Stay —
sion (Prefetch (p,;:r:h .
B0 mpyp) [R11 queve) 2821 (e
location)

DKt 30

Dk 31

_images/qos_sched_app_arch.png
cpu core (R0) CPU Core (Trffic Mgmt + TX)

Pkt) sched | |{ sched Pkt
RX Classi [-1-{} Enq Deq ™
U core (0 U Core Tafichigm) o core 0
1
Classif sched | || sched Pkt
R ™

_images/pkt_drop_probability.png
Packet Drop Probability

1t —r——— - —

Mark Probability 4= — — — — — — — — — — — — — — —_——

Min Threshold Max Threshold
Average Queue Size

_images/pipe_prefetch_sm.png
No active
pipes No active

_images/pkt_proc_pipeline_qos.png
- -

PktI/O | Pkt § y Load Pkt /O
i parge | Classif | Policer | %% | Worker | Dropper | Sched | "
Thread 2
Thread 1 Thread (n+2)
Thread 0 T Worker
Th Clasi TH | oropper
Pkt 1/0
RX >
]ﬂ- Policer Sched
Thread (n+1) T
Load Pkt1/0
Al — i E

_images/pkt_flow_kni.png
Mbuf mempool

RX Thread

faed)
g
v

mbuf tosk buf ¢—{ < [<[<[<< l&——— rte eth rx burst)

LU
5

Net Stack kthread

F——> rte pktmbuffree() ==~

elloc.a TX Thread

<<<<<ﬁ

rte pkimbuf alloc() ===
rte_pktmbuffree() +===""

i

g rte_eth tx burstl)
>

_images/packet_distributor1.png
Distributor
core

Mbufs in

_images/packet_distributor2.png

_images/perf_benchmark.png
Intel® DPDK I2fwd-vf
sample Application

Flow3

Flow1

Virtual Machine Monitor (VMM)

_images/client_svr_sym_multi_proc_app.png
§ Hardware Queues

_images/console.png
[root@localhost isg_cid.

k18 xB6_64-default-linuxapp-gccsapp/testpmd -c £ -n

interactive-mode selected
onf iguring Port 8 (socket -1)

Fning: nb_desc(512) is not equal to vq size (256), fall to v size
estl

Fning: nb_desc(128) isn’t equal to vq size (256), fall to vg size
hecking 1ink statuses
ort 8 Link Up - speed 10808 Mbps - full-duplex

_images/data_struct_per_port.png
Subport
Table

S B
) Il!l

Table

Pipe Grinder
Armay
Queve. Queue
Table Storage Area

_images/drop_probability_graph.png
025

02
>
£

2015
£
2
4

2 01
2
<

005

o

12345678 91011121314151617
count

=——pa=pb/(1-count* pb)
=——pa=pb/(2-count* pb)
=—pb = max_p * (9/10)

_images/drop_probability_eq3.png
avg < ming,

ming, < avg < maxy,

avg = maxe,

_images/drop_probability_eq4.png
e = G =count xp)

_images/eq2_expression.png
(1) = 2lmtomsane)

_images/eq2_factor.png
a = 20exlorie))

